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1. Introduction

The classification of combinatorial structures has been a significant research topic
for a long time and our main concern is designs with parameters t = 2 and λ = 1.
Important classes of such 2-designs are affine and projective planes, Steiner triple
systems and abstract unitals. The thesis concentrates on abstract unitals, especially
on the embeddability of unitals into the classical projective plane taking advantage
of the full points of unitals and on creating new unitals via paramodification.

The structure of the thesis is as follows. Chapter 2 introduces some fundamental
concepts and results essentially to understand better the notion of full points and
paramodifications of unitals, presented later in Chapters 3 and 4. In Section 2.1 we
examine the topic of t-(v, k, λ) designs. The necessary preliminary material about
projective planes and polarities is covered in Section 2.2. The combinatorial prop-
erties of Hermitian curves in PG

(
2, q2) will lead us to abstract unitals, defined as

2-
(
n3 + 1, n + 1, 1

)
designs. Sections 2.3 and 2.4 define the semidirect products of

groups, construct the 1-dimensional affine group AGL(1, q) as a semidirect product
and classifies the subgroups of AGL(1, q) with the help of translations.

In Chapter 3 we present a construction, called paramodification (as the construc-
tion modifies the parallelism of a subsystem) of 2-designs, which can produce new
Steiner 2-designs from old ones with the same parameter set, based on the paper
New Steiner 2-designs from old ones by paramodifications [39]. As shown in Section 3.2, a
paramodification of a 2-(v, k, 1) design affects k columns of the incidence matrix, all
belonging to the k points of a fixed block. We prove that paramodifications affecting
exactly two columns are switches (or switchings), and we give a sufficient condition
for a Steiner 2-design not to allow a switching. This condition implies that Her-
mitian unitals have no switchings, but they do have non-trivial paramodifications.
Section 3.3 examines paramodifications of affine planes, Steiner triple systems, and
unitals in details. In Sections 3.4 and 3.5, we give an overview of the algorithmic
and complexity aspects of the computation of paramodifications, and we present
the computational results showing that paramodifications can construct many new
unitals.
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Chapter 4 summarises the results of the paper On the geometry of full points of
abstract unitals [38]. In Section 4.1 we give definitions and basic combinatorial prop-
erties of full points and related concepts. The main result of this paper is proved in
Section 4.2. It shows that for any abstract unital of order q embedded in the finite
classical projective plane PG

(
2, q2), the set of full points of two disjoint blocks is

contained in a line. Moreover, the perspectivities of two disjoint blocks generate a
semi-regular cyclic permutation group acting on each block. Unitals fulfilling these
necessary conditions will be called strongly full point regular unitals. Section 4.3
describes the structure of full points in the classical Hermitian unitals. In Section 4.4
we give an overview of the computational results about full points in abstract uni-
tals of order 3 and 4 belonging to known libraries. For the computation we used the
GAP package UnitalSZ [42].

Computing paramodifications, full points and other properties of unitals de-
scribed in Chapters 3 and 4 by hand is tedious. Chapter 5 describes the main tools
implemented in the GAP [14] package UnitalSZ [42] for these purposes. The author
of this thesis and his supervisor dr. Gábor Péter Nagy developed the package to
extend the popular computer algebra system GAP with features related to unitals,
since GAP doesn’t have built-in support of them. Section 5.1 describes functions
for constructing unitals using incidence (boolean) matrices or the list of blocks, and
functions to retrieve basic properties of unitals: the set of points, blocks, the au-
tomorphism group, and isomorphism between unitals. In Section 5.2 we list the
available classes and libraries (unitals resulting from [2, 8, 34, 35]) of unitals, e.g.
Hermitian unitals, Buekenhout–Metz unitals, KRC and KNP unitals. Section 5.3
displays the functions related to computing full points and perspectivity groups of
unitals. Some implementations are outlined using pseudocode, and the usage of the
presented functions are also illustrated including the output of the code.

In Chapter 6 we summarise the main concepts and results of the thesis in English
and in Hungarian as well. Appendix A contains the source code of the implemen-
tation of paramodifications using the package UnitalSZ.
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2. Preliminaries

2.1. Designs

This section introduces the concept of incidence structures, with an emphasis on
Steiner 2-designs following the terminology of [7].

Incidence structures
The triple (P ,B, I) is an incidence structure, provided P , B are disjoint sets, and
I ⊆ P × B. The elements of P and B will be called points and blocks, respectively.
One may simply write P I b instead of (P, b) ∈ I.

Definition 2.1.1. The incidence structure is simple, if (b1) 6= (b2) whenever b1 and b2

are distinct blocks. Here (b) denotes the set {P ∈ P : P I b}.

For a simple incidence structure we may identify each block b with the corre-
sponding point set (b) and we can assume that I = ∈, the membership relation.

Definition 2.1.2. Let D = (P ,B, I) be a finite incidence structure, and label the
points as P1, P2, . . . , Pv and the blocks as b1, b2, . . . , bb. Then the matrix M =

(
mij
)
,

(i = 1, 2, . . . , v; j = 1, 2, . . . , b) defined by

mij =

1 if Pi I bj

0 otherwise

is called the incidence matrix of D.

Proposition 2.1.3. Let D be an incidence structure with v points, b blocks such that every
point is incident with r blocks and every block is incident with k points. Then

vr = bk.

Proof. See the proof of [7, Proposition 1.6].

Definition 2.1.4. Let D = (P ,B, I) be a finite incidence structure. For subsets P ′ ⊆
P and B′ ⊆ B and I′ = I ∩ (P ′ ×B′), one has the incidence substructure (P ′,B′, I′).
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By some abuse of notation, we may denote the latter by (P ′,B′, I) as well. The
substructure induced by P ′ ⊆ P is defined with the set B′ of blocks meeting P ′ in at
least two points. Notice that for a substructure, a block b ∈ B′ is not necessarily a
subset of P ′.

Steiner systems
Let t and λ be positive integers and D = (P ,B, I) a finite incidence structure. Then
D is called a t-design with parameters k and λ if and only if

(i) any t-subset Q of the point set P is incident with exactly λ blocks, and
(ii) any block is incident with exactly k points.

A t-design on v points is called an Sλ(t, k, v) or a t-(v, k, λ) design. In case λ = 1, it
is called a Steiner system S(t, k, v). A 2-design on v points is called a block design.

Theorem 2.1.5. Let D be an 2-(v, k, λ) design. Then we have:

(i) every point P is incident with r blocks and

r =
λ (v− 1)

k− 1
;

(ii) for the number of blocks |B|

|B| = λ
v (v− 1)
k (k− 1)

.

Proof. See the proof of [7, Theorem 2.10].

Definition 2.1.6. An S(2, 3, v) is called a Steiner triple system STS(v).

Definition 2.1.7. A 1-design Sr(1, k, v) is called a tactical configuration (or simply
configuration) with parameters v, r, k and the number of blocks b = vr/k.

Partitions of the set of blocks and resolvability
Let D = (P ,B, I) be an incidence structure and let B = B1 ∪ · · · ∪ Bm be a parti-
tion of the set of blocks. Then the induced substructures Di = (P ,Bi, I ∩ (P × Bi))

(i = 1, . . . , m) are said to form a partition of D. We will often call B1, . . . ,Bm a parti-
tion of D, too. Each Di (or briefly each Bi) is called a part of D.

Definition 2.1.8. Let D be a t-design. If a part of D is an Sr(1, k, v), it is called an
r-factor or, for r = 1, a parallel class of D. If every part in a partition B1 ∪ · · · ∪ Bm

of D is an r-factor, then the partition is called an r-factorisation and D is said to
be r-resolvable. A 1-factorisation is also called a parallelism or a resolution; instead of
1-resolvable one simply uses the term resolvable.

A resolvable Steiner system Sλ(t, k, v) is abbreviated as RSλ(t, k, v).
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2.2. Unitals

This section presents a brief introduction to projective planes, collineations, etc.
based on [5, 30], focusing on concepts closely related to Hermitian curves, the so-
called classical unitals.

Projective planes
A projective plane Π is a set of objects, called points, together with certain subsets of
points, called lines, such that

1. any two distinct points are contained in a unique common line,
2. any two distinct lines meet in a unique point,
3. there exist four points, no three of which are contained in a common line.

The axioms for a projective plane are self-dual, in the sense that one may interchange
points and lines and thereby obtain another projective plane, called the dual of the
original projective plane.

Theorem 2.2.1 (Principle of Duality). If a theorem is valid for all projective planes, then
the dual theorem obtained by interchanging the notions of point and line is also valid for all
projective planes.

However, a projective plane and its dual need not be isomorphic.

Definition 2.2.2. Let Π1 and Π2 be projective planes. An isomorphism from Π1 to Π2

is a bijection φ from the points and lines of Π1 to the points and lines of Π2 that
preserves containment. That is, a point P lies on a line ` of Π1 if and only if the
point Pφ lies on the line `φ of Π2. If such a map exists, then Π1 and Π2 are called
isomorphic, denoted by Π1

∼= Π2. If Π1 = Π2, then an isomorphism from Π1 to itself
is called an automorphism (or collineation) of Π1.

Example 2.2.3. Let V be a three-dimensional vector space over some field (or skew
field) F. Take as points the one-dimensional subspaces of V and as lines the two-
dimensional subspaces of V. A point is said to lie on a line if the one-dimensional
subspace associated with the point is contained in the two-dimensional subspace
associated with the line. Then the resulting structure is a projective plane, denoted
by PG(2, F). Once again, if F is a finite field, one obtains a finite projective plane.

Remark 2.2.4. There do exist projective planes which are not isomorphic to PG(2, F)

for any field (or skew field) F. One example is the so-called Moulton plane (see [9],
for instance). The projective planes isomorphic to some PG(2, F) will be called clas-
sical projective planes.
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In the finite setting F = GF(q) for some prime power q, where GF(q) denotes the
Galois field of order q (unique up to isomorphism). In this case we denote PG(2, F)

by PG(2, q). Straightforward counting shows that each line of PG(2, q) has q + 1
points, each point lies on q + 1 lines, and the total number of points (or lines) is
q2 + q + 1. This pattern holds in general for any finite projective plane, whether or
not it is classical. An elementary counting argument yields the following.

Theorem 2.2.5. Let Π be any finite projective plane. Then there is some integer n ≥ 2,
called the order of Π , such that

1. each line of Π contains n + 1 points,
2. each point of Π lies on n + 1 lines,
3. the number of points of Π is n2 + n + 1,
4. the number of lines of Π is n2 + n + 1.

One can axiomatize a projective geometry in general, but that is beyond the scope
of this thesis. Analogously to the method described in Example 2.2.3 the classical
projective geometry of dimension d, denoted by PG(d, F), could also be constructed.

Classical projective planes are also called Desarguesian. This is because a result
involving the Desargues’ configuration holds in a projective geometry if and only if
the projective geometry arises from a vector space over a skew field; that is, if and
only if the projective geometry is classical.

In the classical (Desarguesian) setting, one has the advantage of working with the
underlying vector space. Consider the projective plane PG(2, F) for some (skew)
field F, and let V denote the underlying three-dimensional vector space over F. Fix
some ordered basis for V, and represent each vector uniquely as a 3-tuple of scalars
with respect to this basis. These are the so-called homogeneous coordinates of P. Since
each point P of PG(2, F) is a one-dimensional subspace 〈v〉 of V, the coordinates of
P are determined only up to nonzero scalar multiples:

{x = (x0, x1, x2) : x0, x1, x2 ∈ F, not all zero} ,

with the convention that (x0, x1, x2) and t (x0, x1, x2), t ∈ F \ {0}, represent the same
point.

Any line ` of PG(2, F) is represented by a homogeneous linear equation

u0X0 + u1X1 + u2X2 = 0

in the three variables X0, X1, X2 for some coefficients a u0, u1, u2 ∈ F, not all 0. The
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ordered coefficients u = (u0, u1, u2) of such an equation, unique up to nonzero
scalar multiples, are the homogeneous dual coordinates of the line `.

Finite fields
Recall that every finite field must have prime power order, and given any prime
power q, there is a unique field (up to isomorphism) with q elements. As introduced
in earlier, we will use the notation GF(q) to denote this field. The multiplicative
group GF∗(q) = GF(q) \ {0} of GF(q) is cyclic, and any generator of this multiplica-
tive group is called a primitive element of the field. The additive group of GF(q) is an
elementary abelian p-group, where q is a power of the prime p, the characteristic of
GF(q), denoted by char GF(q) = p. The mapping x 7→ xp is a field automorphism of
GF(q), often called the Frobenius automorphism. In fact, if q = pe , the automorphism
group of GF(q) is cyclic of order e, generated by the Frobenius automorphism.

We will primarily be interested in finite fields which admit an involutory field
automorphism; that is, an automorphism of order 2. The order of such a field must
be square, and the mapping

σ : GF
(
q2)→ GF

(
q2), x 7→ xq

will then be the (unique) involutory field automorphism of GF
(
q2). Its fixed field is

the subfield GF(q) of GF
(
q2).

Polarities
Let A be a nonsingular 3× 3 matrix over GF(q). Then the map

x 7→ xA

determines a collineation ϕA of PG(2, q), that is called a projectivity or projective linear
transformation. Note that, ϕA = ϕB if and only if A = λB for some scalar λ ∈ GF(q).
If A is the matrix of a projectivity transforming points, then

(
A−1)> is transforming

lines.

Let σ be an automorphism of GF(q). Then the map

(x0, x1, x2) = x 7→ xσ = (xσ
0 , xσ

1 , xσ
2 )

determines also a collineation of PG(2, q).

The previous transformations are collineations analogously in higher dimension
projective geometries as well. Surprisingly, there are no other types of collineations:
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for a proof of the following fundamental result see the references before [30, Theo-
rem 4.10].

Theorem 2.2.6. Every collineation of PG(d, F), d ≥ 2, can be written as

x 7→ xσA,

where σ is an automorphism of F and A is a (d + 1)× (d + 1) nonsingular matrix over F.

Definition 2.2.7. Let Π be a projective plane and let Π∗ denote its dual plane. Then
an α : Π → Π∗ bijection which preserves containment, is called a correlation. Any α

correlation is also a Π∗ → Π correlation as well. If the correlation α has order two,
namely α ◦ α is the identity collineation of Π, then α is called a polarity.

Let ρ be a polarity of some projective plane. If P is a point, the line Pρ is called
the polar line of P. Similarly, if ` is a line, the point `ρ is called the pole of `.

Definition 2.2.8. Let ρ be a polarity of some projective plane Π. A point P of Π is
called absolute (or self-conjugate) if P ∈ Pρ; else, P is called nonabsolute. Similarly, a
line ` of Π is called absolute (or self-conjugate) if `ρ ∈ `; or nonabsolute otherwise.

Our goal is to describe a special case of polarities in PG(2, q). If ρ is a polarity and
x denotes the coordinate vector of an arbitrary point in the plane, then using Theo-
rem 2.2.6

(xρ)ρ = (xσA)ρ = (xσA)σ
(

A−1
)>

= xσ2
Aσ
(

A−1
)>

.

As ρ is a polarity, there exists some 0 6= t ∈ GF(q), such that

tx = xσ2
Aσ
(

A−1
)>

holds for every x. This is true if and only if σ2 is the identity and tA> = Aσ. We
are interested in the case when σ is not the identity. We have seen, that q must be a
square in this case, hence we can assume without loss of generality that our plane
is PG

(
2, q2) and σ is the unique involutory automorphism x 7→ xq of GF

(
q2). This

type of polarity is called unitary polarity.

Nondegenerate Hermitian curves
Let ρ be a unitary polarity of PG

(
2, q2). The set of absolute points of ρ and is called

a nondegenerate Hermitian curve denoted by H(q).

Remark 2.2.9. Over finite fields all Hermitian curves are nonempty.
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It is easy to verify that exactly the points of a nondegenerate Hermitian curve
satisfies the equation xσAx> = 0. Also, any nondegenerate Hermitian curve of
PG
(
2, q2) can be mapped to any other nondegenerate Hermitian curve of PG

(
2, q2)

by some projectivity of PG
(
2, q2). We thus say that H is uniquely determined, up

to projective equivalence. Hence, choosing A to be the identity matrix, the canonical
form of the equation of H is

Xq+1
0 + Xq+1

1 + Xq+1
2 = 0.

For the proofs of the following theorems please refer to [5, Section 2.1].

Theorem 2.2.10. A nondegenerate Hermitian curve H in PG
(
2, q2) has precisely q3 + 1

points.

Theorem 2.2.11. Let H be a nondegenerate Hermitian curve in PG
(
2, q2). Then every line

of PG
(
2, q2) meets H in 1 or q + 1 points.

A line meeting H in one point will be called a tangent line of the curve, and a line
meeting H in q + 1 points will be called a secant line of the curve.

Abstract unitals
Let H = H(q) be a nondegenerate Hermitian curve in PG

(
2, q2). Any two distinct

points ofH uniquely determine a line of PG
(
2, q2), which is necessarily a secant line

meeting H in q + 1 points. Hence, if we take the q3 + 1 points of H as the points of
our design and take all the secant line intersections with H as our blocks, we obtain
a 2-

(
q3 + 1, q + 1, 1

)
design.

Definition 2.2.12. Let n be an integer, n ≥ 3. A unital of order n is any 2-
(
n3 + 1, n + 1, 1

)
design.

Remark 2.2.13. Note that if n = 2, then a 2-(9, 3, 1) design is an affine plane of order
3. Thus we require n ≥ 3 in our definition of a unital.

The nondegenerate Hermitian curve H(q) is often called the classical unital of
order q. We say that a unital U is embedded in a projective plane if the points of U
are points of the plane and each block is a set of collinear points of the plane.

2.3. Semidirect products of groups

In this section we define the semidirect product of groups, for further details we
refer the reader to [24, Chapter 19].
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Outer semidirect product
Let us consider two groups N and S, and a homomorphism φ : S→ Aut (N) from S
to the automorphism group of N. Now we can define an operation over the Carte-
sian product S × N the following way: let the product of (s1, n1) and (s2, n2) be

(s1, n1) (s2, n2) =
(

s1s2, nφ(s2)
1 n2

)
. (2.1)

This operation is well-defined and it yields an element from the set S× N. Let us
denote by Snφ N the Cartesian product S×N equipped with the product operation
defined as in (2.1). It is easy to verify that Snφ N is a group, indeed.

Definition 2.3.1. The group S nφ N is called the (outer) semidirect product of the
groups S and N with respect to the homomorphism φ : S→ Aut(N).

When it is clear from the context, which homomorphism φ from S to the auto-
morphism group of N is considered, then we often omit the homomorphism φ and
only use the notation Sn N.

Let us denote the semidirect product of S and N by G, namely G = Snφ N and
consider the projection

πS : G → S, (s, n) 7→ s.

The fact that the projection πS from G = S nφ N to the group S is a surjective
homomorphism is an immediate consequence of the definition of G. The kernel of
the homomorphism πS is {1S} × N, hence N is isomorphic to the kernel of πS, i.e.
Ker(πS) ∼= N. Since {1S} × N is the kernel of some homomorphism on G, it is a
normal subgroup of G. Moreover, notice that S× {1N} is a subgroup of G.

Inner semidirect product
Consider a group G and a normal subgroup N C G and a subgroup S ≤ G, such
that G = NS, and the intersection of S and N consists of only the identity 1. In this
case we say, that S is a complement of N in G. Let us take the elements s1, s2 and
n1, n2 from S and N respectively and write up the product

s1n1 · s2n2 = s1s2 ·
(

s−1
2 n1s2

)
n2. (2.2)

Notice that the term in the parentheses is the conjugate of n1 by s2.

Let us denote by φ(s) the conjugation by an element s from S, namely

φ(s) : N → N, n 7→ s−1ns = nφ(s).
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Since N is a normal subgroup of G, then φ(s) is an automorphism of N, namely
φ(s) ∈ Aut(N), therefore φ : S→ Aut(N). Now we can reformulate (2.2) as

s1n1 · s2n2 = s1s2 · nφ(s2)
1 n2, (2.3)

where φ : S → Aut(N). Notice the resemblance between (2.1) and (2.3): now G is a
semidirect product of its normal subgroup N and subgroup S, indeed.

2.4. The general affine group and its subgroups

The example of general affine groups illustrates semidirect products quite well. The
construction is based on the ideas in [23] and [10].

The general affine group as a semidirect product
Let F be field and define the 1-dimensional affine group as follows.

Definition 2.4.1. The set of affine maps from F to itself of the form

z 7→ az + b, a, b ∈ F and a 6= 0

is called the 1-dimensional affine group over F and is denoted by AGL(1, F). In the
special case when F is the finite field of order q the notation AGL(1, q) is often used
in place of AGL(1, F).

Affine maps are closed under composition and inverses, hence AGL(1, F) is a
group, indeed. To see that AGL(1, F) is a semidirect product, let us consider two
subsets of the affine group. Let N be the set of translations and let S be the set of
scalings, namely

N = {z 7→ z + b : b ∈ F} = {τb : b ∈ F} ;

S = {z 7→ az : a ∈ F∗} = {σa : a ∈ F∗} ,
(2.4)

where F∗ = F \ {0}. These two sets are subgroups of the affine group and NS =

AGL(1, F). Moreover N and S are isomorphic to the additive and multiplicative
subgroups of F respectively, i.e.

N = {τb : b ∈ F} ∼= (F;+) ;

S = {σa : a ∈ F∗} ∼= (F∗; ·) .
(2.5)
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It is easy to see that the projection

πS : AGL(1, F)→ S, (z 7→ az + b) 7→ σa

is a surjective homomorphism and its kernel is N, hence N C AGL(1, F), namely
N is a normal subgroup of the affine group. Also the only element of N ∩ S is
the identity map and NS = AGL(1, F), therefore the affine group is a(n inner)
semidirect product of N and S, namely AGL(1, F) = Sn N.

Subgroups of the general affine group
From now on we assume that the field F is finite, namely F = GF(q) for some
prime power q and char GF(q) = p. Let α be an arbitrary element of the affine
group AGL(1, q). There are three possible cases for the number of fixed points by α.

1. There is only one fixed point. This is the case when α ∈ AGL(1, q) has the form
z 7→ az + b where a 6= 1. Moreover, for the order of α denoted by o(α)

o(α) = o(a) | |GF∗(q)| = q− 1 (2.6)

since

zαo(a)
= ao(a)z + b

ao(a) − 1
a− 1

= z.

2. There is no fixed point. This occurs when α ∈ N is a translation, i.e. α has the
form z 7→ z + b where b is a nonzero element of F. Then for the order of α

holds
o(α) = o(b) = p = char GF(q). (2.7)

3. Every point is fixed. This is the simplest case: α is the identity.

Let G be a subgroup of AGL(1, q) and examine this subgroup G in the aspect of
its intersection with the normal subgroup N as defined in (2.4).

If |G ∩ N| = 1, meaning that the intersection consists only of the identity element,
then there is no proper translation in G. By the First Isomorphism Theorem

GN�N
∼= G�G ∩ N

∼= G

as G ∩ N is trivial group. On the other hand

G ∼= GN�N ≤
AGL(1, q)�N

∼= S ∼= GF∗(q) (2.8)
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by (2.5), which means that G is isomorphic to a subgroup of the multiplicative group
of GF(q), thus G is cyclic and Abelian. Let α1 be an arbitrary element of G different
from the identity. Since α1 can’t be a translation, it must have a fixed point, denote
it by z1, namely zα1

1 = z1. Moreover, this is the only fixed point of α1. Let α2 be an
other element of G: then since G is Abelian

α2α1 = α1α2

α1 = α−1
2 α1α2

and zα2
1 is clearly a fixed point of α−1

2 α1α2, i.e. a fixed point of α1. This means that
z1 = zα2

1 as z1 is the unique fixed point of α1, thus z1 is fixed by α2 as well. Therefore
z1 is fixed by all elements of G.

If |G ∩ N| 6= 1 then G ∩ N = M C G, namely the intersection M is a normal
subgroup of G. Moreover, M ≤ N and as N ∼= (GF(q);+) by (2.5), the subgroup M
is isomorphic to a subgroup of the additive group of the finite field GF(q).
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3. Paramodifications of unitals

In general, the classification of combinatorial structures with a given set of param-
eters is an old and important research topic; for details, we refer the reader to the
monographs [1, 28, 7]. Our main concern yields to designs with parameters t = 2
and λ = 1, which are called Steiner 2-designs or linear spaces in the literature, see
[1, Definition 2.4.9]. Important classes of Steiner 2-designs are affine and projective
planes of order q, Steiner triple systems, and abstract unitals of order q; the respec-
tive parameters (v, k) are

(
q2, q

)
,
(
q2 + q + 1, q + 1

)
, (v, 3) and

(
q3 + 1, q + 1

)
.

This chapter is based on the paper New Steiner 2-designs from old ones by paramod-
ifications [39]. The main result of this paper is a general construction which can
produce new Steiner 2-designs from old ones, with the same parameters. We call
this construction paramodification of 2-designs, since it modifies the parallelism of
a subsystem. Our research has been motivated by a construction of Grundhöfer,
Stroppel and Van Maldeghem [19], which produced new abstract unitals with many
translation centers, see also [40]. Our construction is not completely new, in essence,
Petrenjuk and Petrenjuk described it in technical reports of the University of Kirovo-
grad (Ukraine) in the 1980s, see [45] and its references. In particular, A. J. Petrenjuk
used the method, named cut-transformations, to construct new abstract unitals of
order 3.

As shown in Section 3.2, a paramodification of a 2-(v, k, 1) design affects k rows
of the incidence matrix, all belonging to the k points of a fixed block. We prove
that paramodifications affecting exactly two rows are switches. A switch or switch-
ing is a local transformation of a combinatorial structure, which was studied for
graphs, partial geometries, Steiner triples systems, codes, and other objects since
the early 1980s. For the presentation of the switching principle, unification of earlier
results and computational applications, see the excellent paper [44] by Östergård. In
Proposition 3.2.3, we give a sufficient condition for a Steiner 2-design not to allow
a switching. This condition implies that Hermitian unitals have no switchings, but
they do have non-trivial paramodifications.

In Section 3.3, we study in more detail the paramodifications of affine planes,
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Steiner triple systems, and unitals. In the last two sections, we give an overview of
the algorithmic and complexity aspects of the computation of the paramodification.
We also present computational results which show that that paramodification can
construct many new unitals.

3.1. Paramodification of 2-designs

Let D = (P ,B, I) be a t-(v, k, λ) design. By [7, Theorem 1.9], the integer

r = λ
(v−1

t−1)

(k−1
t−1)

=
|B| k

n
(3.1)

is the number of blocks through a given point. The map χ : B → X is called a proper
block coloring of D, if for different blocks b, b′, b ∩ b′ 6= ∅ implies χ(b) 6= χ(b′). If
|X| = m and D has a proper block coloring χ : B → X then we say that D is block
m-colorable.

Lemma 3.1.1. Let D = (P ,B, I) be a t-(v, k, λ) design.

(i) Any proper block coloring of D needs at least r colors.
(ii) Any parallelism of D defines a block coloring with r colors when mapping each block

to its parallel class.
(iii) The color classes of a block coloring with r colors form a parallelism of D.
(iv) D is block r-colorable if and only if it is resolvable.

Proof. Since r = |B| k/n is the number of blocks through a point, and these blocks
must have different colors, we have (i). (ii) is trivial by definition. If we have r colors,
then for any point P and color x, there is a unique block on P with color x. That
is, the color class χ−1(x) is a partition of P , i.e. (iii) holds. (iv) follows from (ii) and
(iii).

From now on, D = (P ,B, I) denotes a Steiner 2-design on v points. The incidence
relation I = ∈, that is, the blocks of D are subsets of size k of P . Notice that for
subsets P ′ ⊆ P and B′ ⊆ B, we may consider the subsystem D′ = (P ′,B′, I), even
if an element b′ ∈ B′ is not a subset of P ′.

Fix a block b ∈ B and consider the subset

C(b) =
{

b′ ∈ B : |b′ ∩ b| = 1
}

(3.2)
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of blocks. We write Db for the subsystem (P \ b, C(b), I). We define the map χb : C(b)→
b by

χb : b′ 7→ b′ ∩ b; (3.3)

this is clearly a block coloring of Db.

Lemma 3.1.2. Db is a resolvable 1-(v− k, k− 1, k) design.

Proof. Trivially, each block b′ ∈ C(b) is incident with k− 1 point P ∈ P \ b, that is,
Db is 1-(v− k, k− 1, k) design. In Db, (3.1) implies r = k and the map χb : b′ 7→ b′ ∩ b
is a block coloring with k colors. By Lemma 3.1.1, Db is resolvable.

We aim to show that any parallelism of Db leads to a block design D′ such that D
and D′ have the same parameters, and they may or may not be isomorphic. To use
consistent notation, we identify the notions of a parallelism and a block coloring
with r colors.

Definition 3.1.3. Let D = (P ,B, I) be a Steiner 2-(v, k, 1) design. Let b ∈ B be a
block and χ : C(b) → b a block coloring of the subsystem Db with k colors. Define
the incidence relation I∗ ⊆ P ×B by

P I∗ b′ ⇔

P I b′, if b′ 6∈ C(b) or P �I b

P = χ(b′), if P I b and b′ ∈ C(b).
(3.4)

We call the incidence structure

D∗ = D∗χ,b = (P ,B, I∗)

the (χ, b)-paramodification of D.

Theorem 3.1.4 ([39, Theorem 2.4]). Let D = (P ,B, I) be a Steiner 2-(v, k, 1) design. Let
b ∈ B be a block and χ : C(b)→ b a block coloring of the subsystem Db with k colors. Then,
D∗χ,b is a Steiner 2-design with the same parameters.

Proof. We have to show that any two points are incident with a unique block of
D∗ = D∗χ,b. Let P1, P2 ∈ P be distinct points, and β ∈ B the unique D-block such
that P1 I β and P2 I β.

1. P1, P2 6∈ b. Then P1 I∗ β and P2 I∗ β by (3.4). Let γ ∈ B be a block such that
P1 I∗ γ and P2 I∗ γ. Then P1 I γ and P2 I γ also by (3.4), therefore γ = β as
D = (P ,B, I) is a Steiner 2-(v, k, 1) design.
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2. P1, P2 ∈ b. Then β = b as D is a Steiner 2-(v, k, 1) design. Note that b 6∈ C(b) by
the definition of C(b) in (3.2), hence P1 I∗ b and P2 I∗ b. Let γ ∈ B be a block
such that P1 I∗ γ and P2 I∗ γ. If γ 6∈ C(b), then P1 I γ and P2 I γ by (3.4),
therefore γ = b = β. If γ ∈ C(b), then by (3.4)

χ(γ) = P1 6= P2 = χ(γ),

a contradiction.
3. P1 6∈ b and P2 ∈ b. In this case, β ∈ C(b) and P2 I∗ β if and only if χ(β) = P2. By

Lemma 3.1.1, χ defines a parallelism, and the color class χ−1(P2) is a parallel
class in Db. Hence, there is a unique block γ ∈ C(b) such that P1 I γ and
χ(γ) = P2. Equation (3.4) implies P1, P2 I∗ γ.

In general, it is not easy to determine if two paramodifications of D are isomor-
phic. We introduce the following terminology.

Definition 3.1.5. The block coloring χb : C(b) → b, b′ 7→ b ∩ b′ is the trivial block
coloring of the Steiner 2-design D. Two block colorings χ and ψ of C(b) are said to
be equivalent if they have the same color classes. The Steiner system D is said to be
para-rigid if, for any block b, all block colorings of Db are equivalent to the trivial
one.

Remark 3.1.6.
(i) One has D = D∗χb,b.

(ii) The block colorings χ and ψ are equivalent if there is a permutation π of the
points on b such that ψ(b′) = π(χ(b′)) holds for all b′ ∈ C(b).

(iii) We claim that equivalent block colorings result isomorphic paramodifications.
Indeed, we can extend π to P such that π(P) = P when P 6∈ b. Then, π

determines an isomorphism between D∗ψ,b and D∗χ,b.
(iv) If all paramodifications of the Steiner 2-design D are isomorphic to D, then

we say that the paramodifications of D do not yield new Steiner 2-designs.
Paramodifications of a para-rigid Steiner 2-design do not yield new Steiner
2-designs. The converse is not valid; see Remark 3.3.2.

3.2. Paramodification and the incidence matrix

In this section, we describe the effect of paramodifications to the incidence matrix.
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Proposition 3.2.1 ([39, Proposition 3.1]). Let D be a Steiner 2-(v, k, 1) design and D∗ =
D∗χ,b be a (χ, b)-paramodification of D. Let r = (v− 1) / (k− 1). Then, the respective
incidence matrices M and M∗ differ at most in a k× k(r− 1) submatrix.

Proof. Equation (3.4) implies that the incidence matrices differ in the rows corre-
sponding to the points of b, and in the columns corresponding to blocks in C(b).
Clearly, |b| = k and |C(b)| = k (r− 1).

To have a more detailed description of the structure of the incidence matrices,
consider the v× b incidence matrix M of the system D in the following way:

1. Let the first k rows of M correspond to the points P1, P2, . . . , Pk ∈ b.
2. Let the first r− 1 columns of M correspond to the blocks in C(b) incident with

P1, then let the second r− 1 columns correspond to the blocks in C(b) incident
with P2, and so on until Pk.

3. Right behind the columns corresponding to C(b), put the column correspond-
ing to b.

4. Then comes the rest of the blocks B \ (C(b) ∪ b) in any order.

The incidence matrix has the form

M =

(
Cb jk 0
M1 0v−k M2

)
, (3.5)

where

Cb =


j> 0> · · · 0>

0> j> · · · 0>
...

...
. . .

...
0> 0> · · · j>


is a k× k (r− 1) matrix, and j, 0 are column vectors of length r− 1.

It is easy to see by the definition of I∗ in (3.4), that the incidence matrix M∗ of the
new system D∗ has the form

M∗ =

(
C∗b jk 0
M1 0v−k M2

)
,

where except C∗b all the other submatrices are the same as in (3.5). Hence M and M∗

differ at most in a k × k (r− 1) submatrix. Finally, we notice that equivalent block
colorings correspond to the permutations of the first k rows of M.
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In [44], the author defines the switching operation for constant weight codes as a
transformation that concerns exactly two coordinates and keeps the studied param-
eter of the code unchanged. For a design D, this means that the incidence matrix is
modified in exactly two rows. As the number of 1s is constant in each column, one
can interchange the 0-1 and 1-0 combinations of the two rows only. This implies the
following proposition:

Proposition 3.2.2 ([39, Proposition 3.2]). Let P, Q be two points of the Steiner 2-design
D. Let b be the unique block on P and Q. A switching with respect to P and Q is a (χ, b)-
paramodification. Moreover, if the block b′ ∈ C(b) is not incident with P or Q, then it has
trivial color: χ(b′) = b∩ b′. Conversely, a (χ, b)-paramodification is a switching if and only
if precisely two color classes of χ are non-trivial.

In a Steiner 2-design, a Pasch configuration consists of six points P1, . . . , P6 such that
the triples {P1, P3, P4}, {P1, P5, P6}, {P2, P3, P5}, {P2, P4, P6} are collinear. The design
is anti-Pasch if it does not contain any Pasch configuration. Pasch configurations are
known to play an important role in switches of Steiner 2-designs.

Proposition 3.2.3 ([39, Proposition 3.3]). Let D be an anti-Pasch 2-(v, k, 1) design. If

v < 2k3 − 8k2 + 13k− 6,

then no switching can be carried out for D.

Proof. Each point is incident with r = (v− 1) / (k− 1) blocks, and the condition is

(k− 1) (k− 2) + 1 >
1
2
(r− 1) .

Assume that a switching can be carried out with respect to the points R, Q. Let
C(Q, R) be the set of blocks containing precisely one of Q and R. The 2 (r− 1)
blocks are colored with two colors, say red and blue such that blocks with the
same color intersect in Q or R. As the switching is non-trivial, there are both red
and blue blocks on Q. We can assume that at least half of the blocks on Q are
red. Let a be a blue block on Q, incident with the points Q, A1, . . . , Ak−1. For each
i ∈ {1, . . . , k− 1}, the block RAi is all red; let R, Ai, Pi1, . . . , Pi,k−2 be its points. If the
points Q, Pis, Pjt are collinear with i 6= j, then the six points Q, R, Ai, Aj, Pis, Pjt form
a Pasch configuration. Hence, the blocks QPis are different for all i ∈ {1, . . . , k− 1}
and s ∈ {1, . . . , k− 2}. Moreover, QPis is blue since it meets the red RAi. This shows
that there are at least (k− 1) (k− 2) + 1 blue blocks on Q, a contradiction.
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3.3. Paramodification for classes of 2-designs

In this section, we discuss the paramodification of certain well-known classes of
Steiner 2-designs.

Projective and affine planes
The case of a finite projective plane is trivial. While the case of a finite affine plane
is easy, we are not aware of any occurrence of this construction in the literature, and
we give a detailed proof.

Proposition 3.3.1 ([39, Proposition 4.1]).
(i) Paramodifications of a finite projective plane are isomorphic. In other words, finite

projective planes are para-rigid.
(ii) Paramodifications of a finite affine plane are associated with the same projective plane.

Proof.
(i) Let D be a projective plane of order q. For any line b, Db is an affine plane of

order q with a unique parallelism. Hence, the proper block colorings of C(b)
are equivalent, and the corresponding paramodifications are isomorphic.

(ii) Let D = (P ,B, I) be an affine plane of order q. D can be embedded in a
projective plane Π =

(
P ,B, I

)
of order q, and Π is unique up to isomorphism.

We show that any paramodification D∗χ,b of D can be embedded in Π. This is
obvious if χ and χb are equivalent. From now on, we assume that this is not
the case, that is, there are distinct lines `1, `2 ∈ C(b) such that χ(`1) = χ(`2)

and `1 ∩ `2 6∈ b. Not meeting on b and being disjoint off b, the lines `1, `2 must
be parallel in D. Take a third line `3 ∈ C(b) in the same color class, `3 6= `1, `2.
At least one of `1 ∩ `3, `2 ∩ `3 does not lie on b, we must have `1 ‖ `2 ‖ `3.
Being of the same size q, the color class of `1 coincides with its parallel class.
We claim that any color class κ of χ is a parallel class of D. To show this, it
suffices to find two lines m1, m2 ∈ κ such that m1 ∩m2 6∈ b. Then, the argument
above proves that κ is indeed a parallel class. Fix m1 ∈ κ and define Q = m1∩ b.
Let ` be the unique line which is parallel to `1 and incident with Q. Then ` 6∈ κ,
and therefore κ has a line m2 with is not incident with Q. Hence, m1 ∩m2 6∈ b,
and the claim follows.
Let `∞ be the line at infinity with respect to D in Π. For the (affine) point
P ∈ b, let ε(P) be the infinite point of the parallel class χ−1(P). For P ∈ P \ b,
we put ε(P) = P. It is straightforward to show that ε is an embedding of D∗χ,b

in Π, which finishes the proof.
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Remark 3.3.2. Let D be a finite Desarguesian affine plane. While D is not para-rigid,
it is isomorphic to any of its paramodifications.

Steiner triple systems
A Steiner triple system STS(v) is a 2-(v, 3, 1) design; an STS(v) exists if and only if
v ≡ 1, 3 (mod 6). Steiner triples systems, cubic graphs (regular graphs of degree 3),
and edge colorings are much connected from different points of view. For example,
many recent papers deal with edge colorings of cubic graphs by Steiner triples
systems, see [18] and the references therein. Our approach seems to have in common
with the study of cubic trades in Steiner triples systems [12].

Let T = (P ,B, I) be an STS(v) and fix a triple b = {x, y, z} ∈ B. Then, the mean-
ing Lemma 3.1.2 is that Tb is a simple cubic graph whose edges can be colored by
three colors. Vizing’s celebrated edge-coloring theorem asserts that any cubic graph
can be edge-colored by three or four colors in such a way that adjacent edges receive
distinct colors. Although three colors are not enough to color all cubic graphs, and
the corresponding decision problem is difficult [22]. Paramodifications of T corre-
spond to edge 3-colorings of Tb. Let Γ be an edge 3-colored cubic graph. The union
of two color classes is a regular subgraph of degree 2; hence it is the disjoint union
of cycles of even length. Let γ = {v1, . . . , v2m} be such a cycle. By switching the two
colors in γ we obtain a new edge 3-coloring of Γ which is equivalent to the original
one if and only if v = 2m + 1. Recently, cycles in cubic graphs, their length and
especially Hamiltonian cycles are a central and well-studied topic in graph theory,
see [11, 41, 17, 15]. The authors of this paper are not aware of any results which
could help to describe the structure of edge 3-colored cubic graphs, which occur as
Tb for a Steiner triples system T.

We close the paramodifications of Steiner triple systems by formulating an open
problem. Notice that the Steiner triple system T is para-rigid, if the cubic graph Tb

has a unique edge 3-coloring for each block b.

Problem 3.3.3. Are there para-rigid Steiner triple systems?

This problem could be tested on anti-Pasch (quadrilateral-free) Steiner triple sys-
tems, for which switching gives nothing. Anti-Pasch Steiner triple systems are very
scarce, see [37] and the references therein.

Unitals with many translation centers
The idea of the paramodification of Steiner 2-designs has been motivated by the
following construction of Grundhöfer, Stroppel and Van Maldeghem [19]. Our pre-
sentation restricts to the finite case.
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Let q be an integer, G a group of order q3 − q. Let T be a subgroup of order q
such that conjugates Tg and Th have trivial intersection unless they coincide (i.e.,
the conjugacy class TG forms a T.I. set). Assume that there is a subgroup S of order
q + 1 and a collection D of subsets of G such that

(D1) each set D ∈ D contains 1,
(D2) any D ∈ D has size q + 1,
(D3) |D| = q− 2.
(D4) For each D ∈ D, the map

(D× D) \ {(x, x) : x ∈ D} → G, (x, y) 7→ xy−1

is injective.

Furthermore, we assume that the following property holds:

(P) The system consisting of S \ {1}, all conjugates of T \ {1} and all sets

D∗ =
{

xy−1 : x, y ∈ D, x 6= y
}

with D ∈ D forms a partition of G \ {1}.

We define an incidence structure with point set P = G ∪ [∞] and block set B =

B∞ ∪ {[∞]}, where

B∞ = {Sg : g ∈ G} ∪
{

Thg : h, g ∈ G
}
∪ {Dg : D ∈ D, g ∈ G}

and the block at infinity
[∞] =

{
Th : h ∈ G

}
consists of the conjugates of T in G. We define two incidence relations I and I[. For
both, g ∈ G and b ∈ B∞ are incident if and only if g ∈ b. Moreover, the points on
the block at infinity [∞] are precisely the conjugates of T. One defines the incidence
between an affine block and a point at infinity in two different ways.

(a) Make each Th incident with each coset Thg−1
g = gTh (and no other block in

B∞). This gives an incidence structure UD = (P ,B, I).
(b) Make each conjugate Th incident with each coset Thg (and no other block in
B∞). This gives an incidence structure U[

D =
(
P ,B, I[

)
.

Then both UD and U[
D are linear spaces and the following hold.
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(i) UD and U[
D are 2-

(
q3 + 1, q + 1, 1

)
designs; i.e., unitals of order q.

(ii) Via multiplication from the right on G and conjugation on the point row of
[∞], the group G acts as a group of automorphisms on UD.

(iii) On UD the group G also acts by automorphisms via multiplication from the
right on G but trivially on the point row of [∞].

(iv) On the unital UD each conjugate of T acts as a group of translations. Thus
each point on the block [∞] is a translation center, and G is two-transitive on
[∞].

(v) On the unital U[
D the group G contains no translation except the trivial one.

It is immediate that UD and U[
D are paramodifications. Indeed, the set

C([∞]) =
{

Thg : h, g ∈ G
}

of blocks consists of right cosets of a conjugate of T, which are at the same time left
cosets of another conjugate of T. With b′ = Thg = gThg ∈ C([∞]), the two block
colorings are

χ
(
b′
)
= Th, χ[

(
b′
)
= Thg.

Starting with G = SU(2, q), the subgroups T, S and the system D can be chosen
such that UD is isomorphic to the classical Hermitian unital of order q, and U[

D
is isomorphic to Grüning’s unital [20], embedded in Hall planes and their duals,
see [19, Section 3.1]. In particular, Grüning’s unitals are paramodifications of the
classical Hermitian unitals.

In [19], the authors construct two more non-classical unitals UE , U[
E of order

4. In this case, G = SU(2, 4) ∼= SL(2, 4) ∼= A5. Using a computer, Verena Möhler
(Karlsruhe) [40] found further non-classical unitals of the form UD and U[

D for
G = SL(2, 8).

We finish this section with an observation on finite Hermitian unitals.

Proposition 3.3.4 ([39, Proposition 4.4]). Finite Hermitian unitals have no switchings,
but they do have non-trivial paramodifications.

Proof. As Hermitian unitals are anti-Pasch by O’Nan’s result [43, Section 3], Propo-
sition 3.2.3 implies that finite Hermitian unitals have no switchings. However, as
mentioned above, Grüning’s unitals are non-isomorphic paramodifications of finite
Hermitian unitals.
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3.4. Effective computation of block colorings

Let D = (P ,B, I) be a Steiner 2-(v, k, 1) design. Let b ∈ B be a block and consider
the subsystem Db = (P \ b, C(b), I). We are interested in the effective computation
of all block colorings of Db to construct new Steiner 2-designs of given parameters
by paramodification. We formulate the problem in the language of vertex colorings
of simple graphs, which is known to be NP-complete in general. However, there are
methods to deal with it for certain ranges of parameters. We compare two methods,
the first one is based on clique partitions, and the other is based on integer linear
programming.

The line graph Γ = (V, E) of Db is defined by V = C(b), and (b1, b2) ∈ E if and only
if b1 and b2 have a unique point P 6∈ b in common. A straightforward consequence
of Lemma 3.1.2 is that Γ is a (k− 1)2-regular simple graph. A proper block coloring
χ : C(b)→ b of the subsystem Db is equivalent with a proper vertex coloring of the
graph Γ using k colors. We can make this equivalence more precise by using the
notion of vertex b-colorings. The latter has been introduced by Irving and Manlove
[25], see also the recent survey paper [27] with special emphasis on the complexity
and algorithmic aspects of computing the b-chromatic number of a simple graph.

Definition 3.4.1. Let G = (V, E) be a simple graph and χ : V → C a proper vertex
coloring. The vertex v ∈ V is called dominant, if for any color c′ ∈ C \ {χ(v)} there
is a neighbor v′ of v such that χ(v′) = c′. The coloring χ is said to be a b-coloring if
there is at least one dominant vertex in each color class.

Lemma 3.4.2. The map χ : C(b) → b is a proper block coloring of Db if and only if it is a
b-coloring of the line graph Γ of Db.

Proof. If χ is a b-coloring of Γ, then it is also a proper block coloring of Db trivially.
Let χ : C(b)→ b be a proper block coloring of Db using k colors. We show that each
block β is a dominant vertex of Γ. Fix a point P ∈ β \ b. By Lemma 3.1.2, there are
precisely k blocks in C(b) incident with P; hence these k blocks (including the block
β) form a k-clique in Γ. Therefore the block coloring χ must assign different colors
to these k blocks, which means that every block in the clique is dominant, and the
blocks are colored with k different colors.

Colorings by the set cover method
One way to compute all b-colorings of the graph Γ is to find all solutions of a set
cover problem of independent sets. In fact, a color class is an independent set of size
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K = (v− k) / (k− 1) and the k color classes of a coloring χ are pairwise disjoint. The
first step is to compute the set Y of independent K-sets of Γ. In the second step, one
constructs the graph Γ∗ with vertex set Y and edges (S1, S2) with disjoint S1, S2. In
the last step, we determine all cliques of size k of Γ∗. Using the GRAPE package [46]
of GAP [14], this approach is easy to implement. Moreover, GRAPE allows the user
to exploit the automorphism group of the Steiner 2-design D and the automorphism
group of the graph Γ, which makes the computation quite efficient.

Colorings by integer linear programming
The b-coloring problem can be formulated as an integer linear programming (ILP)
problem [27, Section 8.4], for an exact formulation see [31, Section 2]. Most of the ILP
solvers are optimized to find one solution to each problem. However, for our block
coloring problem, we are interested in finding all solutions. Up to our knowledge,
this is only possible with the MILP solver SCIP [16].

As mentioned above, there are many ways to give the ILP formulation of a graph
coloring problem. The assignment-based model [26, Subsection 2.2] is the standard
formulation of the vertex coloring problem. This formulation uses only binary vari-
ables, one for each color and one for each vertex-color pair, and the objective is to
minimize the number of used colors. Since we are only interested in k-colorings,
this allows us to simplify the model slightly.

There are other approaches as well, based on partial ordering, like POP and
POP2 [26, Section 3]. The idea is to introduce a partial ordering on the union of
the vertices and the color set, and encode these relations with binary variables. The
authors also provide the relation between these new variables and the variables
occurring in the standard assignment-based model.

A drawback of the ILP formulations is that, in contrast to the set cover method,
it is hard to make use of the symmetry of the underlying graph. We conclude that
since GRAPE is very efficient in coping with symmetries of a line graph, it is better
suited to compute all paramodifications of a given Steiner 2-design.

3.5. Paramodification of unitals of orders 3 and 4

In this section we present computational results on paramodifications of known
small unitals. In this way we construct 173 new unitals of order 3, and 25 712 new
unitals of order 4. We study the following libraries and classes of abstract unitals of
order at most 6:
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BBT 909 unitals of order 3 by Betten, Betten and Tonchev [8].
KRC 4466 unitals of order 3 by Krčadinac [34]. This class contains all abstract unitals

of order 3 with a non-trivial automorphism group. 722 of the BBT unitals
appear in KRC.

KNP 1777 unitals of order 4 by Krčadinac, Nakić and Pavčević [35],
BB two cyclic unitals of orders 4 and 6 by Bagchi and Bagchi [2]. The cyclic BB

unital of order 4 is contained in KNP, as well.

We access the libraries of small unitals and carry out the computations using the
GAP package UnitalSZ [42]. If D is a BB unital of order 6, then Db has a unique
block coloring for each block b; that is, paramodification gives no new unitals of
order 6, cf. Listing 3.1.

Listing 3.1: Block colorings of the BB unital of order 6

1 u := BagchiBagchiCyclicUnital( 6 );;

2 blocks := BlocksOfUnital( u );;

3 rep_blocks := List( Orbits( AutomorphismGroup( u ), blocks, OnSets ),

4 orb -> Representative( orb ) );

5 ## [ [ 1, 2, 37, 44, 65, 73, 132 ], [ 1, 32, 63, 94, 125, 156, 187 ] ]

6 colorings_perblock := [];;

7 for b in rep_blocks do

8 Cb := Filtered( blocks, x -> Size( Intersection( x, b ) ) = 1 );

9 Cb := List( Cb, x -> Difference( x, b ) );

10 b_stab := Stabilizer( AutomorphismGroup( u ), b, OnSets );

11 colorings := AllRegularBlockColorings( Cb, 6 + 1, b_stab );

12 Add( colorings_perblock,

13 rec( b := b, ncoloring := Length( colorings ) ) );

14 od;

15 colorings_perblock;

16 ## [ rec( b := [ 1, 2, 37, 44, 65, 73, 132 ], ncoloring := 1 ),

17 ## rec( b := [ 1, 32, 63, 94, 125, 156, 187 ], ncoloring := 1 ) ]

The paramodification graph Ψn for a given order n consists of one vertex for each
equivalence class of unitals of order n and with edges between two vertices when-
ever one can get from one equivalence class to the other via a paramodification.
As paramodifications are reversible, we may consider undirected graphs. The con-
nected components of the paramodification graph are called paramodification classes.
Paramodification graphs are defined analogously to switching graphs in [44].
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We carried out computations to determine the paramodification classes of Ψ3 and
Ψ4, containing at least one unital from the classes BBT, KRC or KNP. For the case
of order 3, we found all such classes, resulting 173 new unitals of order 3. This
subgraph of Ψ3 is complete in the sense that all paramodifications of all vertices are
known, see Table 3.1.

Table 3.1.: Distribution of the sizes of the paramodification classes

Class size Ψ3 Ψ4

1 3182 1458
2–5 466 99
6–10 35 13

11–100 13 16
101–1000 14

1001–2000 2
2557 1*

3487 1*

4035 1*

7596 1*

Consider the switching graph on the unitals from the classes BBT, KRC, and
the newly found 173 paramodifications of them. As switches are special cases of
paramodifications, this switching graph is a subgraph of the graph mentioned
above. By restricting the type of transformations to switches, we lose 623 edges
between the unitals in contrast to paramodifications, and only 131 of the new 173
unitals are reachable via switching. In the paramodification subgraph, there are 3182
isolated vertices according to Table 3.1; in the switching graph, this number is 3525.

In the case of order 4, out of the 1777 unitals of KNP, 1458 turn out to be isolated
vertices of Ψ4. By repeating the paramodification step, we produced 25 712 new uni-
tals of order 4. However, the graph is incomplete as it has unfinished vertices; these
are unitals whose paramodifications have not been computed yet. Not counting the
isolated vertices, the number of complete paramodification classes is 144. The re-
maining 4 classes are all incomplete (see the starred entries in Table 3.1), with 12 484
unfinished vertices in total. Concerning the growth of the connected components,
it is hard to say anything mathematically reasonable. The largest component with
7596 known vertices has 8 vertices of KNP type, and its growth computed until the
fourth layer of the breadth-first tree is

8, 45, 425, 7118,
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but the search stopped there, and probably there are more unitals in further layers.
In Table 3.2, we present the comparison of run-times of different algorithms for

the computation of (χ, b)-paramodifications. The reader can find further scientific
data on the paramodification of unitals on the web page https://davidmezofi.

github.io/unitals/.

Table 3.2.: Mean and maximal run-times of different methods in milliseconds of 30
random KNP unitals and a random block

Method Mean Maximum

Set cover (GAP) 142 316
Assignment (SCIP) 3369 9804
POP (SCIP) 4082 12 266
POP2 (SCIP) 4444 14 707
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4. Full points of abstract unitals

This chapter summarises the results of the paper On the geometry of full points of
abstract unitals [38], and some new computational results will be also presented.
The structure of the chapter is as follows. In Section 4.1, we give definitions and
basic combinatorial properties of full points and related concepts. The main result
of this paper is proved in Section 4.2. It shows that for any abstract unital of order
q, which is embedded in the Galois plane PG

(
2, q2), the set of full points of two

disjoint blocks is contained in a line. Moreover, the perspectivities of two disjoint
blocks generate a semi-regular cyclic permutation group acting on each block. In
Section 4.3, we give a complete description of the structure of full points in the
classical Hermitian unitals. Section 4.4 gives an overview of computational results
about full points in abstract unitals of order 3 and 4, which belong to known classes
[2, 8, 35, 34]. For the computation we used the GAP package UnitalSZ [42].

Recall that, an abstract unital of order n is a 2-(n3 + 1, n+ 1, 1) design. We say that
an abstract unital (P ,B) is embedded in a projective plane Π, if P consists of points
of Π and each block b ∈ B has the form P ∩ ` for some line ` of Π. For results
on embeddings of abstract unitals see the paper [33] by Korchmáros, Siciliano and
Szőnyi, and the references therein. The authors of [33] introduced the concept of full
point, which is essential to study the embedding problem.

4.1. Combinatorial properties of the set of full points

Definition 4.1.1. Let U = (P ,B) be an abstract unital of order n and fix two blocks
b1, b2. We say that P ∈ P is a full point with respect to (b1, b2) if P 6∈ b1 ∪ b2 and for
each Q ∈ b1, the block connecting P and Q intersects b2.

In other words, there is a well defined projection πb1,P,b2 from b1 to b2 with center
P. We denote by FU(b1, b2) the set of full points of U with respect to the blocks b1, b2.
Clearly, FU(b1, b2) = FU(b2, b1).
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Bounds on the number of full points
We start with an easy observation on the number of full points of two blocks b1, b2

of U. The result seems to be rather weak.

Lemma 4.1.2. Let U = (P ,B) be an abstract unital of order n ≥ 2. Then

|FU(b1, b2)| ≤

n2 − n if b1, b2 have a point in common,

n2 − 1 if b1, b2 are disjoint.

Proof. For a fixed point P ∈ b1 we define the set S′P as the union of the blocks
connecting P with Q ∈ b2 \ b1, and the set SP = S′P \ (b1 ∪ b2). Clearly,

|SP| =

n2 − n if b1, b2 have a point in common,

n2 − 1 if b1, b2 are disjoint.

As FU(b1, b2) ⊆ SP, the lemma follows.

In most (but not all) known examples of abstract unitals, the set of full points is
contained in a block. This motivates the following definition.

Definition 4.1.3. Let U = (P ,B) be an abstract unital and b1, b2 ∈ B disjoint blocks.

(i) The triple (U, b1, b2) is full point regular if the set of full points FU(b1, b2) ⊆ c
for some block c ∈ B such that b1 ∩ c = b2 ∩ c = ∅.

(ii) The abstract unital U is full point regular if for any two disjoint blocks b1, b2 the
triple (U, b1, b2) is full point regular.

Full points and perspectivities
By definition, any full point P of the blocks b1, b2 defines a bijective map πb1,P,b2 : b1 →
b2; we call it the perspectivity with center P.

Definition 4.1.4. Let b1, b2 be blocks of the abstract unital U. Define the group of
perspectivities of b1 as

Perspb2
(b1) =

〈
πb1,P,b2 πb2,Q,b1 : P, Q ∈ FU(b1, b2)

〉
.

It is easy to see that Perspb2
(b1) and Perspb1

(b2) are isomorphic permutation
groups, the former acting on b1 and the latter acting on b2. For different full points
Q, R, the perspectivities πb1,Q,b2 and πb1,R,b2 are different. This implies

∣∣∣Perspb2
(b1)

∣∣∣ ≥
|FU(b1, b2)|. In particular, Perspb2

(b1) is nontrivial if |FU(b1, b2)| > 1. An important
case will be when Perspb2

(b1) is a cyclic semi-regular permutation group on b1.
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Dual k-nets in abstract unitals
We will present examples of abstract unitals when the set of full points with respect
to the blocks b1, b2 form a third block b3. More generally, we introduce the concept
of an embedded dual k-net of an abstract unital. An abstract k-net is a structure
consisting of a set P of points and a set B of blocks, which is partitioned into k
disjoint families B1, . . . ,Bk for which the following hold: (1) every point is incident
with exactly one block of every Bi, (i = 1, . . . , k); (2) two blocks of different families
have exactly one point in common; (3) there exist 3 blocks belonging to 3 different
Bi which are not incident with the same point. See [4, 6] as reference on abstract
k-nets.

Definition 4.1.5. Let U = (P ,B) be an abstract unital of order n and k ≥ 3 an
integer. We say that the blocks b1, . . . , bk form an embedded dual k-net in U, if the
following hold for all 1 ≤ i < j ≤ k:

(i) bi ∩ bj = ∅.
(ii) For all P ∈ bi, Q ∈ bj, the block containing P, Q intersects all b1, . . . , bk in a

point.

It is clear that for an embedded dual k-net b1, . . . , bk of U, b3 ∪ · · · ∪ bk ⊆ FU(b1, b2).
The converse needs some explanation.

Lemma 4.1.6. Let U be an abstract unital of order n, k ≥ 3 an integer and b1, . . . , bk blocks
of U.

(i) If b3 ⊆ FU(b1, b2), then b1 and b2 are disjoint.
(ii) If b3 ⊆ FU(b1, b2), then b1 ⊆ FU(b2, b3) and b2 ⊆ FU(b1, b3).

(iii) If b3 ∪ b4 ⊆ FU(b1, b2), then b3 and b4 are disjoint.
(iv) The blocks b1, . . . , bk form an embedded dual k-net if and only if b3 ∪ · · · ∪ bk ⊆

FU(b1, b2).

Proof.
(i) Assume that {Z} = b1 ∩ b2 and b3 ⊆ FU(b1, b2). Clearly, b3 is disjoint from

b1 ∪ b2. Fix an arbitrary point P ∈ b1 \ {Z}. Each point R ∈ b3 projects P to b2 \
{Z}. Hence, there are points R1, R2 ∈ b3 such that πb1,R1,b2(P) = πb1,R2,b2(P).
This means that P ∈ b2, hence b1 = b2, a contradiction.

(ii) For any P1 ∈ b1, P3 ∈ b3, the block P1P3 intersects b2. Now fix P1 and let P3 run
through b3 in order to obtain the bijection πb3,P1,b2 . Thus, P1 ∈ FU(b2, b3). Since
this holds for all P1 ∈ b1, the claim follows.
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(iii) It suffices to show b1 ⊆ FU(b3, b4). Take P ∈ b1, Q ∈ b3 arbitrary points. From
Q, P projects to R ∈ b2 and using b2 ⊆ FU(b1, b4), P projects to S ∈ b4 from R.
Hence, Q projects to b4 from P.

(iv) The “only if” part follows from the definition. Assume now b3 ∪ · · · ∪ bk ⊆
FU(b1, b2). By (i) and (iii), all blocks b1, . . . , bk are disjoint. For the indices 3 ≤
i < j ≤ k, there is an injective map α : b1 × b2 → bi × bj mapping (P1, P2) 7→(

Pi, Pj
)

with collinear quadruple P1, P2, Pi, Pj. Moreover α is bijective, hence any
pair of points

(
Pi, Pj

)
∈ bi× bj determines a block b′ of U such that b′ ∩ bi = Pi,

i = 1, 2. The block joining P1 and P2 intersects any block bs ⊆ FU(b1, b2) in Ps

for 3 ≤ s ≤ k, therefore b1, . . . , bk form a dual k-net in U.

Bounds on dual k-nets in abstract unitals
For embedded dual k-nets, the trivial bound is k ≤ n + 1. With some elementary
counting, we can improve this to k ≤ n− 1. This implies that an abstract unital of
order 3 has no embedded dual 3-nets.

Proposition 4.1.7 ([38, Proposition 2.6]). Let U be an abstract unital of order n ≥ 3.

(i) If U has an embedded dual k-net {b1, . . . , bk}, then k ≤ n− 1.
(ii) For two blocks b1, b2, FU(b1, b2) cannot contain more than n− 3 blocks.

Proof.

(i) Let us assume that k > n− 1 and let P0 = b1 ∪ b2 ∪ · · · ∪ bk. Any block of U
intersects P0 in 0, 1, k or n + 1 points, the latter being the blocks bi themselves.
Without loss of generality consider the disjoint blocks b1, b2. Any pair of points
chosen from b1 and b2 determines the unique block in B which is a k-secant
to P0, therefore the number of k-secants is (n + 1)2. Then, fix an arbitrary
block bi of the dual k-net and a point P on the block bi. The number of 1-
secant blocks on P is n2 − n − 2. Thus the number 1-secant blocks to P0 is
k (n + 1)

(
n2 − n− 2

)
. Since |B| = n2 (n2 − n + 1

)
we have

k + (n + 1)2 + k (n + 1)
(
n2 − n− 2

)
≤ n2 (n2 − n + 1

)
,

which gives n3 − 3n2 + n + 1 ≤ 0 by k ≥ n ≥ 3, a contradiction.
(ii) If FU(b1, b2) contains the k− 2 blocks b3, . . . , bk, then {b1, . . . , bk} is an embed-

ded dual k-net in U by Lemma 4.1.6 (iv). Hence, k− 2 ≤ n− 3 by (i).
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Embedded dual 3-nets and latin squares
An embedded dual 3-net {b1, b2, b3} determines a latin square L of order n + 1 in
the following way. Label the points of b1, b2, b3 by the set {1, . . . , n + 1}:

bs = {Ps,1, . . . , Ps,n+1} , s = 1, 2, 3.

For i, j ∈ {1, . . . , n + 1}, let c be the block connecting P1,i and P2,j. Define s by
{P3,s} = b3 ∩ c and write s in row i and column j of L. Choosing a different labeling
for b1, b2, b3 results in an isotope latin square. By reordering the three blocks, one gets
conjugate or parastrophe latin squares. The set of all parastrophes of a latin square L
is also called the main class of L. Latin squares are naturally related to (the multipli-
cation tables of) finite quasigroups. See [29, Section 1.4] for more details and further
references on conjugacy and parastrophy of latin squares.

A property which, for each class C, either holds for all members of C or for no
member of C is said to be a class invariant. Properties of the underlying (dual) 3-nets
are main class invariants of the corresponding coordinate latin square. In particular,
the groups of perspectivities can be defined for (dual) 3-nets and they are useful
examples of main class invariants. In the primal setting, perspectivities of 3-nets have
been presented in [4] and [6].

Let L be a latin square of order n. We say that L is group-based if it is a parastrophe
to the Cayley table of a group G of order n. As the group G only depends on the
main class of L, the following concept is well-defined.

Definition 4.1.8. Let B = {b1, b2, b3} be an embedded dual 3-net of the abstract
unital U. We say that B is cyclic, if the corresponding latin square is a parastrophe
of the Cayley table of the cyclic group of order n + 1, where n is the order of U.

Proposition 4.1.9 ([38, Proposition 2.8]). Let U be an abstract unital of order n and
B = {b1, b2, b3} be an embedded dual 3-net of U. The following are equivalent:

(i) B is cyclic.
(ii) Perspbi

(
bj
)

is the cyclic group of order n + 1 for all 1 ≤ i, j ≤ 3, i 6= j.

Proof. Let L be the latin square associated to B. By [4, Proposition 1.2], (ii) implies
that the rows of L are elements of the cyclic group of order n, hence L is cyclic and
(i) holds. Conversely, assume that B is labeled in such a way that the the coordi-
nate latin square L is the Cayley table of the cyclic group. Then [4, Theorem 6.1]
implies (ii).
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4.2. Full point regularity of embedded unitals

The questions on the embeddings of abstract unitals in projective planes are long
studied problems, with special focus on the embeddings of abstract unitals of order
q in the desarguesian plane PG

(
2, q2). Korchmáros, Siciliano and Szőnyi [33] intro-

duced the concept of full point to study the embedding problem. Their approach was
to look at the group of perspectivities with respect to blocks. We notice that while
the permutation group Perspb2

(b1) depends only on the abstract unital structure of
U = (P ,B), we may be able compute it more easily when a projective embedding
of U is given.

Although the definition of the group of perspectivities works for intersecting
blocks b1, b2, in the sequel, we will only deal with the case when b1, b2 are dis-
joint. The next definition gives a stronger version of the full point regular property,
using the structure of the group of perspectivities.

Definition 4.2.1. Let U = (P ,B) be an abstract unital and b1, b2 ∈ B disjoint blocks.

(i) If (U, b1, b2) is a full point regular triple and Perspb2
(b1) is a cyclic semi-regular

permutation group of b1, then (U, b1, b2) is said to be strongly full point regular.
(ii) The abstract unital U is strongly full point regular if for any two disjoint blocks

b1, b2 the triple (U, b1, b2) is strongly full point regular.

Notice that U is strongly full point regular if it has no full points at all. The next
two lemmas deal with elementary properties of the groups of affinities (cf. Sec-
tion 2.4) of projective lines in PG

(
2, q2), where q is a power of the prime p.

Lemma 4.2.2. Let p be a prime.

(i) Let g be an element of the affine linear group AGL(1, pe) such that o(g) | pe − 1.
Then g has a unique fixed point v ∈ Fpe and permutes Fpe in orbits of length o(g).

(ii) Let S be a subgroup of AGL(1, pe) such that p - |S|. Then, S is cyclic and |S| divides
pe − 1. Moreover, S has a unique fixed point in Fpe .

Lemma 4.2.3. Let `1, `2 be two lines of PG
(
2, q2) and P, Q be two points off `1 ∪ `2. Write

Z = `1 ∩ `2 and Vi = `i ∩ PQ, i = 1, 2. The perspectivity π`1,P,`2 π`2,Q,`1 fixes Z and V1

and permutes `1 \ {Z, V1} in orbits of equal lengths.

Proof. Elementary.

Let S be any set of n + 1 points in the projective plane Π of order n. A nucleus of
S is a point P such that each line of Π through P intersects S in a unique point. It
follows that P 6∈ S. We denote by N (S) the set of all nuclei of S.

41



Let U = (P ,B) be a unital of order q embedded in PG
(
2, q2) and let b1, b2 ∈ B be

two (not necessarily disjoint) blocks of U. Denote the lines containing the blocks b1

and b2 by `1 and `2 respectively. Using the notations in [32] let B = b1 ∪ (`2 \ b2): the
set B consists of q2 + 1 non collinear points, it is contained in the union of the lines
`1 and `2. Note that Z = `1 ∩ `2 belongs to B. Let N (B) denote the set of all nuclei
of B. Clearly, if P is a full point with respect to the blocks b1, b2 then P is a nucleus
of B, hence FU(b1, b2) ⊆ N (B).

The next lemma formulates [32, Propositions 2 and 3] in our setting.

Lemma 4.2.4. Let U = (P ,B) be a unital of order q embedded in PG
(
2, q2) and let

b1, b2 ∈ B be two blocks of U. Denote the lines containing the blocks b1 and b2 by `1

and `2 respectively. Write Z = `1 ∩ `2 and B = b1 ∪ (`2 \ b2). Define the set Γ1 ={
π`1,P,`2 π`2,Q,`1 | P, Q ∈ N (B)

}
where N (B) denotes the set of all nuclei of B. Then the

following hold:

(i) Γ1 leaves b1 invariant.
(ii) Γ1 is a group of affinities of the affine line `1 \ {Z}.

Define the integer r by q2 = pr. The order of the group Γ1 is tph, where p - t,
and Γ1 is isomorphic to some group Γ = AB of affinities where B is an additive
subgroup of order ph of GF

(
q2) and A is a multiplicative subgroup of order t of

GF
(
q2) such that t | pgcd(r,h)− 1. Let m =

(
pr−h − 1

)
/t and let B1 ∪O1 ∪ . . .∪Om be

the partition of `1 \ {Z} into Γ1-orbits. We have by [32, Section 2] that B1 has length
ph and for each i = 1, 2, . . . , m the orbit Oi has length tph.

Let Bi = `i ∩ B for i = 1, 2 and let B̂1 = B1 \ {Z}, then B̂1 is union of Γ1-orbits. It
follows that the size of B̂1 must be divisible by ph, and we must distinguish between
two cases:

1. If the blocks b1 and b2 are disjoint, it means b1 = B1 = B̂1, hence ph | q + 1. It
is possible only for h = 0, thus the group B is trivial.

2. Otherwise b1 ∩ b2 = {Z}, meaning b1 = B1 = B̂1 ∪ {Z}, hence the size of
B̂1 is q. In this case q = aph + btph, where b ∈ {0, 1, . . . , m} and a = 1 or 0,
depending on whether B1 ⊆ B̂1 or not. If a = 0, then q = btph, and as p - t we
have t = 1, therefore the group A is trivial.

Lemma 4.2.5. Let U = (P ,B) be a unital of order q embedded in PG
(
2, q2) and let

b1, b2 ∈ B be two disjoint blocks of U. Denote the lines containing the blocks b1 and b2

by `1 and `2 respectively. Write Z = `1 ∩ `2 and B = b1 ∪ (`2 \ b2). Define the group Γ1

generated by the perspectivities π`1,P,`2 π`2,Q,`1 with P, Q ∈ N (B) where N (B) denotes the
set of all nuclei of B. Then the following hold:
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(i) p - |Γ1|.
(ii) Γ1 is cyclic and |Γ1| | q2 − 1.

(iii) Γ1 has a unique fixed point V1 6∈ b1 ∪ {Z}.
(iv) The set of full points FU(b1, b2) is contained in a line m through V1 with Z 6∈ m.

Proof. Assume that Γ1 has an element γ of order p. Since b1 is Γ1-invariant, γ has
a fixed point in b1, different from Z as Z 6∈ b1. However, affinities with two fixed
points have order dividing q2 − 1. This proves (i).

Together with Lemma 4.2.2 and Lemma 4.2.3, (i) implies (ii) and (iii). Notice that
Lemma 4.2.2 (i) is needed to show that V1 6∈ b1.

Since B is trivial, the set of nuclei N (B) is contained in a line m such that Z 6∈ m
(cf. [32, p. 67]). In particular FU(b1, b2) is contained in m as FU(b1, b2) ⊆ N (B).
Furthermore, by Lemma 4.2.3, for any P, Q ∈ N (B) the line PQ contains V1, hence
V1 ∈ m. This proves (iv).

We can now state and prove the main theorem of this section.

Theorem 4.2.6 ([38, Theorem 3.6]). If the unital U of order q is embedded in PG
(
2, q2)

then it is strongly full point regular.

Proof. Let us assume that U is embedded in PG(2, q2). Let b1, b2 be two disjoint
blocks of U. If |FU(b1, b2)| ≤ 1 then we have nothing to prove. Otherwise, by
Lemma 4.2.5 FU(b1, b2) is contained in a block c, which is disjoint to b1 and b2.
Furthermore, Perspb2

(b1) is cyclic, its order divides q2 − 1 and b1 decomposes into
orbits of equal lengths. This means that (U, b1, b2) is a strongly full point regular
triple.

4.3. Full points of the Hermitian unital

For a prime power q, let ρ be a Hermitian polarity of PG
(
2, q2). Two points P, Q are

said to be conjugate if P ∈ Qρ. Similarly, the lines `, m are conjugate if `ρ ∈ m. Let R+

be the set of pairs (`, m), where `, m are conjugate lines to each other but not self-
conjugate. The projective unitary group PGU(3, q) acts transitively on R+. Given
two conjugate lines `1, `2, one constructs `3 = (`1 ∩ `2)

ρ, conjugate to both `1 and
`2. We say that `1, `2, `3 form a polar triangle. The projective unitary group PGU(3, q)
acts transitively on the set of polar triangles. Consider the set P of self-conjugate
points of ρ; |P| = q3 + 1. The line ` intersects P in 1 or q + 1 points, depending on
whether ` is self-conjugate or not. Let ` be a non self-conjugate line and m be a line
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connecting `ρ and a point P ∈ P ∩ `. Since `ρ ∈ Pρ, we have m = Pρ which must be
a self-conjugate line. This means that (`, `′) ∈ R+ implies that ` ∩ `′ 6∈ P . It follows
that any non self-conjugate line ` is contained in exactly q (q− 1) /2 polar triangles.
For further details and background, see [21, Section 7.3]

The abstract Hermitian unitalH(q) is constructed from the set P of self-conjugate
points of ρ. The subsets cut out by the (q + 1)-secants (not self-conjugate lines) form
the set B of blocks of H(q). Notice that we consider H(q) as an abstract unital,
having a natural embedding in PG

(
2, q2). The following proposition gives a charac-

terization of the conjugate relation in terms of the abstract unital H(q) for q even.

Proposition 4.3.1 ([38, Proposition 4.1]). Let q be even, let ρ be a Hermitian polarity of
PG
(
2, q2) and let P be the set of self-conjugate points of ρ. Let `1, `2 be not self-conjugate

lines and define the blocks bi = `i ∩ P of H(q), i = 1, 2. Then the following hold:

(i) If `1, `2 are conjugate, then FH(q) (b1, b2) = b3, where b3 = `3 ∩ X with `3 =

(`1 ∩ `2)
ρ. In other words, the blocks contained in a polar triangle form an embed-

ded dual 3-net of H(q).
(ii) If `1, `2 are not conjugate then either b1 ∩ b2 6= ∅, or

∣∣∣FH(q) (b1, b2)
∣∣∣ = 1.

Proof.
(i) Up to projective equivalence, we can assume that the matrix of ρ is the identity.

Since the unitary group PGU(3, q) acts transitively on R+, we can assume
`1 : X1 = 0 and `2 : X2 = 0. Then, `1 ∩ `2 = (0, 0, 1) and `3 : X3 = 0. Let ε be a
(q + 1)th root of unity in Fq2 . The elements of bs = `s ∩ X, s = 1, 2, 3, have the
form

Ai =
(

0, 1, εi
)

, Bj =
(

εj, 0, 1
)

, Ck =
(

1, εk, 0
)

,

respectively, with i, j, k = 0, 1, . . . , q. Since the points Ai, Bj, Ck are collinear if
and only if εi+j+k = 1, we see that Ai projects from Ck to B−i−k. In particular,
b3 ⊆ FH(q) (b1, b2), and equality holds by Theorem 4.2.6.

(ii) The case when `1, `2 are not conjugate and b1 ∩ b2 = ∅ was elaborated in [33,
Section 2.2].

Remark 4.3.2. Proposition 4.3.1 shows that for q even, H(q) has embedded dual 3-
nets. More precisely, any block of H(q) is contained in q (q− 1) /2 polar triangles.
The group of automorphisms of H(q) acts transitively on the set of embedded dual
3-nets.

Let ρ0 be a Hermitian polarity of the projective line PG
(
1, q2). The set of self-

conjugate points of ρ0 forms a subline PG(1, q), cf. [21, Lemma 6.2]. Let ` be a line
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of PG
(
2, q2). A Baer subline of ` is subset of size q + 1, consisting of self-conjugate

points of some Hermitian polarity ρ of PG
(
2, q2). Equivalently, a Baer subline S is

isomorphic to PG(1, q), and S = ` ∩Π for some line ` and a Baer subplane Π.

Proposition 4.3.3 ([38, Proposition 4.3]). Let U = (P ,B) be an abstract unital of order
q, embedded in PG

(
2, q2). Let b1, b2, b3 form an embedded dual 3-net. Then b1, b2, b3 are

Baer sublines.

Proof. Let ` be the projective line containing b1. By Theorem 4.2.6, C = Perspb2
(b1) is

a cyclic subgroup of order q+ 1, preserving b1. Since C is obtained using projections
in PG

(
2, q2), it is a subgroup of the projectivity group of `. By the arguments of [33,

Section 3] one shows that b1 is a Baer subline of `.

Remark 4.3.4. Let q be even, and consider an arbitrary embedding of the Hermitian
unital H(q) in PG

(
2, q2). By Remark 4.3.2 and Proposition 4.3.3, all blocks corre-

spond to Baer sublines of PG
(
2, q2). Using the characterization of Hermitian curves

from [13, 36], plus the arguments of [33, Section 3], this observation gives an alter-
native proof of the uniqueness result of [33] in the even q case.

4.4. Full points and dual 3-nets of known small unitals

In this section we present computational results on the structure of full points of
known small unitals. More precisely, we study the following libraries and classes of
abstract unitals of order at most 6:

BBT 909 unitals of order 3 by Betten, Betten and Tonchev [8],
KRC 4466 unitals of order 3 with nontrivial automorphism groups by Krčadinac [34],
P3M 173 unitals obtained as paramodifications of the KRC and BBT unitals,
KNP 1777 unitals of order 4 by Krčadinac, Nakić and Pavčević [35],
P4M 25 641 unitals obtained as paramodifications of the KNP unitals,
BB two cyclic unitals of order 4 and 6 by Bagchi and Bagchi [2].

Notice that KRC contains all abstract unitals of order 3 with a nontrivial automor-
phism group. As mentioned in [34], 722 of the BBT unitals appear in KRC. Moreover,
the cyclic BB unital of order 4 is contained in KNP. The BB unital of order 6 has no
full points (see Listing 4.1), therefore we omit the BB class from the tables of this sec-
tion. We access the libraries of small unitals and carry out the computations using
the GAP4 package UnitalSZ [42].

45



Listing 4.1: The BB unital of order 6 has no full points

1 u := BagchiBagchiCyclicUnital( 6 );;

2 FullPointsOfUnitalRepresentatives( u );

3 ## [ ]

The number of full points and the structure of the group of perspectivities
We only consider disjoint pairs of blocks admitting at least two full points as for only
one full point the perspectivitiy group is trivial. In Tables 4.1 and 4.2 we summarize
the existing number of full points, the structure of the group of perspectivities and
the number of unitals (0s omitted) with such pairs for each library (BBT, KRC, P3M,
KNP and P4M).

Table 4.1.: Full points of unitals of order 3

Full points Group of perspectivities BBT KRC P3M

2 C2 477 1015 41
2 C3 94 379 7
2 C4 290 897 65
3 S4 6

The structure of the full points
The structure of the full points is only interesting when there is at least 3 of them,
hence the BBT unitals are out of our scope. Even the case of 3 full points is simple:
they are either contained in a block or not. As KRC unitals admit at most 3 full
points and none of these “large” full point sets is contained in a block, we are only
interested in the KNP and P4M unitals.

The computation in [42] showed that in the case of the KNP unitals if there are 4
or 5 full points (in the case of disjoint blocks) then either the whole set of full points
is contained in a single block, or no three points are collinear. Now by “collinear”
we mean that the points form a subset of some block of the unital.

The P4M unitals do not show such strict structure regarding their full points.
There are unitals with 4 full points which do not form a subset of any of the blocks,
but 3 of these fullpoints are collinear, see Listing 4.2.

Listing 4.2: P4M unital with 3 collinear full points

1 u := P4MAbstractUnital( 141 );;

2 b1 := [ 9, 35, 46, 53, 60 ];;
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Table 4.2.: Full points of unitals of order 4

Full points Group of perspectivities KNP P4M

2 C2 93 4084
2 C4 71 9737
2 C5 107 17 434
2 C6 5 6724
3 A5 2 4819
3 C2 × C2 1 87
3 C4 32 308
3 C5 30 10 022
3 S5 3 7811
4 C5 8 12 541
5 C5 165 13 968
6 C5o C4 72 1308
6 D10 53 550
3 C5o C4 300
3 D10 107
4 A5 5198
4 C5o C4 125
4 S5 6995
5 A5 472
5 C5o C4 180
5 D10 11
5 S5 12 406
6 S5 154

3 b2 := [ 5, 11, 27, 29, 54 ];;

4 fullpts := FullPointsOfUnitalsBlocks( u, b1, b2 );

5 ## [ 3, 17, 44, 51 ]

6 ForAny( BlocksOfUnital( u ), x -> IsSubset( x, fullpts ) );

7 ## false

8 First( BlocksOfUnital( u ),

9 x -> Length( Intersection( x, fullpts ) ) = 3 );

10 ## [ 1, 17, 44, 51, 63 ]

Also there are unitals with 5 full points which do not form a subset of any of
the blocks (or equivalently, they do not form a block), but 4 of these fullpoints are
collinear (cf. Listing 4.3).
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Listing 4.3: P4M unital with 4 collinear full points

1 u := P4MAbstractUnital( 138 );;

2 b1 := [ 16, 20, 22, 34, 62 ];;

3 b2 := [ 6, 10, 27, 35, 41 ];;

4 fullpts := FullPointsOfUnitalsBlocks( u, b1, b2 );

5 ## [ 5, 30, 37, 42, 61 ]

6 ForAny( BlocksOfUnital( u ), x -> IsSubset( x, fullpts ) );

7 ## false

8 First( BlocksOfUnital( u ),

9 x -> Length( Intersection( x, fullpts ) ) = 4 );

10 ## [ 2, 30, 37, 42, 61 ]

The case of 6 full points is the same in both the KNP and the P4M libraries: either
5 of the full points form a block or no 3 of them are collinear.

Unitals with large full point sets
Let us denote by Ω the subset of unitals with at least one large full point set, that
is, |FU(b1, b2)| ≥ 3 for a pair (b1, b2) of disjoint blocks. We have seen that Ω is
the empty set for BBT unitals. By Table 4.1, |Ω| = 6 for KRC unitals. Hence, the
interesting cases are the KNP and P4M libraries, where the size of Ω is 206 and
18 788, repsectively. In Table 4.3 we present the number of KNP and P4M unitals
with some restrictions on the structure of full points. Clearly A ⊆ B, C ⊆ B and
Ω = B ∪ B.

Table 4.3.: Unitals of order 4 with large full point sets

Set Property KNP P4M

Ω At least one large full point set 206 18 788
A All large full point sets form a block 42 1053
B All large full point sets are contained in a block 80 4191
B Some large full point sets are not contained a block 126 14 597
C No large full point set is contained in a block 1 399

Full point regularity
In Table 4.4 one sees how many of the unitals of the different libraries are full point
regular (FPR) and strongly full point regular (SFPR). In fact, if a unital is not strongly
full point regular then is not embeddable into PG

(
2, q2). Hence 94 BBT unitals, 385

KRC unitals, 7 P3M unitals, 195 KNP unitals and 16 661 P4M unitals are definitely
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not embeddable into PG
(
2, q2). Notice that [3] proves a much stronger result, where

the authors show that there are just two orbits of unitals in PG(2, 16), containing the
Hermitian unitals and Buekenhout–Metz unitals, respectively.

Table 4.4.: Full point regularity

Library Unitals FPR SFPR

BBT 909 815 815
KRC 4466 4081 4081
P3M 173 166 166
KNP 1777 1586 1582
P4M 25 641 9196 8980

Embedded dual 3-nets
By Proposition 4.1.7 (ii), one can find embedded dual 3-nets only among the KNP
or P4M unitals. The computation shows us that among the KNP unitals the latin
squares constructed from the dual 3-nets are always of cyclic type, namely, any
embedded dual 3-net is cyclic. However, there are many P4M unitals admitting a
non-cyclic embedded dual 3-net. As the computation in Listing 4.4 shows, the group
of perspectivities is isomorphic to S5, hence the corresponding embedded dual 3-net
is non-cyclic.

Listing 4.4: Non-cyclic embedded dual 3-net

1 u := P4MAbstractUnital( 137 );;

2 d3nets := EmbeddedDual3NetsOfUnitalRepresentatives( u );;

3 noncyc := First( d3nets, x -> not IsCyclic(

PerspectivityGroupOfUnitalsBlocks( u, x[1], x[2], x[3] ) ) );

4 ## [ [ 1, 2, 3, 4, 5 ], [ 6, 36, 52, 58, 63 ], [ 9, 34, 50, 59, 64 ] ]

5 StructureDescription( PerspectivityGroupOfUnitalsBlocks( u, noncyc[1],

noncyc[2], noncyc[3] ) );

6 ## "S5"
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5. The GAP package UnitalSZ

Computing full points, paramodifications and other properties of unitals elaborated
in Chapters 3 and 4 is not feasible by hand at a certain point: one will eventually
need to use some software for the computation. One popular choice in the fields of
group theory and discrete mathematics is the computer algebra system GAP [14].
Unfortunately, GAP doesn’t have built-in support for unitals, hence the author of
this thesis and his supervisor dr. Gábor Péter Nagy decided to extend GAP with
features related to unitals by developing a GAP package, called UnitalSZ [42] (the
“SZ” stands for Szeged).

The current version of the package is version 0.6, available in a tarball on the
website https://nagygp.github.io/UnitalSZ, and the source code can be found
on GitHub under the GNU General Public License v3.0. The package requires a
GAP version 4.8 or higher, and the GAP packages GAPDoc, Digraphs and IO to be
installed.

This chapter demonstrates the features of the package and outlines some imple-
mented algorithms.

5.1. Abstract unitals

This section presents how one can create a unital object using the package UnitalSZ
via boolean and incidence matrices and via the list of blocks. Methods computing
some basic properties of a unital are also implemented, e.g. the points, the list of
blocks, the automorphism group of the unital, and one may check whether to unitals
are isomorporphic or not.

AbstractUnitalByBlistList
The function AbstractUnitalByBlistList( bmat ) returns a unital object corre-
sponding to the list of boolean lists bmat. The argument bmat is fundamentally the
transposed incidence matrix M> (cf. Definition 2.1.2) of size b× v, where b and v
denotes the number of blocks and points, respectively.
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The function returns with an error, if the size of bmat is incorrect, namely by
Theorem 2.1.5

b = n2 (n2 − n + 1
)

v = n3 + 1.
(5.1)

The function checks whether the incidence structure corresponding to the argument
is a unital, namely a 2-

(
n3 + 1, n + 1, 1

)
design (n ≥ 3) or not. Algorithm 5.1 shows

how this check is implemented. The function stores bmat and sets the order of the
unital to n.

Algorithm 5.1 Checking wether the given incidence structure is a unital or not

Input: boolean matrix M> of size b× v as in (5.1)
Output: boolean value true or false

1: procedure AxiomCheck(M>)
2: n← wt

(
M>

1·
)
− 1 . wt

(
M>

1·
)

is the number of trues in the first row.
3: if ∃j ∈ {1, . . . , b} : wt

(
M>

j,·

)
6= n + 1 then

4: return false

5: M←
(
M>)>

6: for i ∈
{

1, . . . , n3} do
7: for j ∈

{
i + 1, . . . , n3 + 1

}
do

8: if wt
(
Mi· ∧Mj·

)
6= 1 then . ∧ denotes the element-wise “and”

9: return false

10: return true

AbstractUnitalByDesignBlocks

The function AbstractUnitalByDesignBlocks( blocklist ) returns a unital corre-
sponding to the list of blocks blocklist. The function creates the transpose of the
boolean incidence matrix bmat based on the given list of blocks, and performs the
same check as AbstractUnitalByBlistList. It also stores bmat, sets the order of the
unital to n.

AbstractUnitalByIncidenceMatrix

The function AbstractUnitalByIncidenceMatrix( incmat ) returns a unital corre-
sponding to the b× v 0-1 incidence matrix incmat. The function creates bmat based
on the given incidence matrix, and performs the same check as the previous func-
tions. It also stores bmat and sets the order of the unital to n.
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Methods for abstract unitals
There are several methods implemented for unitals for getting the points, blocks,
incidence graph, etc. of a unital of order n.

Order Returns the order n of the unital.
PointsOfUnital Returns the list [ 1 .. n^3 + 1 ].
BlocksOfUnital Returns the list of the blocks of the unital, each block represented

by a list of length n + 1.
IncidenceDigraph Returns the bipartite directed graph constructed from the boolean

incidence matrix bmat of the unital.
AutomorphismGroup Returns the automorphism group of the unital computed with

the help of its incidence directed graph.
Isomorphism Returns an isomorphism between two unitals if they are isomorphic,

and fail otherwise. The isomorphism is a permutation which sends the points
of a unital U1 to the points of an other unital U2 such that the it preserves
the incidence between the points and the blocks. The function computes the
isomorphism with the help of the incidence directed graphs of the unitals U1

and U2.

Listing 5.1: Examples of several methods for abstract unitals

1 LoadPackage( "UnitalSZ", false );

2 u := HermitianAbstractUnital( 3 );;

3 Order( u );

4 ## 3

5 PointsOfUnital( u );

6 ## [ 1 .. 28 ]

7 BlocksOfUnital( u ){[1..3]}; # The first 3 blocks

8 ## [ [ 1, 2, 17, 22 ], [ 1, 3, 9, 12 ], [ 1, 4, 14, 18 ] ]

9 IncidenceDigraph( u );

10 ## <immutable digraph with 91 vertices, 252 edges>

11 AutomorphismGroup( u );

12 ## <permutation group with 5 generators>

13 Isomorphism( BBTAbstractUnital(9), KrcadinacAbstractUnital(675) );

14 ## (1,4)(5,27,15,21,25,7,18,26,12,22,13,20,24,16,19,14)(6,10,17,23,11)

(8,9,28)
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5.2. Libraries and classes of abstract unitals

In this section we review most of the commands about the available classes and
libraries of unitals in the package. On a better notebook the following constructions
work up to order 16, for instance the construction of the Hermitian unital of order
16 takes approximately 3 minutes.

HermitianAbstractUnital
The function HermitianAbstractUnital( q ) returns the classical unital, which is
the abstract unital of order q isomorphic to the Hermitian curve in the classical
projective plane. The Hermitian curve has the canonical equation: Xq+1

0 + Xq+1
1 +

Xq+1
2 = 0. The function computes the blocks of the unital with the help of PGU(3, q)

as shown in Algorithm 5.2.

Recall from classical group theory, that the group PGU(3, q) acts transitively on
the points of the Hermitian curve H and transitively on the points of PG

(
2, q2) \ H.

For further details, see [5, Section 1.5].

Algorithm 5.2 Constructing the classical (Hermitian) unital
Input: order q ≥ 3
Output: unital object isomorphic to the classical unital of order q

1: procedure HermitianAbstractUnital(q)
2: P ←

{
1, 2, · · · , q3 + 1

}
3: H ← the orbit under PGU(3, q) of length q3 + 1
4: G ← Action(PGU(3, q), H) . G is a permutation group of P
5: Gstab. ← the stabilizer of the pair (1, 2) in PGU(3, q)
6: β0 ← the orbit under Gstab. of length q− 1
7: β← {1, 2} ∪ β0

8: B ← the orbit of β under G
9: return AbstractUnitalByDesignBlocks(B)

AllBuekenhoutMetzAbstractUnitalParameters
The function AllBuekenhoutMetzAbstractUnitalParameters( q ) returns all the
pairs of parameters over GF

(
q2) which yield non-isomorphic (orthogonal) Bueke-

nhout–Metz unitals of order q. The argument q must be a prime power (if even, then
at least 4).

If q is an odd prime power and (α, β) is 2-tuple of GF
(
q2), then this pair is a

suitable parameter of an orthogonal Buekenhout–Metz unital, if (βq − β)2 + 4αq+1
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is a nonsquare in GF(q).
If q is an even prime power and (α, β) is 2-tuple of GF

(
q2), then this pair is a

suitable parameter of an orthogonal Buekenhout-Metz unital, if β 6∈ GF(q) and
αq+1/ (βq + β)2 has absolute trace 0.

In both cases α = 0 yields the Hermitian classical unital, hence we omit the
tuples with α = 0. For further details on the parameters and the conditions of
non-isomorphic (in the sense of the resulting unitals) parameter pairs, we refer the
reader to [5, Section 4.2].

OrthogonalBuekenhoutMetzAbstractUnital
The function OrthogonalBuekenhoutMetzAbstractUnital( q, alpha, beta ) returns
the unital object, which is the abstract unital of order q isomorphic to the orthogonal
Buekenhout-Metz unital with parameters α and β in the classical projective plane.

The argument q must be a prime power (if even, then at least 4), the other ar-
guments α and β, elements of GF

(
q2), must be one of the pairs returned by the

function computing the parameter pairs described above.

The point set

Uα,β =
{(

x, αx2 + βxq+1 + r, 1
)}
∪ {(0, 1, 0)} , x ∈ GF

(
q2), r ∈ GF(q)

in PG
(
2, q2) is a unital (called the orthogonal Buekenhout-Metz unital, cf. [5, Theo-

rem 4.8]) if the pair of parameters (α, β) satisfies the requirements mentioned earlier.

The construction of a Buekenhout–Metz unital (including its blocks) is shown in
Algorithm 5.3. We use the fact, that if a line of PG

(
2, q2) meets Uα,β in q + 1 points,

this set of forms a block of the abstract unital. How can we enumerate all the lines of
PG
(
2, q2)? By somehow “normalizing” the homogeneous coordinates of the lines,

for example

{(0, 0, 1)} ∪
{
(1, 0, γ) : γ ∈ GF

(
q2)} ∪ {(γ, 1, δ) : γ, δ ∈ GF

(
q2)} .

It is easy to see, that every homogeneous triple corresponds to a different line, and
the number of lines enumerated is 1 + q2 + q4, which is the number of lines in
PG
(
2, q2), indeed. Note that, the line (0, 0, 1) meets Uα,β in only 1 point, (0, 1, 0).

BuekenhoutTitsAbstractUnital
The function BuekenhoutTitsAbstractUnital( q ) returns the unital object, which
is the abstract unital of order q isomorphic to the Buekenhout–Tits unital in the
classical projective plane.
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Algorithm 5.3 Constructing orthogonal Buekenhout–Metz unitals
Input: order q ≥ 3, if even, then q ≥ 4; α, β appropriate parameters
Output: unital object isomorphic to Uα,β

1: procedure OrthogonalBuekenhoutMetzAbstractUnital(q, α, β)
2: P ←

{(
x, αx2 + βxq+1 + r, 1

)
: x ∈ GF

(
q2), r ∈ GF(q)

}
∪ {(0, 1, 0)}

3: B ← ∅
4: for γ ∈ GF

(
q2) do

5: u← (1, 0, γ) . Homogeneous coordinates of a line
6: β←

{
x ∈ P : xu> = 0

}
7: if |β| = q + 1 then
8: B ← B ∪ {β}
9: for (γ, δ) ∈ GF

(
q2)×GF

(
q2) do

10: u← (γ, 1, δ)
11: β←

{
x ∈ P : xu> = 0

}
12: if |β| = q + 1 then
13: B ← B ∪ {β}
14: return AbstractUnitalByDesignBlocks(B)

The argument q must be a power of 2, such that the exponent is an odd integer at
least 3. The point set

UT =
{(

x0 + x1δ, y0 +
(
xτ+2

0 + xτ
1 + x0x1

)
δ, 1
)

: x0, x1, y0 ∈ GF(q)
}
∪ {(0, 1, 0)}

in PG
(
2, q2) is a unital (called the Buekenhout–Tits unital, cf. [5, Subsection 4.2.2])

if δ ∈ GF
(
q2) \GF(4) and δq = 1 + δ. This δ is just a basis element along with 1 in

GF
(
q2) over GF(q), hence we can omit it as a parameter. The function τ : GF(q) →

GF(q) assigns to the field element x the following: x 7→ x2
k+1

2 , where q = 2k.

The construction of the blocks of the unital is the same as for the Buekenhout–
Metz unitals outlined in Algorithm 5.3. Note that, the line (0, 0, 1) meets UT in only
1 point, (0, 1, 0).

BagchiBagchiCyclicUnital

The function BagchiBagchiCyclicUnital( n ) returns u unital object of order n,
with a cyclic automorphism group acting on the points. The cyclic unital of order
six is due to Bagchi and Bagchi [2].

The construction method needs a positive integer n such that n + 1 and n2− n + 1
are primes. For n ≤ 20, only the parameters n = 4 and n = 6 yield an abstract
unital.
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Libraries
The package UnitalSZ contains the following libraries of abstract unitals:

BBT 909 unitals of order 3 by Betten, Betten and Tonchev [8].
Krčadinac 4466 unitals of order 3 with nontrivial automorphism groups by Krčadi-

nac [34]. 722 of the BBT unitals appear in this class.
P3M 173 unitals of order 3, constructed by paramodification (see Section 3.5 and

[39]) from the BBT and Krčadinac libraries.
KNP 1777 unitals of order 4 by Krčadinac, Nakić and Pavčević [35].
P4M 25 641 unitals of order 4, constructed by paramodification (see [39]) from the

KNP library.
SL28inv 6 SL(2, 8)-invariant unitals of order 8 with many translation centers, con-

structed by Möhler [40] using the method by Grundhöfer, Stroppel and Van Mal-
deghem [19] described in Section 3.3.

There are other functions regarding the libraries as well:
• DisplayUnitalLibraryInfo() prints the information about the available li-

braries of unitals, while
• NumberOfAbstractUnitalsInLibrary( name ) returns the number of abstract

unitals in the library name.
In Listing 5.2 there are examples of the usage of the commands described in this
section.

Listing 5.2: Example commands regarding the available classes and libraries

1 params := AllBuekenhoutMetzAbstractUnitalParameters( 5 );

2 ## [ [ Z(5^2)^23, Z(5)^3 ], [ Z(5^2)^22, Z(5^2)^23 ] ]

3 OrthogonalBuekenhoutMetzAbstractUnital( 5, params[2][1], params[2][2] );

4 ## OrthogonalBuekenhoutMetzAbstractUnital(5,Z(5^2)^22,Z(5^2)^23)

5 BuekenhoutTitsAbstractUnital( 8 );

6 ## BuekenhoutTitsAbstractUnital(8)

7 BBTAbstractUnital( 349 );

8 ## BBTAbstractUnital(349)

9 P4MAbstractUnital( 24798 );

10 ## P4MAbstractUnital(24798)

11 SL28InvariantAbstractUnital( 5 );

12 ## SL28InvariantAbstractUnital(5)

13 NumberOfAbstractUnitalsInLibrary( "P4M" );

14 ## 25641
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5.3. Full points and perspectivities

This section describes the built-in commands of the package regarding full points
of unitals.

FullPointsOfUnitalsBlocks
The function FullPointsOfUnitalsBlocks( u, b1, b2 ) returns the list full point
of u w.r.t. the blocks b1, b2. The arguments b1, b2 are either blocks of the unital, or
indices of blocks in BlocksOfUnital( u ).

As defined in [33] by Korchmáros, Siciliano and Szőnyi, the point P is a full point
of the unital U w.r.t. the blocks b1, b2 if P is not contained in b1 or b2, and, the pro-
jection with center P from b1 to b2 is a well-defined bijection. Algorithm 5.4 shows
how to compute full points for a pair of blocks (not indices). In the implementation
we check, if the arguments b1 and b2 are valid distinct blocks or indices of the unital
U. Note, that the blocks may intersect.

Algorithm 5.4 Computing full points of a pair of blocks
Input: unital U and blocks b1, b2 blocks of U
Output: full points of U w.r.t the blocks b1 and b2

1: procedure FullPointsOfUnitalsBlocks(U, b1, b2)
2: P ← PointsOfUnital(U)
3: B ← BlocksOfUnital(U)
4: P0 ← {P ∈ P : P 6∈ b1 ∪ b2}
5: FU(b1, b2)← ∅
6: for P ∈ P0 do
7: BP ← {b ∈ B : P ∈ b and |b ∩ b1| > 0}
8: b̂2 ←

⋃
b∈BP

b ∩ b2

9: if b̂2 = b2 then
10: FU(b1, b2)← FU(b1, b2) ∪ {P}
11: return FU(b1, b2)

FullPointsOfUnitalRepresentatives
The function FullPointsOfUnitalRepresentatives( u ) returns a list of records r

containing the fields r.block1, r.block2, r.fullpts, where r.fullpts is the set of
full points of u w.r.t. the blocks r.block1, r.block2.

The returned list contains all possible full points of u up to the automorphism
group of u. That is, if P is a full point w.r.t. the blocks b1, b2, then there is an
automorphism α of U such that Pα, bα

1 , bα
2 are in the list. The computation of the
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block pairs up to the automorphism group of the unital is outlined in Algorithm 5.5.

Algorithm 5.5 Computing full points of a unital up to its automorphism group
Input: unital U
Output: a record consisting of the list of full points, and the corresponding blocks

1: procedure FullPointsOfUnitalRepresentatives(U)
2: B ← BlocksOfUnital(U) . B =

{
b1, b2, . . . , b|B|

}
3: G ← Action(Aut(U), B) . G is a permutation group of {1, 2, . . . , |B|}
4: Brep. ← {min o : o is an orbit of G} . Block representatives (indices)
5: Bpairs ← ∅
6: for i ∈ Brep. do
7: O← {min o : o is an orbit of the stabilizer of i in G}
8: Bpairs ← Bpairs ∪ {(i, j) : j ∈ O, i < j}
9: FU ← ∅

10: for (i, j) ∈ Bpairs do
11: r ← EmptyRecord

12: r.Block1 ← bi
13: r.Block2 ← bj
14: r.FullPoints← FullPointsOfUnitalsBlocks(U, bi, bj)
15: FU ← FU ∪ {r}
16: return FU

PerspectivityGroupOfUnitalsBlocks
The function PerspectivityGroupOfUnitalsBlocks( u, b1, b2 ) returns the group
generated by perspectivies from block b1 to block b2 of the unital u. Notice that the
returned group consists of permutations of {1, 2, . . . , n}, where n is the order of the
unital.

A list of full points can be given as the fourth argument. It is not checked if the
elements of the given list of full points are indeed full points. Perspectivities between
blocks b1, b2 of an abstract unital U are projections from b1 to b2 from a center P.
In order to the perspectivity be well-defined, P must be a full point w.r.t. b1, b2. A
method to compute the group of perspectivities (cf. Definition 4.1.4) is presented in
Algorithm 5.6. For examples of the previous commands, see Listing 5.3.

EmbeddedDual3NetsOfUnitalRepresentatives
The function EmbeddedDual3NetsOfUnitalRepresentatives( u ) returns a list of
lists each having the form [ b1, b2, b3 ], where b1, b2, b3 are three blocks of the
unital u forming an embedded dual 3-net. The returned list contains all possible
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Algorithm 5.6 Computing the perspectivity group of two blocks
Input: unital U and two distinct blocks b1 and b2 of U
Output: the group of perspectivities of b1 w.r.t. b2

1: procedure PerspectivityGroupOfUnitalsBlocks(U, b1, b2)
2: FU(b1, b2)← FullPointsOfUnitalsBlocks(U, b1, b2)
3: P0 ← an arbitrary element of FU(b1, b2)
4: (Q1, Q2, . . . Qn+1)← the ordered points of b1 . n is the order of U
5: for i ∈ {1, 2, . . . , n + 1} do
6: βi ← the unique block connecting P0 and Qi
7: Ri ← βi ∩ b2 . The image of Qi

8: G ← ∅
9: for P ∈ FU(b1, b2) do

10: for i ∈ {1, 2, . . . , n + 1} do
11: γi ← the unique block connecting P and Ri
12: Q′i ← γi ∩ b1 . The image of Ri

13: π ←
(
(Q1, Q2, . . . Qn+1) 7→

(
Q′1, Q′2, . . . , Q′n+1

))
. A permutation of b1

14: G ← G ∪ {π}
15: Perspb2

(b1)← 〈G〉
16: return Perspb2

(b1)

Listing 5.3: Examples of full point related commands

1 u := KNPAbstractUnital( 1421 );;

2 B := BlocksOfUnital( u );;

3 FullPointsOfUnitalsBlocks( u, B[77], B[180] );

4 ## [ 13, 44, 45, 48, 60, 63 ]

5 Length( FullPointsOfUnitalRepresentatives( u ) );

6 ## 35

7 persp := PerspectivityGroupOfUnitalsBlocks( u, B[77], B[180] );;

8 StructureDescription( persp );

9 ## "C5 : C4"

embedded dual 3-nets of u up to the automorphism group of u. That is, if the blocks
b1, b2, b3 form an embedded dual 3-net, then there is an automorphism α of U such
that bα

1 , bα
2 , bα

3 are in the list. Algorithm 5.7 shows how the computation of embedded
dual 3-nets (cf. Definition 4.1.5) is implemented.

LatinSquareOfEmbeddedDual3Net
The function LatinSquareOfEmbeddedDual3Net( u, ed3net ) returns a latin square
associated to the embedded dual 3-net ed3net of the unital u. For the definition of
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Algorithm 5.7 Computing the embedded dual 3-nets of a unital
Input: unital U
Output: the list of embedded dual 3-nets up to the automorphism group of U

1: procedure EmbeddedDual3NetsOfUnitalRepresentatives(U)
2: FU ← FullPointsOfUnitalRepresentatives(U)
3: B ← BlocksOfUnital(U)
4: F′U ← {r ∈ FU : ∃b ∈ B such that b ⊆ r.FullPoints}
5: D3 ← ∅
6: for r ∈ F′U do
7: B0 ← {b ∈ B : b ⊆ r.FullPoints}
8: for b ∈ B0 do
9: d3 ← {r.Block1, r.Block2, b}

10: D3 ← D3 ∪ {d3}
11: return D3

a latin square associated to an embedded dual 3-net, see Section 4.1. The returned
latin square is “normalized” in the sense, that the values in the first row and column
are in ascending order. For examples of embedded dual 3-nets and the correspond-
ing latin squares, see Listing 5.4.

Listing 5.4: Computing the latin square of an embedded dual 3-net

1 u := HermitianAbstractUnital(4);;

2 ed3net := EmbeddedDual3NetsOfUnitalRepresentatives( u );

3 ## [ [ [ 1, 2, 55, 64, 65 ], [ 3, 5, 10, 39, 59 ], [ 30, 31, 35, 46, 48

] ] ]

4 Display( LatinSquareOfEmbeddedDual3Net( u, ed3net[1] ) );

5 ## [ [ 1, 2, 3, 4, 5 ],

6 ## [ 2, 4, 1, 5, 3 ],

7 ## [ 3, 1, 5, 2, 4 ],

8 ## [ 4, 5, 2, 3, 1 ],

9 ## [ 5, 3, 4, 1, 2 ] ]

IsFullPointRegularUnital
The function IsFullPointRegularUnital( u ) returns the boolean true if the unital
u is full point regular (cf. Definition 4.1.3), false otherwise.

IsStronglyFullPointRegularUnital
The function IsStronglyFullPointRegularUnital( u ) returns the boolean true

if the unital u is strongly full point regular (cf. Definition 4.2.1), false otherwise.
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Listing 5.5 shows a unital wich is full point regular, but not strongly full point
regular.

Listing 5.5: Ful point regularity of a unital

1 u := KNPAbstractUnital( 17 );;

2 IsFullPointRegularUnital( u );

3 ## true

4 IsStronglyFullPointRegularUnital( u );

5 ## false
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6. Summary

6.1. Summary

In this thesis mainly abstract unitals, their embeddability into the classical projective
plane using their full points, and creating new unitals via paramodifications are
considered. Chapter 1 serves as an introduction: it outlines the structure of the
thesis.

In Chapter 2 we introduce concepts and present some results necessary for better
understanding of the notion of full points and paramodifications of unitals. Namely,
in Section 2.1 we define incidence structures on points and blocks, the correspond-
ing incidence matrix, and an important type of these structures, the t-(v, k, λ) de-
signs or Steiner systems Sλ(t, k, v). A partition of the set of blocks into parallel
classes will be called a resolution, and resolvable designs play an essential role in the
existence of paramodifications. We cover the necessary preliminary material about
projective planes and polarities in Section 2.2. Unitary polarities lead us to Hermi-
tian curves in PG

(
2, q2), and using their combinatorial properties we define abstract

unitals of order n as 2-
(
n3 + 1, n + 1, 1

)
designs. Section 2.3 gives the definition of

semidirect products of groups, while Section 2.4 introduces the 1-dimensional affine
group AGL(1, q) as a semidirect product, and classifies the subgroups of AGL(1, q)
in the context of the intersection with the normal subgroup of translations.

Chapter 3 is based on the paper New Steiner 2-designs from old ones by paramodifi-
cations by Mezőfi and Nagy [39]. In Section 3.1 we show that a t-(v, k, λ) design D
is resolvable if and only if it is block r-colorable (cf. Lemma 3.1.1), where r denotes
the number of blocks incident with an arbitrary point of the design. For a fixed
block b we define the subsystem Db, which is a resolvable 1-(v− k, k− 1, k) design,
see Lemma 3.1.2.

From now on, let us assume that t = 2 and λ = 1. Let χ be a block k-coloring of the
subsystem Db and modify the original 2-(v, k, 1) design D only in Db according to
the coloring χ, resulting a design D∗, called a paramodification of D. Theorem 3.1.4
states that D∗ is also 2-(v, k, 1) design.
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Section 3.2 describes the effect of a paramodification on the incidence matrix of
the 2-(v, k, 1) design D. We prove in Proposition 3.2.1 that the incidence matrices of
D and D∗ differ at most in a k× k (r− 1) submatrix. It is also shown, that switchings
as defined in [44], are special cases of paramodifications, see Proposition 3.2.2. In
a 2-(v, k, 1) design, a Pasch configuration consists of six points P1, . . . , P6 such that
the triples {P1, P3, P4}, {P1, P5, P6}, {P2, P3, P5}, {P2, P4, P6} are collinear. The design
is anti-Pasch if it does not contain any Pasch configuration. Proposition 3.2.3 claims,
that no switching can be carried out for the anti-Pasch Steiner 2-design if the number
of points v is below a certain bound.

Section 3.3 discusses the paramodification of certain well-known classes of Steiner
2-designs, e.g. it is shown in Proposition 3.3.1 that paramodifications of a finite pro-
jective plane are isomorphic. We also examine Steiner triples systems, i.e. 2-(v, 3, 1)
designs, denoted by STS(v), and the problem of the existence of para-rigid Steiner
triple systems is stated. Unitals with many translation centers constructed by Grund-
höfer, Stroppel and Van Maldeghem [19] are discussed (only in the finite case), as the
idea of the paramodification of Steiner 2-designs has been motivated by their con-
struction. We close the section with Proposition 3.3.4, which states that Hermitian
unitals do not admit any switchings, but they do admit nontrivial paramodifica-
tions.

In Section 3.4 some methods to compute block colorings of a subsystem Db are
presented. We are interested in the computation of all block colorings of in order
to construct new Steiner 2-designs by paramodification. We define the line graph Γ
of the subsystem Db, and according to Lemma 3.4.2, proper block k-colorings of Db

are essentially k-colorings of Γ. One way to compute all k-colorings of Γ is to find all
solutions of a set cover problem of independent K-sets, where K = (v− k) / (k− 1).
Using the GRAPE package [46] of GAP [14] this approach is easy to implement.
There are many ways to give the integer linear programming (ILP) formulation
of a graph coloring problem. The assignment-based model [26, Subsection 2.2] is
the standard formulation of the vertex coloring problem, while there are other ap-
proaches as well, based on partial ordering, like POP and POP2 [26, Section 3].

Section 3.5 presents computational results on paramodifications of known small
unitals (of order up to 6). This way we construct 173 new unitals of order 3, and
25 712 new unitals of order 4. We introduce the concept of paramodification graph
Ψn: for a given order n consisting of vertices for each equivalence class of unitals of
order n and with edges between two vertices whenever one can get from one equiv-
alence class to the other via a paramodification. The connected components of the
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paramodification graph are called paramodification classes analogously to switch-
ing classes in [44]. As switches are special cases of paramodifications, the switching
graph is a subgraph of the paramodification graph. Computations were carried out
to determine the paramodification classes of Ψ3 and Ψ4, containing at least one uni-
tal from the libraries BBT, KRC or KNP. For the case of order 3, we found all such
classes, namely this subgraph of Ψ3 is complete in the sense that all paramodifi-
cations of all vertices are known. In the case of order 4 the graph is incomplete as
it has unfinished vertices; these are unitals whose paramodifications have not been
computed yet. Four classes are incomplete (see the starred entries in Table 3.1), with
12 484 unfinished vertices in total. Further data on the paramodification of unitals
are available on the web page https://davidmezofi.github.io/unitals/.

In Chapter 4 the results of the paper On the geometry of full points of abstract unitals
by Mezőfi and Nagy [38] are presented. In Section 4.1 we define full points, full
point regularity, group of perspectivities, and embedded dual k-nets of unitals. The
upper bounds n2− 1 and n2− n on the number of full points are proved depending
on whether the two blocks are disjoint or not, respectively. We also prove, that a
unital of order n can have at most embedded dual (n− 1)-nets, which yields that
any full point set contains at most n− 3 blocks. At the end of this section we show
that embedded dual 3-nets can be viewed as latin squares.

The aim of Section 4.2 is to prove that any embedded unital of order q into the
classical projective plane PG

(
2, q2) is strongly full point regular (cf. Theorem 4.2.6).

In order to do so, we need several lemmas and results from [32].

In Section 4.3 we show that for an even prime power q, the blocks of the Her-
mitian unital H(q) contained in a polar triangle form an embedded dual 3-net,
cf. Proposition 4.3.1. Another proposition proven about an arbitrary unital embed-
ded into PG

(
2, q2) is that if three blocks form an embedded dual 3-net, then they

are Baer-sublines in PG
(
2, q2), see Proposition 4.3.3.

Section 4.4 presents computational results on the structure of full points of known
small unitals, e.g. that the cyclic unital of order 6 by Bagchi and Bagchi [2] has no full
points at all. The number of unitals of order 3 and 4 according to the he number of
full points and to the structure of the group of perspectivities are shown in Tables 4.1
and 4.2. The number of (strongly) full point regular unitals in the examined libraries
are shown in Table 4.4. Note that unitals which are not strongly full point regular
cannot be embedded into PG

(
2, q2).

In Chapter 5 the features of the GAP package UnitalSZ [42] developed by the au-
thor of the thesis and his supervisor dr. Gábor Péter Nagy are presented, along with
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some implemented algorithms. The current version of the package is version 0.6,
and it is available in a tarball on the website https://nagygp.github.io/UnitalSZ,
and the source code can be found on GitHub. Throughout the chapter there are
example GAP code snippets to illustrate the described functions.

Section 5.1 presents how one can create a unital object using the package UnitalSZ
via boolean and incidence matrices and via the list of blocks. Algorithm 5.1 shows,
how the check of the conditions is implemented in the package. Methods computing
some basic properties of a unital are also demonstrated, e.g. the points, the list of
blocks, the automorphism group of the unital, and one may check whether to uni-
tals are isomorporphic or not. In Section 5.2 the commands regarding the available
classes and libraries of unitals in the package are shown. Algorithms 5.2 and 5.3
illustrate how the construction of Hermitian unitals and Buekenhout–Metz unitals
are implemented in the package.

In Section 5.3 we describe the commands regarding full points of unitals: one can
compute the full points of a unital U with respect to the distinct blocks b1 and b2, and
not just the full points, but the group of perspectivities as well, see Algorithms 5.4
and 5.6. Algorithm 5.5 shows how the computation of all full points of a unital U
up to the automorphism group of U are implemented in the package. The functions
for determining the embedded dual 3-nets, and the (strong) full point regularity of
a unital are also presented.

6.2. Összefoglaló

A disszertáció főként absztrakt unitálokat, ezeknek a klasszikus projektív síkba való
beágyazhatóságát, valamint ún. paramodifikációk segítségével új unitálok keresését
tárgyalja. A 4. fejezet bevezetésként szolgál: vázolja a disszertáció szerkezetét.

A 2. fejezetben az unitálok teljes pontjainak és paramodifikációiknak mélyebb
megértéséhez elengedhetetlen fogalmakat és állításokat írjuk le. A 2.1. szakaszban
definiáljuk az illeszkedési struktúra fogalmát, ezek illeszkedési mátrixát, illetve az
illeszkedési struktúrák egy fontos típusát, a t-(v, k, λ) dizájnokat vagy Sλ(t, k, v)
Steiner-rendszereket. Ha egy dizájn blokkhalmaza párhuzamossági osztályokra par-
tícionálható, akkor feloldhatónak nevezzük: ezek a dizájnok fontos szerepet ját-
szanak a paramodifikációk létezésében. A projektív síkok és polaritások szüksé-
ges előismereteit a 2.2. szakaszban tárgyaljuk. Az unitér polaritások vezetnek a
PG
(
2, q2)-beli Hermite-görbékhez, és ezen görbék kombinatorikus tulajdonságaik

alapján definiáljuk az n-edrendű absztrakt unitálokat 2-
(
n3 + 1, n + 1, 1

)
dizájnok-
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ként. A 2.3. szakaszban adjuk meg a csoportok szemidirekt szorzatának definícióját,
míg a 2.4. szakasz vezeti be az 1-dimenziós affin csoport, AGL(1, q) fogalmát mint
szemidirekt szorzatot, és osztályozza AGL(1, q) részcsoportjait a transzlációk nor-
málosztójával vett metszetük szerint.

A 3. fejezet Mezőfi és Nagy New Steiner 2-designs from old ones by paramodifica-
tions c. dolgozatán alapul. A 3.1. szakaszban megmutatjuk, hogy egy t-(v, k, λ) di-
zájn akkor és csak akkor feloldható, ha r-blokkszínezhető (vö. 3.1.1. Lemma), ahol
r egy tetszőleges pontra illeszkedő blokkok számát jelöli. Egy rögzített b blokk ese-
tén definiáljuk a Db részrendszert, amely egy feloldható 1-(v− k, k− 1, k) dizájn,
ld. 3.1.2. Lemma.

A továbbiakban tegyük fel, hogy t = 2 és λ = 1. Legyen χ egy k-blokkszínezése
a Db részrendszernek, és módosítsuk az eredeti 2-(v, k, 1) dizájnt, D-t, a Db rész-
rendszerben a χ színezés szerint: a keletkező új D∗ dizájnt D paramodifikációjának
nevezzük. A 3.1.4. Tétel állítása szerint D∗ is egy 2-(v, k, 1) dizájn.

A 3.2. szakasz a paramodifikáció hatását írja le a 2-(v, k, 1) dizájn illeszkedési
mátrixán. A 3.2.1. Állításban bizonyítjuk, hogy D és D∗ illeszkedési mátrixai egy
legfeljebb k × k (r− 1) részmátrixban különböznek. Megmutatjuk, hogy a [44]-ben
definiált ún. switchingek a paramodifikációk speciális esetei, ld. 3.2.2. Állítás. Egy
2-(v, k, 1) dizájnban egy Pasch-konfiguráció hat pontból áll (P1, . . . , P6) úgy, hogy a
{P1, P3, P4}, {P1, P5, P6}, {P2, P3, P5}, {P2, P4, P6} hármasok kollineárisak. Egy dizájnt
anti-Paschnak nevezünk, ha nem található benn Pasch-konfiguráció. A 3.2.3. Állí-
tás szerint egy anti-Pasch Steiner-féle 2-dizájnon nem végezhető el switching, ha a
pontok száma v egy bizony felső korlát alatt van.

A 3.3. szakasz jól ismert Steiner-féle 2-dizájnok paramodifikációit tárgyalja, példá-
ul a 3.3.1. Állítás szerint véges projektív síkok paramodifikációi izomorfak. Steiner-
rendszereket, azaz 2-(v, 3, 1) dizájnokat, jelölésben STS(v), is vizsgálunk, és meg-
fogalmazzuk a para-rigid Steiner-rendszerek létezésének problémáját. Grundhöfer,
Stroppel és Van Maldeghem sok transzlációs középponttal rendelkező unitáljait is
elemezzük (csak véges esetben), mivel a paramodifikáció ötletét az ő konstrukciójuk
motiválta. A szakaszt a 3.3.4. Állítással zárjuk, miszerint a Hermite-féle unitálokon
nem lehet switchinget végrehajtani, azonban létezik nem triviális paramodifikáció-
juk.

A 3.4. szakaszban a Db részrendszer blokkszínezéseinek meghatározásához mu-
tatunk be különböző módszereket. Új Steiner-féle 2-dizájnok konstruálásához pa-
ramodifikáció segítségével az összes blokkszínezés megtalálásában vagyunk érde-
keltek. Definiáljuk a Db részrendszer Γ vonalgráfját, és a 3.4.2. Lemma szerint Db
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jó k-blokkszínezései lényegében Γ jó k-színezéseinek feleltethetők meg. A Γ gráf
k-színezései egy halmazfedési feladat megoldásai független K-halmazokkal, ahol
K = (v− k) / (k− 1).

A GRAPE [46] GAP-csomag [14] segítségével ez módszer könnyen implementál-
ható. A gráfszínezési probléma felírható egészértékű programozási (integer linear
programming, ILP) feladatként is. A hozzárendeléses modell [26, 2.2. alszakasz] a
standard megfogalmazása a csúcsszínezési problémának, de vannak más megkö-
zelítések is, például a POP és a POP2 [26, 3. szakasz], melyek részbenrendezésen
alapulnak.

A 3.5. szakasz ismert kis unitálok (legfeljebb 6-odrendű) paramodifikációira vo-
natkozó számítási eredményeket mutat be. Ezzel a módszerrel 173 új 3-adrendű uni-
tált és 25 712 új 4-edrendű unitált konstruáltunk. Bevezetjük a Ψn paramodifikációs
gráf fogalmát: adott n rend esetén a gráf csúcsai n-edrendű unitálok ekvivalencia-
osztályai, és két csúcsot éllel kötünk össze, ha az egyik ekvivalenciaosztályból meg-
kapható a másik paramodifikációval. A paramodifikációs gráf összefüggő kompo-
nenseit paramodifikáció-osztályoknak nevezzük a switching osztályok [44] mintájá-
ra. Mivel a switch-ek a paramodifikációk speciális esetei, a switching gráf a paramo-
difikációs gráf részgráfja. Számításokat végeztünk Ψ3 és Ψ4 azon paramodifikáció-
osztályainak meghatározására, amelyek legalább egy unitált tartalmaznak a BBT,
KRC vagy KNP könyvtárak valamelyikéből. A 3-adrendű esetben megtaláltuk az
összes paramodifikáció-osztályt, azaz Ψ3 ezen részgráfja teljes abban az értelemben,
hogy minden csúcs összes paramodifikációja ismert. A 4-edrendű esetben a részgráf
hiányos, mivel vannak befejezetlen csúcsai: ezen unitálok paramodifikációi nem let-
tek kiszámolva. Négy osztály hiányos (lásd a csillaggal jelölt sorokat a 3.1. táblázat-
ban), összesen 12 484 befejezetlen csúccsal. További adatok az unitálok paramodifi-
kációiról a https://davidmezofi.github.io/unitals/ honlapon érhetők el.

A 4. fejezetben Mezőfi és Nagy On the geometry of full points of abstract unitals
c. cikkének [38] eredményeit mutatjuk be. A 4.1. szakaszban defináljuk unitálok
teljes pontjait, teljespont-regularitását, perspektivitási csoportjaikat és beágyazott
duális k-neteiket. Az teljes pontok számára vonatkozó n2 − 1 és n2 − n felső kor-
látokat bizonyítjuk diszjunkt, illetve metsző blokkpárok esetén. Megmutatjuk, hogy
egy n-edrendű unitálnak legfeljebb beágyazott duális (n− 1)-nete lehet, amiből kö-
vetkezik, hogy bármely teljespont-halmaz legfeljebb n− 3 blokkot tartalmazhat. A
szakasz azzal fejeződik be, hogy miként tekinthetünk a beágyazott duális 3-netekre
mint latin négyzetekre.

A 4.2. szakasz célja belátni, hogy bármely, a klasszikus projektív síkba, azaz
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PG
(
2, q2)-be ágyazott q-adrendű unitál erősen teljespont-reguláris (ld. 4.2.6. Tétel).

Ehhez több lemmára és [32]-beli eredményekre is szükségünk van.
A 4.3. szakaszban megmutatjuk, hogy bármely q páros prímhatvány esetén, ha

a H(q) Hermite-féle unitál blokkjai egy polár háromszögben vannak, akkor a há-
rom blokk beágyazott duális 3-netet alkot (vö. 4.3.1. Állítás). Egy másik bizonyított
állítás szerint, ha egy tetszőleges absztrakt unitál be van ágyazva PG

(
2, q2)-be, ak-

kor ha három blokkja beágyazott duális 3-netet alkot, akkor ezek a blokkok Baer-
részegyenesek PG

(
2, q2)-ben, ld. 4.3.3. Állítás.

A 4.4. szakasz kis unitálok teljes pontjainak struktúrájára vonatkozó számítási
eredményeket mutat be, például hogy a 6-odrendű Bagchi–Bagchi-unitálban [2] nin-
csenek teljes pontok. A 4.1 és 4.2. táblázatok 3-ad- és 4-edrendű unitálok számát
tartalmazzák a teljes pontok száma és perspektivitási csoport struktúrája szerinti
bontásban. A vizsgált könyvtárakban található (erősen) teljespont-reguláris unitá-
lok száma a 4.4. táblázatban található. Megjegyezzük, hogy a nem erősen teljespont-
reguláris unitálok nem ágyazhatók be PG

(
2, q2)-be.

Az 5. fejezet a UnitalSZ [42] GAP-csomagot és néhány kapcsolódó algoritmust
mutatja be, melyet a jelen disszertáció szerzője, valamint témavezetője, dr. Nagy
Gábo Péter feljesztett. A csomag jelenlegi verziója 0.6, a kiadás elérhető a https:

//nagygp.github.io/UnitalSZ honlapon, illetve a forráskód elérhető a GitHubon.
A fejezet során példa GAP-kódok illusztrálják az ismertetett függvényeket.

Az 5.1. szakasz betekintést ad, hogy miként lehet unitál objektumokat létrehoz-
ni igaz-hamis, és illeszkedési mátrixok, valamint blokklisták által. Az 5.1. Algo-
ritmusban látható, hogy az unitálokra vonatkozó feltételek hogyan vannak a cso-
magban implementálva. Ismertetünk az unitálok néhány alapvető tulajdonságára,
attribútumára vonatkozó metódust, például hogyan lehet az unitál pontjait, blokk-
jait, automorfizmus-csoportját lekérni, illetve hogy ellenőrízhető, hogy két unitál
izomorf-e. Az 5.2. szakaszban az elérhető unitálosztályokhoz és -könyvtárakhoz
kapcsolódó parancsokat mutatjuk be. Az 5.2. és 5.3. Algoritmusok a Hermite- és
a Buekenhout–Metz-unitálok implementációját illusztrálják.

Az 5.3. szakaszban ismertetjük az unitálok teljes pontjaira vonatkozó parancso-
kat: meghatározható egy U unitál teljes pontjai két különböző blokkra vonatkoz-
tatva, sőt, kiszámolható a perspektivitási csoport is (vö. 5.4. és 5.6. Algoritmusok).
Az 5.5. Algoritmus bemutatja, hogy egy unitál teljes pontjainak kiszámítása az U
unitál automorfizmus-csoportjának erejéig hogyan van implementálva a csomag-
ban. A beágyazott duális 3-netek, illetve az (erős) teljespont-regularitás meghatáro-
zására szolgáló függvények leírása a szakasz végén található.
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Appendix A.

GAP implementation of paramodification

1 DeclareInfoClass( "InfoParamod" );

2

3 AllRegularBlockColorings := function( bls, nr_colors, gr )

4 local Gamma, complete_subgraphs, graph_of_cliques, colorings, ret,

5 new_blocks, c, c_vec, i, j;

6 Gamma := Graph( gr, bls, OnSets,

7 function( x, y )

8 return x <> y and Intersection( x, y ) = [];

9 end );

10 complete_subgraphs := CompleteSubgraphs( Gamma, Size( bls ) /

nr_colors, 1 );

11 complete_subgraphs := Union( List( complete_subgraphs,

12 x -> Orbit( AutomorphismGroup( Gamma ), x, OnSets ) ) );

13 Info( InfoParamod, 3, "cliques of the line graph computed..." );

14 graph_of_cliques := Graph( Gamma.group, complete_subgraphs, OnSets,

15 function( x, y )

16 return x <> y and Intersection( x, y ) = [];

17 end );

18 colorings := CompleteSubgraphs( graph_of_cliques, nr_colors, 1 );

19 Info( InfoParamod, 3, Size( colorings ), " block colorings computed...

" );

20 ret := [];

21 for c in colorings do

22 c_vec := 0*[1..Size(bls)];

23 for i in [1..nr_colors] do

24 for j in VertexNames( graph_of_cliques )[c[i]] do
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25 c_vec[ Position( bls, VertexNames( Gamma )[j] ) ] := i;

26 od;

27 od;

28 Add(ret, Transformation( c_vec ) );

29 od;

30 return ret;

31 end;

32

33 ParamodificationOfUnitalNC := function( u, b, chi )

34 local Cb, n_Cb, C_star_b, intact_blks, B_star;

35 Cb := Filtered( BlocksOfUnital( u ),

36 x -> Size( Intersection( x, b ) ) = 1 );

37 n_Cb := Length( Cb );

38 C_star_b := List( [1..n_Cb],

39 i -> Union( Difference( Cb[i], b ), [ b[i^chi] ] ) );

40 intact_blks := Difference( BlocksOfUnital( u ), Cb );

41 B_star := Union( intact_blks, C_star_b );

42 return AbstractUnitalByDesignBlocks( B_star );

43 end;

44

45 ParamodificationOfUnital := function( u, b, chi )

46 local Cb;

47 if not b in BlocksOfUnital( u ) then

48 Error( "argument 2 must be a block of argument 1");

49 fi;

50 Cb := Filtered( BlocksOfUnital( u ),

51 x -> Size( Intersection( x, b ) ) = 1 );

52 Cb := List( Cb, x -> Difference( x, b) );

53 if not ForAll( Combinations( [1..Size(Cb)], 2 ),

54 p -> Intersection( Cb{p} ) = [] or ( p[1]^chi <> p[2]^chi ) ) then

55 Error( "argument 3 is not a proper block coloring" );

56 fi;

57 return ParamodificationOfUnitalNC( u, b, chi );

58 end;

59

60 ParamodificationsOfUnitalWithBlock := function( u, b )
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61 local q, Cb, b_stab, new_unitals, all, allchibmod, i, isom_class,

colorings;

62 if not b in BlocksOfUnital( u ) then

63 Error( "argument 2 must be a block of argument 1");

64 fi;

65 q := Order( u );

66 Cb := Filtered( BlocksOfUnital( u ),

67 x -> Size( Intersection( x, b ) ) = 1 );

68 Cb := List( Cb, x -> Difference( x, b ) );

69 b_stab := Stabilizer( AutomorphismGroup( u ), b, OnSets );

70 colorings := AllRegularBlockColorings( Cb, q + 1, b_stab );

71 Info( InfoParamod, 4, Size( colorings ), " coloring(s) for the given

unital-block pair computed..." );

72 new_unitals := List( colorings, c -> ParamodificationOfUnitalNC( u, b,

c ) );

73 all := [1..Length( new_unitals )];

74 allchibmod := [];

75 while all <> [] do

76 i := Remove( all );

77 isom_class := Filtered( all, x -> Isomorphism( new_unitals[i],

78 new_unitals[x] ) <> fail ) ;

79 all := Difference( all, isom_class );

80 Add( allchibmod, new_unitals[i] );

81 od;

82 return allchibmod;

83 end;

84

85 AllParamodificationsOfUnital := function( u )

86 local blocks, rep_blocks, allchibmods, uus, b;

87 blocks := BlocksOfUnital( u );

88 rep_blocks := List( Orbits( AutomorphismGroup( u ), blocks, OnSets ),

89 orb -> Representative( orb ) );

90 Info( InfoParamod, 3, Size( rep_blocks ), " block representatives for

the unital computed..." );

91 allchibmods := [];

92 for b in rep_blocks do
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93 uus := ParamodificationsOfUnitalWithBlock( u, b );

94 uus := Filtered( uus, x -> Isomorphism( x, u ) = fail and

95 ForAll( allchibmods, y -> Isomorphism( y, x ) = fail ) );

96 Append( allchibmods, uus );

97 od;

98 return allchibmods;

99 end;
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