Blocking s-spaces by t-spaces in \mathbb{F}_q^n

Dávid R Szabó

HUN-REN Alfréd Rényi Institute of Mathematics (Hungary)

Let $0 \le t \le s \le t \le n$ be integers. In the *n*-dimensional vector space \mathbb{F}_q^n over the q element field, an (s,t)-blocking set is a set t-spaces such that each s-space is incident with at least one chosen t-space. Denote by $f_{s,t}(n,q)$ the cardinality of the smallest such a blocking set. It is a trivial folklore result that $f_{s,t}(n,q) = q^N + O(q^{N-1})$ as $q \to \infty$ for N := (n-s)t, but determining $f_{s,t}(n,q)$ more precisely is a notoriously difficult problem, as it is equivalent to determining the size of certain q-Turán designs and q-covering designs. For example, the exact value of even $f_{3,2}(n,q)$ is known only for $n \le 5$.

We present an improvement on the upper bounds of Eisfeld and Metsch [3, Theorem 1.2.], [2, Theorem 1.2] for (s,t) = (3,2) via a refined scheme for a recursive construction, which in fact enables improvement in the general case as well.

Theorem 1 ([1, Theorem 1.9]). Let
$$(s,t) = (3,2)$$
 and $n \ge 6$. Then as $q \to \infty$, we have $f_{3,2}(n,q) \le \mathbf{1}q^N + \mathbf{0}q^{N-1} + \mathbf{2}q^{N-2} + 2q^{N-3} + 3q^{N-4} + 3q^{N-5} + 3q^{N-6} + 3q^{N-7} + O(q^{N-8}),$ $f_{3,2}(n,q) \ge \mathbf{1}q^N + \mathbf{0}q^{N-1} + \mathbf{2}q^{N-2} + q^{N-3} + 2q^{N-4}.$

Theorem 2 (General recursive construction, [1, Corollary 3.7]). Let X be an n-dimensional vector space, $K \leq X$ be a k-space with $k \leq n - s$. For each integer $0 \leq i \leq \min\{k, s\}$, pick an arbitrary integer $t_i \in [0, i] \cap [t - (s - i), t] \neq \emptyset$.

If $\mathcal{B}_K(i)$ is an (i, t_i) -blocking set in K, and $\mathcal{B}_Q(i)$ is an $(s - i, t - t_i)$ -blocking set in Q := X/K, then

$$\mathcal{B}_X \coloneqq igsqcup_{i=0}^{\min\{k,s\}} \mathcal{B}_K(i) * \mathcal{B}_Q(i)$$

is an (s,t)-blocking in X where $\mathcal{B}_K * \mathcal{B}_Q := \{T \leqslant X : K \cap T \in \mathcal{B}_K, \langle K, T \rangle \in \mathcal{B}_Q \}.$

These results are joint work with Benedek Kovács and Zoltán Lóránt Nagy.

References

- [1] Kovács, B., Nagy, Z.L. and Szabó, D.R. Blocking planes by lines in PG(n, q), Des. Codes Cryptogr. (2025). https://doi.org/10.1007/s10623-025-01678-w
- [2] Metsch, K. (2004). Blocking subspaces by lines in PG(n,q), Combinatorica **24** 459-486.
- [3] Eisfeld, J., Metsch, K. (1997). Blocking s-dimensional subspaces by lines in PG(2s, q), Combinatorica, 17(2), 151-162.