
Locating Sensors in the Wild: Pursuit of Ranging Quality

1,3Wei Xi, 2,3Yuan He, 2,3Yunhao Liu, 1Jizhong Zhao
1,4Lufeng Mo, 2,3Zheng Yang, 3Jiliang Wang, 2Xiangyang Li

1Xi’an Jiaotong University
2TNLIST, School of Software, Tsinghua University
3Hong Kong University of Science and Technology

4Zhejiang Agriculture and Forestry University

Abstract
Localization is a fundamental issue of wireless sensor net-

works that has been extensively studied in the literature. The
real-world experience from GreenOrbs, a sensor network
system in the forest, shows that localization in the wild re-
mains very challenging due to various interfering factors. In
this paper we propose CDL, a Combined and Differentiated
Localization approach. The central idea is that ranging qual-
ity is the key that determines the overall localization ac-
curacy. In its unremitting pursuit of better ranging qual-
ity, CDL incorporates virtual-hop localization, local filtra-
tion, and ranging-quality aware calibration. We have im-
plemented CDL and evaluated it by extensive experiments
and simulations. The results demonstrate that CDL outper-
forms current state-of-art approaches with better accuracy,
efficiency and consistent performance.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-

tributed Systems—Distributed applications

General Terms
Algorithms, Experimentation, Measurement

Keywords
Localization, Wireless Sensor Network, Ranging Quality

1 Introduction
Localization is a crucial and critical task for wireless sen-

sor networks (WSNs), which has received substantive atten-
tion in recent years. The Global Positioning System (GPS)
are popular localization schemes, but usually fail to func-
tion indoors [3], under the ground [10], or in forests with
dense canopies [13]. Range-based approaches measure the
Euclidean distances among the nodes with various ranging
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techniques [19, 15, 20]. They are either expensive with re-
spect to hardware cost, or susceptible to environmental dy-
namics [23]. Range-free approaches only rely on network
connectivity measurements. However, localization results
are typically imprecise and easily affected by node density.
Mobile-assisted approaches have been proposed [3, 5, 24],
but their use is constrained in certain environments.

This work is motivated by the need for accurate location
information in GreenOrbs [13, 1], a large-scale forest based
sensor network system. An indispensable element in various
GreenOrbs applications is the location information of sen-
sor nodes for purposes such as fire risk evaluation, canopy
closure estimates, microclimate observation, and search and
rescue in the wild. Real-world experiences of GreenOrbs
reveal that localization in the wild remains very challeng-
ing, in spite of the substantive efforts present in the litera-
ture. Non-uniform deployment of sensor nodes could affect
the effectiveness of range-free localization. Furthermore, for
range-based localization, the received signal strength indica-
tors (RSSI) used for ranging are highly irregular, dynamic,
and asymmetric between pairs of nodes. To make it even
worse, the complex terrain and obstacles in the forest easily
affect RSSI-based range measurements, thus incurring unde-
sired but ubiquitous errors.

Ranging quality determines the overall localization accu-
racy. Bearing this in mind, recent proposals are focused more
on error control and management. Some of those proposals
enhance the localization accuracy by deliberately reducing
the contribution of error-prone nodes to the localization pro-
cess [12]. Other schemes improve localization by identify-
ing large ranging errors and outliers, relying on topological
or geometric properties of a network [25, 8].

Ranging quality indeed includes two aspects. One of
them refers to the location accuracy of the reference nodes.
The other concerns the accuracy of range measurements.
The two aspects are equally important with respect to the
impact on the localization results. Most of the proposals,
however, address only one aspect, thus failing to achieve the
desired localization accuracy.

To address the above challenges and limitations, we pro-
pose CDL, a Combined and Differentiated Localization ap-
proach. CDL inherits the advantages of both range-free
and range-based methods, and keeps pursuing better ranging
quality throughout the localization process. The contribu-



tions of this work are summarized as follows.
1. We propose a range-free scheme called virtual-hop lo-

calization, which carefully examines the local connectivity
to mitigate the non-uniform node distribution problem. Us-
ing virtual-hop, the initial estimated node locations are more
accurate than those output by other range-free schemes.

2. For better ranging quality, we devise two local filtration
techniques, namely neighborhood hop-count matching and
neighborhood sequence matching. The filtered good nodes
provide high location accuracy.

3. Using the good nodes to calibrate the bad ones, we
employ the technique of weighted robust estimation to em-
phasize the contributions of the best range measurements,
eliminate the interfering outliers, and suppress the impact of
ranges in-between.

4. We implement CDL with GreenOrbs and evaluate
it with extensive experiments and simulations. The results
demonstrate that CDL outperforms existing approaches with
high accuracy, efficiency, and consistent performance.

The rest of this paper is organized as follows. Section
2 briefly reviews the related work. Section 3 presents real-
world observations on GreenOrbs. The design of CDL is
elaborated in Section 4, followed by performance evaluation
in Section 5. We conclude in Section 6.

2 RELATED WORK
The existing work on localization falls into two main cat-

egories: range-based and range-free localization.
Range-free approaches, such as Centroid [2], APIT [6],

and DV-HOP [16], mainly rely on connectivity measure-
ments (for example hop-count) from landmarks to the other
nodes. Since the quality of localization is easily affected by
node density and network conditions, range-free approaches
typically provide imprecise estimation of node locations.
Range-based approaches measure the Euclidean distances
among the nodes with certain ranging techniques and locate
the nodes using geometric methods, such as TOA [7], TDOA
[19, 17], and AOA [3, 15]. All those approaches require ex-
tra hardware support.

RSSI-based range measurements are easy-to-implement
and popular in practice. Empirical models of signal propa-
gation are constructed to convert RSSI to distance [22]. The
accuracy of such conversions, however, is sensitive to chan-
nel noise, interference, and multipath effects. Besides, when
there are a limited number of landmarks, range-based ap-
proaches have to undergo iterative calculation processes to
locate all the nodes, suffering significant accumulative errors
[12].

More recent proposals mainly focus on the issue of error
control and management [14, 11]. J. Liu et al. [12] propose
iterative localization with error management. Only a portion
of nodes are selected into localization, based on their relative
contribution to the localization accuracy, so as to avoid error
accumulation during the iterations. Similarly, H.T. Kung et
al. [9] propose to assign different weights to range measure-
ments with different nodes and adopt a robust statistical tech-
nique to tolerate outliers of range measurements. The noisy
and outlier range measurement can be sifted by utilizing the
topological properties of a network [8].

A range-free approach beyond connectivity is proposed
in [25]. The signature distance is proposed as a measure
of the Euclidean distance between a pair of nodes. In order
to address the issue of non-uniform deployment, the authors
further propose regulated signature distance (RSD), which
takes node density into account. According to node prox-
imity, each node maintains a neighbor sequence. Based on
the comparison among nodes’ neighbor sequences, RSD is
quantified. This approach needs to be integrated with a cer-
tain existing localization approach to function.

Differing with most of the existing approaches, CDL is
a combination of range-free and range-based schemes. It
can independently localize a WSN. CDL addresses the is-
sue of non-uniform deployment with virtual-hop localiza-
tion (Section 4.1). Utilizing the information of estimated
node locations, RSSI readings, and network connectivity,
CDL filters good nodes from bad ones with two techniques
(Section 4.2), namely neighborhood hop-count matching and
neighborhood sequence matching. CDL pursues better rang-
ing quality (namely more accurate reference locations and
more accurate ranging) throughout the localization process.
This is the most significant characteristic of CDL that distin-
guishes it from existing approaches.

For ease of presentation, we use the terms “ranging” and
“range measurement”, “location” and “coordinates”, inter-
changeably throughout the rest of this paper.

3 MOTIVATION
3.1 GreenOrbs

GreenOrbs is an ongoing research project that aims at
building long-term large-scale WSN systems in the forest.
It adopts TelosB motes with MSP430 processor and CC2420
radio. The software running on the nodes is developed based
on TinyOS 2.1.

GreenOrbs currently collects four types of sensor data:
temperature, humidity, illumination and carbon dioxide con-
centration. The collected data can be utilized to support
a wide variety of applications, such as fire risk evaluation,
canopy closure estimates [13], search and rescue in the wild,
and the like. Specifically, it is always desired for GreenOrbs
to determine potential fire risk areas, to monitor the canopy
closure in geographically dispersed areas, to map the col-
lected environmental factors to concrete vegetation, or to
track moving objects (animals or human beings) in the forest.
To meet these application requirements, location information
of any given sensor node becomes crucial. Thus localization
is a critical task for GreenOrbs.

To date, two GreenOrbs WSN systems have already been
deployed; one in a campus woodland and the other in Tianmu
Mountain, Zhejiang, China. This work is carried out mainly
based on the first system, which currently includes 330 nodes
in a deployment area of about 40,000m2. GreenOrbs nodes
are deployed according to the following rule: the majority
of nodes should be deployed where environmental informa-
tion is required by forestry applications. The rest are then
deployed to improve network connectivity. During the op-
erational lifetime of the system, some nodes might need to
change their locations so as to keep the network well con-
nected or to obtain better sensing output from the monitored



Figure 1. GreenOrbs deployment in the campus woodland
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Figure 2. Cumulative distribution of node distances
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Figure 3. RSSI of different node pairs

area.
The ground-truth coordinates of the nodes are measured

using an EDM (Electronic Distance Measuring Device) [4].
This requires careful mounting of the EDM on the forest
floor and cooperation between two surveyors. The measure-
ment process is hence very laborious and time-consuming.
So far we have succeeded in measuring the coordinates of
100 nodes, as shown in Figure 1. Thus the observations and
experiments in this paper are mainly conducted using those
100 nodes. The other 230 nodes, although deployed in an
adjacent area, are not shown in the picture.

3.2 Observations
As we can see from Figure 1, sensor nodes are deployed

on the forest floor with most of them under dense tree cover,
where GPS usually does not work [7]. Even in areas with less
dense tree cover, our experience shows the errors produced
by a portable GPS device (compared to an EDM) are often
as large as 15m. Thus locating nodes basically comes down
to in-network localization, namely range-based or range-free
approaches. This subsection presents real-world observa-
tions on GreenOrbs. The observations illustrate that a single
approach, whether it is range-based or range-free, has appar-
ent limitations in locating a number of nodes in the wild.
3.2.1 Non-uniform Deployment

Driven by forestry applications, GreenOrbs deploys more
sensor nodes in regions with diverse or uneven vegetation,

so as to provide comprehensive and fine-grained informa-
tion of the monitored area. Such a rule leads to non-uniform
deployment of sensor nodes, as we can see from Figure 1.
Specifically, some nodes have more than 20 neighbors while
some nodes have less than 5.

The distances between pairs of neighboring nodes also
differ a lot, as shown in Figure 2. The shortest distance is
5m and the longest is around 108m.

Range-free localization (for example DV-Hop) in a non-
uniform deployment often incurs large errors. Two nodes are
located to the same position if they have identical hop-counts
to the landmarks. Nevertheless, in reality they might be some
distance from each other.

3.2.2 Irregularity of RSSI
Besides the non-uniform deployment problem, complex

terrain and obstacles (for example shrubs and tree trunks)
also affect signal propagation in the forest. The resulting
RSSI among the nodes is very irregular. Figure 3 plots the
RSSI between many pairs of nodes in GreenOrbs at a certain
time. It further includes a curve, which shows the mapping
between RSSI and the distance based on the log normal shad-
owing model.

PL(d) = PL(d0)−10×η× log(
d
d0

)+Xσ (1)
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Figure 4. Asymmetry and dynamics of RSSI
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Figure 5. Errors of range measurements on the nodes

where PL(d) denotes the reduction in received signal
strength after propagating through a distance d, PL(d0)
stands for the path loss at a short reference distance d0, η

is the path loss factor (also named signal propagation con-
stant), and Xσ is a random environment noise following
X∼N(0,σX2). For all the experiments in this work, we set
the parameter values as η = 3.3, Xσ = 6, according to the
empirical results reported in [18].

We can see that the real distances between node pairs dif-
fer greatly from the model-based estimations. The mapping
of the RSSI distance is actually very uncertain. Yet RSSI
still offers useful information. In most cases, a stronger
RSSI corresponds to a shorter distance, as is also observed
in [5, 25].
3.2.3 Asymmetry and Dynamics of RSSI

Figure 4 shows the pairwise RSSI between two nodes in
GreenOrbs, along with the temperature and humidity over
time. The distance between A and B is 41.27 meters. We
can see that the RSSI between two nodes is asymmetric. Two
pairwise links probably have unequal RSSI. Moreover, RSSI
is very susceptible to environmental factors, such as humid-
ity and temperature. At different times of a day, the RSSI
over a link is highly variable.
3.2.4 Errors of RSSI-based range measurements

We randomly select a time to collect the RSSI readings
from all 100 nodes. The RSSI are then used for range mea-
surements based on Equation (1). By comparing the con-

verted distances with ground-truth, Figure 5 plots the rang-
ing error of each node. The ranging error is the mean error of
range measurements between a node and each of its neigh-
bors. Generally, if a node has line-of-sight connections with
all its neighbors, the mean error of its range measurement is
small. If a node is mounted on the trunk of a large tree, lies
in a pit, or has a faulty antenna, the mean error is likely to
be large. To indiscriminately use the log normal shadowing
model of RSSI to locate sensors in the wild may introduce
considerable errors.

Interestingly, the fact is that only 9% of the nodes have
large ranging errors (> 5m) and only 18% of the nodes have
small ranging errors (< 1m). The errors of the rest of the
nodes (73%) are between 1m and 5m. Such errors cannot be
easily detected but they seriously degrade the overall local-
ization accuracy.

Here is a brief summary of observations on GreenOrbs.
First, the sensor nodes are deployed with diverse densities in
different regions, causing the non-uniform distribution prob-
lem. Second, RSSI over the wireless links is very unstable
and sensitive to various environmental factors. The uncer-
tainty of RSSI is hard to model in practice, therefore; as a
result RSSI-based range measurements exhibit quite diverse
errors. Third, only a small portion of range measurements
are accurate. To make matters even worse, typically only
large ranging errors can be detected or tolerated by the exist-
ing approaches.
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4 DESIGN
We consider locating a network of wireless nodes on a

two dimensional plane by using the connectivity informa-
tion and RSSI readings. A few nodes, which know their own
coordinates once they are deployed, are used as landmarks.
The design of CDL mainly consists of virtual-hop localiza-
tion, local filtration, and ranging-quality aware calibration.
Figure 6 illustrates the CDL workflow.

Virtual-hop localization initially estimates node locations
using a range-free method. In order to approximate the dis-
tances from the nodes to the landmarks, it counts virtual-
hops instead of DV-hops, compensating particularly for the
errors caused by the non-uniform deployment problem.

Subsequently, CDL executes an iterative process of filtra-
tion and calibration. In each filtration step, CDL uses two fil-
tering methods to identify good nodes whose location accu-
racy is already satisfactory. Neighborhood hop-count match-
ing filters the bad nodes by verifying a node’s hop-counts to
its neighbors. Furthermore, neighborhood sequence match-
ing distinguishes good nodes from bad ones by contrasting
two sequences on each node. Each sequence sorts a node’s
neighbors using a particular metric, such as RSSI and esti-
mated distance.

Those identified good nodes are regarded as references
and used to calibrate the location of bad ones. Links with
different ranging quality are given different weights. Outliers
in range measurements are tolerated using robust estimation.

In the next three subsections, we elaborate on the design
of the above three phases respectively.

Table 1. Variable Definitions
Symbol Definition

ℜ j a set of all neighboring nodes of node v j
Pj a set of previous-hop neighbor of node v j
N j a set of next-hop neighbor of node v j
hi j the hop count from node vi to node v j
ζ j Min{|Pi|

∣∣ vi is in N j}
ϕ j Min{|Ni|

∣∣ vi is in Pj}

4.1 Virtual-Hop Localization
For the first phase of CDL, Virtual-hop localization ini-

tially computes node locations. This is an enhanced version
of hop-count based localization. Compared to the DV-hop
scheme, virtual-hop particularly addresses the issue of non-
uniform deployment and improves the localization accuracy
in such contexts. Based on the output of virtual-hop localiza-
tion, the subsequent localization processes in CDL (filtration
and calibration) are expected to achieve higher accuracy and
efficiency of iteration.

4.1.1 Virtual-hop
For ease of presentation, Table 1 lists several symbols and

notations we use in this paper. To illustrate the virtual-hop
algorithm more clearly, we give an example based on Fig-
ure 7. It illustrates an interesting fact. For two nodes that
have equal hop counts to the landmark, the node nearer to
the landmark is likely to have more previous-hop neighbors
and less next-hop neighbors. Let us compare nodes va and
vb in the figure. They are both two hops from the landmark,
but va is apparently closer to the landmark than vb. va has
more previous-hop neighbors and less next-hop neighbors.
This can be represented as following: |Pa|= 2 and |Na|= 0,
while |Pb|= 1 and |Nb|= 3.

Based on above observations, we propose the design of
virtual-hop localization. Each node maintains two types
of hop counts. One of them is the real hop count, based
on which a node determines its previous-hop and next-hop
neighbors. The other is the virtual-hop-count, which is cal-
culated hop by hop. V H jk denotes the virtual hop count from
landmark Rk to node v j. It is the sum of two parts. The first
part is the average virtual-hop-count of V H jk’s previous-hop
neighbors. The second part is the last virtual-hop-count, that
is, the incremental virtual-hop-count from V H jk’s previous-
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Figure 8. Comparison of DV-hop and Virtual-hop

hop neighbors to V H jk, denoted by V H jk. We have

V H jk =
1
|Pj|

|Pj |

∑
i=1

V H ik +LH jk (2)

where

LH jk =


|N j|

|N j|+ζ j−1
, |N j|> 0

|Pj|
|Pj|+ϕ j−1

, |N j|= 0

By using the numbers of previous-hop neighbors and
next-hop neighbors of relevant nodes as input parameters in
Equation (2), V H jk is quantified as the relative length of the
last virtual-hop of v j. Here we use nodes va and vb as exam-
ples to illustrate the improvement to the virtual-hop in figure
7. Node va has two previous-hop neighbors vp and vq, while
vb has only one previous-hop neighbor vp.We can calcite the
virtual-hop of va and vb as follows.

V Hpk = 6/(6+1−1) = 1, V Hqk = 5/(5+1−1) = 1.
LHak = 2/(2+5−1) = 0.33.
V Hak = (V Hpk +V Hqk)/2+LHak = 1.33.
Similarly we get V Hbk = 1+0.8 = 1.8.
After that, the per-virtual-hop distance regarding land-

mark Rk is calculated by

d̃k =
∑ρtk

∑V Htk
whereRt isa landmark, t 6= k.

=
∑

√
(Xt −Xk)2 +(Yt −Yk)2

∑V Htk

(3)

where ρtk is the Euclidean distance between landmarks Rt
and Rk. Each node computes its distance to the landmarks
by

ρ jk = d̃k ·V H jk (4)

where ρ jk is the estimated distance from v j to Rk. After cal-
culating the distances to the landmarks, each node computes
its coordinates based on trilateration using Least Square Es-
timation (LSE), which is similar to DV-hop.

4.1.2 Localization Accuracy of Virtual-hop
We now look at our simulation results to compare the ac-

curacy of virtual-hop localization with DV-hop. The setup
includes 100 nodes and 4 landmarks. The simulation results
are shown in Figure 8. We can see virtual-hop outperforms
DV-hop remarkably. The performance gain of using virtual-
hop varies a lot among different nodes. Compared with DV-
hop, the localization errors are reduced by 10%∼ 99%.

By fully exploiting the connectivity information of the lo-
cal neighborhood, virtual-hop-counts finely characterize the
non-uniform distribution properties and address them with
more precise hop counting. Nevertheless, it is worth notic-
ing that there are still sizable errors (> 5m) at many nodes.
Those nodes with sizable location errors can be identified
and accurately calibrated. We leave the solutions for the next
two sections. Without causing confusion, hereafter we use
“estimated coordinates” to denote the node coordinates be-
fore filtration.

Given the estimated coordinates, the iterative process of
filtration and calibration further enhances localization accu-
racy. This involves the following two design criteria: First,
filtration must identify as many good nodes with high local-
ization accuracy as possible to facilitate calibration. Second,
a good node is likely to have both good and bad links. Only
the good links (with small ranging errors) should dominate
calibration, while the impact of the bad links must be re-
strained. Filtration addresses the first criterion, while cali-
bration resolves the second.

4.2 Local Filtration
Filtration consists of two steps: neighborhood hop-count

matching and neighborhood sequence matching.

4.2.1 Infeasibility of Model-based Filtration
Filtration is very important in CDL. In order to illustrate

its significance, we carry out an experiment to examine the
efficacy of location calibration without differentiating good
nodes and bad nodes before calibration. We call this straight-
forward model-based calibration indiscriminate calibration.
Using such calibration, every node’s location is adjusted di-
rectly based on the distances to its neighbors converted from
RSSI, using the log-normal shadowing model.

Figure 9 compares the localization errors of nodes before
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Figure 9. The incorrectness of Indiscriminate Calibra-
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and after indiscriminate calibration. Surprisingly, we find the
output of indiscriminate calibration to be even worse than
before. Model-based filtration is infeasible, considering the
estimated localization error and irregularity of RSSI.

Based on the information available, there are two ways
to estimate the distances between two nodes, for example
node vi and its neighbor v j. One way is to calculate the dis-
tance based on their estimated coordinates, denoted by d′i j.
The other converts the RSSI from v j to vi into a distance
(tentatively named RSSI-distance) based on the log-normal
shadowing model, denoted by di j. Ideally, di j = d′i j. Due
to the errors of estimated coordinates and the error from the
log-normal shadowing model, however; there is often some
difference between them. By summing up the difference
|di j− d′i j| corresponding to every neighbor v j, we can mea-
sure the Aggregated Degree of Mismatches (ADM) of v j.

ADM actually reflects the error of a node’s estimated lo-
cation. For example in Figure 10 (a), node va is a good node
with six neighbors. Among them only node vg is a bad node.
Let v′g denote its estimated location. Clearly the ADM of
node va is mainly caused by v′g. In Figure 10 (b), node va is a
bad node with six good neighbors. The link to every neigh-
bor contributes to the ADM of node va. By comparing these
two figures, we can see the ADM of a bad node is typically
higher than that of a good one. Thus we may distinguish
good nodes from bad ones by contrasting their ADMs.

The above method to quantify ADM, however, relies on
the log-normal shadowing model to convert RSSI into a dis-
tance. As we have observed, such conversion is error-prone,
which leads to totally incorrect filtration.
4.2.2 Neighborhood Hop-Count Matching

Every node takes neighborhood hop-count matching as
the first step to identify whether it is a bad node. This mainly
utilizes local connectivity information. Note that hop-count
is indeed a rough estimation of the distance between two
nodes. If a node’s hop-counts to its neighbors greatly mis-
matches the distances calculated using the nodes’ estimated
coordinates, w.h.p. the local node’s coordinates will have a
large error. We use node vi as an example to illustrate the
matching procedure.

First, every node exchanges its estimated coordinates with

va

vd

vc

vb

vevf

vg

vg'

(a) A good node with one bad
neighbors

vd

vc

vb

vevf

vg

va

va'

(b) A bad node with six good
neighbors

Figure 10. ADM reflects the localization error of a node

its 2-hop neighborhood.
Second, when vi receives the estimated coordinates of v j,

it estimates the distance between them, denoted by d′i j.
Third, for each node v j within its 2-hop neighborhood, vi

estimates the hop-count to v j as h′i j = dd′i j/d̃ke, where d̃k is
the per-hop distance obtained from the nearest landmark Rk
during virtual-hop localization.

Fourth, vi computes its ratio of matched hop-counts
within its 2-hop neighborhood v j as follows:

Hi j =

{
0 (hi j 6= h′i j)
1 (hi j = h′i j)

(5)

ri =
1
n

n

∑
j=1

Hi j (6)

ri =
1

n+1
(

n

∑
j=1

r j + ri) (7)

where hi j denotes the hop count from vi to v j and n is the
number of its 2-hop neighbors of vi. ri denotes the mean
matched ratio in the neighborhood of vi. If ri < ri, vi regards
itself as a bad node, which has an apparent error in its es-
timated coordinates. Otherwise, the role of node vi is left
undetermined for further filtration.

Hop-counts actually offer relatively limited information
to filtration. As a result, neighborhood hop-count matching
only identifies a small portion of bad nodes with apparently
wrong coordinates. In order to ensure that all the sifted good
nodes do have satisfactory location accuracy, we need to fur-
ther filter bad nodes. In the next subsections, we illustrate
our scheme of neighborhood sequence matching.
4.2.3 Neighborhood Sequence Matching

Though model-based straightforward filtration is infeasi-
ble, RSSI still offers useful information. Generally, the RSSI
between two nodes decreases monotonically as the node dis-
tance increases, as can be observed from the RSSI readings
in Figure 3. Based on this observation, we propose a filtra-
tion scheme called neighborhood sequence matching. The
filtration on a node va runs as illustrated in Figure 11.

First, node va sorts its neighbors in descending order with
regard to the RSSI from them, generating a sequence number
for each neighbor. By mapping the sequence numbers into
va, we get the first sequence called RSSI sequence. Let Sa
denote it.
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N a B C D E F G

S a 6 5 1 2 4 3

S a ' 6 4 1 2 3 5

(a) A good node with one bad
neighbor

N a B C D E F G

S a 6 5 1 2 4 3

S a' 4 2 1 3 6 5

(b) A bad node with six good
neighbors

Figure 11. Neighborhood sequence matching

Second, according to the estimated coordinates, node va
sorts its neighbors in the ascending order with regard to the
estimated distance to them, generating the second sequence
called distance sequence. Let S′a denote it.

In theory, Sa and S′a should be identical. If there is sig-
nificant mismatch between them, it indicates a large error in
the node’s estimated coordinates. We use the same examples
as that in Figure 10 to illustrate the above idea. As shown
in Figure 11 (a), va is a good node while vg is the only bad
neighbor whose location is mistaken as v′g. There is not a
significant mismatch between Sa and S′a in this case. Com-
paratively in Figure 11 (b), when va is a bad node with six
good neighbors, there appears to be significant mismatch be-
tween Sa and S′a.

Now that the difference between Sa and S′a is a measure
of the location error of va, the next step is to quantify their
distance. The cosine distance is a measure of similarity be-
tween two vectors by finding the cosine of the angle between
them. One may use the cosine distance to measure the simi-
larity between sequences Sa and S′a. However, when the co-
sine distance is used alone, it cannot sufficiently distinguish
good nodes from bad nodes. Specifically, when a good node
has some bad neighbors with large location errors, the cosine
distance between two sequences of a good node does not ap-
parently differ from that of a bad node. To deal with this
issue, we introduce the LCS (longest common subsequence)
length ratio δa. Let n denote the number of va’s neighbors.
Then δa denotes the ratio of the length of the LCS between
Sa and S′a to n. It is easy to see that the LCS length ratio of a
good node is higher than that of a bad node, so we define the
matching degree Mi between the RSSI sequence and distance
sequence as follows.

Mi = δi ·CosDist i (8)

where n is the number of va’s neighbors, δi is the pro-
portion of the length of the longest common subsequence
(LCS) between Si and S′i and n, CosDist is cosine distance
of two sequences, a1,a2, ...,an are the sequence numbers in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Matching degree M

E
st

im
at

ed
 L

oc
at

io
n 

E
rr

or
 (

m
)

Figure 12. Filtration result of virtual-hop localization

Sa while a′1,a
′
2, ...,a

′
n are the sequence numbers in S′a. Since

a1,a2, ...,an = a′1,a
′
2, ...,a

′
n = 1,2, ...,n, we have:

CosDist =
a1a′1 +a2a′2 + ...+ana′n√

a2
1 +a2

2 + ...+a2
n

√
a′21 +a′22 + ...+a′2n

=
a1a′1 +a2a′2 + ...+ana′n

12 +22 + ...+n2

(9)

Clearly Mi is a better metric to distinguish good nodes
from bad nodes. In Equation (9), a1, a2, ..., an are the se-
quence numbers in Sa while a′1, a′2, ..., a′n are the sequence
numbers in S′a. These two sequences are actually two differ-
ent permutations of 1, 2, ..., n. Thus a1, a2, ..., an, a′1, a′2, ...,
a′n, and 1, 2, ..., n are three equal sets.

Generally, when RSSI readings have small errors, RSSI
sequence of a good node still well matches its distance se-
quence. Even when a small portion of RSSI readings have
relatively large errors, the matching degree cannot be influ-
enced much. Thus the scheme of neighborhood sequence
matching is error-tolerant to interference from background
noise.

We use the same trace as that in Figure 8 to calculate the
matching degree of all the nodes after initial localization.
The results are plotted in Figure 12. Nodes of a matching
degree over 0.6 have location errors of less than 4 meters.
We regard them as good nodes. Nodes of less than 0.4 de-
gree have location errors over 5 meters. We regard them as
bad nodes. The other nodes have matching degrees between
0.4 and 0.6, but their location errors vary from 0.1 to 12 me-
ters. It is by far too hard to decide whether they are good or
bad. Their matching degree is between 0.4 and 0.6, Thus
we tentatively set them as undetermined nodes. τl = 0.4
and τu = 0.6 are two empirical parameters, called the lower
matching threshold and the upper matching threshold. For
ease of expression later, we use Gi as a mark of node vi.
Gi = 0, Gi = 0.5 and Gi = 1 mean vi is a bad node, an unde-
termined node, and a good node, respectively.

Gi =

{ 0 Mi < τl
0.5 τl < Mi < τu
1 Mi > τu

(10)



One can increase both thresholds to execute stricter filtra-
tion. One can also decrease both thresholds to allow more
nodes to contribute as good nodes in the calibration process.
The tradeoff in the threshold settings could be an interesting
issue to study. We leave it for future work.
4.3 Ranging-Quality Aware Calibration

Given the range measurements between bad node vi and
its good neighbors, the estimation of vi’s location, denoted
by f ∗, usually works by minimizing an objective function
over node pairs (i, j), which is denoted by

f ∗ = ∑
j

g(i, j) (11)

where g(i, j) takes different forms with different approaches.
We use RSSI for calibration, which adjusts the node loca-
tions so as to minimize (11).

When least square estimator (LSE) is used,

g(i, j) = (li j,di j)
2 (12)

where li j denotes the distance estimated by LSE and di j de-
notes the RSSI range measurement between vi and its neigh-
bor v j based on the log-normal shadowing model. The prob-
lem with LSE is that it does not differentiate between nodes
and links. LSE leads to error diffusion where a bad link will
seriously affect good links. It suffers great errors when out-
liers are present in locations or range measurements.

Snap-Inducing Shaped Residuals (SISR) [9] outperforms
LSE by assigning different weights to the range measure-
ments with different neighbors.

g(i, j) =
{

α(li j−di j)
2 |li j−di j|< λ

ln(li j−di j−u)− v otherwise (13)

where α, λ, u and v are constant parameters. Once a node
is identified as either a good or bad node, its contribution to
the calibration is fixed. SISR actually prefers the situations
where the majority of range measurements are accurate. Oth-
erwise it becomes inefficient, as is shown by the experiments
in Section 5.

To address the limitations of LSE and SISR, our scheme,
called range-quality aware calibration (RQAC), adopts the
weighted robust estimation technique. As the set of undeter-
mined nodes include both good and bad, we only use good
nodes as references and do not include any undetermined
nodes in the calibration. From the viewpoint of node vi, the
ranging quality of its neighbor v j is simultaneously deter-
mined by two factors: the location accuracy of v j, and the
ranging error over the link from v j to vi. RQAC estimates
the ranging quality of a good node v j as follows.

ω̃ j =
|ℜ j |

∑
k=1

ω
′
jk · bGkc (14)

ω
′
jk =

{
1 |l jk−d jk|< θ

0 otherwise (15)

where θ is a pre-configured parameter. The weight of good
node v j in calibrating bad nodes is defined as a normalized
value of ω̃ j.

ω j =
ω̃ j

∑
|ℜ j |
k=1 ω̃k

(16)

We can see that good nodes of different ranging quality
have different weights. A good node has a relatively high
weight if its estimated location is highly accurate and the
ranging quality of all its links (calculated using Equations
(14) and (15)) is good. Otherwise, the weight of the good
node will be relatively low. The objection function of RQAC
is defined as follows.

g(i, j) =
{

ω j(li j−di j)
2 |li j−di j|< ε

ln(|li j−di j|− ε+1) |li j−di j| ≥ ε
(17)

Note that |li j− di j| is a measure of the ranging error. ω j
and |li j−di j| thus jointly denote the ranging quality from v j
to vi.

As we can see from Equation (17), range measurements
to vi are divided into two classes, according to their ranging
quality. The range measurements with errors less than con-
tribute more to the calibration process by taking the quadratic
form of |li j−di j|. For a range measurement with an error not
less than ε, its contribution is suppressed by taking the log-
arithmic form of |li j−di j|. Note that g(i, j) is continuous at
|li j − di j| = ε. Moreover, range measurements in the same
class are also differentiated from each other, by taking the
weights of reference nodes (ε j) into account. In this way,
RQAC respects the contributions of the best range measure-
ments, eliminates the interference of outliers, and suppresses
the contributions from the ranges in-between.

As for the parameter setting in RQAC, a small θ expresses
a conservative calibration strategy. Only a small fraction of
the best range measurements receives enough respect, which
results in highly accurate calibration but likely more rounds
of iterations. A large θ expresses an optimistic calibration
strategy. Many good range measurements make contribu-
tions, such as increasing the efficiency of iterations but likely
introducing new errors. Getting an appropriate ε is also im-
portant to the effectiveness of RQAC. Basically, a smaller ε

results in more accurate calibration, and also increases the
possibility of falling into the local minimum. In contrast,
a lager ε may cause RQAC to degrade to ordinary LSE. In
our work, we get θ and ε from the empirical results of our
experiments.

5 EVALUATION
We have implemented CDL with GreenOrbs. The perfor-

mance of CDL is evaluated through large-scale real experi-
ments as well as simulations. For comparison, we have also
implemented three existing localization approaches, namely
DV-hop [16], MDS-MAP(C,R) [21], and SISR [9].

Specifically in MDS-MAP(C,R), the 1-dimensional MDS
is applied first. Then four corner nodes are used as landmarks
for the scaling and rotation of the map in 2-dimensional
MDS. MDS-MAP(C,R) avoids the problem that multiple
nodes are localized to the same location. Its localization per-
formance is usually better than DV-hop. However, bad links
cause big errors in the range measurements. This problem
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Figure 13. Localization results of SISR and CDL
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Figure 14. Overall localization results

remains unresolved in MDS-MAP(C,R). The estimated co-
ordinates of some nodes still often deviate significantly from
the real ones.

Corresponding to the deployment map in Figure 1, Figure
13 plots the 100 GreenOrbs nodes in a rectangular region.
Four nodes positioned near the border of the deployment area
are selected as landmarks. We have collected the localization
results of all the four approaches.

5.1 Experiments
5.1.1 Comparison among Approaches

Figure 14 plots the cumulative distribution of the local-
ization errors using the four approaches. It is easy to see that
SISR performs better than DV-hop and MDS-MAP(C,R).
Thus we only compare the results of SISR and CDL in Fig-
ure 13.

Figure 13 shows that for almost all the nodes, CDL
achieves higher localization accuracy than SISR. A detailed
explanation of the results can be found in Figures 14 and 15.

Using CDL, 100% of the nodes have errors of less than
7 meters, while 65% of them have errors of less than 3 me-
ters. Using SISR, at most 70% of nodes have errors of less
than 7 meters and at most 35% of nodes have errors of less
than 3 meters. It is also interesting to see that CDL achieves
the most consistent performance among the four approaches.
The average localization errors of the four techniques are
8.7m, 5.9m, 4.6m and 2.9m.

From Figure 14, we can see the performance of DV-hop
is the worst. Actually, we observe in the experimental results
that many different nodes are estimated to the same locations
by DV-hop, because they have the same hop-counts to the
landmarks, but their real locations are far each other.

Another interesting finding is that SISR and MDS-MAP
perform similarly. In other words, a node with a large error
in MDS-MAP usually has a large error in SISR too. More-
over, due to the “snap-in” behavior of SISR, it is able to
suppress the negative impact of noisy range measurements.
SISR therefore achieves slightly better accuracy than MDS-
MAP.

5.1.2 Efficiency of Iteration
Note that CDL and SISR both propose iterative local-

ization processes. Other than comparing the overall perfor-
mance, we conduct experiments to evaluate the efficiency.

As shown in Figure 15, the mean localization errors of
CDL and SISR both decrease as the iterations go on. Their
performances converge after 6∼ 8 rounds of iterations. The
localization accuracy of CDL is always better than that of
SISR.

We want to emphasize that, in setting an objective of lo-
calization accuracy, the required number of iterations actu-
ally determines the communication and computational cost
of a localization approach. By examining the results in Fig-
ure 15, we are pleased to see CDL achieves very satisfactory
localization results even after only two rounds of iterations.
The performance gain of a few more rounds of iterations is
also more apparent with CDL than with SISR. The accuracy
of SISR is constantly improved until the 4th round of itera-
tion.

CDL outperforms SISR mainly because of the following
reasons.

First, the initial round of CDL iterations starts with
the output of virtual-hop localization, while SISR starts
from totally undetermined locations. With only straightfor-
ward location adjustment, SISR cannot converge sufficiently
quickly. As a result, the localization error of SISR in the first
few rounds of iterations is especially large.

Second, filtration and calibration in CDL explicitly filter
the bad nodes and identify the good nodes and good ranging
quality. Hence, CDL may maximize the contribution of those
good nodes in a calibration and clearly eliminate the negative
impact of bad nodes. Such a capacity is especially preferred
during the first few rounds of iterations, when the number of
good nodes is relatively limited.

On the other hand, SISR conducts calibration without ex-
plicit differentiation on the quality of ranging. As we ob-
serve with GreenOrbs, there are many mild ranging errors
as shown in Figure 5. SISR is effective only when there is
a relatively small portion of sizable ranging errors. When
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Figure 16. Node type distribution

sizable ranging errors widely exist with most of the nodes,
SISR cannot accurately distinguish between bad nodes and
good ones. The consequence is inefficiency in the starting
stage of iterations.

We may notice that after some rounds of iterations, the
localization errors of CDL reach a relatively stable value
and no longer goes down. The errors remaining in the lo-
calization results are mainly incurred by a small portion of
bad nodes which cannot be better located. Those bad nodes
do not have a sufficient number of good neighbors or are
likely to have potential ranging errors to almost all their good
neighbors. When usable information from the good neigh-
bors is used up, the localization errors converge. This is a
common fact with CDL and SISR. Increasing the transmis-
sion power might be a simple but effective method to im-
prove such a situation. Since this is not the key issue to be
studied in this paper, we leave it for future work.

5.1.3 Evolution of Node Types
In this subsection, we observe the evolution of node types,

namely good, bad, or undetermined, along with the iterative
filtration and calibration of CDL.

Figure 16 (a) shows the trends in the changing numbers
of good, bad, and undetermined nodes along with 10 itera-
tions. First of all, CDL makes deterministic judgments on
node types (good or bad) for almost all the nodes after 10
rounds of iterations. The effect of calibration is also satisfac-
tory. We can see the number of good nodes quickly increases
as iterations go on.

In order to avoid false positive and negative filtration,
we conservatively leave some nodes with medium values
of matching degrees. Hence there remains a considerable
amount of undetermined nodes in each of the first iterations.
As the filtration and calibration continue, more and more bad
nodes are successfully calibrated by the good ones. The un-
certainties of node location decrease, so the undetermined
nodes gradually obtain the opportunity to be identified and
calibrated.

Figure 16 (b) shows the detailed evolutional process of all
the 100 nodes in 10 iterations. Specifically, 31% nodes are
correctly identified to be good from the very beginning. 44%
nodes are initially identified as bad, and then calibrated to be
good. 25% of them are initially undetermined, then identi-
fied as bad nodes, and finally calibrated to be good. The rest

of the nodes, which count for only 4%, are left undetermined
at the end of 10 rounds of iterations.
5.1.4 The Impact of Environmental Factors

Our observations in Section 3 show that the dynamics
of environmental factors have significant impact on RSSI
among the nodes. RSSI is concerned with the range-based
calibration. It also affects the transmission range of nodes.
Therefore, the dynamics of RSSI are also concerned with the
accuracy of virtual-hop localization. Thus, it would be inter-
esting to investigate how the localization approaches perform
under different environmental conditions.

Figure 17 plots the localization results of the four ap-
proaches under two representative conditions in GreenOrbs.
Since GreenOrbs collects humidity data, we are able to mon-
itor the humidity over time while carrying out localization
experiments.

Actually, RSSI is affected by both temperature and hu-
midity. Note that in Figure 4 (b), temperature and humidity
presents completely inverse trends of variation. We believe
the humidity data alone is sufficient for us to evaluate the
impact of both humidity and temperature.

As we can see from Figure 17, all four approaches achieve
better performance with higher humidity. Recall the expe-
rience reported in [13], RSSI increases with increasing hu-
midity. A larger RSSI results in a longer transmission range,
so that a node has more neighboring nodes, and in turn has
better chance of being calibrated. The problem with non-
uniform deployments is also mitigated, because a node ob-
tains more information of locations and connections from its
neighborhood.

This group of experiments implies that environmental fac-
tors do matter in localization. One may expect to achieve
higher localization accuracy in weather conditions when the
wireless signals are relatively stable and strong. When we
make judgments on the quality of a localization approach,
the environmental conditions of the localization being exe-
cuted should definitely be considered.

5.2 Simulation
Besides the above experiments based on the implemen-

tation of CDL in GreenOrbs, we have carried out extensive
simulations to evaluate the performance of CDL. We exam-
ine the location accuracy of CDL by tuning a series of param-
eters such as node density, the number of landmarks, and the



20 90
0

5

10

15

20

Humidity (%)

Lo
ca

liz
at

io
n 

E
rr

or
 (

m
)

 

 

DV−hop

MDS−MAP

SISR

CDL

Figure 17. Impact of humidity

8 10 12 14 16 18 20
0

5

10

15

20

25

Node Density

M
ea

n 
Lo

ca
liz

at
io

n 
E

rr
or

 (
m

)

 

 

DV−hop

MDS−MAP(C,R)

SISR

CDL

Figure 18. Impact of node density

4 6 8 10 12 14 16
0

10

20

30

40

50

Number of Landmarks 

M
ea

n 
Lo

ca
liz

at
io

n 
E

rr
or

 (
m

)

 

 
DV−hop

MDS−MAP(C,R)

SISR

CDL

Figure 19. Impact landmarks count

relative ranging errors. The simulation results of DV-hop,
MDS-MAP(C,R), and SISR are also presented for a more
comprehensive comparison.

In the simulations, nodes are randomly deployed in a
500m*500m square region. We set the transmission range
of nodes to be 30m.

5.2.1 Node Density
The node density (ND) is the average number of one hop

neighbors of a node. It is often an important factor in local-
ization. In this group of simulations, we keep the number
of landmarks constant in the network and tune the node den-
sity by changing the number of nodes. We set the number
of landmarks equal to 6 and the percentage of bad links to
25%. To simulate the range measurements on the bad links,
we let the relative ranging errors on the links conform to a
Gaussian distribution, denoted by N(0.5,0.1).

Figure 18 compares the converged value of mean local-
ization errors using the four approaches. For DV-hop and
MDS-MAP(C,R), since they are not iterative methods, we
just present their localization results from one time of ex-
ecution. The curves in Figure 18 show that a higher node
density results in higher location accuracy for all the four
approaches.

Specifically, DV-hop performs very poor when the node
density is low. This is because the non-uniform deploy-
ment problem appears to be more serious with sparse deploy-
ments. When the node density increases, the non-uniform
deployment problem is mitigated and the localization accu-
racy is thus improved.

For MDS-MAP(C,R), a high node density makes the total
length of a shortest path between two nodes correspond well
to their Euclidean distance. With a higher node density, it is
also easier for SISR to obtain enough good range measure-
ments for localization.

As for CDL, it is least susceptible to low node density
among the four approaches, because virtual-hop localization
already addresses the non-uniform deployment problem to a
certain extent. Another advantage of CDL is that even with
a limited number of good nodes, it still can make efficient
filtration and calibration.

Nevertheless, node density does matters for CDL as well.
As the node density goes up, the mean localization error
quickly drops and then gradually converges. A higher node
density usually results in better accuracy of virtual-hop local-

ization. Moreover, as the node density increases, the chances
for CDL to make more efficient filtration and calibration also
get better.

5.2.2 Impact of the Number of Landmarks
Due to the complexity of deployments and location mea-

surements of WSNs in the wild, there are usually a limited
number of landmarks. Thus it is worth examining how CDL
works with different numbers of landmarks. In our simula-
tion, we tune the number of landmarks from the minimum
required number (that is, 3) to a relatively large number,
namely 16. The total number of nodes is 1000. The node
density ND = 12 and the percentage of bad links is 25%. All
four approaches perform well with such settings, according
to the previous experimental results.

Figure 19 plots the mean localization errors of the four
approaches as the number of landmarks is increased. We
can see that MDS-MAP(C,R) and SISR are less sensitive to
the number of landmarks than DV-hop and CDL. The main
reason is that landmarks are not involved throughout the lo-
calization process with MDS-MAP(C,R) and SISR. For ex-
ample, SISR first generates a relative location map of the
network and then transforms it to absolute positions when
sufficient landmarks are available.

On the other hand, DV-hop simply relies on counting hops
to the landmarks to calculate the node locations. CDL is
also a bit affected by the number of landmarks, because it
includes virtual-hop localization as a component. Yet we no-
tice that CDL performs slightly worse than SISR only when
there are three landmarks. The localization accuracy of CDL
is improved remarkably by adding one or two landmarks to
the network. Overall, six landmarks are more than enough
for CDL to achieve satisfactory performance.

5.2.3 Ranging Error
Considering the ubiquitous ranging errors and poor over-

all ranging quality in the wild, the robustness of a localiza-
tion approach against such interfering factors is the last but
not least metric we want to evaluate. For this purpose, we
conduct a group of simulations with 1000 nodes. Node den-
sity ND is set to 12 and the number of landmarks to eight.

We use two parameters to control the degree of ranging
errors. The first one is the percentage of bad links which is
respectively set at 0%, 10%, 20%, 30%, 40%, and 50%. The
other parameter is the relative ranging error. We assume in
the simulations that the links on a node are either all good
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Figure 20. Comparison of localization errors

or all bad. The relative ranging error of a link conforms to a
Gaussian distribution N(µbad ,0.2µbad), where µbad denotes
the average of relative ranging error and set at 0%, 10%,
20%, 30%, 40%, and 50%, respectively. Meanwhile, we as-
sume the links are asymmetric.

Figure 20 plots the mean localization errors of MDS-
MAP (C,R), SISR, and CDL under different settings. We
find MDS-MAP (C,R) is relatively insensitive to the changes
of ranging errors, because it mainly relies on connectiv-
ity information instead of inter-node ranging. All MDS-
MAP(C,R) results have localization errors of more than 2m,
even when all links are good.

SISR generally performs better than MDS-MAP(C,R)
and specifically well when the percentage of bad links is less
than 30%. The mean localization errors are less than 2m due
to the “snap-in” behavior of SISR. Its performance seriously
degrades when the percentage of bad links gets above 30%,
in accordance with our analysis in Section 4.3.

Compared to SISR, CDL has even better performance.
When all the links are good, its localization errors reach near
zero. Even when there are 50% bad links, CDL still perform
robustly enough. The mean localization error is around 5m.
This group of simulation shows the remarkable advantages
of CDL in extremely complex environments.
5.2.4 Overhead Analysis

Though cost is not the first concern of localization, we
analyze the communication cost in each phase of CDL. Let m
denote the number of beacon nodes and k denote the average
node degree.

In virtual-hop localization, landmarks flood their coordi-
nates to all the other nodes. The communication cost for
each ordinary node is O(m). Each node exchanges relevant
information with its one-hop neighbors to estimate the vir-
tual hop-counts. The communication cost is O(k). Finally,
landmarks flood their per-virtual-hop distance and the cost
is O(m). The overall communication cost for each node in
virtual-hop localization is thus to O(k).

In local filtration, the major communication cost of a node
is incurred by information exchange with its one-hop/two-
hop neighbors. Thus the communication cost in this phase is
O(k2).

n RQAC, all cost is incurred by local computation and
thus ignorable, compared to the communication costs in the

previous two phases.

6 CONCLUSION
Localization has received substantive attention in the re-

search community over the past decade. Yet the state-of-
the-art schemes remain immature indeed, especially when
it comes to real-world WSNs in complex environments.
This paper presents our experience of localization with
GreenOrbs, a system in the forest with a number of factors
that can interfere with localization, such as environmental
dynamics, obstacles, channel noise, and signal irregularities.

Aiming at efficient and accurate localization, our design
called CDL is engaged in a step-by-step process to pursue
the best ranging quality. We have implemented CDL and
carried out extensive experiments and simulations. The re-
sults demonstrate that CDL outperforms existing approaches
with high accuracy, efficiency, and consistent performance in
the wild.

We share our real-world experience, design, and evalua-
tion with the community. Though this work cannot be gen-
eralized to every possible case, the community may well
benefit from our understanding of the practical challenges
of localization in the wild as well as promising directions.
GreenOrbs will continue the pursuit of ranging quality in its
future expansion and development.
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