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Abstract. For a fixed digraph G, the Constraint Satisfaction Problem with

the template G, or CSP(G) for short, is the problem of deciding whether a given

input digraph H admits a homomorphism to G. The dichotomy conjecture
of Feder and Vardi states that CSP(G), for any choice of G, is solvable in

polynomial time or NP-complete. This paper confirms the conjecture for a

class of oriented trees called special triads. As a corollary we get the smallest
known example of an oriented tree (with 33 vertices) defining an NP-complete

CSP(G).

1. Introduction

A digraph G is a finite set V (G) of vertices with a set of edges E(G) ⊆ V (G)2.
For digraphs H,G, a homomorphism f : H → G is an edge-preserving mapping
f : V (H)→ V (G).

For a fixed finite digraph G, CSP(G), also called the G-coloring problem, is the
following decision problem:

INPUT: A digraph H.
OUTPUT: Is there a homomorphism H→ G?

This class of decision problems receives a great deal of attention lately, mainly
because of the work of Feder and Vardi [FV99]. The authors conjectured a large
natural class of NP problems avoiding the complexity classes between P and NP-
complete (assuming P 6= NP). The class include k-SAT problems, k-COLORING
problems, solving a system of linear equations over finite fields and many others. In
the same article they proved that each such problem is in the same complexity class
as CSP(G) for some digraph G. Thus their dichotomy conjecture can be stated as
follows:

Question 1.1. For every digraph G, CSP(G) is either tractable or NP-complete.

For brevity, we say that G is NP-complete (tractable), if CSP(G) is NP-complete
(tractable).

Dichotomy for undirected graphs was proved in [HN90]. For directed graphs,
[GWW92] verified that every oriented path is tractable. For oriented cycles, di-
chotomy was established in [Fed01]. A number of other cases were investigated
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and in some cases dichotomies proved; many are summarized in book [HN04]. Two
important open cases were singled out: The first was a possible generalization of
[HN90] to digraphs without sources and sinks (i.e., digraphs such that every ver-
tex has an incoming and outgoing edge), with an explicit dichotomy conjectured
in [BJH90]. The other was a quest to prove dichotomy for oriented trees (at the
other end of the spectrum from digraphs without sources and sinks). Among trees,
[HNZ96a, HNZ96b] focused on the simplest possible trees other than oriented paths,
so-called triads, consisting of three oriented paths meeting at one vertex. Among
the triads, the authors of [HNZ96a, HNZ96b] identified a subclass of so-called spe-
cial triads, which have sufficient structure to allow at least some examples to be
handled. The structure of special triads is examined in this paper.

The groundbreaking work of Jeavons, Cohen, and Gyssens [JCG97] successively
developed and refined by Bulatov, Jeavons, and Krokhin [BJK05] and Larose and
Tesson [LT07] has shown strong ties between the constraint satisfaction problem
and universal algebra. This“algebraic approach” led to a rapid development of the
subject, see the survey of Bulatov, Jeavons, Krokhin [KBJ05] for an overview.
Using a recent algebraic result of Maróti and McKenzie [MM08], the authors
[BKN08a, BKN08b] proved the dichotomy for digraphs with no sources or sinks,
thus substantially generalizing the result of Hell and Nešetřil mentioned above and
confirming the conjecture of [BJH90].

The quest for dichotomy in trees remains elusive, but in this paper this is com-
pletely solved for special triads, proving dichotomy, and giving a structural de-
scription of tractable and NP-complete triads. Such results seemed out of reach
of non-algebraic methods. In particular, it seems the algebraic method yields defi-
nitely better tools to prove NP-completeness, as shown by a comparison of the proof
of Theorem 3.4 and a proof in [HNZ96a] for one particular triad. The structural
description (of P and NP-complete cases) are given in terms of the existence of
homomorphisms amongst the paths forming the special triads. These descriptions
were first used in [HNZ96b]. There is an error in one of the cases considered there
(Theorem 4.4 in [HNZ96b]) and this is fixed by the main result of the present paper
(compatible mappings of [HNZ96b] do not suffice to characterize easy instances, one
has to refine this classification as done in Theorem 3.4).

As a byproduct we get a smallest known example of an NP-complete oriented
tree, see Figure 1. The first such example was found in [GWW92] (287 vertices),
the construction was simplified in [Gut91] (81 vertices), and a special triad with 45
vertices was found in [HNZ96a]. The special triad on Figure 1 has 33 vertices and
it seems quite likely that this is an NP-complete oriented tree with the smallest
number of vertices, but we don’t have a proof of this conjecture.

We wish to thank Pavol Hell and Jaroslav Nešetřil for their useful comments.

2. Digraphs, Special triads

Let G be a digraph and a, b ∈ V (G) be its vertices. The fact that (a, b) ∈ E(G)
will be denoted by a

G−→ b, or just a −→ b when G is clear from the context. Similarly

we use a
G
6→ b and a 6→ b to denote that (a, b) 6∈ E(G).

By G−1 we mean the digraph inverse to G, that is V (G−1) = V (G), and a
G−1

−−−→ b

iff b
G−→ a. By G × H we denote the direct product of digraphs G and H. If

G,H have the same set of vertices, we can form their composition H ◦ G, that is
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Figure 1. NP-complete special triad with minimal number of ver-
tices (33)

V (H ◦ G) = V (G), and a
H◦G−−−→ b iff there exists c such that a

G−→ c and c
H−→ b.

We say that a digraph H is a subdigraph of a digraph G, if V (H) ⊆ V (G) and
E(H) ⊆ E(G).

A digraph G is called a core, if every homomorphism G→ G is surjective. It is
easy to see that for any digraph G we can find a core G′ such that

{H : H→ G} = {H : H→ G′}.

In particular CSP(G) has the same complexity as CSP(G′).
An oriented tree is a digraph G which can be obtained from a tree T (undirected

graph without a cycle) by orienting its edges, that is, for every edge {a, b} of T we
have either a

G−→ b, or b
G−→ a. For an oriented tree G we can find a mapping

level : V (G)→ {0, 1, 2, . . . }

such that level(b) = level(a)+1 whenever a
G−→ b. Clearly, there exists a unique such

mapping with the smallest possible values. The value level(a) for such a minimal
mapping is called the level of the vertex a. The height hgt(G) of G is the highest
level of a vertex.

An oriented path is a digraph obtained by orienting an undirected path. That is,
an oriented path P has vertices v0, . . . , vn and edges e0, . . . , en−1, where ei is either
(vi, vi+1), or (vi+1, vi). The net length of a path P is denoted by alg(P) and defined
as

alg(P) = |#{i : vi
P−→ vi+1} −#{i : vi+1

P−→ vi}|.
P is called minimal, if the net length of any of its subpaths is strictly smaller than
alg(P). We can alternatively describe a minimal path as follows: a minimal path has
a unique vertex of level 0 (called the initial vertex), a unique vertex of level alg(P)
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Figure 2. Special triad.

(called the terminal vertex), and the initial and terminal vertices are the endpoints
{v0, vn} of the path. We will need the following easy lemma.

Lemma 2.1. Let P1, . . . , Pn be minimal paths of the same net length l with initial
vertices i1, . . . , in and terminal vertices t1, . . . , tn, respectively. Let Q be an oriented
tree of net length l. Then every homomorphism f : P1 × · · · × Pn → Q satisfies
level(f(i1, . . . , in)) = 0 and level(f(t1, . . . , tn)) = l.

Proof. It is not hard to prove (see [HHMNL88]) that there is a minimal path S of net
length l homomorphic to all of the paths P1, . . . ,Pn. Let a, b be the initial vertex
and the terminal vertex of S, respectively. Consider the natural homomorphism
g : S→ P1 × · · · × Pn. Clearly g(a) = 〈i1, . . . , in〉 and g(b) = 〈t1, . . . , tn〉. It can be
readily seen that every homomorphism from a minimal path of net length l to an
oriented tree of net length l maps the initial vertex to a vertex of level 0 and the
terminal vertex to a vertex of level l. By using this fact for the homomorphism fg :
S→ Q we obtain level(fg(a)) = 0 and level(fg(b)) = l and the claim follows. �

A triad is an oriented tree with just one vertex of degree 3. We concentrate on
a special case:

Definition 2.2. Let P1,P2, . . . ,P6 be minimal oriented paths of the same net
length. By a special triad given by the paths P1, . . . ,P6 we mean the oriented tree
obtained from the disjoint union of P1, . . . ,P6 by identifying the initial vertices of
P1,P2,P3 into a single vertex 0, and identifying the terminal vertices of Pi and Pi+3

to a single vertex i for i = 1, 2, 3.

A special triad is illustrated on Figure 2 (arrows on this picture denote “direction”
of paths, not edges.) A special triad has four vertices of level zero, namely 0, 4, 5, 6
and three vertices of the highest level, namely 1, 2, 3. We assume, slightly abusing
the formalism, that the paths Pi are subdigraphs of the special triad.

Note that a special triad defined in [HNZ96b] can be an inverse of our special
triad (which, according to the Definition 2.2, is not a special triad). All the results
of our paper hold for such inverses and our definition was chosen to simplify the
presentation of the material.

3. Compatible operations and CSP, Main theorem

By an n-ary operation on a set A we understand a mapping An → A, where
An = A × · · · × A is the cartesian power of A. For a digraph G we say that an
operation w on V (G) is compatible with G (or w is compatible with G) if w is a
homomorphism w : G×G× · · · ×G→ G. In other words, w is compatible with G,
if a1

G−→ b1, . . . , an
G−→ bn implies w(a1, . . . , an) G−→ w(b1, . . . , bn).
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It was shown in [JCG97] that the complexity of CSP(G) depends only on the
set of all compatible operations. In this article we use majority, totally symmetric
idempotent and weak near-unanimity operations.

Definition 3.1.
• An n-ary operation t on a set A is said to be idempotent, if

t(a, a, . . . , a) = a for every a ∈ A.

• A ternary operation m on a set A is called a majority operation, if

m(a, a, b) = m(a, b, a) = m(b, a, a) = a for any a, b ∈ A.

• An n-ary operation t on a set A is called totally symmetric, if

{a1, . . . , an} = {b1, . . . , bn} implies t(a1, . . . , an) = t(b1, . . . , bn)

for any a1, . . . , an, b1, . . . , bn ∈ A.
• An n-ary operation w on a set A is called a weak near-unanimity operation,

if it is idempotent and

w(a, a, . . . , a, b) = w(a, a, . . . , a, b, a) = · · · = w(b, a, a, . . . , a)

for any a, b ∈ A.

The existence of a compatible majority operation, or a compatible totally sym-
metric idempotent operations of all arities ensures tractability [FV99]:

Theorem 3.2. Let G be a digraph satisfying one of the following conditions:
• G admits a compatible majority operation.
• For every n ≥ 1, G admits a compatible n-ary totally symmetric idempotent

operation.
Then CSP(G) is tractable.

On the other hand, non-existence of certain compatible operations implies NP-
completeness. The following theorem is a combination of the results in [BJK05]
and [MM08].

Theorem 3.3. Let G be a digraph which is a core and admits no compatible weak
near-unanimity operation. Then CSP(G) is NP-complete.

The algebraic dichotomy conjecture of Bulatov, Jeavons and Krokhin states
(comp. [BKJ00]) that the converse is also true, i.e. CSP(G) is conjectured to be
tractable if G is a digraph admitting a compatible weak near-unanimity operation.

Now we can formulate our main theorem.

Theorem 3.4. For every special triad G, CSP(G) is either tractable or NP-
complete.

More specifically, let G be the special triad given by paths P1, . . . ,P6.
(1) If there exist i, j ∈ {1, 2, 3}, i 6= j and a homomorphism Pi+3 × Pj → Pi,

then G admits a compatible totally symmetric idempotent operation of any
arity.

(2) If there exist i, j, k ∈ {1, 2, 3} pairwise distinct and homomorphisms Pi+3×
Pj+3 × Pk → Pi, Pi+3 × Pj × Pk+3 → Pi, Pi+3 × Pj × Pk → Pi, then G
admits a compatible majority operation.

(3) Otherwise, CSP(G) is NP-complete.
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It is easy to check that the special triad on Figure 1 satisfies neither (1) nor
(2) (for instance P4 × P2 6→ P1, since P2 −→ P4 and P2 6→ P1). Moreover, among
special triads which satisfy neither (1) nor (2), the one on Figure 1 has the minimal
number of vertices.

4. Tractable cases

In this section we describe all tractable special triads. In Section 5 we show that
the remaining ones are NP-complete.

First we prove case (1) of Theorem 3.4.

Lemma 4.1. Let G be the special triad given by paths P1, . . . ,P6. Assume that
there exist distinct i, j ∈ {1, 2, 3} such that Pi+3 × Pj is homomorphic to Pi. Then
G admits a compatible n-ary totally symmetric idempotent operation tn for every
n ≥ 1.

Proof. Let H be a graph with a vertex set V (H) = P(V (G)) \ {∅} and such that
for A, B ⊆ V (G) we have A

H−→ B if and only if for any a ∈ A and b ∈ B there exist
a′ ∈ A and b′ ∈ B such that a

G−→ b′ and a′
G−→ b. It is easy to see (comp. [DP99,

Theorem 1]) that a homomorphism from H to G implies the existence of totally
symmetric idempotent operations.

Without loss of generality we can assume that i = 2 and j = 3, so that we have
a homomorphism

f : P5 × P3 → P2.

We define two auxiliary sets U = V (P3) \ {0, 3} consisting of inner vertices of the
path P3 and W = V (G) \ U . Moreover, we define a partial order on the set V (G)
according to the following schema: vertices appearing in a diagram below to the
left are smaller (under <) than those appearing to the right:

4 1 0 2 5 3 6
P4 // P1oo P2 // P5oo P6oo

and

0 3
P3 // .

Note that the sets U and W are linearly ordered and therefore the operation min
is well defined on them.

The definition of a homomorphism h from H to G is recursive: let R ⊆ V (G)
(1) if not all the vertices from R have the same level, then put R′  R to be

the set of all the vertices of the lowest level in R, we define h(R) to be equal
to h(R′); otherwise

(2) if all the vertices from R have the same level then:
(2.1) if R ∩ U = ∅, then we put h(R) = min(R ∩W ),
(2.2) if R ∩W = ∅, then we put h(R) = min(R ∩ U)
(2.3) if R ∩ U 6= ∅ 6= R ∩W , then

(2.3.1) if min(R ∩W ) < 2, then we put h(R) = min(R ∩W ),
(2.3.2) if 2 < min(R ∩W ) < 5, then we put

h(R) = f(min(R ∩W ), min(R ∩ U)).

(2.3.3) if 5 < min(R ∩W ), then we put h(R) = min(R ∩ U).
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Note that if any of the vertices 0, . . . , 6 belongs to R, then either case (1) or case (2.1)
applies, so h is well defined. It remains to prove that h is a graph homomorphism.

Let us fix R,S ∈ V (H) such that R
H−→ S; we will show that h(R) G−→ h(S). Let

R′ and S′ be the vertices of the lowest level in R and S respectively. Obviously
R′

H−→ S′, h(R) = h(R′), h(S) = h(S′) and the homomorphism h for R′ and S′ is
defined in part (2). Let l denote the level of vertices from R′, then the vertices in
S′ have level l + 1.

It is easy to see that if l 6= 0 and l + 1 6= hgt(G) then the same subcase of (2)
applies to the definition of h(R′) and h(S′) and h(R′) G−→ h(S′). Therefore we can
assume that l = 0 or l + 1 = hgt(G).

If l = 0 then R′ ⊆ {0, 4, 5, 6}, R′ ∩ U = ∅ and h(R′) = min(R′ ∩ W ) =
min(R′) (according to part (2.1) of the definition). Note that there exists a unique
vertex of G which can belong to U ∩ S′—we denote this vertex by s. The proof
splits into cases with respect to part of the definition for h(S′):

• case (2.1): (R′ ∩W ) = R′
H−→ S′ = (S′ ∩W ) and h(R′) G−→ h(S′);

• case (2.3.1): h(R′) ∈ {4, 0} and h(S′) is the unique vertex s′ such that
h(R′) P4∪P2−−−−→ s′ and the case is solved;

• cases (2.2) and (2.3.3): h(S′) = s which implies that 0 ∈ R′ ⊆ {0, 6} and
further that h(R′) = 0; and finally

• case (2.3.2): h(S′) = f(s′, s) where s′ is such that 5 P5−→ s′ and therefore
h(R′) = 0 = f(5, 0) G−→ f(s′, s) = h(S′) where second equality follows from
Lemma 2.1.

In the other case l + 1 = hgt(G) and S′ = S′ ∩W ⊆ {1, 2, 3}. Therefore h(S′)
is the minimal element of S′. If R′  W , then the conclusion is obvious, so we can
assume that 3 ∈ S′ and r ∈ R′ ∩ U for the unique vertex r such that r

P3−→ 3. As
before we consider cases wrt to the part of the definition for h(R′):

• case (2.1) is impossible as r ∈ R′ ∩ U ;
• cases (2.2) and (2.3.3): S′ = {3} and h(R′) = r and the conclusion holds;
• case (2.3.1): {1, 2} ∩ S′ 6= ∅ and h(R′) G−→ min(S′ ∩ {1, 2}) = h(S′) as

h(S′) < 2; and finally
• case (2.3.2): h(R′) = f(r′, r) where r′ is such that r′

P5−→ 2 and therefore,
using Lemma 2.1, h(R′) = f(r′, r) G−→ f(2, 3) = 2 = h(S′).

This shows that h is a graph homomorphism and concludes the proof. �

Next we prove case (2) of Theorem 3.4.

Lemma 4.2. Let G be the special triad given by paths P1, . . . ,P6. Let i, j, k ∈
{1, 2, 3} be pairwise different. Assume that there exist homomorphisms

Pi+3 × Pj+3 × Pk → Pi, Pi+3 × Pj × Pk+3 → Pi, Pi+3 × Pj × Pk → Pi.

Then G admits a compatible majority operation.

Proof. Without loss of generality we can assume that i = 1, j = 2, k = 3, so that
we have homomorphisms

u : P4 × P5 × P3 → P1, v : P4 × P2 × P6 → P1, w : P4 × P2 × P3 → P1.

Now we define the majority operation m on V (G). Let a, b, c ∈ V (G).
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(1) If a, b, c have pairwise different levels, then we put m(a, b, c) to be the vertex
of the smallest level.

(2) If two of the vertices a, b, c have the same level, say k, and the last one has
different level, then we put m(a, b, c) = a, if a has level k, and m(a, b, c) = b
otherwise.

(3) If a, b, c have the same level and lie on an oriented subpath of G, then we
put m(a, b, c) to be the middle vertex from a, b, c in this subpath.

(4) if a, b, c have the same level and don’t lie on an oriented path, then we can
find a permutation a′, b′, c′ of a, b, c such that a′ lies on P1 or P4, b′ lies on
P2 or P5, and c′ lies on P3 or P6. Now

(a) If a′ ∈ P1, let m(a, b, c) = a′.
(b) If a′ ∈ P4, b′ ∈ P2, c′ ∈ P3 let m(a, b, c) = w(a′, b′, c′).
(c) If a′ ∈ P4, b′ ∈ P2, c′ ∈ P6 let m(a, b, c) = v(a′, b′, c′).
(d) If a′ ∈ P4, b′ ∈ P5, c′ ∈ P3 let m(a, b, c) = u(a′, b′, c′).
(e) If a′ ∈ P4, b′ ∈ P5, c′ ∈ P6 let m(a, b, c) = a′.

We claim that the definition of m is correct. The only possibility where we
can apply more rules is the case 4, where a′ lies on both P1 and P4 or b′ lies on
both P2 and P5 or c′ lies on both P3 and P6. But in this case a′ = 1, b′ = 2 and
c′ = 3, and, by Lemma 2.1, the value is 1 in all the cases. It is also obvious that
m(a, a, b) = m(a, b, a) = m(b, a, a) = a (either the case (2) or (3) applies).

It remains to show that m is compatible with G. Let a, b, c, d, e, f ∈ V (G) be
such that a → d, b → e, c → f . We have to show that m(a, b, c) → m(d, e, f). As
in the previous proof, it is easy to see that if the same cases apply for m(a, b, c)
and m(d, e, f), then m(a, b, c) −→ m(d, e, f). The only remaining case is when the
vertices a, b, c have level 0, lie on an oriented path and one of the cases (b), (c), (d) ap-
plies for m(d, e, f). It follows that 0 ∈ {a, b, c} and m(a, b, c) = 0. Using Lemma 2.1
we get w(a, b, c) = v(a, b, c) = u(a, b, c) = 0. This implies 0 −→ m(d, e, f). �

Special triad which are not cores fall into the case (1) of Theorem 3.4.

Lemma 4.3. Let G be a special triad which is not a core. Then there exist i, j ∈
{1, 2, 3}, i 6= j and a homomorphism Pi+3 × Pj → Pi.

Proof. Any homomorphism maps the set {4, 5, 6} into {0, 4, 5, 6}. If a homomor-
phism is an identity map on this set then it is an identity map on V (G) as well. In
the opposite case there are distinct i, j ∈ {1, 2, 3} such that either Pi+3 → Pi, or
Pj → Pi (and Pj+3 → Pi+3). In both cases Pi+3 × Pj → Pi. �

5. NP-complete cases

In this section we show that the special triads, which were not shown to be
tractable in the previous section, are NP-complete.

So, let G be the special triad given by paths P1, . . . ,P6 and assume that
(i) G is a core.
(ii) For all distinct i, j ∈ {1, 2, 3} we have Pi+3 × Pj 6→ Pi.

(iii) For all pairwise distinct i, j, k ∈ {1, 2, 3} we have Pi+4×Pj+4×Pk 6→ Pi or
Pi+4 × Pj × Pk+4 6→ Pi or Pi+4 × Pj × Pk 6→ Pi.

We will show that G has no compatible weak near-unanimity operation. This,
together with Theorem 3.3, will conclude the proof of Theorem 3.4. Striving for a
contradiction we assume that
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(iv) G has a compatible n-ary weak near-unanimity operation w.
We will use the following construction.

Definition 5.1. Let Z ⊆ {1, 2, 3, 4, 5, 6} and let iz, tz denote the initial and termi-
nal vertices of Pz, respectively (for all z ∈ Z). We define GZ by

• V (GZ) = V (G),

• a
GZ

−−→ b if there exists a homomorphism f :
∏

z∈Z Pz → G such that
f(〈iz〉z∈Z) = a and f(〈tz〉z∈Z) = b.

From Lemma 2.1 it follows that E(GZ) ⊆ {(0, 1), (0, 2), (0, 3), (4, 1), (5, 2), (6, 3)}.
Next we show that the operation of taking the inverse digraph, the composition of

digraphs and the construction in the last definition preserve compatible operations:

Lemma 5.2. Let G,H be digraphs with the same vertex set, both compatible with
an operation t. Then the graphs G−1 and H ◦ G are compatible with t. If G is a
special triad and Z ⊆ {1, 2, 3, 4, 5, 6}, then GZ is compatible with t.

Proof. All of the constructions in the statement are special cases of primitive pos-
itive definitions, which are known (and easily seen) to preserve compatible opera-
tions. �

Lemma 5.3. The set {1, 2, 3} is closed under the operation w, i.e. w(x̄) ∈ {1, 2, 3}
for every x̄ ∈ {1, 2, 3}n.

Proof. Consider the digraph H = G{1,2,3,4,5,6} shown in Figure 3. Let x1, . . . , xn ∈

0

1 2 3

4 5 6

__??????

OO ??������

�� �� ��

Figure 3. The digraph G{1,2,3,4,5,6}

{1, 2, 3} be arbitrary. Since 0 H−→ 1, 0 H−→ 2 and 0 H−→ 3 and w is compatible with
H (see the last lemma), we have 0 = w(0, 0, . . . , 0) H−→ w(x1, . . . , xn), therefore
w(x1, . . . , xn) ∈ {1, 2, 3}. �

We will use the previous claim in all what follows, without explicit mentioning.
The assumptions (ii) and (iii) will be used to prove the existence of certain graphs

compatible with w. Using (ii) we will construct [a, b]-graphs:

Definition 5.4. Let a, b ∈ {1, 2, 3} be distinct. By an [a, b]-graph we mean any
digraph H such that V (H) = V (G) and

a
H−→ a, b

H−→ a, b
H−→ b, b

H−→ c, a
H
6→ b, a

H
6→ c,

where c is the element of {1, 2, 3} distinct from a and b.

An [a, b]-graph is depicted in Figure 4 (only vertices 1, 2, 3 are drawn). In the
picture, solid arrows are edges, dotted arrows mean that there is certainly no edge
and no arrow means that there may be an edge or may not.
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b a

c

:: dd44

::

tt

dd

Figure 4. An [a, b]-graph.

Lemma 5.5. For any distinct a, b ∈ {1, 2, 3}, there exists an [a, b]-graph compatible
with w.

Proof. Let us consider the case a = 1, b = 2, the other cases can be proved in the
same way. From assumption (ii) we know that P4 × P2 6→ P1, thus in the digraph
G{1,4} we have 4→ 1, 0→ 2, 0 6→ 1 (see Figure 5). Now G{1,2,3,4,5,6} ◦ (G{1,4})−1

0

1 2 3

4 5 6

__ OO
��

Figure 5. G{1,4}

is a [1, 2]-graph. Lemma 5.2 tells us that this digraph is compatible with w. �

Now we will use condition (iii) to obtain [a, b, c]-graphs:

Definition 5.6. Let a, b, c ∈ {1, 2, 3} be pairwise distinct. By an [a, b, c]-graph we
mean an [a, b]-graph with c −→ c, i.e. any digraph H such that V (H) = V (G) and

a
H−→ a, b

H−→ a, b
H−→ b, b

H−→ c, c
H−→ c, a

H
6→ b, a

H
6→ c.

An [a, b, c]-graph is shown in Figure 6.

b a

c

:: dd

��

44

::

tt

dd

Figure 6. An [a, b, c]-graph.

Lemma 5.7. For any distinct a, b, c ∈ {1, 2, 3}, there is an [a, b, c]-graph or an
[a, c, b]-graph compatible with w.
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Proof. The proof is similar to the proof of the previous lemma. Let us assume that
a = 1, b = 2, c = 3. From assumption (iii) we know that P4 × P5 × P3 6→ P1 or
P4 × P2 × P6 6→ P1 or P4 × P2 × P3 6→ P1. In the first case we consider the digraph
K = G{4,5,3}, in the second case K = G{4,2,6} and in the third case K = G{4,2,3}

(see Figure 7).

0

1 2 3

4 5 6

__ ??������

�� ��

0

1 2 3

4 5 6

__ OO
�� ��

0

1 2 3

4 5 6

__ OO ??������

��

Figure 7. The graphs K.

The digraph H = G{1,2,3,4,5,6} ◦K−1 is either a [1, 2, 3]-graph (in the second and
third case) or a [1, 3, 2]-graph (in the first and third case). From Lemma 5.2 we
know that the operation w is compatible with H. �

Lemma 5.8. For any a, b ∈ {1, 2, 3} and tuple x̄ ∈ {a, b}n, t(x̄) ∈ {a, b}.

Proof. If a = b, then the claim follows from the idempotency of w, so assume that
a 6= b. Let c ∈ {1, 2, 3} be the element distinct from a and b. Let H be either
a [c, a, b]-graph or [c, b, a]-graph, whose existence is provided by Lemma 5.7. If H
is an [c, b, a]-graph, then a

H−→ a and b
H−→ a, and from the compatibility of w,

w(x̄) H−→ w(a, a, . . . , a) = a. But now w(x̄) ∈ {a, b} as c
H
6→ a. Similarly, if H is an

[c, a, b]-graph, then w(x̄) H−→ b and we get the same conclusion. �

Lemma 5.9. If w(a, b, . . . , b) = a for a pair a, b ∈ {1, 2, 3} of distinct elements,
then t(a, x̄) = a for all x̄ ∈ {1, 2, 3}n−1.

Proof. Let H be an [a, b]-graph from Lemma 5.5. Then a
H−→ a, b

H−→ a, b
H−→ b and

b
H−→ c therefore a = w(a, b, . . . , b) H−→ w(a, x̄). However, the only edge from a to

the set {1, 2, 3} is a
H−→ a, which proves that w(a, x̄) = a. �

Lemma 5.10. w(a, b, . . . , b) = b for any a, b ∈ {1, 2, 3}.

Proof. Suppose that w(a, b, . . . , b) 6= b for some a, b ∈ {1, 2, 3}. Then w(a, b, . . . , b) =
a by Lemma 5.8. Let c be the element of {1, 2, 3} distinct from a,b. From Lemma 5.9
we know that w(a, c, . . . , c) = a.

Let H be a 〈b, c〉-graph. Since c
H−→ a and b

H−→ b, we have w(c, b, . . . , b) H−→
w(a, b, . . . , b) = a. Therefore w(c, b . . . , b) 6= b. From Lemma 5.8 it follows that
w(c, b, . . . , b) = c.

As w is a weak near-unanimity operation we also have w(b, . . . , b, c) = c and
by applying Lemma 5.9 with permuted variables we get that w(x̄, c) = c for any
x̄ ∈ {1, 2, 3}n−1. In particular, w(a, c, . . . , c) = c, a contradiction. �

Lemma 5.11. w(a, b, c, . . . , c) = c for any pairwise distinct elements a, b, c ∈
{1, 2, 3}.
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Proof. Suppose w(a, b, c, . . . , c) = a. Let H be either an [a, b, c] or [a, c, b]-graph
compatible with w.

If H is an [a, b, c]-graph, then a
H−→ a, b

H−→ c and c
H−→ c, so a = w(a, b, c, . . . , c) H−→

w(a, c, . . . , c) = c, where the last equality follows from Lemma 5.10, a contradiction.
If H is an [a, c, b]-graph, we get a = w(a, b, c, . . . , c) H−→ w(a, b, . . . , b) = b, which

is again a contradiction.
The fact that w(a, b, c, . . . , c) 6= b can be proved analogously. �

Lemma 5.12. w(a, a, c, . . . , c) = c for all a, c ∈ {1, 2, 3}.

Proof. We can clearly assume that a 6= c, and let b ∈ {1, 2, 3} \ {a, c}. From the
last claim we know that t(a, b, c, . . . , c) = c.

Let H be a [c, a, b]- or [c, b, a]-graph compatible with w. We will show the rea-
soning for H being a [c, a, b]-graph, the second possibility is analogous. Since
a

H−→ b, b
H−→ b, c

H−→ c, we have c = w(a, b, c, . . . , c) H−→ w(b, b, c, . . . , c) and
therefore w(b, b, c, . . . , c) = c. Let K be a [c, b]-graph compatible with w. We
get c = w(b, b, c, . . . , c) K−→ w(a, a, c, . . . , c), thus w(a, a, c, . . . , c) = c. �

By repeating the arguments of the last two lemmas we obtain w(a, a, b, c, . . . , c) =
c and w(a, a, a, c, . . . , c) = c after the first repetition, w(a, a, a, b, c, . . . , c) = c and
w(a, a, a, a, c, . . . , c) = c after the second and so on until w(a, . . . , a, c) = c. But
w(a, . . . , a, c) = w(c, a, . . . , a) = a by Lemma 5.10 which is a contradiction. This
finishes the proof of the NP-complete case and Theorem 3.4

6. Added after posting

This section corrects two mistakes in the article. The first mistake concerns the
situation when a special triad is not a core: the characterization given in Lemma 4.3
is incomplete as it can happen that all the paths P1, . . . ,P6 are mapped to one of
the paths P4, . . . ,P6. Unfortunately this is the case in the example of the special
triad in Figure 1. To obtain a special triad which is NP-complete, we replace the
path P4 by P2 and paths P5, P6 both by P1 (the new triad has 39 vertices). This
mistake doesn’t influence the dichotomy result for special triads, as it is well known
that CSP(G) is tractable for any oriented path G.

The second mistake is in the classification given in Theorem 3.4. To correct it
we need an auxiliary notation: for oriented paths P1, . . . ,Pk with initial vertices
i1, . . . , ik let c(P1 × · · · × Pk) be the connectivity component of the digraph P1 ×
· · · × Pk containing the vertex (i1, . . . , ik). The right statement of Theorem 3.4. is
obtained by replacing all products with their connectivity components:

Theorem 3.4. For every special triad G, CSP(G) is either tractable or NP-
complete.

More specifically, let G be the special triad given by paths P1, . . . ,P6.

(1) If there exist i, j ∈ {1, 2, 3}, i 6= j and a homomorphism c(Pi+3×Pj)→ Pi,
then G admits a compatible totally symmetric idempotent operation of any
arity.

(2) If there exist i, j, k ∈ {1, 2, 3} pairwise distinct and homomorphisms c(Pi+3×
Pj+3 × Pk)→ Pi, c(Pi+3 × Pj × Pk+3)→ Pi, c(Pi+3 × Pj × Pk)→ Pi, then
G admits a compatible majority operation.
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(3) If G is not a core, then either one of the cases (1), (2) can be applied, or
the core of G is an oriented path.

(4) Otherwise, CSP(G) is NP-complete.

The proof of the theorem remains the same except for replacing all products of
oriented paths with their connectivity component containing the initial vertex. This
change is necessary because in their original formulation Lemmas 5.5 and 5.7 might
not be true—for example in Lemma 5.5. the nonexistence of a homomorphism from
P4×P2 to P1 doesn’t necessarily imply that 0 6→ 1 in G{2,4}, since a homomorphism
can map the other connectivity components of P4 × P2 outside the path P1.

Because of this change we also need to adjust the proofs of Lemmas 4.1 and 4.2.
In Lemma 4.1 when defining the homomorphism h from H to G we need to distin-
guish one more case:

(0) If all the vertices in R have the same level and are in a connectivity com-
ponent of H other than {0} then we put h(R) to be the smallest vertex in
R in the ordering

P1 // P2 // P3 // P4 // P5 // P6 //

Note that in this case R ∩ {0, 1, 2, 3, 4, 5, 6} = ∅.
In the proof of Lemma 4.2. we also need to add one more case:

(0) If a, b, c have the same level, doesn’t lie on an oriented subpath of G and
(a, b, c) is in a connectivity component of G3 other than the vertex (0, 0, 0),
then we put m(a, b, c) = a.

We wish to thank Jakub Buĺın for carefully reading the article and finding the
above two mistakes.

References

[BJH90] Jørgen Bang-Jensen, and Pavol Hell, The effect of two cycles on the complexity
of colourings by directed graphs, Discrete Appl. Math. 26 (1990), no. 1, 1–23.

MR MR1028872 (91c:05072)

[BJK05] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin, Classifying the complexity of
constraints using finite algebras, SIAM J. Comput. 34 (2005), no. 3, 720–742 (elec-

tronic). MR MR2137072 (2005k:68181)

[BKJ00] Andrei A. Bulatov, Andrei A. Krokhin, and Peter Jeavons, Constraint satisfac-
tion problems and finite algebras, Automata, languages and programming (Geneva,
2000), Lecture Notes in Comput. Sci., vol. 1853, Springer, Berlin, 2000, pp. 272–282.
MR MR1795899 (2001h:68137)

[BKN08a] Libor Barto, Marcin Kozik, and Todd Niven, The CSP dichotomy holds for digraphs

with no sources and no sinks (a positive answer to a conjecture of bang-jensen and
hell), SIAM Journal on Computing (2008), to appear.

[BKN08b] , Polymorphisms and the complexity of homomorphism problems, Proceed-

ings of the 40th ACM Symposium on Theory of Computing, STOC’08, 2008.
[DP99] Victor Dalmau and Justin Pearson, Closure functions and width 1 problems, Fifth

International Conference on Principles and Practice of Constraint Programming

(CP’99), 1999.
[Fed01] Tomás Feder, Classification of homomorphisms to oriented cycles and of k-partite

satisfiability, SIAM J. Discrete Math. 14 (2001), no. 4, 471–480 (electronic).
MR MR1861785 (2002j:05063)

[FV99] Tomás Feder and Moshe Y. Vardi, The computational structure of monotone

monadic SNP and constraint satisfaction: a study through Datalog and group the-
ory, SIAM J. Comput. 28 (1999), no. 1, 57–104 (electronic). MR MR1630445
(2000e:68063)



14 LIBOR BARTO, MARCIN KOZIK, MIKLÓS MARÓTI, AND TODD NIVEN
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