# The distance function in Coxeter-Like GRAPHS 

Marko Orel<br>University of Primorska (Slovenia)<br>(Joint work with Draženka Višnjić)

Vector spaces of matrices with coefficients from a finite field equipped with the rankmetric $D(A, B)=\operatorname{rank}(A-B)$ are subjects of study in various mathematical areas. They can be found, for example, in algebraic combinatorics (association schemes, distance-regular graphs), in coding theory (rank-metric codes), and in matrix theory (preserver problems). Consider the graph $\widehat{\Gamma}_{n}$, which has the set $S_{n}\left(\mathbb{F}_{2}\right)$ of all $n \times n$ binary symmetric matrices as the vertex set, and where two matrices form an edge $\{A, B\}$ if and only if $\operatorname{rank}(A-B)=1$. It is well known and easy to see that the graph distance in $\widehat{\Gamma}_{n}$ equals $d_{\widehat{\Gamma}_{n}}(A, B)=\operatorname{rank}(A-B)$ unless the diagonal of $A-B$ is zero and $A \neq B$ (i.e. unless $A-B$ is a nonzero alternate matrix). In the later case, we have $d_{\hat{\Gamma}_{n}}(A, B)=\operatorname{rank}(A-B)+1$.

In this talk, we will consider the subgraph $\Gamma_{n}$ in $\widehat{\Gamma}_{n}$, which is induced by all invertible matrices. Graph $\Gamma_{n}$ was introduced in [1] and generalizes the well-known Coxeter graph $\Gamma_{3}$. Here, we are out of the comfort zone because the vertex set of $\Gamma_{n}$ is no longer a vector space. In the talk, the graph distance in $\Gamma_{n}$ will be described. We will see that the value $d_{\Gamma_{n}}(A, B)$ depends on the 'type' of the symmetric rank decomposition of the matrix $A-B$.

## References

[1] M. Orel, On generalizations of the Petersen and the Coxeter graph. Electron. J. Combin. 22(4) (2015), Paper \#P.4.27.

