
0018-9162/01/$17.00 © 2001 IEEE44 Computer

Composing Domain-
Specific Design
Environments

W
hat do Rational Rose, Simulink, and
LabVIEW have in common? At first,
these tools seem very different. Rational
Rose (http://www.rational.com) is a
visual modeling tool, Simulink (http://

www.mathworks.com) is a hierarchical block-diagram
design and simulation tool, and LabVIEW (http://
www.ni.com) is a graphical programming develop-
ment environment. Despite the different terminology,
these three tools share a common underlying theme:
Each is an integrated set of modeling, model analysis,
simulation, and code-generation tools that help design
and implement computer-based systems (CBSs) in a
specific, well-defined engineering field.

These tools and other popular domain-specific inte-
grated development environments can help capture
specifications in the form of domain models. They also
support the design process by automating analysis and
simulating essential system behavior. In addition, they
can automatically generate, configure, and integrate
target application components. These environments
translate the verified design—expressed in a domain-
specific, primarily graphical modeling formalism—into
a variety of artifacts that constitute a CBS implemen-
tation. These artifacts can include glue code, database
schema, and configuration tables.

These tools use domain-specific modeling languages
that allow developers to represent essential design
views and to both formally express and automatically
enforce integrity constraints. These tools also support
model composition that is synergistic with the design
process in the particular engineering domain. Other
benefits include having integrated models as opposed

to relying merely on source code. In addition, the com-
mon input—that is, the shared design model—guar-
antees the consistency of different analysis results as
long as all of the applied generators are correct.

While the industry understands the well-
documented benefits of domain-specific, integrated
modeling, analysis, and application-generation envi-
ronments, their high cost represents a significant block
to wide acceptance and application. Consequently,
these tools are available only for domains with large
markets in which high volume offsets the substantial
initial investment cost. For CBSs in smaller, specialized
domains, or even for single projects, the industry needs
technology that can help rapidly and efficiently com-
pose these environments from reusable components.

REUSABLE FRAMEWORK
Much of our research at the Institute for Software

Integrated Systems at Vanderbilt University focuses on
the rapid and cost-effective composition of domain-
specific design environments. One result of this research
is model-integrated computing, a model-oriented tech-
nology.1 MIC uses metamodeling to define the domain
modeling language and model integrity constraints and
uses these metamodels to automatically compose a
domain-specific design environment. System design-
ers use the resulting environment to create domain
models to analyze and automatically translate into the
target CBS implementation.

Metamodeling
To be useful, a reusable framework for creating

domain-specific design environments must support a

Model-integrated computing can help compose domain-specific design
environments rapidly and cost-effectively. The authors discuss the toolset
that implements MIC and present a practical application of the technology—
a tool environment for the process industry.

Ákos Lédeczi
Árpád Bakay
Miklós
Maróti
Péter
Völgyesi
Greg
Nordstrom
Jonathan
Sprinkle
Gábor Karsai
Institute for
Software
Integrated
Systems,
Vanderbilt
University

C O V E R F E A T U R E

set of abstract modeling concepts that are generic
enough to be applicable to a wide range of domains.
These concepts might include containment, module
interconnection, multiaspect modeling, inheritance,
and textual-numerical attributes. The framework
instantiates customized concepts for each target
domain, possibly multiple times, to support domain
concepts directly.

The MIC framework consistently applies a met-
alevel architecture. As Figure 1 shows, MIC follows
the standard four-layer metamodeling architecture
applied in the Unified Modeling Language specifica-
tion.2 The one predefined language in this scheme—
the metamodeling language—is rich enough to
describe modeling languages for a wide variety of
domains. As a consequence, it can describe itself in
the form of a meta-metamodel. A metamodel speci-
fies a domain modeling language that, in turn, speci-
fies CBS models in the particular domain. The key to
this four-layer architecture is that a layer is always
described in terms of the next higher layer in the hier-
archy.

Static semantics
The metamodels specify the domain modeling lan-

guage, or, more precisely, its syntax. They do not
entirely specify the language’s static semantics—the
set of rules that specify the well-formedness of domain
models. UML class diagrams allow the specification of
some basic rules—for example, the multiplicity of
associations. For more complex specifications, UML
includes the Object Constraint Language (OCL),3 a
textual predicate logic language. MIC adopts OCL as
well. Metamodels consist of UML class diagrams and
OCL constraints.

Suppose the finite state machines in the target

domain shown in Figure 1 must not allow state tran-
sitions from a state to itself. A UML class diagram
alone cannot specify such a rule. Rather, the follow-
ing OCL expression must be attached to states:

self.transTo->forAll(s | s <> self)

where self and forAll are OCL keywords, while
transTo is a role name of the transition association.
Checking these constraints programmatically is rela-
tively straightforward. The program simply needs to
evaluate the expressions in the context of every applic-
able model object.

Dynamic semantics
MIC’s strength rests in its dual use of domain-spe-

cific models. On one hand, you can verify the models
against different domain-specific criteria because a
comprehensive set of analysis tools is typically avail-
able in any mature engineering field. MIC enables the
automatic configuration of these tools with informa-
tion captured in the domain models. For example, you
can use this approach to carry out a schedulability
analysis of a real-time system or a diagnosability
analysis of an aircraft subsystem.

On the other hand, MIC automatically translates
the domain models into the actual CBS implementa-
tion or simulation. In each domain, there is at least
one execution platform, such as a real-time operating
system, a Java virtual machine, or a simulator pack-
age. Each of these execution platforms has its own
executable modeling language with clearly defined
execution semantics.

First, a translator transforms the domain models
into executable models—for example, in the form of
API calls to a real-time OS. This mapping process

November 2001 45

State machine State Transition

Metamodeling language

Meta-metamodel

Specify

Metamodeling language

Metamodel

Specify

Domain modeling language

Model

Specify

Computer-based system

transFrom

transTo

Finite State Machine Language metamodel

A

start stop

B

C

Finite State Machine Language model

Figure 1. Model-
integrated computing
(MIC) four-layer
metamodeling archi-
tecture. The state
machine UML class
on the right side is a
container that can
hold states. Transi-
tions are associations
between states.

46 Computer

assigns dynamic semantics to the models. Next, the
execution platform executes those models. A trans-
formation engine and an execution engine together
realize the domain semantics.

Translators
Clearly, translators are key MIC components.

Traditionally, developers implement translators man-
ually in standard languages like C++. A translator
maps the domain modeling language to the executable
modeling language. If formal models of the mapping—
along with its inputs and outputs—are available, a meta-
level translator can generate the translator code.

The input model is already available as the meta-
model that specifies the domain language. The exe-
cutable modeling language metamodels can capture
the output models in a similar manner. Capturing these
metamodels usually involves some reverse engineering
because execution platforms typically are not formally
documented. The most challenging problem seems to
be to model the mapping itself and to create a meta-
translator. We are actively researching these issues.4

MIC process
Typically, different classes of users are associated

with MIC technology. The process of developing a
domain-specific environment and applying it in the
given domain usually works in the following way:
Metamodelers define the domain modeling language,

use the metamodeling environment to formally spec-
ify the language, and generate the environment auto-
matically. The process is highly iterative. Next,
domain modelers use the new domain-specific envi-
ronment to build models of the CBS they are devel-
oping. They then apply the translators to analyze the
design and generate the application that the vendor
eventually ships to users.

GENERIC MODELING ENVIRONMENT
The generic modeling environment (http://www.

isis.vanderbilt.edu/search.asp?CMD=SEARCH), a
tool suite that supports MIC, has an open, extensible,
and modular component-based architecture. GME’s
main elements include a metaprogrammable graphi-
cal editor, a metamodeling environment, and an inte-
grated constraint manager. The tool suite supports
generic database connectivity and provides various
interfaces for programmatic access to model data.
Domain language specifications configure the
metaprogrammable graphical editor to define how the
architecture will map domain-specific idioms to the
general concepts the GME supports.

GME architecture
GME uses a modular component architecture like

the one shown in Figure 2. The two key components
of GME—GModel and GMeta—are metaprogram-
mable: GModel uses the GMeta services for self-
configuration, while GMeta configures itself by read-
ing the metaspecifications. Each of these components
exposes its services through a set of public interfaces.
GME’s architecture is based on Microsoft’s COM
technology.

The GModel component exposes a set of events
such as “object deleted” and “attribute changed.”
External components can register to receive some or
all of these events. GModel automatically invokes
these components when the events occur. Add-ons—
event-based components—are useful for extending
GME user interface capabilities or for executing
domain-specific operations.

The constraint manager evaluates the constraint
expressions to verify the models against the OCL con-
straints the metamodels contain. GME can attach con-
straints to events. While the user can explicitly invoke
the constraint manager, these event-driven constraints
also trigger it. The GME editor component has no spe-
cial privileges in this architecture. All other compo-
nents have the same access rights and use the same set
of GMeta and GModel COM interfaces to the GME.
Any operation that can be accomplished through the
editor can also be done programmatically through the
interfaces. This flexible and extensible architecture
allows the seamless integration of existing tools and
services that a given target domain needs to support.

Figure 2. Generic modeling environment architecture. GME supports different storage
formats ranging from relational databases to proprietary binary file formats to XML.
GModel and GMeta are two key GME components. GModel implements the modeling
concepts for the given paradigm, while GMeta defines the modeling paradigm. Both
components expose their services through COM interfaces. The user interacts with the
components at the top of the architecture.

GME
editor

Generic modeling
environment core

GModel GMeta

Database
#1

Database
#n

XML… … Storage
options

Model
browser

Add-on(s)

Constraint
manager

Translator(s)

Metamodeling environment
You can use the same set of GME tools for meta-

modeling and domain modeling. The metamodeling
environment is a domain-specific integrated design
environment, and the metamodeling language is just
another domain language. A metamodel translator
generates the specifications that configure the GME
for a given domain. The same translator generates the
metamodeling environment configuration when it
translates the meta-metamodels.

The reusability of metamodels from domain to
domain is as important as the reusability of domain
models from application to application. Ideally, the
metamodeler uses a library of metamodels of impor-
tant subdomains to extend and compose them to spec-
ify new domain languages. These subdomains might
include signal-flow variations, finite state machines,
data type specifications, fault propagation graphs, or
petri nets. The extension and composition mecha-
nisms should not modify the original metamodels, just
as subclasses do not modify baseclasses in OO pro-
gramming. Changes in the metamodel libraries,
reflecting a better understanding of the given subdo-
main, propagate to the metamodels that use them.

By precisely specifying the extension and composition
rules, a translator can automatically migrate models spec-
ified in the original domain language to comply with the
new, extended and composed modeling language.5

Type hierarchy
To facilitate model reuse and maintenance, GME

supports model types, instances, and type inheritance,
which closely resemble OO language concepts. The
only significant difference is that GME model types
are similar in appearance to model instances, which
are graphical, have attributes, and contain parts. By
default, a model created from scratch is a type. A sub-
type or an instance of a model type depends on the
type. Any modification of parts propagates down the
inheritance hierarchy. For example, if a part is deleted
in a type, the same part will be automatically deleted
in all of its instances, subtypes, and instances of sub-
types all the way down the inheritance hierarchy. A
set of well-defined rules specifies the exact behavior
of type inheritance in GME.

Data access and extensibility
Because data and tool integration is one of GME’s

primary application areas, its design goals include flex-
ible data access and standards-compliant extensibil-
ity. GME is completely component-based, and its
components include public interfaces. Most notably,
the GME editor (the visualization component), the
model storage and logic, and the metamodeling mod-
ule are separated by interfaces that are accessible to
user-written components.

Because GME uses COM, the primary lan-
guages for integration are C++ and Visual Basic,
but Java, Python, and other languages are also
viable. Access is bidirectional and fully transac-
tional, which makes different online modeling
scenarios feasible. For example, you can use the
GME editor itself as the user interface of a gen-
erated application to provide feedback about
models in the proper context. Bidirectional
access makes it possible to convert legacy data
into models automatically.

Programming GME at the component level
requires COM programming expertise. Several
methods provide easier access to the compo-
nent level through simpler interfaces—albeit
with limited functionality. The GME pattern-
based report language provides reporting capa-
bilities by interpreting macro definitions in a simple
text input file. GME also provides an easy-to-use,
extensible C++ API layered on top of the COM inter-
faces. In addition, GME offers bidirectional XML
access for both model and metamodel information.

Model visualization can also be customized within
the GME editor. A separate software component is
responsible for drawing the models and handling user
actions. This component can be replaced on a para-
digm-per-paradigm or even on a model-by-model
basis to provide highly domain-specific visualization
of the models.

ACTIVITY MODELING TOOL
The activity modeling tool environment, a repre-

sentative yet relatively simple application of MIC in
general, and GME in particular, helps build custom
process monitoring and simulation applications for
chemical plants. AMT provides a means to model all
the components necessary to interface to the real-time
database, define custom data processing, create an
operator interface, and interface to a COTS process
simulator. The translators use a set of integrated mod-
els to synthesize the custom process monitoring and
simulation application.

A remotely running process monitoring and con-
trol database provides real-time data input to the tar-
get systems. The Aspen Plus Steady State (http://
www.aspentech.com) process simulation engine uses
a COM interface to configure and execute simula-
tions. The Aspen simulation engine’s location can
range from a local PC to a remote cluster of super-
computers.

The generated application is based on a client-server
architecture. The client is a remotely configurable cus-
tom-built Java applet that serves as the operator inter-
face. The models specify the configuration information
that defines what user interface elements to display,
how to lay them out, and how to connect them to data

November 2001 47

GME's flexible and
extensible

modular component
architecture allows

the seamless
integration of

existing tools and
services that a given
target domain needs

to support.

48 Computer

sources. The server runs on top of a dynamically sched-
uled dataflow kernel. Some dataflow nodes interface
with the variable database, the simulator, and the oper-
ator interface. Other dataflow nodes implement the
custom processing steps. The translator configures the
interfaces and generates the dataflow components. The
user only needs to provide the custom processing prim-
itives in the form of C functions.

The domain modeling language is based on a strongly
typed, hierarchical signal-flow paradigm. The language
can specify both simple and composite data types and
associate them with signals. A set of constraints enforces
type consistency along signal connections.

Extensibility
AMT’s use of time-stamped data values illustrates

GME’s extensibility. A composite data type model
specifies two fields: data and time. However, the data-
base provides the data and its time stamp as two sep-
arate variables. Consequently, as the NetData model
in Figure 3 shows, the interface models typically con-
tain pairs of variable atoms connected to field speci-
fiers connected to signal atoms.

A simple Visual Basic add-on triggered by the cre-
ation of a new variable atom automates the creation of
these repetitive model structures. When the user selects
one of the available variables, this add-on invokes the
NetData browser, which is part of the database inter-
face package toolset. The add-on then creates the cor-
responding atoms for the time stamp, field specifiers,
and output signal; sets their attributes; and connects
them automatically. This reduces modeling time and
decreases the chance of modeling errors.

Multiaspect modeling
Figure 3 also shows an operator interface model that

illustrates the use of aspects. In the SignalFlow aspect,
the GUI components are wired to signals. The SignalType
aspect uses references to data types defined elsewhere in
the models to specify the data types and to associate them
with the signals. The Layout aspect specifies how to posi-
tion the operator interface GUI components on the
screen. This aspect only needs to show the GUI widgets
and a set of tile atoms whose number and relative posi-
tion determine the final layout. The signal flow, data type
specifications, and GUI layout are largely independent

Figure 3. Activity
Modeling Tool sys-
tem. The top-level
application model
contains a variable
database, a simula-
tor, and an operator
interface model
along with custom
processing blocks
that contain hierar-
chical signal flow
graphs. The operator
or interface model
illustrates aspect
modeling.

concerns. Separating them in different aspects improves
the readability of the models.

The unique needs of this particular domain—specif-
ically, interfacing with existing heterogeneous com-
ponents—precluded the use of commercially available
environments. The complexity of the requirements
made developing a custom-made toolset cost-prohib-
itive. Using the GME, on the other hand, only required
an eight-person-month effort, including requirements
specification, design, implementation, and testing.

RELATED RESEARCH
Unlike MIC, which targets system-level modeling,

the majority of the research on domain-specific lan-
guages6 and visual languages7 specifically focuses on
programming. Among the research groups working
on configurable visual editors, some target only visual
programming languages.8,9 Many only address the
visualization aspect of the problem—the domain-spe-
cific tools they generate are diagram editors.8-10 In con-
trast, integrated toolsets, such as the GME, bring
substantially more domain knowledge to bear during
the system design process. This is similar to the dif-
ference between a text editor with syntax highlight-
ing, such as Emacs, and a full-featured integrated
development environment, such as Borland JBuilder
or Microsoft Visual Studio.

The GME also contains a diagram editor, but it is
only an optional component of the entire tool envi-
ronment. The metamodels precisely describe a domain-
specific language consisting of entities, relationships,
and attributes configuring the persistence engine and
the GME Core, which is similar to an object store.
Additionally, the metamodels contain information
regarding the visual representation and manipulation
of the graphical idioms the diagram editor manages—
for example, specifying that a connection depicts a cer-
tain kind of relationship. However, these are only hints
that the GME editor follows by default, but other user
interfaces can override them. For example, we are
working on a spreadsheet-like table editor for GME
to provide a more natural interface for certain kinds
of modeling domains. Even the XML persistence for-
mat can be considered a textual—although not too
user-friendly—interface to the models.

In this sense, our approach is similar to Microsoft’s
Intentional Programming model,11 which stores the
user’s “intentions” as interrelated objects that can be
visualized in multiple ways. Each kind of intention is
associated with its own translator that generates tradi-
tional code. GME does not automatically support such
a fine-grained translation process, but the internal struc-
ture of GME translators reflects a similar architecture.

CONFIGURABLE ENVIRONMENTS
GME offers a metaprogrammable modeling envi-

ronment, arguably the first of a new generation
of configurable tools. Many environments avail-
able today are configurable but not metapro-
grammable. GME’s most important
distinguishing characteristic is the consistent
application of a metalevel architecture enforc-
ing the strict relationship between metamodels,
models, and the generated systems, guarantee-
ing consistency under all circumstances during
the target system’s entire lifetime.

Two well-known configurable tool environ-
ments clearly stand above the rest: Dome
(http://www.src.honeywell.com/dome/) from
Honeywell Laboratories, and MetaEdit+
(http://www.metacase.com), a commercial envi-
ronment from MetaCase Consulting of Finland.

Dome models are basically a collection of
linked diagrams. Alter, a powerful LISP-based
language, provides bidirectional programmatic
access to the models. Dome configures the toolset, but
its language specifications only control the creation
of new model elements, not their subsequent life.
While such an approach enables the modification of
the domain-modeling environment while it is running,
arguably an elegant feature, it does not maintain con-
sistency in the domain models.

The MetaEdit+ toolset’s features include data stor-
age in an object-oriented database; multiuser capa-
bilities with access and transaction control; a symbol
editor for defining visualization; and an elegant built-
in language for generating program source code,
reports, and even formatted documentation from the
models. However, MetaEdit+ has a closed architec-
ture that does not offer bidirectional access to the
model data, resulting in a nonextensible environment.
Even read-only access is only available through a pro-
prietary scripting language. Furthermore, developers
do not configure a MetaEdit+ environment through
metamodels, but through a series of dialog boxes sim-
ilar to application-generator wizards.

Both Dome and MetaEdit+ offer a limited and fixed
set of parameterizable constraint types. A unique feature
of GME is that it uses OCL as its constraint language,
which makes it more adaptable to different domains.
Practice has shown that powerful constraints are
absolutely necessary to maintain consistency in real-
world models—models that are magnitudes larger and
more complex than the typical demonstration applica-
tions. Neither Dome nor MetaEdit+ has built-in type
inheritance support, an indispensable technique for
model reuse and maintenance.

INDUSTRIAL APPLICATIONS
As the “MIC Applications” sidebar indicates,

industry uses GME extensively in a wide range of
application domains for modeling system structure

November 2001 49

Powerful constraints
are absolutely
necessary to

maintain consistency
in real-world

models—models that
are magnitudes larger

and more complex
than the typical
demonstration
applications.

50 Computer

(computer hardware and software components), fail-
ure modes and fault-tolerant behavior, different kinds
of structured data (like documents and courseware),
and even metamodels. Modeling computations and
using the models for code synthesis is one of its most
attractive application areas.

Various research groups have developed environ-
ments exclusively targeting embedded software mod-
eling formalisms. Notable examples are Moses by
ETH Zurich (http://www.tik.ee.ethz.ch/~moses/) and
Ptolemy by the University of California, Berkeley
(http://ptolemy.eecs.berkeley.edu). Because they are
not general-purpose metaprogrammable modeling
environments, they go further in their specialized
area by including an integrated execution or simula-
tion engine. Consequently, it is possible to model sim-

ple systems and run simulations in a short time, mak-
ing the tools excellent for academic demonstrations,
prototyping, and proof-of-concept simulations.

Both Ptolemy and Moses include several prebuilt
domains or “models of computation.”12 These
domains allow the free composition of formalisms,
although some such heterogeneous models may prove
to be semantically incorrect. In GME, on the other
hand, the metamodels explicitly capture and control
paradigm composition.

The high cost of developing domain-specific, inte-
grated modeling, analysis, and application-gen-
eration environments prevents their penetration

into narrower engineering fields that have limited user
bases. MIC and its toolset provide a way to compose

Developers and researchers have applied model-integrated
computing in general and GME or its predecessors1 in particu-
lar to several real-world applications. The Saturn Site Production
Flow (SSPF) system monitors Saturn’s automotive manufactur-
ing process, providing key production measures to managers in
real time.2 The system models describe the manufacturing
processes down to the machine level, the buffers between the
processes (such as the conveyor belts), the instrumentation, and
how the information is presented to the user. The translators
generate various configuration files and SQL database schema to
configure the SSPF client-server application. The program gath-
ers the production information, stores it in a real-time database,
and makes it available to any user in the plant. Within months
of using the system, Saturn’s Spring Hill, Tennessee, site reported
significant gains in productivity, citing the SSPF technology as a
key factor in the increase. A second Saturn installation in
Delaware took two weeks of modeling time and only two hours
of installation time. No code modification was required, which
illustrates MIC’s power.

The primary objective of the State Space Analysis Tool (SSAT)
developed for Sandia National Laboratories is to increase the
reliability, safety, and security of high-impact systems by ana-
lyzing design models.3 Integrated system models built using GME
can automatically generate diagnostic information for analysis.
The specific analysis techniques include verification of require-
ments consistency, validation of design models versus require-
ments models, simulation of system behavior (including forward
and backward system execution), safety and reliability analysis
(using existing proprietary tools), and automatic fault-tree gen-
eration.

Developers have also used MIC to build tools for fault detec-
tion, isolation, and recovery applications. The models capture
the component hierarchy of a complex physical system—a next-
generation aircraft in one case4 and the International Space Sta-
tion in another.5 The models also specify the anticipated failure

modes of the components and how failures propagate through
the system, inducing various functional discrepancies. A real-
time fault diagnostics system uses these models to isolate fault
sources using observations of sensor data. Another use of the
models is design-time diagnosability analysis to determine sen-
sor coverage, size of ambiguity groups for various fault scenar-
ios, timeliness of diagnosis results in the onboard system, and
other relevant domain-specific metrics.

These example systems illustrate a major characteristic of MIC
that is often overlooked: MIC is not about software modeling
and generation. The domain-specific languages it supports are
not visual programming languages. Instead, MIC is a technology
that supports system development and evolution. Software is an
important part of computer-based systems, but it is not the only
part. In some cases, such as the AMT project, parts of the sys-
tem models correspond to software entities; in other cases, how-
ever, software does not even appear in the models directly.

References
1. G. Karsai, “A Configurable Visual Programming Environment:

A Tool for Domain-Specific Programming,” Computer, Mar.
1995, pp. 36-44.

2. E. Long, A. Misra, and J. Sztipanovits, “Increasing Productivity
at Saturn,” Computer, Aug. 1998, pp. 35-43.

3. J. Davis et al., “Multi-Domain Surety Modeling and Analysis for
High Assurance Systems,” Proc. Eng. Computer-Based Systems
(ECBS 99), IEEE Press, Piscataway, N.J., Mar. 1999, pp. 254-260.

4. L. Atlas et al., “An Evolvable Tri-Reasoner IVHM System,” Proc.
2001 IEEE Aerospace Conference, IEEE Press, Piscataway, N.J.,
2001, pp. 3023-3037.

5. J.R. Carnes, A. Misra, and J. Sztipanovits, “Model-Integrated
Toolset for Fault Detection, Isolation and Recovery (FDIR),” Proc.
IEEE Symp. and Workshop Eng. of Computer-Based Systems,
IEEE Press, Piscataway, N.J., 1996, pp. 356-363.

MIC Applications

such environments cost-effectively and rapidly by
using a metalevel architecture to specify the domain-
specific modeling language and integrity constraints.
This process can significantly reduce a CBS’s devel-
opment time and costs. ✸

Acknowledgments
We thank DARPA ITO, the Boeing Company, and

the DuPont Old Hickory Plant for their generous
sponsorship of our research. We also thank Frank
DeCaria, who provided invaluable domain knowl-
edge, and Jason Garrett, who was the primary imple-
menter in the AMT project.

References
1. J. Sztipanovits and G. Karsai, “Model-Integrated Com-

puting,” Computer, Apr. 1997, pp. 110-112.
2. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified

Modeling Language Reference Manual, Addison Wes-
ley Longman, Reading, Mass., 1998.

3. J.B. Warmer and A.G. Kleppe, The Object Constraint
Language: Precise Modeling With UML, Addison Wes-
ley Longman, Reading, Mass., 1999.

4. G. Karsai, “Structured Specification of Model Interpreters,”
Proc. Conf. Eng. of Computer-Based Systems (ECBS 99),
IEEE Press, Piscataway, N.J., Mar. 1999, pp. 84-90.

5. A. Ledeczi et al., “On Metamodel Composition,” Proc.
Conf. Control Applications, IEEE Press, Piscataway,
N.J., 2001, pp. 84-90.

6. A. van Deursen, P. Klint, and J. Visser, “Domain-Specific
Languages: An Annotated Bibliography,” SIGPLAN
Notices, vol. 35, no. 6, 2000, p. 26.

7. M.M. Burnett and M.J. Baker, “A Classification System
for Visual Programming Languages,” J. Visual Lan-
guages & Computing, Sept. 1994, pp. 287-300.

8. C.A.M. Grant,“Visual Language Editing Using a Gram-
mar-Based Visual Structure Editor,” J. Visual Languages
and Computing, Aug. 1998, pp. 351-374.

9. S.M. Uskudarli, “Generating Visual Editors for Formally
Specified Languages,” Proc. IEEE Symp.Visual Lan-
guages, IEEE Press, Piscataway, N.J., 1994, pp. 278-287.

10. O. Koth and M. Minas, “Abstractions in Graph-Trans-
formation-Based Diagram Editors,” Electronic Notes on
Theoretical Computer Science, http://www.elsevier/inca/
publications/store (current Oct. 2001).

11. C. Simonyi, “The Future Is Intentional,” Computer,
May 1999, pp. 56-57.

12. J. Davis et al., “Overview of the Ptolemy Project,”
http://ptolemy.eecs.berkeley.edu/publications/papers/01/
overview/overview.pdf, Mar. 2001 (current Oct. 2001).

Ákos Lédeczi is a research scientist at the Insti-
tute for Software Integrated Systems, Vanderbilt Uni-
versity. His current research interests include model-

based synthesis and simulation of embedded systems.
He received a PhD in electrical engineering from Van-
derbilt University. Contact him at akos.ledeczi@
vanderbilt.edu.

Árpád Bakay is a research scientist at the Institute
for Software Integrated Systems, Vanderbilt Univer-
sity. His current research interests include model-
integrated computing. He received a PhD in electrical
engineering from the Budapest University of Tech-
nology and Economics. Contact him at arpad.
bakay@vanderbilt.edu.

Miklós Maróti is a research assistant at the Institute
for Software Integrated Systems, Vanderbilt Univer-
sity. His current research interests include data mod-
eling, constraint transformations, distributed algo-
rithms, generative programming, and active libraries.
He received an MSc in mathematics from Vander-
bilt University. Contact him at mmaroti@math.
vanderbilt.edu.

Péter Völgyesi is a research instructor at the Institute
for Software Integrated Systems, Vanderbilt Univer-
sity. His current research interests include model-
integrated computing and visual programming envi-
ronments. He received an MSc in technical informat-
ics from the Budapest University of Technology and
Economics. Contact him at peter.volgyesi@vander-
bilt. edu.

Greg Nordstrom is the Intelligent Systems Group
Leader at the Titan Systems Technology Division. His
research interests include graphical language model-
ing, biotechnology, and automation modeling.
He received a PhD in electrical engineering from
Vanderbilt University. Contact him at greg.nordstrom@
titan.com.

Jonathan Sprinkle is a research assistant at the Insti-
tute for Software Integrated Systems, Vanderbilt Uni-
versity. His research interests include model migration.
He received an MSc in electrical engineering from
Vanderbilt University. Contact him at jonathan.
sprinkle@vanderbilt.edu.

Gábor Karsai is an associate professor at the Institute
for Software Integrated Systems, Vanderbilt Univer-
sity. His research interests include design and imple-
mentation of advanced software systems for control
and instrumentation, programming tools for building
visual programming environments, and the theory
and practice of model-integrated computing. He
received a PhD in electrical engineering from Van-
derbilt University. Contact him at gabor.karsai@
vanderbilt.edu.

November 2001 51

