4. Matchings in general graphs

Tutte set: In a graph G, we call a set $X \subset V(G)$ Tutte set if $c_{1}(G-X)>|X|$, where $c_{1}(G-X)$ denotes the number of odd components of $G-X$ (that is, components with an odd number of vertices).
Tutte theorem: A graph G has a perfect matching if and only if there is no Tutte set in G, i.e. if $c_{1}(G-X) \leq|X|$ for all $X \subset V(G)$.
1.- Determine the ν and τ parameters of the following graphs:
a)

b)

e)

c) Petersen graph,
d) full binary tree of depth k.
2. Count the number of perfect matchings in
a) K_{n};
b) $K_{n, n}$;
c) the graph obtained from $K_{n, n}$ by removing a perfect matching;
d) a tree;
e) the following graph on $2 n$ vertices:

3. Let G be a simple graph, and let M be a maximal matching in G. (A matching M is maximal, if for each edge e of the graph, $M \cup\{e\}$ is not a matching. Such a matching can be easily found by a greedy algorithm.) Prove that

$$
\frac{\nu(G)}{2} \leq|M| \leq \nu(G)
$$

4. In a $2 n$-vertex simple graph G, every vertex degree is at least n. Prove that there exists a perfect matching in G.
5. Prove that if a matching M is not of maximum size in a graph G, then M can be augmented along a suitable augmenting path.
6. Let M_{0} be a matching in a graph G. Prove that there exists a matching in G that covers all vertices covered by M_{0}.
7. Consider a two-player path-building game between Alice and Bob, played on a graph G. Alice picks a starting vertex v. They then alternate (starting with Bob) in picking a neighbor of the last vertex. Every vertex may only be chosen once. In this way, they build a path in G starting at v. The first player who cannot make a legal move (because there are no more vertices, or because there are no unvisited neighbors) loses. Prove that Bob wins if and only if G has a perfect matching.
8. Let G be a simple connected graph with an even number of edges. Using Tutte theorem, prove that the edge set of G can be partitioned into (edge sets of) paths of length 2.
9. Prove Petersen's theorem: Every 2-edge-connected 3-regular graph has a perfect matching. (A graph G is 2-edge-connected if it is connected and it remains connected after removing one edge arbitrarily.)
[7.29]
Hint: Use Tutte theorem.
10. ${ }^{+}$A graph G and a function $f: V(G) \rightarrow \mathbb{N}_{0}$ are given. Our task is to decide whether there exists a spanning subgraph of G, in which each vertex v has degree $f(v)$. Reduce this problem to a suitable matching problem (which can be solved by Edmonds' algorithm efficiently).
