On the completeness of Sidon sets obtained FROM AFFINE CONICS

Gábor P. Nagy

University of Szeged (Hungary)

The subset S of the abelian group A is a Sidon set in A, if for any $x, y, z, w \in S$ of which at least three are different, $x+y \neq z+w$. The subset S is t-thin Sidon, if for all $a \in A \backslash\{0\}$, $|S \cap(a+S)| \leqslant t$. In the elementary abelian 2-group $A=\mathbb{F}_{2}^{n}, S$ is Sidon if and only if it is 2 -thin Sidon. For the size of a t-thin Sidon set we have the trivial upper bound

$$
\begin{equation*}
|S| \leqslant \sqrt{t} \cdot 2^{n / 2}+\frac{1}{2} \tag{1}
\end{equation*}
$$

Even for the case $t=2$, that is, for Sidon sets, it is not known how sharp the trivial upper bound is. Except for the value $n=11$, all known Sidon sets of \mathbb{F}_{2}^{n} have size less than or equal to $2^{n / 2}+2$. In \mathbb{F}_{2}^{11}, the largest known Sidon set has size $48>2^{n / 2}+2 \approx 47.25$. If n is odd and at least 15 , then the largest known Sidon sets have sizes

$$
\frac{1}{\sqrt{2}} 2^{n / 2}+O\left(2^{n / 4}\right)
$$

Therefore, the gap between the lower and upper bounds on the size of a Sidon set is large, in particular if n is odd. This problem is related to a conjecture by Liu, Mesnager, and Chen from 2017 on the Hamming distance of vectorial Boolean functions to affine functions. If the Liu-Mesnager-Chen Conjecture is true, then for all n, APN functions on \mathbb{F}_{2}^{n} would yield a Sidon sets of size $2^{n / 2}+1$ in \mathbb{F}_{2}^{n}.

A Sidon set is complete, if it is not contained in a larger Sidon set. In this talk, we present a class of complete Sidon sets of size $2^{n / 2}+2$ for $n \equiv 0(\bmod 4)$.

