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Every cubic Hamiltonian graph of order n can be represented by a sequence of length n
with non-zero integer entries, known as the LCF code[3], which denotes the oriented spans
along the Hamilton cycle. When the LCF code consists of a subsequence of length &, repeating
m times it is termed a polycirculant[f]] LCF code of base k and exponent m. We recall the
following theorem:

Theorem 1. The existence of a polycirculant LCF code with exponent m,m > 1 in a cubic
graph is equivalent to the existence of a semi-reqular automorphism of order m such that the
quotient voltage graph has a Hamilton cycle with a net voltage relatively prime to m.

We apply this result to an algorithm that generates all polycirculant LCF codes for a
given graph. Characterizing cubic graphs that admit polycirculant LCF codes remains a
challenging problem, even for highly symmetric graphs. For example, according to the online
census of arc-transitive graphs[2], the graph F56B from the Foster census[I] is the smallest
cubic arc-transitive Hamiltonian graph that does not possess a polycirculant LCF code. We
present some observations based on the run of this algorithm on small generalized Petersen
graphs.
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