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Abstract: We consider the differential equation @(t) = f(z(t),z(t — r)) where the
delay r = r(z(+)) is defined by the threshold condition ftt_T a(x(s),(s)) ds = p with a
given p > 0. It is shown that if f and a are analytic functions, a is positive, then the

globally defined bounded solutions are analytic.
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1. INTRODUCTION

We consider a differential equation of the form

(1.1) a(t)=flz(t),(@t=r), r=r()

where the state-dependent delay r is defined by the threshold condition

(1.2) /1; a(x(s),z(s))ds = p.

Results on existence, uniqueness, continuous dependence of solutions, linearization,
construction of local invariant manifolds can be applied to (1.1), (1.2), see e.g. |2, 3, 4,
7,8, 11, 12, 13].

Our aim is to show that, under certain analyticity conditions on f and a, the bounded
solutions z : R — RY of (1.1) and (1.2) are analytic functions. The proof uses the
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special structure of the threshold type delay to reduce the problem of analyticity to
that of the solutions of an analytic ordinary differential equation in a suitable Banach
space.

The analyticity problem of globally defined bounded solutions (e.g. periodic solutions)
for (1.1) was raised in lectures at several international conferences by John Mallet-Paret
and Roger Nussbaum. For equations with constant delays a typical result is as follows.
If f:RVM+) 5 RN is analytic and 7, > 0 for 1 < k < M are constants, then any
bounded solution z : R — RY of

(t) = f(x(t),z(t —ri),z(t —re),...,x(t —ry))

is necessarily analytic in . This and a slightly more general version of it was given
by R. Nussbaum [10]. The technique of [10] does not seem to work if the delays are
state-dependent, for example 7, = 71 (x(t)) with given analytic functions 7. In a recent
paper [9] J. Mallet-Paret and R. Nussbaum study the problem of analyticity for given
time-dependent analytic delay functions r(t). They remark in [9] that the result of the
present paper (in the case when a in (1.2) depends only on z(s)) can be obtained by
reducing the problem to equations with constant delay, i.e., where [10] is applicable.

The paper [5] assumes analyticity of periodic solutions for a class of differential
equations with state-dependent delay in order to prove a global bifurcation result.

As far as we know an affirmative answer for the analyticity problem is known only for
the particular cases given below in this paper. Mallet-Parret and Nussbaum [9] suspect

that nonanalyticity may hold in many cases.

2. THE RESULT

Let K denote either the real field R or the complex field C. Let D be an open
subset of KP, p > 1 is an integer. Recall from [1] that a mapping ¢ from D into
a Banach space F over K is analytic if, for every a € D, there is r > 0 such that
in {(z1,...,2) € KV : |z —ag] <7, 1 <k <p}, g(2)is equal to the sum of an
absolutely summable power series in the p variables z;, —ag, 1 < k <p. f K=R and
g : D(C RP) — FE is (real) analytic, then clearly g extends to be (complex) analytic in a
complex neighborhood D ¢ C?. If K= C and ¢ : D — E is continuously differentiable
then g is analytic [1].

Let N denote the set of nonnegative integers. If A is a subset of a normed linear space
F, then [>°(A) denotes the set of sequences u = (ug)52, in A such that ||u|| = supyey |ur]
is finite. With the norm || - ||, the sets {°°(RY) and [°°(C") are Banach spaces.

Let N > 1 be an integer. We will use the following hypotheses.



(H1) The maps f: U x U — CY and a : U x V — C are analytic for some open
subsets U ¢ CV and V c C¥.
(H2) The sets U = U NRY and V = V NRY are open subsets of RV, and

f(f]x(?) cv, a(UxV) c (0, 0).
(H3) p>0.

A continuously differentiable mapping = : R — R will be called a globally defined
bounded solution of (1.1) and (1.2) if

¢(R)cU, iR)cCV

A

for some compact subsets U and V of U and V/, respectively, so that f (U x U > cV,
and there is an r : R — R such that

#(t) = f(x@t),2(t —r(t))), /t_ o a(x(s), &(s)) ds = p

hold for all ¢t € R.

Now we can state our result.

Theorem 2.1. Under hypotheses (H1), (H2) and (H3), the globally defined bounded
solutions x : R — RN of (1.1) and (1.2) must be analytic.

Proof. Let x : R — RY be a globally defined bounded solution of (1.1) and (1.2).

The compactness of U, v implies the existence of a; > ag > 0 such that
a (U X V) C lag, aq].
Clearly, 7 : R — R is unique, C'*-smooth, and
pp
t)e |—,— t € R).
we|L2] tew
Define the Cl-map 7 : R — R by n(t) =t — r(t). Let the iterates n* : R — R of n be
given by
)=t wt)=n(""'t) (teR, jEN)
Observe that, for all t € R and j € N\ {0},
d

St =of (7 1) )

") (P P@) - (@) 0 ()



Introduce the notation b(t) = a(x(t), (t)). Differentiating the equation f s)ds =
p, we find that

= b ey ()
n(t)_b(mt))’ v (' (0) b(nF=1(t))”
Consequently,
d sy = MOV D) | bn(t) b(e)
dt b(ni(t)) b(m=1(t))  b(n3(t)) b(n(t))
b(?)
b(1P(¢))
__alz@),2(1)
a(z(n? (1)), 2(n’ (1))

a(x(t), f(x(t), z(n(t))))
a (x(n’ (1)), fx(n? (1)), z(07 (1))

(

)
Define the mapping Y : R — [°°(R") as follows:
Y(t) = (Yo(t),Ya(t),...),  Yi(t) = =(n’ (1))

Then, for all t € R and j € N, we have

Vi) = & (/1)) 7 1)
= f (207 (1), 2(P (1)) b<f§52>>

a(Yo(t), f(Yo(t), Yi(1)))

a (Y;(1), F(Y;(8), Yia(£)))

By using these equations and the smoothness of f, a, it follows that Y; is C*-smooth
and there is a K > 0 such that |Vj(¢)] < K for all t € R and j € N. This is sufficient
to guarantee that Y : R — [*°(RY) is C'-smooth and satisfies the differential equation

= f(Y;(t), Y (1))

in [*(RY) for all ¢t € R, where
G 1=°(U) — I®(RY)
is given by
(}/67 f(}/ba YI))
( f( J+1>)

By conditions (H1) and (H2) there are open nelghborhoods UscUand Ve CV
in C of the sets U and V, respectively, such that f ((7@ X U@> C V@, and the map

Gi(Y) = f (¥}, Yjn)



c: (ﬁ@>4 — CN given by

a (uo, f(uo,u1))
a (uz, f(ug,us))

is analytic. Moreover, by choosing the neighborhoods Uc € U and Ve C V small

C(UO,U17U27U3) = f (U27U3)

enough, there is L > 0 so that for the derivatives Dc and D?c of ¢ the inequalities
||De(u)|] < L, ||D?c(u)|] < L hold for all u € (ﬁc)4. Hence it is easy to show that the
map
H :1°(Ue) — 1=°(CV)
given by
Hj(u) = c(ug, uy, uj, i)
is continuously differentiable with
(DH(u)v); =Dic(uo, ur, uj, wj1)vo + Dacluo, ur, uj, uj1)vr

+ Dsc(ug, ur, uj, uj1)v; + Dac(ug, Uy, Wy, Wjr1)Vj41,

where u € [®(Ug), v € [®°(CN).

Now Cauchy’s existence theorem (see e.g. [1]) gives that for any ¢y € R the differential
equation

= H(u)

with initial condition u(tg) = Y(¢¢) has a unique continuously differentiable solution
defined on an open ball J in C with center ¢;,. The continuous differentiability of
u:J — [®°(CY) implies its analyticity in J [1].

Clearly, G and H coincide on [°°(U N Ug), and their restrictions to 1°°(U N Ug) are
C'-smooth, considering them as mappings into [°°(C"). Then the Cauchy problem

0 =G(v), wv(ts) =Y(to)

has a unique continuously differentiable solution from an open interval I C R with
center at tq into [°°(CY). Both Y|; and u|gn; are solutions. Consequently, Y|;n; =
u|rny. Therefore, the analyticity of u implies the analyticity of ¥ in a neighborhood of
to. Then obviously z(t) = Y (t) is also analytic in a neighborhood of ¢y. This completes
the proof. |



Remark. In the introduction of the paper [9] Mallet-Paret and Nussbaum remark that
(if @ in condition (1.2) depends only on z(s)) by introducing the new time variable
t
T = / a(x(s))ds,
to
and letting y(7) = x(¢), the differential equation with constant delay
1
y(r) = ——< f(y(7),y(T = p))
a(y(r))

is obtained. For this equation Nussbaum'’s classic result [10] gives the analyticity of y.

Reversing the change of variables by

t=to+ /OT aly(s))L ds,

the analyticity of x follows.
This idea of Mallet-Paret and Nussbaum [9] can be applied to extend Theorem 2.1

to equations of the form

2(t) = fz(t),z(t —r),z(t —re),...,x(t —ry)), r = re(z(+)),

with the threshold conditions
t
[ atats)its) ds = o
t—rg

where f, a, pr, 1 <k < M, are assumed to satisfy hypotheses analogous to (H1), (H2)
and (H3).

Examples. 1. The threshold condition
t
| atatsnds =
t—r
appears naturally in the modeling of infection disease transmission, the modeling of
immune response systems, the modeling of respiration, in the study of population dy-
namics involving structured models. See the review paper [3] and the references therein.

2. In cutting processes [6] the equation
ar =p+z(t) —z(t —r)

with positive a and p determines the time delay r = r(z(+)) as a function of the solution

x. Clearly, this equation is equivalent to the threshold condition

[ a-)lds=p



and this is a particular case of (1.2) with a(u,v) = a—v. Function a is positive provided
the derivative of the solution x is sufficiently small.

3. A nonlinear version of the above example is

/t_ [A(z(s)) — DB(x(s))i(s)] ds = p

which is equivalent to

| A)ds = o+ Bale) = Blalt )

with analytic functions A : RY — R and B : RY — R.
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