Cayley graph G of the mapping class group OF THE SURFACE WITH RESPECT TO $\mathbb{Z}_{2} \frac{k(k-1)}{2}$

Abdul Halim
Georg-August Universität Göttingen, Germany

Suppose $k \in \mathbb{N}$ and $k \geqslant 2$ such that $2^{k}-1$ is not divisible by k. Let S_{0} and S_{1} be the sets of all non-zero elements $\alpha \in G F\left(2^{k}\right)$ so that the leftmost bit in the binary representation of α^{k} is 0 and 1 respectively. As $\left|S_{0}\right|=2^{k-1}-1$ and $\left|S_{1}\right|=2^{k-1}$, define G to be a Cayley graph of additive group $\mathbb{Z}_{2}^{\frac{k(k-1)}{2}}$ with respect to the related generating set consisting of the $\frac{k(k-1)}{2}$ standard basis vectors. Clearly, G is a $2^{k-1}\left(2^{k-1}-1\right)$-regular graph with $\frac{k(k-1)}{2}$ vertices. Since $\mathbb{Z}_{2} \frac{k(k-1)}{2}$ is a finite group, its mapping class group is trivial. We also look up to find its maximum cycle length and eigenvalues of G.

References

[1] L. Lovász, Combinatorial problems and exercises, $2^{\text {nd }}$ Ed., North Holland, Amsterdam, 1993.
[2] K. Alon, Explicit Ramsey graphs and orthonormal labellings, The Electronic J. Combinatorics 1 (R-12), 1994.
[3] K. Alon and K. Khale, Approximating the independence number via the θ-function, Math. Programming (80), 1998.
[4] Martin Scharlemann, The complex of curves on nonorientable surfaces, Journal of the London Mathematical Society s2-25 (1),1982.

