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Abstract 

Varying interference levels make broadcasting an 
unreliable operation in low-power wireless networks. Many 
routing and resource discovery protocols depend on flooding 
(repeated per-node broadcasts) over the network. 
Unreliability at the broadcast-level can result in either 
incomplete flooding coverage or excessive re-flooding, 
making path maintenance either unreliable or expensive. We 
present RBP, a very simple protocol that bolsters the 
reliability of broadcasting in such networks. Our protocol 
requires only local information, and resides as a service 
between the MAC and network layer, taking information 
from both. We show that RBP improves reliability while 
balancing energy efficiency. RBP is based on two principles: 
First, we exploit network density to achieve near-perfect 
flooding reliability by requiring moderate (50-70%) 
broadcast reliability when nodes have many neighbors. 
Second, we identify areas of sparse connectivity where 
important links bridge dense clusters of nodes, and strive for 
guaranteed reliability over those links. We demonstrate, 
through both testbed experiments and controlled simulations, 
that this hybrid approach is advantageous to providing near-
perfect reliability for flooding with good efficiency. Testbed 
experiments show 99.8% reliability with 48% less overhead 
than the level of flooding required to get equivalent 
reliability, suggesting that routing protocols will benefit from 
RBP.  

Categories and Subject Descriptors 
C.2.1 Network Protocols—wireless communications. C.2.2 
Network Protocols—routing protocols. 

General Terms 
Algorithms, Reliability, Experimentation, Performance 

Keywords 
Broadcasting, Reliability, Wireless communications, Sensor 
Networks 
 
1 Introduction 
Flooding is an integral part of many protocols and 
applications in wireless networks. Wireless routing protocols 

such as DSR [16], AODV [28], and ODRMP [19] flood route 
discovery messages. In sensor-networks, routing protocols 
(such as in [39]), resource discovery (such as directed 
diffusion [12]), and network-integrated database systems 
(such as TinyDB [22]) all depend on flooding to construct 
efficient data collection trees. Flooding-limitation protocols 
like SPIN [17] and BARD [34] resort to flooding when query 
history is not applicable. A range of applications, including 
query response [31], target tracking [15, 41], and signal 
processing [21], build on these systems or flood at the 
application-level. These systems depend on the completeness 
and timeliness of flooding to identify available resources, 
discover efficient paths, and coordinate in-network 
computation.  

Flooding in wireless networks is most often achieved via 
each node broadcasting1 the request to its neighbors, taking 
advantage of the shared wireless media [26]. While many 
wireless MAC protocols use link-layer ARQ (automatic 
repeat-request, often via an RTS-CTS-data-ACK exchange) 
to protect unicast traffic from collisions and corruption, they 
generally do not use ARQ for broadcast traffic because of the 
need to avoid control-traffic implosion [18]. Broadcast 
reliability often therefore directly reflects the reliability of the 
wireless channel. Numerous studies have documented a wide 
variance in broadcast reliability in low-power [33, 39, 40] 
and 802.11 [1] networks, thus it is not uncommon for 
individual broadcast messages to be lost or received by an 
incomplete subset of neighbors. 

Broadcast packet losses can result in performance 
problems for flooding, and ultimately in routing and 
applications. In networks where density varies, broadcast 
failures near the source or in sparser areas can effectively 
disconnect a large portion of the network from a flood. 
Reliability of a flood can be defined as the percentage of all 
nodes that successfully receive the information [35]. An 
unreliable flood can result in slow setup for query-response 
applications [31], slow discovery of new routes, create 
inferior data collection trees, or provide incomplete 
information for target tracking or signal processing [21]. 

Prior work has sought to improve broadcast reliability, 
either by reducing sources of loss or providing broadcast 
retransmission. Examples of loss reduction include PHY-

                                                 
1 Prior work uses several definitions of the term “broadcasting.” In this 
paper, we use broadcasting only for single-hop wireless transmission from 
a node to all its reasonably available neighbors. (We clarify the definition 
of neighbor in Section 3.) We use flooding, by contrast, for network-level 
approaches that send information to all nodes in a connected, multi-hop 
network.  
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layer capture [37], MAC-layer TDMA [7], random slot 
selection [38], and application-layer jitter. These approaches 
may address collisions, but do not protect against other 
sources of loss, particularly in sparse topologies. 
Retransmission of broadcasts can be done at the MAC, 
routing, or application layers, but each can incur unnecessary 
overhead. It is difficult for the MAC layer to know when 
neighbors are unimportant or use implicit ACKs, and for 
applications to track the local topology. We review related 
work in detail in Section 2. 

The contribution of this paper is to develop RBP, the 
Robust Broadcast Protocol, to provide adaptive reliability for 
broadcasts and improve the end-to-end reliability of flooding. 
RBP operates between the MAC and routing layers, taking 
information from both. It is distributed in the sense that every 
node makes its own decisions about retransmissions without 
any global or hard state. RBP exploits two observations. 
First, the level of reliability required of a broadcast is 
dependent on the local network density. Lower density 
requires a higher likelihood of retransmission after imperfect 
propagation, while in denser regions, transmissions from 
other nodes will likely compensate for loss. Second, network 
topologies sometimes consist of well-connected components 
joined by important links; identifying and increasing the 
reliability of these links is essential to provide both high 
reliability and efficiency. We describe these observations in 
detail in Section 3, and the RBP implementation in Section 4. 

We build on prior analytic work [35, 39] to understand 
the effect of density on reliability in simple topologies, and 
confirm the effects of density and important links in simple 
topologies through simulation (Sections 5 and 6). Our 
primary results are based on a 20-node senor testbed (Section 
7), augmented in Section 8 by simulation to explore a 
controlled range of density and packet loss. We show that the 
cost of RBP is small, and the net result is much greater 
efficiency when one considers net overhead to reach a 
targeted reliability. Timeliness is a natural side effect of our 
protocol, because a single flood will have a higher 
probability of achieving global coverage. Without our 
protocol, simple flooding may need to be repeated multiple 
times to achieve the same reliability. 

RBP was motivated by our experiences implementing 
applications using diffusion [12]. One application 
implements spatio-temporal search, where repeated queries 
trace correlated events across several motion detectors to a 
camera [31]. Broadcast loss forced application-specific 
changes to diffusion to get adequate query latency. More 
generally, tuning periodic flooding in soft-state protocols like 
diffusion requires balancing control overhead against 
robustness to changing networks. With different applications 
and topologies there is no single good default for flood and 
timeout frequency, but nor can the application designer make 
an informed decision. We believe RBP simplifies these 
applications by provided consistent, efficient flooding. 

 
 

2 Related Work 
There is a very large body of related work in reliable 

broadcasting, both in wired and wireless networks. We 
briefly review prior work in wired networking, and wireless 
approaches that provide perfect and improved reliability. We 
then consider two different applications of broadcast in 
sensor networks today: software distribution and path 
discovery. 

Wired networking: Reliable multicast algorithms for 
wired IP, such as SRM [8] and RMTP [27], provide scalable 
solutions that avoid the substantial overhead associated with 
strict reliability guarantees and worst-case requirements. To 
that extent our goals align with these protocols. We are 
interested in providing reliability for sensor network 
applications where the penalties of poor broadcast reliability 
are severe, but the requirement of 100% reliability can be 
relaxed slightly for efficiency. Both SRM and RMTP provide 
local repair triggered by the recognition of missing sequence 
numbers in a stream of packets. Our protocol differs in that it 
is intended for individual broadcasts that are not associated 
with a sequence. These protocols assume an existing routing 
tree; RBP instead focuses on single-hop communication and 
assumes any routing will be provided at higher layers. 

Wireless for improved reliability: Probabilistic 
broadcasting simultaneously addresses two problems 
endemic to wireless networks: power limitation and 
collisions [25]. Typical wireless MAC layers can avoid 
broadcast collisions via random slot selection, but do not 
solve the hidden terminal problem. In probabilistic 
broadcasting nodes rebroadcast with probability p to reduce 
collisions and energy consumption. Probabilistic 
broadcasting exploits phase transition where networks with 
densities around 8 or more are connected with very high 
probability [32]. RBP instead supports a range of densities, 
including sparse (less than 8), weakly connected clusters, and 
variable density networks as are common in real 
deployments. 

Gossiping approaches can provide high reliability, and 
are used for directory and database replication in wired 
networks [6], and as bimodal multicast in wired [2] and 
wireless [3] networks. Gossiping often employs multiple 
rounds of exchanges, alternating floods with local repairs of 
missed data. Like probabilistic broadcasting, bimodal 
techniques make partial delivery unlikely. RBP also follows 
flooding with repair, but recognition of failed delivery is 
accomplished by overhearing rather than meta-data 
exchange. 

Heuristics can be added to what is essentially 
probabilistic broadcasting [10]. These heuristics prevent the 
death of a probabilistically forwarded broadcast around the 
source node and in areas of low density. In low density 
neighborhoods, the decision to not forward a broadcast (due 
to failed probability) can be overruled when an insufficient 
number of neighbors have been overheard to transmit the 
same broadcast. RBP is similar to this approach in that it is 
sensitive to local network density. RBP, however, does 

86



repeated local repairs geared to local density. RBP also 
singles out problem links that interconnect network clusters 
and will resort to unicast repairs to ensure there is no 
partitioning of the network. 

Area-based and neighborhood-based methods aim at 
minimizing the bandwidth consumed in broadcasting in 
MANETs while retaining near perfect accuracy [39]. Using 
complete or near-complete knowledge of node locations or 
hop-count distances, they strive to reduce redundancy during 
flooding. Nodes suppress broadcasts if they believe they are 
redundant. By contrast, RBP emphasizes high reliability as 
the primary goal, rather than efficiency, while requiring only 
local information.  

Wireless with perfect reliability: Several TDMA 
schemes have been proposed that target contention-free 
reliable broadcast [5]. We focus on non-TDMA approaches 
because experimental results suggest that wireless 
connectivity is extremely volatile [39, 40], so it seems quite 
challenging to maintain perfect information to avoid 
collisions in practical networks. 

Several protocols consider the problem of perfect 
distribution of code or related data. One important 
application in this space is reprogramming an entire sensor 
network, as in Trickle [20] or Deluge [4]. Trickle propagates 
small code updates (binaries of subroutines that fit in a 
network packet) using gossiping and link-layer broadcast, 
while Deluge propagates large code images. Another class is 
moving large objects to a specific node, as in PFSQ [36] and 
RMST [33]. PFSQ considers efficient streaming large objects 
with quick, NACK-based repair, and RMST explores trade-
offs in caching and repair for point-to-point distribution. RBP 
differs from these algorithms by targeting good rather than 
perfect reliability, and by targeting propagation of small 
messages with high probability for routing and resource 
discovery as the primary application, rather than distribution 
of often multi-packet objects with certainty.  

 Applications to Routing and Resource Discovery: 
The primary application we consider is routing or resource 
discovery. AODV, DSR, ODMRP, TinyDB, Diffusion, 
IDSQ, and BARD all rely on flooding to determine good 
multi-hop paths in wireless networks. Some focus on IP-layer 
routing, while others combine path discovery (routing) with 
resource location (tracking services or resources such as 
sensors that meet a particular criteria). In general, these on-
demand protocols flood when a user initiates a route or 
query, then select a specific path or multicast tree for further 
data transfer. These protocols use a variety of approaches to 
flood with high reliability, including local repair, and soft-
state, periodic rebroadcast. RBP uses additional local 
information to improve the reliability of the flood, lowering 
the latency of initial discovery and potentially allowing less 
frequent subsequent floods. Specifics of diffusion are 
discussed in the implementation section in order to clarify the 
context of our experiments.  

 

In conclusion, although there are many effective 
techniques for reliable multicast, efficient flooding, and 
replicating data to all nodes in a sensor network, we feel that 
RBP provides a unique contribution for applications that 
benefit from reliable single broadcasts employed for periodic 
resource discovery.  

 
3 ROBUST Broadcast Algorithm 

RBP addresses the problem of poor reliability for 
broadcasting in low power wireless networks of non-uniform 
density. As we stated in Section 2, we are not trying to make 
a single broadcast more efficient. Rather, we wish to make a 
single broadcast more reliable, thereby reducing the 
frequency with which an upper-layer protocol needs to 
invoke flooding. If an unreliable broadcast is received 90% 
of the time, then an application that required 99% reliability 
would need to broadcast twice to reach its target (assuming 
loss is independent). In Section 5 we quantify this tradeoff, 
showing that better reliability can also result in lower energy 
consumption. 

The goal of RBP is to make broadcasting reasonably 
reliable. We next describe the four steps needed to meet this 
goal: tracking neighbors and floods, basic retransmission to 
reach a target reliability, adapting that target to network 
density, and identifying important links that require 
successful transmission. 

First, RBP requires that a node know the identity of its 
one-hop neighbors. We define the one-hop neighborhood as 
nodes with which a node has inbound and outbound 
connectivity above a configurable threshold, over a moving 
window of broadcasts. This definition eliminates distant and 
weak neighbors, as well as neighbors with strongly 
asymmetric links. The threshold must be adjusted to account 
for the lowest common level of connectivity across 
bottleneck links. Details of how the neighbor list is acquired 
and maintained can be found in Section 4.  

RBP also must understand when broadcasts by different 
nodes correspond to the same flood. It therefore generates 
and propagates a unique identifier when a new flood is 
initiated. 

Second, RBP uses a simple algorithm for retransmission. 
The first time a node hears a broadcast it retransmits the 
packet unconditionally, as in a normal flood. As additional 
neighbors transmit the same packet, the node listens (snoops) 
ands keeps track of which neighbors have propagated the 
broadcast. Armed with one-hop neighbor knowledge, a node 
can ascertain the percentage of its neighbors that are 
guaranteed to have seen a packet. We call a transmission by a 
neighbor an implicit ACK, a term that typically refers to 
inbound traffic that indirectly acks outbound traffic [29]. 
When the number of implicit ACKs seen by a node falls 
below a predetermined threshold, a node will again 
retransmit the broadcast packet. 
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Figure 1: A sample topology with varying density and appropriate 

thresholds. 

 To recover from destination nodes that fail to 
rebroadcast and missed implicit or explicit ACKs, receivers 
send an explicit unicast ACK when they hear a repeated 
broadcast from the same sender. The broadcaster also 
switches to unicast when doing so reduces the expected 
number of packets (when more neighbors have received than 
not).  

Third, a key optimization in RBP is that both 
retransmission thresholds and the number of retries are 
adjusted for neighborhood density (Figure 1). Higher density 
neighborhoods require lower thresholds with fewer retries, 
since other neighbors are likely to broadcast as part of the 
same flood. If, for example, there are three or less neighbors, 
a node will make up to three attempts to propagate the 
message to all neighbors. For four to six neighbors the 
threshold is 66% and the number of retries is two. When 
there is a dense local neighborhood (i.e. eight or more 
neighbors), propagation is considered successful when half of 
the neighborhood has received, and only one retry is 
attempted. The analysis in Section 5 and feedback from early 
test runs was used in selecting appropriate thresholds. 

Finally, an additional important improvement is 
directional sensitivity by detection of important links. Real 
networks frequently have variable densities (this case arose 
frequently in our testbed), as shown in Figure 2. When an 
upstream dense section meets a downstream sparse section, 
there can be a node at the edge of the dense section that has a 
large neighbor count, but is the sole provider of traffic to the 
first downstream node in the sparse section. For example, in 
Figure 2 the black node is the sole provider of traffic to the 
grey node, but it resides in a dense neighborhood. When the 
grey node fails to hear a broadcast from the black node, 
retries will rarely happen with our basic algorithm because 
there is a high probability that at least 50% of the black 
node’s neighbors will have acked the broadcast. The black 
node is incapable of recognizing its special relationship with 
the gray node, but the gray node can easily do so because all 
of its upstream traffic will come from the black node. Since 
bottleneck nodes are identified by their downstream 
neighbors, this approach generalizes to include a number of 
weakly connected networks, including multiple broadcasters 
on opposite sides of a special node. 
 

 

 
Figure 2:The path from the black to gray node forms an important 

link. 

With our directional sensitivity optimization, nodes keep 
a histogram of which neighbor was the first to transmit a 
previously unheard broadcast. For the black node in Figure 2 
there would be a relatively uniform distribution in such a 
histogram. The introduction of jitter for message forwarding 
in dissemination protocols guarantees that no single neighbor 
dominates. The gray node, however, sees most upstream 
traffic (for a time) from a single node. Our solution includes 
a moving window of time in which a directional histogram is 
maintained. If a single neighbor has a majority of the 
histogram, the node sends that upstream neighbor a control 
message indicating that it has a special relationship to this 
node. Any node that gets such a message will do up to 4 
retries when that downstream node does not ack. The 
combined algorithm is shown in Figure 3.  

Our current algorithm assumes unlimited memory in 
support of any number of neighbors. The testbed experiments 
described in Section 7 were run on Stargate-class nodes, and 
simulations were run under EmSim [9] without any memory 
constraints. To deploy RBP on platforms with limited 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Pseudo-code for RBP Algorithm 

 
 

Figure 3: RBP PseudoCode 

rbp_snoop_send (pkt) { 
 if (broadcast) 
  set rbp_timeout 
 pass through to MAC  
} 
 
rbp_snoop_rec (pkt) { 
 if ( (overheard broadcast by neighbor) OR (explicit ACK) ) 
  mark neighbor ACKed 
 pass through to Routing  
} 
 
rbp_timeout { 
 if ( (percentACKed < threshold (neighborCount) AND  
  (retryCnt<maxRetry (neighborCount) ) 
  rebroadcast = TRUE 
 else if ( (any important links) AND (retryCount < 4) ) 
  rebroadcast = TRUE 
 else 
  rebroadcast = FALSE 
 if (rebroadcast){ 
  forward copy of bcast to MAC 
  retryCnt ++ 
  reset rbp_timeout }  
} 
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resources (like motes), modifications are required to basic 
RBP. A state-limited version of RBP might need to give 
preference to important bottleneck neighbors. Broadening 
RBP to handle a limited table size is a possible direction for 
future work. 
 
4 RBP Implementation 

To maximize modularity, we implemented RBP as a 
pass-through module that snoops on network traffic between 
the routing and MAC layers. We selected Directed Diffusion 
as the routing layer [12] and constructed RBP as a diffusion 
filter. We run diffusion over EmStar [9] and use the EmStar 
neighbor discovery services and B-MAC for media access 
[14]. Although our implementation depends on these 
services, the concepts are not specific and alternatives to each 
are available. 

The RBP module tracks the status of each new broadcast 
packet, indexed by the unique flood identifier, to handle 
multiple overlapping broadcasts. RBP starts a timer 
(currently 10 seconds) and records the implicit and explicit 
ACKs for the broadcast. The length of this timer is not 
dictated by RBP. We selected a relatively long timer to detect 
relevant neighbors broadcast, since diffusion has a 1 second 
forwarding delay with 800ms of jitter. If the forwarding 
constants of the routing protocol were shorter or longer, we 
would have chosen a different constant. When the timer 
expires, the handler decides whether or not to retransmist the 
message. RBP keeps a duplicate of the original broadcast 
packet for retransmission. A cleanup timer periodically 
removes obsolete records. Explicit ACKs and directional 
sensitivity messages were implemented as unique control 
messages in diffusion. 

Our choice for a data dissemination and routing layer 
was One-Phase-Pull Diffusion [11]. One-Phase-Pull employs 
a single flood for resource discovery that is repeated at 
randomly selected intervals in order to cope with changing 
network conditions. Node failure, energy depletion, mobility, 
fluctuating connectivity, and failed broadcasts are some of 
the reasons that diffusion takes a soft-state approach to route 
maintenance. Sinks flood an interest packet describing the 
desired attributes, and sources with matching attributes then 
establish a multicast routing tree back to the sink. Diffusion 
provides a convenient filter facility for the in-network 
monitoring and/or modification of data as it moves through a 
network [13]. The filter mechanism allows for the selectable 
modification of semantics between the routing layer and 
layers above or below. We encapsulated RPB in a loadable 
filter module in order to accomplish our dual requirements of 
layering and modularity. Our RBP module intervenes 
between the MAC and routing layer, and will be made 
available in released diffusion as the RBP filter, named for 
the algorithm. 

An important requirement of RBP is that each node 
know its one-hop neighbors. This information is conveniently 
available in EmStar by including certain modules (linkstats, 
neighbord, and blacklist ) in the EmStar stack of network  

 
Figure 4: The Influence of Multiple Paths on Probability 

modules. These modules are routinely included when 
running diffusion over EmStar, in order to support the 
informed selection of end-to-end unicast routes. To 
implement the neighbor service, EmStar attaches sequence 
numbers to broadcast packets and piggybacks inbound 
connectivity numbers in a round robin fashion (some in each 
broadcast) so that neighbors are aware of their outbound 
connectivity. Connectivity is determined as a weighted 
average by examining inbound sequence numbers and 
connectivity numbers from neighbors across a window of 12 
broadcasts. To avoid list churn, the EmStar client informs the 
neighbor service of upper and lower reliability thresholds 
(70% and 60% in the ISI testbed). Once a node drops below 
the lower threshold, it must rise above the upper threshold in 
order to be again considered a neighbor. 
 
5 Analysis 

Previous work has provided detailed analysis of flooding 
reliability in wireless networks [35, 39]. Viswanath and 
Obraczka define flooding reliability as the total number of 
nodes reached by a broadcast (NT) divided by the total node 
count for the network (NR) [35]. They characterize flooding 
as a wave of broadcasts extending from the source, with each 
tier an additional hop distant. 

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−+=
1

11
β
β

NP
NPNPNP

NN
N

b

l
b

SS
RR

T        (1) 

In this equation PSN is the expected number of neighbors that 
will successfully receive a transmission from a source node, 
PbN is the expected number of nodes that will receive at least 
one secondary transmission, β is the expected increase in area 
coverage (around 41%), and l is the hop count of the flooding 
wave. In Equation 1, increasing density will increase the  
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Figure 5: Topology with a Bottleneck 

expected number of nodes that successfully receive a 
broadcast packet. Most analysis of wireless flooding is 
simplified by an assumption of uniform density. Because our 
protocol is density sensitive, a more interesting analysis for 
our purposes deals with variable density. Wireless 
broadcasting can be modeled schematically as a set of 
discrete connections [35]. Shared-edge analysis [30] is an 
effective tool for predicting the probability of eventual 
delivery of a broadcast packet to a set of nodes given their 
exact connection patterns. Topologies with high density near 
the source of a broadcast and lower density away from the 
source will have misleadingly good reliability numbers using 
Equation 1 and associated formulas. 

We use Figure 4 to demonstrate how the addition of 
multiple paths increases end to end success probability. We 
ignore the possibility of broadcast collisions and simply 
focus on point to point probability. If the per link reliability is 
85%, then end-to-end reliability in 4A will be 61%. Pu et al. 
demonstrated that the greatest influence in reducing end-to-
end failures comes from multiple disjoint paths that do not 
share edges [30]. In 4B we can calculate the end-to-end 
probability as: 

[ ] ( ) ( ) ( )321 321 1*1*112 hphphpEEP −−−−=    (2) 

Using this equation, we see that adding two disjoint 
paths brings our end to end probability up from 61% to 94%. 
If we now consider that broadcasts can propagate in any 
direction, there is an additional increase in end-to-end 
reliability. In 4C we show how the reliability of the path 
through nodes 0-1-2-3 is increased by side and back 
transmissions. Using basic conditional probability, the 
reliability of that path becomes 99.9%, which becomes a 
lower bound on the overall probability. 

Flooding is inherently reliable when there is uniform 
density due the existence of numerous partially disjoint paths. 
Testbed experience has shown us that wireless environments 
often display uneven density in their connectivity patterns. 
Dense pockets are often interconnected by small numbers of 
reliable links. Figure 5 shows an idealized topology in which 
two dense neighborhoods are interconnected by a single link. 
In this case the end- to-end reliability will have an upper 
bound dictated by the single link in the middle of the 
topology (85%). Even though our testbed in Figure 10 
appears to have a relatively uniform topology, we often saw 
similar poorly connected components, with weak links 
between rooms 1165/1167 and 1117/1119 nearly partitioning 
the topology in the middle. 

Several authors have examined the importance of 
transmission failures and collisions on wireless broadcast 
propagation [10, 35]. These works conclude that the most 
important broadcast is the initial broadcast. If it fails, the 
inherent reliability of multiple paths is lost. Looking again at 
Figure 5, the context of the initial broadcast from the source 
is replicated at the destination node of the important link in 
the middle of the topology. Bolstering the reliability of 
broadcasts only at the source node will not deal with 
situations such as that presented in Figure 5. 
 
6 RBP Initial Simulation Results 

Having conceived of an algorithm that adapts to poorly 
connected topologies like that of Figure 5, we wanted to 
evaluate the feasibility of our scheme. We therefore ran a 
series of preliminary simulation experiments based on our 
analysis.  

 
6.1 Methodology 

The simulation environment we employed was EmSim 
to allow our network code to run unaltered while providing 
simulated radios, channels, and error models [9]. Our 
simulation MAC layer provides multiple access with 
collision avoidance. The EmSim MAC does not do retries for 
broadcasting, as is typical in most wireless protocols. 
Software loaded above the MAC layer included the diffusion 
filter core, the one-phase-pull routing filter, the RBP filter 
(when using robust broadcast), and simple source and sink 
apps. We configured One-phase-pull Diffusion [11] to 
initiate a resource discovery broadcast every 60 seconds. The 
flooding rate was not accelerated to yield more samples per 
unit of time because we did not want floods to overlap one 
another. 

RBP does not take into account loss due to congestion 
induced by overlapping floods. We consider congestion 
orthogonal to our focus and did not want to complicate our 
analysis with its effects at the MAC and network levels. 
Diffusion initiates flooding at an mean rate of once per 
minute, which is quite modest. We programmed sources to 
not transmit actual sensor data, because such transmissions 
are unicast and so are not the focus of this paper. Other than 
diffusion control messages, there is therefore no other 
competing traffic in our experiments. Every data point on a 
graph represents the average of 10 runs, and 95% confidence 
intervals are shown. Each run was one-hour long allowing for 
60 broadcasts. We collected per-node statistics by 
instrumenting our code to log relevant events and byte 
counts. 

 
6.2 Simulation Error Model 

Because our protocol is intended to handle reliability 
problems endemic to wireless networks, we wanted an error 
model for our simulations that approximates what happens in 
the real world. The EmSim error model uses transmission 
power, distance, and a normal distribution of receive failures  
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Figure 6: Observed Distribution of Node Failures for Eight Real-

World Neighbors 

to calculate the probability of packet loss between a pair of 
nodes. This calculation is done independently for each 
combination of transmitter and potential receiver (i.e. every 
other node in the simulation). We noted that the error model 
did not have any correlated receiver loss.  

We wished to validate, therefore, if real-world packet 
losses could be spatially correlated. To that end we profiled 
simple loss between a real-world transmitter and a set of 
receivers. We placed eight Stargate nodes in a circular 
pattern around a ninth node which transmitted a 68-byte 
packet once per second for an hour. Nodes were 
approximately 12 feet from the transmitter and transmit 
power was set to -4 dBm. We conducted several experiments, 
with and without obstructions, as described in detail 
elsewhere [23].  
The histogram in Figure 6 shows the distribution of how 
many receivers failed individual transmissions (as a 
percentage of 3600 attempts) when no obstructions were 
inserted between or near nodes. There are several interesting 
aspects to this bimodal distribution. First, the pair-wise 
independence of receive errors is evident on the left side of 
the histogram, as shown by its exponential-like decay. 
Second, the non-trivial peak on the right shows that 
correlated transmission failures are present even when there 
are no line-of-sight obstacles. 
 

 
Figure 7: Error Model Employed in Simulations  

 
Figure 8: Three topologies used in Simulation Experiment 
The fact that loss of real-world broadcast traffic is 

sometimes independent at each receiver, and sometimes 
correlated across all receivers, is essential to capture. This 
presence of both spatially-correlated and independent loss 
allows the potential for neighbor-based repair in dense 
topologies. 

Influenced by this data, we added a correlated failure 
model to EmSim’s existing independent failure model. 
Although modeling real-world interference patterns in 
simulation is difficult, we wish to provide simulations 
representative of real world circumstances that RBP will be 
required to handle. With our addition, packets have some 
chance of correlated failure, in which case they are received 
by no neighbors, then they are subject to the existing, pair-
wise loss model at each receiver. Figure 7 shows the bimodal 
combination of these effects. We feel this is a reasonable 
approximation of the histogram in Figure 6. 
 
6.3 Metrics 

We express experimental results in terms of: reliability, 
bytes-per-flood, and a reliability cost metric (RCM). As we 
noted with analysis (Section 5), when reliability is defined as 
the percentage of nodes that receive a broadcast, topologies 
with high density near the source of a broadcast and lower 
density elsewhere may have misleadingly good numbers. We 
therefore define reliability as the percentage of floods that 
traverse the network diameter (reaching the outermost tier) 
divided by the total number of floods initiated in an 
experiment. In our initial measurements, using either 
definition of reliability did not significantly affect the 
reliability of RBP. Simple flooding, however, often had 
significantly lower network-diameter reliability than node-
percentage reliability. 

In all of our experiments we define an event as the 
initiation of a broadcast by a sink node. Bytes-per-flood is the 
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sum total of byte transmissions in a network triggered by a 
single event. Without RBP, it equates to the number of bytes 
contained in the broadcast packet times the number of nodes 
that transmitted it. The number of nodes may be less than the 
total node count if the flood fails to reach all nodes. RBP 
adds the cost of retransmissions and explicit ACKS.  

Bytes-per-flood, by itself, is a poor metric to use for 
comparing protocols because it does not take reliability into 
account. If several floods are required to guarantee a certain 
level of reliability, then the true cost of reliability is the 
combined cost of the floods. We needed a metric that reflects 
the true cost of achieving a robust broadcast. To that end we 
use a Reliability Cost Metric (RCM). To calculate the RCM 
we first solve for the number of floods required to achieve 
near-perfect reliability (.99), given the propagation reliability.  

( )( )FSP−= 101.      (3) 

We then multiply the number of floods required to achieve 
near-perfect reliability by the bytes-per-flood and normalize 
by the cost of a “perfect” flood. A perfect flood achieves 
100% reliability with each node transmitting the broadcast 
packet exactly once. 

( ) ( )PktSizeNodesoodBytesPerFlFRCM **=   (4) 

As an example of RCM, suppose there are 20 nodes, an 80 
byte broadcast packet, propagation reliability of 85% (F is 
2.4), and a measured bytes-per-flood of 1200; RCM will be 
1.8. Although fractional broadcasts are not possible in the 
real world, we allow continuous values of F. RCM is a 
metric for fine-grained normalized comparison. We do not 
want broadcasts with RCMs of 1.1 and 1.9 to both quantize 
to 2.0. 
 
6.4 Effect of topology on flooding 

For these initial simulations, our goal was to demonstrate 
the basic concept of RBP and to explore the effects of density 
and topology. We created three different topologies with a 
varying degree of shared edges. The three topologies are 
shown in Figure 8: inline, mesh, and bottleneck. The inline 
topology consists entirely of shared edges, the mesh topology 
has no shared edges, and the bottleneck topology introduces a 
single shared edge halfway between source and sink nodes. 
Our hypothesis is that simple flooding performance relative 
to RBP would deteriorate with an increase in the number of 
shared edges. We expected that floods without RBP over the 
inline topology would display the exponential decay in 
reliability predicted by Equation 2. The mesh topology 
should demonstrate the inherent reliability of flooding in 
uniform topologies with multiple neighbors. Between these 
two extremes, the bottleneck topology should demonstrate 
how a single shared edge can negatively affect end-to-end 
reliability. 

 
   A. Reliability per Single-Flood 

 
   B. Bytes per Flood 

   
C. RCM Cost per Algorithm 

Figure 9 Reliability, Bytes-per-flood, and RCM for FLD, TRP, and 
RBP over Three Simulation Topologies 

We also wanted to understand how RBP compares to a 
protocol that attempts to guarantee broadcasts are received by 
all neighbors without adapting to density. Such an approach 
is typical of MAC-only reliable broadcast. In order to answer 
that question we created the Total Reliability Protocol (TRP), 
a version of RBP that retries any broadcast up to the 
threshold (4) whenever less than 99% of the neighbors 
received the broadcast. We evaluate TRP with the same 
normalized cost (RCM). With our error model one can show 
that TRP should easily achieve near perfect reliability for 
flooding over the topologies in Figure 8. Figure 9 plots our 
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three metrics for each protocol over the three simulation 
topologies. Simple flooding is designated as FLD; RBP and 
the total reliability protocol are marked with their acronyms. 

The reliability results, summarized in Figure 9A, are in 
line with our expectations. Reliability in a purely in-line 
topology, without RBP, decays exponentially with hop count 
(.88h). Pure flooding (FLD) reliability was 62% for the in-
line topology, and both RBP and TRP had perfect results 
(1.0). The mesh topology run with FLD had a relatively good 
reliability of 88% (in line with our analysis), and again RBP 
and TRP were perfect. The bottleneck topology resulted in a 
non-RBP reliability of 72%, which is only slightly worse 
than the result predicted by Equation 2 (77%). 

As shown in Figure 9B, the transmission cost for a 
single flood is always higher for RBP and significantly 
higher for TRP. The high costs of TRP are because it forces 
all nodes to retry persistently with each neighbor, even if 
another neighbor has sent the same information through 
another path. Notice that when multiple disjoint paths 
provide inherent reliability the difference in bytes per flood 
between RBP and FLD is less (as a percentage). Also, 
considering the graphs in 9A and B, RBP is providing the 
same reliability as TRP at a much lower cost. 

The most important metric in our estimation is RCM. 
Looking only at graphs 9A and 9B, it is difficult to gauge the 
relative cost of providing reliability with each protocol. The 
normalized cost (RCM) shown in Figure 9C demonstrates the 
significantly lower cost of achieving high reliability with 
RBP than simple flooding. For example, in the bottleneck 
topology the exponent in our RCM equation for FLD is 3.5. 
In other words it would take 3.5 floods (unquantized) to 
achieve 99% reliability. This number of floods multiplied by 
the bytes-per-flood and normalized by a perfect flood results 
in an RCM of 3.8 which is 3.1 times worse than RBP. A very 
interesting result in Figure 9 is how the cost of TRP changes 
relative to RBP in different topologies. The in-line topology 
RCM is nearly identical for both TRP and RBP. This is 
because RBP degrades into TRP in low density networks. 
Every neighbor is effectively important for RBP in the in-line 
topology. The Mesh topology provides the greatest density, 
and the greatest difference in RCM between TRP and RBP, 
with TRP 76% worse. TRP is unnecessarily attempting to 
achieve perfect reliability in dense neighborhoods. The 
bottleneck topology is between the in-line and mesh 
topologies with TRP 54% worse than RBP. 
This experiment had the primary result that we had predicted. 
The cost of doing multiple unreliable floods in order to 
guarantee reliability is actually higher than a single robust 
flood using RPB, and RBP is cheaper than a protocol which 
does not exploit the inherent reliability of dense 
neighborhoods. We next apply our protocol to a real-world 
environment with a less predicable problem space. 

 

 

Figure 10: Testbed Topology at USC/ISI 

 

7 RBP Testbed Results 
Having validated some basic assumptions about RBP in 

simulation, we wanted to validate the protocol on a real-
world testbed. Our simulations helped narrow the design, but 
we depend on testbed experiments to capture real-world 
nuances that may be missed in simulation. The testbed that 
we used consisted of 20 Stayton and Stargate nodes. These 
are small form factor systems running Linux over a 32-bit 
Intel processor, with 64M of SDRAM, and 32M of flash 
memory. They are fitted with a multi-channel radio capable 
of 38.4 Kbaud. Radio range can be modified to enable multi-
hop experiments. The actual layout of our testbed is shown in 
Figure 10. Nodes are placed in private offices and labs 
separated by walls. Connectedness was nonuniform with 
pockets of good connectivity separated by areas of low 
density. Power was intentionally set to enable multi-hop. 

 
7.1 Five In-line Nodes 

In our first testbed experiment we enabled 5 nodes from 
the testbed such that each node had one and only one 
upstream and downstream neighbor. We thereby created one 
of the topologies that we presented in both the Analysis and 
Simulation Sections. This allowed us to do a limited 
comparison of our simulation model to the real world and 
also gauge the average error rate on single links in the 
testbed. Looking at the left side of Figure 11A we see that 
FLD over four hops had an average end-to-end loss rate of 
66%. This is very close to loss rate we saw in simulation for 
5 in-line nodes (62%). The average per-link reliability for the 
four testbed links was 89%.If we compare the RCMs for 5 
in-line testbed nodes in Figure 11C to the RCMs for in-line 
simulation in Figure 9C, we see that FLD numbers are very 
close (3.55 vs. 3.82). We concluded that we had a good 
correspondence between simulation and testbed for a simple 
topology. We omit TRP from our testbed experiments since 
simulations validate our assertion that TRP is not 
competitive. 
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  A. Reliability per Single Flood 

 
  B. Bytes per Flood 

 
 

  C. RCM Cost per Algorithm 
 

Figure 11: Single-Flood reliability, Bytes Per Flood, and RCM for 
two topologies in the USC/ISI testbed. 

 

7.2 Full Testbed Experiment 
The primary experiment that we performed on the 

testbed was to place a source and sink node at opposite ends 
of the testbed, ensuring that the maximum possible network 
diameter would be traveled by each flood. Initial results from 
this experiment were disappointing. RBP was only slightly 
more reliable for a single flood than simple flooding, and the 
RCM was worse for RBP because the higher per flood cost 
did not yield significantly better reliability. Log analysis 

revealed a flaw in our initial algorithm, which motivated our 
work on important link detection as described in Section 3.  

The result of adding directional sensitivity to our 
protocol is reflected in the results shown in Figure 11 A, B, 
and C. Single flood reliability averaged 99.8% for RBP vs. 
68.2% for simple FLD. Although the bytes-per-flood is 2.7 
times higher for RBP, the RCM cost for RBP is 48% less 
than FLD. In addition to motivating important-link detection, 
our testbed experiments demonstrate that directional 
sensitivity can be as important as density sensitivity in order 
for RBP to achieve reliability at a reasonable cost. 
 
8 Further Simulation Results 

Having shown the need for density and directional 
sensitivity, we now turn to a systematic exploration of the 
design space. Simulation allows for the exploration of a 
multi-dimensional problem space in a manner that is 
impractical with an actual testbed.  
 
8.1 Methodology 

For these experiments we used random node placements. 
Every data point presented in this section represents an 
average over ten randomly generated topologies. For random 
node placement we employed an existing topology-generator 
program [11] capable of creating EmSim topologies of 
programmable size and node count. The generator has useful 
options such as approximate corner placements of sources 
and/or sinks in order to maximize the distance (hop count) 
between data producers and consumers. The generator tests 
topologies for connectedness given the radio range. In order 
to increase the number of tiers traversed by a broadcast we 
employed a 90 by 30 meter area and placed the source and 
sink nodes at diagonally opposite ends. Average local 
neighborhood size was calculated as (Nπ*R2)/A, where N is 
the total node count, R is the maximum typical radio 
transmission range (12.5 meters), and A is the total 
simulation area. The packet error rate was achieved by the 
error model that we evolved in Section 6.1. Our goal in these 
experiments was to explore the role of density and packet-
loss rates on protocol performance. 

8.1 Density Effects on Overhead 
Because density plays a major role in our analysis, we 

felt that an obvious investigation was to make density the 
independent variable in an experiment. We therefore used 
simulation to vary node density (average neighborhood size) 
while holding the packet error rate constant. The primary 
method RBP uses to achieve efficiency is by adapting to 
local density. TRP is really just RBP without density 
sensitivity, and initial simulations seemed to indicate that 
RBP achieved the same reliability at much lower cost. 
Sensitivity to density allows us to economize in dense 
neighborhoods where the existence of multiple disjoint paths 
can facilitate the propagation of a broadcast. 
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  A. Reliability per Single Flood 

 
   B. Bytes per Flood 

 
 C. RCM Cost per Algorithm 

 
Figure 12: Single-flood Reliability , Bytes Per Flood, and RCM with 

Varying Density as an Independent Variable 
 

We wished to calculate if increasing density eventually 
obviates the need for a protocol in order to achieve robust 
broadcasting at a low normalized cost. 

Our expectation for this experiment was that increasing 
density would increase the reliability of simple flooding 
(FLD) and thus minimize the difference in RCM between 
RBP and FLD. We also expected TRP to deliver the same 
reliability as RBP, but at a much higher price. Results for 
single-flood reliability appear in Figure 12A. As average 
density increased from 4 to 12 neighbors, the positive shift in 
reliability for flooding is quite dramatic. Reliability increased 

from 43% with 4 neighbors to 87% with 12 neighbors. 
Looking at Figure 12B, the difference in bytes-per-flood 
between RBP and FLD remains relatively constant, but TRP 
increases non- linearly. Because RBP and TRP achieve 
nearly identical reliability at vastly difference cost, the RCM 
graphfor this experment (Figure 12C) yields one of our most 
interesting results. With 10 neighbors or more, the RCM cost 
is higher with TRP than flooding. In other words, with high 
density, multiple floods to achieve 99% percent reliabiliity is 
cheaper than a single TRP flood. Because the reliability is 
converging in Figure 12A, we expect that guaranteed high 
density lessens the need for RBP. 
 
8.2 How does Error Rate affect the 
Performance of RBP vs. non-RBP? 

We saw that high density reduces the performance and 
advantage of RBP. Will decreasing the error rate have a 
similar affect? Complicating this research question was the 
fact that our error model has two components: correlated 
errors and pair-wise errors. We decided to vary each of these 
components independently, while holding the other constant. 
Density was also held constant at 6 neighbors. Our 
expectation was that reducing correlated errors would, like 
increasing density, result in a reduced performance advantage 
of RBP over simple flooding. We did not, however, expect 
the same results from varying the pair-wise error rate. Our 
error-model analysis (Section 6.1) made the point that the 
likelihood of multiple pair-wise errors decays exponentially. 
The pair-wise error rate would need to get unrealistically 
high before a high percentage of disjoint paths between 
broadcast tiers failed to forward a flood. 

The result of varying the correlated loss is shown in 
Figure 13. The results are in line with our expectations. 
Similar to increasing density, decreasing the correlated error 
rate causes convergence between RBP and simple flooding in 
terms of both reliability and normalized cost (RCM). With 
correlated loss set to zero, the single flood reliability of FLD 
is 97% and RBP is 99.8%. At the other extreme, with 
correlated loss at 0.15 the single flood reliability of FLD is 
46% and RBP is 99%. The RCM numbers, shown in Figure 
13B follow suit. In effect, if there are no correlated errors (an 
unrealistic expectation in wireless networks) and uniform 
moderate density then simple flooding is reliable. 

Varying the pair-wise errors was accomplished by 
shifting the center of the normal distribution for receiver 
noise in .05 increments while holding transmit errors 
constant at the value used in our standard error model. The 
receiver noise distribution, when centered on zero, gives the 
loss rates shown in the left side of the bimodal error model of 
Figure 7 in Section 6.1. 

The results of this experiment, shown in Figure 14, show 
much less impact on simple FLD than when varying transmit 
failure rates. This is in line with our analysis and the 
distribution of our error model. 
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  A. Reliability per Single Flood 

 
 B. RCM Cost per Algorithm 

 
Figure 13: Single-flood Reliability and RCM when Varying 

Correlated Loss 
Although one, two, or three single link failures are far 

more likely in our error model than a correlated error, the 
likelihood of a large percentage of neighbors failing during 
pair-wise calculations is very small. Flooding is tolerant of 
individual link failures when network density provides 
multiple disjoint paths for the continued propagation of the 
broadcast wave. Pair-wise errors have a much larger 
influence in sparse neighborhoods. When a node has a single 
upstream or downstream neighbor, the effect of pair-wise 
errors is the exactly same as for correlated errors. Because 
RBP does up to 4 retries in sparse neighborhoods, it handles 
pair-wise errors in low density in the same manner as it 
handles transmit errors. 

 
9 Future Work 

Several issues not addressed in this paper provide fertile 
ground for future work. We have not considered mobility, 
which will greatly increase the rate of topology change. In a 
mobile, the identification of one-hop neighbors must occur at 
a rate that adapts to this variability, or updates must occur as 
needed. Also, the method used to identify one-hop neighbors 
may need to be adapted to a smaller window of samples that 
is updated more frequently. 

.  
  A. Reliability per Single Flood 

.  
 B. RCM Cost per Algorithm 

Figure 14: Single-Flood Reliability and RCM when Varying 
Receiver Loss 

 Another direction for future work is to implement RBP 
in other frameworks. Because RBP is not specific to sensor 
networks or directed diffusion, it should be easily ported to 
other protocol stacks.  

Finally, a state-limited version of RBP is a key challenge 
that needs to be met for deployment on motes, where 
memory limitations and static allocation preclude a complete 
neighbor list in dense topologies. Fortunately dense 
topologies have the least need of precise neighborhood 
knowledge, but important links need to be accounted for. 

 
10 Conclusions 

In this paper we explored how broadcast reliability 
interacts with flooding in wireless networks. While there is a 
great deal of prior work in the area of reliable broadcast, 
most of it focuses on efficient flooding, in simulated 
topologies, often with multi-hop topological information. We 
instead focused on the end-to-end reliability of flooding and 
the study of topologies with variable density as we found in 
our testbed. In addition, we developed a very simple 
mechanism that uses only local density information, 
sometimes augmented by indications from immediate 
neighbors of important links. We showed that this 
combination was both effective at obtaining near-perfect 
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reliability, and much more efficient than either repeated 
flooding or guaranteed transmissions. Most importantly, we 
demonstrated that the cost of achieving 99% reliability for 
broadcast propagation in a real testbed is on average 48% 
lower with RBP than simply increasing the flood rate. To 
evaluate RBP we developed a new wireless transmission 
error model, based on controlled experiments, that considers 
both pair-wise and correlated packet loss. Our key 
conclusions were shown by experiments in a 20-node 
wireless testbed, augmented with simulations to explore the 
parameter space. 
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