# $m$-SETS OF AFFINE AND PROJECTIVE SPACES AVOIDING CERTAIN CONFIGURATIONS 

Zoltán Lóránt Nagy

Eötvös Loránd University, Budapest (Hungary)

The starting point of this talk is the so-called cap-set problem which is the determination of the largest subset of $A G(n, 3)$ that does not contain a complete line, or in other terms, contains no arithmetic progression of length 3 (3-AP). Quite recently Ellenberg and Gijswijt proved a breakthrough result regarding caps in $A G(n, 3)[3]$ building on the ideas of Croot, Lev and Pach [2].

We discuss the generalisation of this problem in the following directions:

## Problem 1.

- What is the maximum size of a point set $M$ in $A G(n, q)$ which does not contain a complete affine $k$-dimensional subspace, (i.e., $k$-flat)?
- Given integers $k, t$, what is the spectra of $|M|$ for point sets $M$ in $A G(n, q)$ for which the intersection size of $M$ and a $k$-flat is different from $t$, for all $k$-flats?

Then we consider the 2-dimensional version of the problem above in the projective setting.
Problem 2. Given two positive integers $k<q$ and $m<q^{2}+q+1$, are there sets of size $m$ in a finite projective plane $P G(2, q)$ which do not have $k$-secants?

Note that for $k=1$, this problem was initiated by Blokhuis, Seress and Wilbrink [1] who called sets $S \subseteq P G(2, q)$ without tangents untouchable sets.

Finally, we study the size of point sets of $A G(n, q)$ that do not contain arithmetic progression of length 3 (3-AP). A 3-AP free set is complete if it is not contained in a larger 3-AP free set. We show contrucions of small complete 3-AP free sets for which the size almost attains the trivial lower bound.

The results are joint with Benedek Kovács (for Problem 1), Tamás Héger (for Problem 2) and Bence Csajbók (for the AP-3 problem).

## References

[1] Blokhuis, A., Seress, A., Wilbrink, H. A. (1991). On sets of points in PG(2, q) without tangents. Mitt. Math. Sem. Giessen, 201, 39-44.
[2] Croot, E., Lev, V. F., Pach, P. P. (2017). Progression-free sets in are exponentially small. Annals of Mathematics, 331-337.
[3] Ellenberg, J. S., Gijswijt, D. (2017). On large subsets of with no three-term arithmetic progression. Annals of Mathematics, 339-343.

