On the set of directions determined by \mathbb{F}_q -subspaces of $AG(r, q^n)$

Bence Csajbók

Polytechnic University of Bari, Italy

(Joint work with Giuseppe Marino and Valentina Pepe)

Consider $\operatorname{PG}(r,q^n)$ as $\operatorname{AG}(r,q^n) \cup H_{\infty}$, where H_{∞} is the hyperplane at infinity. The set of directions determined by an affine point set S of $\operatorname{AG}(n,q^n)$ is the set of ideal points $\operatorname{dir}(S) = \{\langle P, Q \rangle \cap H_{\infty} : P, Q \in S, P \neq Q\}$. For a function $f : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ the graph of f is the affine point set $U_f = \{(x, f(x)) : x \in \mathbb{F}_{q^n}\} \subseteq \operatorname{AG}(2, q^n)$. Assume that f (and hence U_f) is \mathbb{F}_q -linear. If ℓ is a line through the origin, then $|U_f \cap \ell| = q^i, i \in \mathbb{Z}_0^+$. Let w be maximal such that for each line ℓ through the origin either $U_f \cap \ell = \{(0,0)\}$, or $|U_f \cap \ell| \ge q^w$. By a result of Ball et al. \mathbb{F}_{q^w} is the largest subfield of \mathbb{F}_{q^n} such that U_f is an \mathbb{F}_{q^w} -subspace, [1, 2]. With G. Marino and V. Pepe we proved the following generalisation.

Theorem 1. Let U denote an m-dimensional \mathbb{F}_q -subspace of AG (r, q^n) . Let w be maximal such that for each line ℓ through the origin either $U \cap \ell = \{(0, \ldots, 0)\}$ or $|U \cap L| \ge q^w$.

(a) If $n \mid m$, then $w \mid n$ and \mathbb{F}_{q^w} is the largest subfield of \mathbb{F}_{q^n} such that U is \mathbb{F}_{q^w} -linear.

If $n \nmid m$ then U is not necessarily linear over a larger field, but it acts similarly:

(b) If $q \ge n$, then there exists an integer $d \ge w$, $d \mid n$, such that $\operatorname{dir}(U) = \operatorname{dir}(\langle U \rangle_{\mathbb{F}_{d}})$.

References

- S. BALL: The number of directions determined by a function over a finite field, J. Combin. Theory Ser. A 104 (2003), 341–350.
- [2] S. BALL, A. BLOKHUIS, A.E. BROUWER, L. STORME AND T. SZÖNYI: On the number of slopes of the graph of a function defined over a finite field, *J. Combin. Theory Ser. A* 86 (1999), 187–196.
- [3] B. CSAJBÓK, G. MARINO, V. PEPE: On the maximum field of linearity of linear sets, submitted manuscript, https://arxiv.org/abs/2306.07488.