On REGULAR TWO-GRAPHS ON 38 AND 42 VERTICES

Sanja Rukavina
University of Rijeka (Croatia)
(Joint work with M. Maksimović)

A two-graph is a pair (\mathcal{V}, Δ), where Δ is a collection of unordered triples chosen from a finite set of vertices \mathcal{V}, such that every 4 -subset of \mathcal{V} contains an even number of triples of Δ. The triples from Δ are called coherent. A regular two-graph has the property that every pair of vertices lies in the same number of triples of the two-graph.

From a two-graph $\Phi=(\mathcal{V}, \Delta)$ and any fixed $x \in \mathcal{V}$ we construct the graph Γ which has a vertex set \mathcal{V} by setting the vertex x as isolated vertex and letting any two other vertices y, z to be adjacent in Γ if $\{z, x, y\}$ is coherent in Φ. Deleting the isolated vertex x yields a graph on $|\mathcal{V}|-1$ vertices, which is called the descendant of Φ. The two-graph (\mathcal{V}, Δ) is regular if and only if each descendant is strongly regular with parameters $(v-1, k, \lambda, \mu)$, where $\mu=k / 2$.

All regular two-graphs having up to 36 vertices are known, and the first open case is the enumeration of two-graphs on 38 vertices. It is known that there are at least 191 regular two-graphs on 38 vertices and at least 18 regular two-graphs on 42 vertices. The number of descendants of these two-graphs is 6760 and 120, respectively.

In [1], we classify strongly regular graphs with parameters (41, 20, 9, 10) having nontrivial automorphisms and show that there are exactly 7152 such graphs. We enumerate all regular two-graphs on 38 and 42 vertices with at least one descendant whose full automorphism group is nontrivial and establish that there are at least 194 regular two-graphs on 38 vertices and at least 752 regular two-graphs on 42 vertices. Furthermore, we construct descendants with trivial automorphism group of the newly constructed two-graphs and increase the number of known strongly regular graphs with parameters $(37,18,8,9)$ and $(41,20,9,10)$ to 6802 and 18439 respectively. This significantly increases the number of known strongly regular graphs with parameters (41, 20, 9, 10).

References

[1] M. Maksimović, S. Rukavina, New regular two-graphs on 38 and 42 vertices, Math. Commun. 27 (2022), 151-161

