On the set of directions determined By \mathbb{F}_{q}-SUBSPACES OF $\operatorname{AG}\left(r, q^{n}\right)$
 Bence Csajbók

Polytechnic University of Bari, Italy
(Joint work with Giuseppe Marino and Valentina Pepe)

Consider $\operatorname{PG}\left(r, q^{n}\right)$ as $\mathrm{AG}\left(r, q^{n}\right) \cup H_{\infty}$, where H_{∞} is the hyperplane at infinity. The set of directions determined by an affine point set S of $\operatorname{AG}\left(n, q^{n}\right)$ is the set of ideal points $\operatorname{dir}(S)=\left\{\langle P, Q\rangle \cap H_{\infty}: P, Q \in S, P \neq Q\right\}$. For a function $f: \mathbb{F}_{q^{n}} \rightarrow \mathbb{F}_{q^{n}}$ the graph of f is the affine point set $U_{f}=\left\{(x, f(x)): x \in \mathbb{F}_{q^{n}}\right\} \subseteq \operatorname{AG}\left(2, q^{n}\right)$. Assume that f (and hence U_{f}) is \mathbb{F}_{q}-linear. If ℓ is a line through the origin, then $\left|U_{f} \cap \ell\right|=q^{i}, i \in \mathbb{Z}_{0}^{+}$. Let w be maximal such that for each line ℓ through the origin either $U_{f} \cap \ell=\{(0,0)\}$, or $\left|U_{f} \cap \ell\right| \geqslant q^{w}$. By a result of Ball et al. $\mathbb{F}_{q^{w}}$ is the largest subfield of $\mathbb{F}_{q^{n}}$ such that U_{f} is an $\mathbb{F}_{q^{w}}$-subspace, [1, 2]. With G. Marino and V. Pepe we proved the following generalisation.

Theorem 1. Let U denote an m-dimensional \mathbb{F}_{q}-subspace of $\operatorname{AG}\left(r, q^{n}\right)$. Let w be maximal such that for each line ℓ through the origin either $U \cap \ell=\{(0, \ldots, 0)\}$ or $|U \cap L| \geqslant q^{w}$.
(a) If $n \mid m$, then $w \mid n$ and $\mathbb{F}_{q^{w}}$ is the largest subfield of $\mathbb{F}_{q^{n}}$ such that U is $\mathbb{F}_{q^{w}}$-linear. If $n \nmid m$ then U is not necessarily linear over a larger field, but it acts similarly:
(b) If $q \geqslant n$, then there exists an integer $d \geqslant w, d \mid n$, such that $\operatorname{dir}(U)=\operatorname{dir}\left(\langle U\rangle_{\mathbb{F}_{q^{d}}}\right)$.

References

[1] S. Ball: The number of directions determined by a function over a finite field, J. Combin. Theory Ser. A 104 (2003), 341-350.
[2] S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme and T. Szönyi: On the number of slopes of the graph of a function defined over a finite field, J. Combin. Theory Ser. A 86 (1999), 187-196.
[3] B. Csajbók, G. Marino, V. Pepe: On the maximum field of linearity of linear sets, submitted manuscript, https://arxiv.org/abs/2306.07488.

