Strongly regular graphs with 2-transitive two-graphs*

Gábor P. Nagy joint work with R. Bailey and V. Smaldore

University of Szeged (Hungary)

Finite Geometries 2025 Seventh Irsee Conference

August 31 – September 6, 2025 Irsee (Germany)

^{*}This research was supported by project TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

Outline

- SRGs, two-graphs, Seidel switchings
- 2 Two-graphs with doubly transitive automorphism groups
- 3 SRGs in the switching class of linear type two-graphs

Everybody knows:

The Petersen graph srg(10, 3, 0, 1)

complement of the Petersen graph

Definition: Seidel switching of a simple graph G = (V, E)

Given a subset $Y \subseteq V$, the operation of switching of G with respect to Y consists of replacing

- all edges from Y to its complement by nonedges,
- and all nonedges by edges,
- while leaving the edges within Y or outside Y unchanged.

Fact

Definition: Seidel switching of a simple graph G = (V, E)

Given a subset $Y \subseteq V$, the operation of switching of G with respect to Y consists of replacing

- all edges from Y to its complement by nonedges,
- and all nonedges by edges,
- while leaving the edges within Y or outside Y unchanged.

Fact

Definition: Seidel switching of a simple graph G = (V, E)

Given a subset $Y \subseteq V$, the operation of switching of G with respect to Y consists of replacing

- all edges from Y to its complement by nonedges,
- and all nonedges by edges,
- while leaving the edges within Y or outside Y unchanged.

Fact

Definition: Seidel switching of a simple graph G = (V, E)

Given a subset $Y \subseteq V$, the operation of switching of G with respect to Y consists of replacing

- all edges from Y to its complement by nonedges,
- and all nonedges by edges,
- while leaving the edges within Y or outside Y unchanged.

Fact

Definition: Seidel switching of a simple graph G = (V, E)

Given a subset $Y \subseteq V$, the operation of switching of G with respect to Y consists of replacing

- all edges from Y to its complement by nonedges,
- and all nonedges by edges,
- while leaving the edges within Y or outside Y unchanged.

Fact

Definition: Seidel switching of a simple graph G = (V, E)

Given a subset $Y \subseteq V$, the operation of switching of G with respect to Y consists of replacing

- all edges from Y to its complement by nonedges,
- and all nonedges by edges,
- while leaving the edges within Y or outside Y unchanged.

Fact

Definition: Seidel switching of a simple graph G = (V, E)

Given a subset $Y \subseteq V$, the operation of switching of G with respect to Y consists of replacing

- all edges from Y to its complement by nonedges,
- and all nonedges by edges,
- while leaving the edges within Y or outside Y unchanged.

Fact

Definition: Two-graph (Higman)

A two-graph is a pair (X, T), where T is a set of unordered **triples** of a vertex set X, such that every (unordered) quadruple from X contains an even number of triples from T. In a regular two-graph, each pair of vertices is in a constant number of triples.

Proposition

Let G = (V, E) be a simple graph, and T the set of those triples of the vertices, whose induced subgraph has an **odd number of edges**. Then (V, T) is a two-graph.

We call (V, T) the associated two-graph of G.

Proposition

Definition: Two-graph (Higman)

A two-graph is a pair (X, T), where T is a set of unordered **triples** of a vertex set X, such that every (unordered) quadruple from X contains an even number of triples from T. In a regular two-graph, each pair of vertices is in a constant number of triples.

Proposition

Let G = (V, E) be a simple graph, and T the set of those triples of the vertices, whose induced subgraph has an **odd number of edges**. Then (V, T) is a two-graph.

We call (V, T) the associated two-graph of G.

Proposition

Definition: Two-graph (Higman)

A two-graph is a pair (X, T), where T is a set of unordered **triples** of a vertex set X, such that every (unordered) quadruple from X contains an even number of triples from T.

In a regular two-graph, each pair of vertices is in a constant number of triples.

Proposition

Let G = (V, E) be a simple graph, and T the set of those triples of the vertices, whose induced subgraph has an **odd number of edges.** Then (V, T) is a two-graph.

We call (V, T) the associated two-graph of G.

Proposition

Definition: Two-graph (Higman)

A two-graph is a pair (X, T), where T is a set of unordered **triples** of a vertex set X, such that every (unordered) quadruple from X contains an even number of triples from T.

In a regular two-graph, each pair of vertices is in a constant number of triples.

Proposition

Let G = (V, E) be a simple graph, and T the set of those triples of the vertices, whose induced subgraph has an **odd number of edges.** Then (V, T) is a two-graph.

We call (V, T) the associated two-graph of G.

Proposition

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2, 9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- $G = Aut(\mathcal{T}(\Gamma))$ is doubly transitive,
- and $H = \operatorname{Aut}(\Gamma)$ is a transitive maximal subgroup of G.

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2,9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- G = Aut(T(Γ)) is doubly transitive,
- and H = Aut(Γ) is a transitive maximal subgroup of G.

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2, 9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- $G = Aut(\mathcal{T}(\Gamma))$ is doubly transitive,
- and H = Aut(Γ) is a transitive maximal subgroup of G.

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2,9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- $G = Aut(\mathcal{T}(\Gamma))$ is doubly transitive,
- and $H = Aut(\Gamma)$ is a **transitive maximal subgroup** of G.

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2, 9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- $G = Aut(\mathcal{T}(\Gamma))$ is doubly transitive,
- and $H = Aut(\Gamma)$ is a **transitive maximal subgroup** of G.

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2, 9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- $G = Aut(\mathcal{T}(\Gamma))$ is doubly transitive,
- and $H = Aut(\Gamma)$ is a **transitive maximal subgroup** of G.

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2, 9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- $G = Aut(\mathcal{T}(\Gamma))$ is doubly transitive,
- and $H = Aut(\Gamma)$ is a transitive maximal subgroup of G.

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2, 9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- $G = Aut(\mathcal{T}(\Gamma))$ is doubly transitive,
- and $H = Aut(\Gamma)$ is a transitive maximal subgroup of G.

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2, 9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- $G = Aut(\mathcal{T}(\Gamma))$ is doubly transitive,
- and $H = Aut(\Gamma)$ is a transitive maximal subgroup of G.

- "...triples with an odd number of edges..."
- no triangles
- $|T| = 15 \times 4 = 60$
- the graph automorphism group is $H = S_5$
- the automorphism group of the two-graph is $G = P\Sigma L(2, 9) \cong S_6$
- G is 2-transitive on V
- $H = S_5$ is a transitive maximal subgroup of G

OUR GOAL

- $G = Aut(\mathcal{T}(\Gamma))$ is doubly transitive,
- and $H = Aut(\Gamma)$ is a transitive maximal subgroup of G.

Outline

- 1 SRGs, two-graphs, Seidel switchings
- 2 Two-graphs with doubly transitive automorphism groups
- 3 SRGs in the switching class of linear type two-graphs

- **1** Affine polar type: $G \cong \mathbb{F}_2^{2m} \rtimes Sp(2m, 2), m \geq 2$;
- 2 Symplectic type: $G \cong Sp(2m, 2), m \geq 3$;
- **3** Linear type: $G \cong P\Sigma L(2, q)$, for $q \equiv 1 \pmod{4}$;
- **4** Unitary type: $G \cong P\Gamma U(3, q)$, for $q \geq 5$ odd;
- **Solution** Ree type: $G \cong Ree(q) \rtimes Aut(\mathbb{F}_q)$, for $q = 3^{2e+1}$, $e \ge 1$;
- **Sporadic type:** $G \cong HS$ or $G \cong Co_3$.

- **1** Affine polar type: $G \cong \mathbb{F}_2^{2m} \rtimes Sp(2m, 2), m \geq 2$;
- 2 Symplectic type: $G \cong Sp(2m, 2)$, $m \geq 3$;
- **3** Linear type: $G \cong P\Sigma L(2, q)$, for $q \equiv 1 \pmod{4}$;
- **4** Unitary type: $G \cong P\Gamma U(3, q)$, for $q \geq 5$ odd;
- **Solution** Ree type: $G \cong Ree(q) \rtimes Aut(\mathbb{F}_q)$, for $q = 3^{2e+1}$, $e \ge 1$;
- **Sporadic type:** $G \cong HS$ or $G \cong Co_3$.

- **1** Affine polar type: $G \cong \mathbb{F}_2^{2m} \rtimes Sp(2m, 2), m \geq 2$;
- 2 Symplectic type: $G \cong Sp(2m, 2), m \geq 3$;
- **3** Linear type: $G \cong P\Sigma L(2,q)$, for $q \equiv 1 \pmod{4}$;
- **4** Unitary type: $G \cong P\Gamma U(3, q)$, for $q \geq 5$ odd;
- **Solution** Ree type: $G \cong Ree(q) \rtimes Aut(\mathbb{F}_q)$, for $q = 3^{2e+1}$, $e \ge 1$;
- **Sporadic type:** $G \cong HS$ or $G \cong Co_3$.

- **1** Affine polar type: $G \cong \mathbb{F}_2^{2m} \rtimes Sp(2m, 2), m \geq 2$;
- 2 Symplectic type: $G \cong Sp(2m, 2), m \geq 3$;
- **3** Linear type: $G \cong P\Sigma L(2, q)$, for $q \equiv 1 \pmod{4}$;
- **4** Unitary type: $G \cong P \Gamma U(3, q)$, for $q \geq 5$ odd;
- **Solution** Ree type: $G \cong Ree(q) \rtimes Aut(\mathbb{F}_q)$, for $q = 3^{2e+1}$, $e \ge 1$;
- **Sporadic type:** $G \cong HS$ or $G \cong Co_3$.

- **1** Affine polar type: $G \cong \mathbb{F}_2^{2m} \rtimes Sp(2m, 2), m \geq 2$;
- 2 Symplectic type: $G \cong Sp(2m, 2), m \geq 3$;
- **3** Linear type: $G \cong P\Sigma L(2,q)$, for $q \equiv 1 \pmod{4}$;
- **Unitary type:** $G \cong P\Gamma U(3, q)$, for $q \ge 5$ odd;
- **3** Ree type: $G \cong Ree(q) \rtimes Aut(\mathbb{F}_q)$, for $q = 3^{2e+1}$, $e \ge 1$;
- **Sporadic type:** $G \cong HS$ or $G \cong Co_3$.

- **1** Affine polar type: $G \cong \mathbb{F}_2^{2m} \rtimes Sp(2m, 2), m \geq 2$;
- 2 Symplectic type: $G \cong Sp(2m, 2), m \geq 3$;
- **3** Linear type: $G \cong P\Sigma L(2, q)$, for $q \equiv 1 \pmod{4}$;
- **Unitary type:** $G \cong P\Gamma U(3, q)$, for $q \ge 5$ odd;
- **Solution** Ree type: $G \cong Ree(q) \rtimes Aut(\mathbb{F}_q)$, for $q = 3^{2e+1}$, $e \ge 1$;
- **5** Sporadic type: $G \cong HS$ or $G \cong Co_3$.

Exceptional and sporadic graphs

G	Н	Γ	Remark
<i>P</i> Σ <i>L</i> (2,9)	S ₅	Petersen graph & its complement	$P\Sigma L(2,9)$ has two conjugacy classes of S_5
<i>Sp</i> (6, 2)	$G_2(2)$	$U_3(3)$ -graph	V = 36
<i>Sp</i> (8, 2)	S ₁₀	J(10,3,2)	V = 120
	PSL(2, 17)	Bailey, Crnković-Švob	<i>V</i> = 136
<i>P</i> Γ <i>U</i> (3, 5)	S ₇	Goethals	V = 126; param. uniqueness; H is max. in G not containing $PSU(3,5)$
HS	M ₂₂	Goethals, Crnković	param. uniqueness

G	Н	Γ	Remark
<i>P</i> Σ <i>L</i> (2,9)	S ₅	Petersen graph & its complement	$P\Sigma L(2,9)$ has two conjugacy classes of S_5
<i>Sp</i> (6, 2)	$G_2(2)$	$U_3(3)$ -graph	<i>V</i> = 36
<i>Sp</i> (8, 2)	S ₁₀	J(10,3,2)	V = 120
	PSL(2, 17)	Bailey, Crnković-Švob	<i>V</i> = 136
<i>P</i> Γ <i>U</i> (3,5)	S ₇	Goethals	V = 126; param. uniqueness; H is max. in G not containing $PSU(3,5)$
HS	M ₂₂	Goethals, Crnković	param. uniqueness

G	Н	Γ	Remark
ΡΣL(2,9)	S ₅	Petersen graph & its complement	$P\Sigma L(2,9)$ has two conjugacy classes of S_5
<i>Sp</i> (6, 2)	$G_2(2)$	$U_3(3)$ -graph	<i>V</i> = 36
<i>Sp</i> (8, 2)	S ₁₀	J(10,3,2)	<i>V</i> = 120
	PSL(2, 17)	Bailey, Crnković-Švob	<i>V</i> = 136
<i>P</i> Γ <i>U</i> (3,5)	S ₇	Goethals	V = 126; param. uniqueness; H is max. in G not containing $PSU(3,5)$
HS	M ₂₂	Goethals, Crnković	param. uniqueness

G	Н	Γ	Remark
ΡΣL(2,9)	S ₅	Petersen graph & its complement	$P\Sigma L(2,9)$ has two conjugacy classes of S_5
<i>Sp</i> (6, 2)	$G_2(2)$	$U_3(3)$ -graph	<i>V</i> = 36
<i>Sp</i> (8, 2)	S ₁₀	J(10,3,2)	<i>V</i> = 120
	PSL(2, 17)	Bailey, Crnković-Švob	<i>V</i> = 136
<i>P</i> Γ <i>U</i> (3,5)	S ₇	Goethals	V =126; param. uniqueness; H is max. in G not containing $PSU(3,5)$
HS	M ₂₂	Goethals, Crnković	param. uniqueness

G	Н	Γ	Remark
ΡΣL(2,9)	<i>S</i> ₅	Petersen graph & its complement	$P\Sigma L(2,9)$ has two conjugacy classes of S_5
<i>Sp</i> (6, 2)	$G_2(2)$	$U_3(3)$ -graph	<i>V</i> = 36
<i>Sp</i> (8, 2)	S ₁₀	J(10,3,2)	<i>V</i> = 120
	PSL(2, 17)	Bailey, Crnković-Švob	<i>V</i> = 136
<i>P</i> Γ <i>U</i> (3, 5)	S ₇	Goethals	V = 126; param. uniqueness; H is max. in G not containing $PSU(3,5)$
HS	M ₂₂	Goethals, Crnković	param. uniqueness

Infinite classes of graphs

G	Н	Γ	Remark
ASp(2m, 2)	$\mathbb{F}_2^{2m}\rtimes O^\pm(2m,2)$	$VO_{2m}^{\pm}(2)$	<i>m</i> ≥ 2
<i>Sp</i> (2 <i>m</i> , 2)	$O^{\pm}(2m,2)$	$NO_{2m}^{\pm}(2)$	$m \ge 3$
	$Sp(m,4) \rtimes C_2$	$NO_{m+1}^{\pm}(4)$	$m \ge 4$ even
$P\Sigma L(2,q)$	$C_{rac{q+1}{2}} times C_{4e}$	new	$q = p^{2e} > 9,$ $p \equiv 3 \pmod{4}$

Infinite classes of graphs

G	Н	Γ	Remark
ASp(2m, 2)	$\mathbb{F}_2^{2m} \rtimes O^{\pm}(2m,2)$	$VO_{2m}^{\pm}(2)$	<i>m</i> ≥ 2
Sp(2m, 2)	$O^{\pm}(2m,2)$	$NO_{2m}^{\pm}(2)$	<i>m</i> ≥ 3
	$Sp(m,4) \rtimes C_2$	$NO^{\pm}_{m+1}(4)$	$m \ge 4$ even
$P\Sigma L(2,q)$	$C_{rac{q+1}{2}} times C_{4e}$	new	$q = p^{2e} > 9,$ $p \equiv 3 \pmod{4}$

Infinite classes of graphs

G	Н	Γ	Remark
ASp(2m, 2)	$\mathbb{F}_2^{2m} \rtimes O^{\pm}(2m,2)$	VO _{2m} (2)	<i>m</i> ≥ 2
<i>Sp</i> (2 <i>m</i> , 2)	$O^{\pm}(2m,2)$	$NO_{2m}^{\pm}(2)$	$m \geq 3$
	$Sp(m,4) \rtimes C_2$	$NO_{m+1}^{\pm}(4)$	$m \ge 4$ even
$P\Sigma L(2,q)$	$C_{rac{q+1}{2}} times C_{4e}$	new	$q = p^{2e} > 9,$ $p \equiv 3 \pmod{4}$

Outline

- 1 SRGs, two-graphs, Seidel switchings
- 2 Two-graphs with doubly transitive automorphism groups
- 3 SRGs in the switching class of linear type two-graphs

- Let q be a prime power with $q \equiv 1 \pmod{4}$.
- There is a **unique** two-graph *TL* with

$$\mathsf{Aut}(\mathcal{TL}) = \mathsf{P}\Sigma \mathsf{L}(\mathsf{2},\mathsf{q}).$$

- TL is isomorphic to its complement.
- Any SRG in the switching class of TL has parameters

$$\left(q+1,\frac{q\pm\sqrt{q}}{2},\frac{(\sqrt{q}\pm1)^2}{4}-1,\frac{(\sqrt{q}\pm1)^2}{4}\right).$$

• If *q* is a square, then such graphs are known to exist.

Question

- Let q be a prime power with $q \equiv 1 \pmod{4}$.
- There is a **unique** two-graph **TL** with

$$Aut(\mathcal{TL}) = P\Sigma L(2, q).$$

- TL is isomorphic to its complement.
- Any SRG in the switching class of TL has parameters

$$\left(q+1,\frac{q\pm\sqrt{q}}{2},\frac{(\sqrt{q}\pm1)^2}{4}-1,\frac{(\sqrt{q}\pm1)^2}{4}\right).$$

• If *q* is a square, then such graphs are known to exist.

Question

- Let q be a prime power with $q \equiv 1 \pmod{4}$.
- There is a **unique** two-graph **TL** with

$$Aut(\mathcal{TL}) = P\Sigma L(2, q).$$

- TL is isomorphic to its complement.
- Any SRG in the switching class of TL has parameters

$$\left(q+1,\frac{q\pm\sqrt{q}}{2},\frac{(\sqrt{q}\pm1)^2}{4}-1,\frac{(\sqrt{q}\pm1)^2}{4}\right).$$

• If *q* is a square, then such graphs are known to exist.

Question

- Let q be a prime power with $q \equiv 1 \pmod{4}$.
- There is a **unique** two-graph **TL** with

$$Aut(\mathcal{TL}) = P\Sigma L(2, q).$$

- TL is isomorphic to its complement.
- Any SRG in the switching class of \mathcal{TL} has parameters

$$\left(q+1,\frac{q\pm\sqrt{q}}{2},\frac{(\sqrt{q}\pm1)^2}{4}-1,\frac{(\sqrt{q}\pm1)^2}{4}\right).$$

If q is a square, then such graphs are known to exist.

Question

- Let q be a prime power with $q \equiv 1 \pmod{4}$.
- There is a **unique** two-graph **TL** with

$$Aut(\mathcal{TL}) = P\Sigma L(2, q).$$

- TL is isomorphic to its complement.
- Any SRG in the switching class of \mathcal{TL} has parameters

$$\left(q+1,\frac{q\pm\sqrt{q}}{2},\frac{(\sqrt{q}\pm1)^2}{4}-1,\frac{(\sqrt{q}\pm1)^2}{4}\right).$$

• If q is a square, then such graphs are known to exist.

Question

- Let q be a prime power with $q \equiv 1 \pmod{4}$.
- There is a **unique** two-graph **TL** with

$$Aut(\mathcal{TL}) = P\Sigma L(2, q).$$

- \mathcal{TL} is isomorphic to its complement.
- Any SRG in the switching class of TL has parameters

$$\left(q+1,\frac{q\pm\sqrt{q}}{2},\frac{(\sqrt{q}\pm1)^2}{4}-1,\frac{(\sqrt{q}\pm1)^2}{4}\right).$$

If q is a square, then such graphs are known to exist.

Question

Strongly regular graphs in two-graphs of linear type

$$p^f = q \equiv 1 \pmod{4}, f \geq 2.$$

Lemma (Transitive maximal subgroups of $P\Sigma L(2, q)$)

Let $G = P\Sigma L(2, q)$. Let H be a **transitive maximal subgroup** not containing PSL(2, q).

- **NEGATIVE:** If $p \equiv 1 \pmod{4}$, then there is not such H.
- **(1) EXCEPTIONAL:** If q = 9, then there are **2 conjugacy classes** of $H \cong S_5$.
- **POSITIVE:** If q > 9, $p \equiv 3 \pmod{4}$, then there is a **unique conj class** of $H = C_{\frac{q+1}{2}} \rtimes C_{2f}$.

Theorem

Let $p \equiv 3 \pmod{4}$, $q = p^{2e}$.

Let TL be the linear two-graph with automorphism group $G = P\Sigma L(2, q), q > 9$.

Then there is (up to isomorphism) a unique pair Γ , $\bar{\Gamma}$ of complementary strongly regular graphs in the switching class of \mathcal{TL} , admitting

$$H=C_{rac{q+1}{2}}
times C_{4e}$$

as transitive automorphism group.

THANK YOU FOR YOUR ATTENTION!

Acknowledgement

This research was supported by project TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

Finite Geometry Workshop 2025

October 23 – October 26, 2025

University of Szeged, Hungary

A four-day workshop in the fields of finite geometry, Galois fields, cryptography, coding theory, and combinatorics

Plenary speakers

- Claude Carlet, U Paris 8 (France) and U Bergen (Norway)
- Vedran Krcadinac, University of Zagreb (Croatia)
- Giuseppe Marino, Università di Napoli Federico II (Italy)
- Štefko Miklavič, University of Primorska (Slovenia)
- Michel Lavrauw, University of Primorska (Slovenia)

