On The number of directions determined by A SET OF SIZE p

 Gábor Somlai

 Gábor Somlai}

ELTE

Rédei proved that a set in \mathbb{F}_{p}^{2} of cardinality of p is either a line or determines at least $\frac{p+3}{2}$ directions.

We present a new proof for Rédei's result [2] that relies on a lemma proved in a joint paper with Gergely Kiss. In the mean time we prove the following theorem.

Theorem 1. Assume f is a polynomial of degree at least 1 with $\sum_{x \in \mathbb{F}_{p}} f(x)=p$. Then the degree of f is at least $\frac{p-1}{2}$.

As a strengthening of the result we proved the following.
Theorem 2. For large enough p, up to affine transformations, there are exactly 2 polynomials f of degree $\frac{p-1}{2}$ with $\sum_{x \in \mathbb{F}_{p}} f(x)=p$.

This result leads to a new proof of a result of Lovász and Schrijver [1].
Joint work with Gergely Kiss and Ádḿ Markó and Zoltán Nagy.

References

[1] L. Lovász, A. Schrijver: Remarks on a theorem of Rédei, Studia Scient. Math. Hungar. 16 (1981), 449-454.
[2] L. Rédei: Lükenhafte Polynome über endlichen Körpern, Birkhäuser Verlag, Basel (1970) (English translation: Lacunary polynomials over finite fields, North Holland, Amsterdam (1973)).

