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Abstract: We consider the differential equation ẋ(t) = f(x(t), x(t − r)) where the
delay r = r(x(·)) is defined by the threshold condition

´ t

t−r
a(x(s), ẋ(s)) ds = ρ with a

given ρ > 0. It is shown that if f and a are analytic functions, a is positive, then the
globally defined bounded solutions are analytic.
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1. Introduction

We consider a differential equation of the form

(1.1) ẋ (t) = f(x (t) , (x (t− r)) , r = r(x(·))

where the state-dependent delay r is defined by the threshold condition

(1.2)
ˆ t

t−r

a(x(s), ẋ(s)) ds = ρ.

Results on existence, uniqueness, continuous dependence of solutions, linearization,
construction of local invariant manifolds can be applied to (1.1), (1.2), see e.g. [2, 3, 4,
7, 8, 11, 12, 13].

Our aim is to show that, under certain analyticity conditions on f and a, the bounded
solutions x : R → RN of (1.1) and (1.2) are analytic functions. The proof uses the
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special structure of the threshold type delay to reduce the problem of analyticity to
that of the solutions of an analytic ordinary differential equation in a suitable Banach
space.

The analyticity problem of globally defined bounded solutions (e.g. periodic solutions)
for (1.1) was raised in lectures at several international conferences by John Mallet-Paret
and Roger Nussbaum. For equations with constant delays a typical result is as follows.
If f : RN(M+1) → RN is analytic and rk ≥ 0 for 1 ≤ k ≤ M are constants, then any
bounded solution x : R → RN of

ẋ(t) = f(x(t), x(t− r1), x(t− r2), . . . , x(t− rM))

is necessarily analytic in t. This and a slightly more general version of it was given
by R. Nussbaum [10]. The technique of [10] does not seem to work if the delays are
state-dependent, for example rk = rk(x(t)) with given analytic functions rk. In a recent
paper [9] J. Mallet-Paret and R. Nussbaum study the problem of analyticity for given
time-dependent analytic delay functions rk(t). They remark in [9] that the result of the
present paper (in the case when a in (1.2) depends only on x(s)) can be obtained by
reducing the problem to equations with constant delay, i.e., where [10] is applicable.

The paper [5] assumes analyticity of periodic solutions for a class of differential
equations with state-dependent delay in order to prove a global bifurcation result.

As far as we know an affirmative answer for the analyticity problem is known only for
the particular cases given below in this paper. Mallet-Parret and Nussbaum [9] suspect
that nonanalyticity may hold in many cases.

2. The result

Let K denote either the real field R or the complex field C. Let D be an open
subset of Kp, p ≥ 1 is an integer. Recall from [1] that a mapping g from D into
a Banach space E over K is analytic if, for every a ∈ D, there is r > 0 such that
in {(z1, . . . , zp) ∈ Kp : |zk − ak| < r, 1 ≤ k ≤ p}, g(z) is equal to the sum of an
absolutely summable power series in the p variables zk − ak, 1 ≤ k ≤ p. If K = R and
g : D(⊂ Rp) → E is (real) analytic, then clearly g extends to be (complex) analytic in a
complex neighborhood D̃ ⊂ Cp. If K = C and g : D → E is continuously differentiable
then g is analytic [1].

Let N denote the set of nonnegative integers. If A is a subset of a normed linear space
F , then l∞(A) denotes the set of sequences u = (uk)

∞
k=0 in A such that ||u|| = supk∈N |uk|

is finite. With the norm || · ||, the sets l∞(RN) and l∞(CN) are Banach spaces.
Let N ≥ 1 be an integer. We will use the following hypotheses.
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(H1) The maps f : U × U → CN and a : U × V → C are analytic for some open
subsets U ⊂ CN and V ⊂ CN .

(H2) The sets Ũ = U ∩ RN and Ṽ = V ∩ RN are open subsets of RN , and

f
(
Ũ × Ũ

)
⊂ Ṽ , a

(
Ũ × Ṽ

)
⊂ (0,∞).

(H3) ρ > 0.

A continuously differentiable mapping x : R → RN will be called a globally defined
bounded solution of (1.1) and (1.2) if

x(R) ⊂ Û , ẋ(R) ⊂ V̂

for some compact subsets Û and V̂ of Ũ and Ṽ , respectively, so that f
(
Û × Û

)
⊂ V̂ ,

and there is an r : R → R such that

ẋ(t) = f(x(t), x(t− r(t))),

ˆ t

t−r(t)

a(x(s), ẋ(s)) ds = ρ

hold for all t ∈ R.
Now we can state our result.

Theorem 2.1. Under hypotheses (H1), (H2) and (H3), the globally defined bounded
solutions x : R → RN of (1.1) and (1.2) must be analytic.

Proof. Let x : R → RN be a globally defined bounded solution of (1.1) and (1.2).
The compactness of Û , V̂ implies the existence of a1 > a0 > 0 such that

a
(
Û × V̂

)
⊂ [a0, a1].

Clearly, r : R → R is unique, C1-smooth, and

r(t) ∈
[
ρ

a1
,
ρ

a0

]
(t ∈ R).

Define the C1-map η : R → R by η(t) = t− r(t). Let the iterates ηk : R → R of η be
given by

η0(t) = t, ηj(t) = η
(
ηj−1(t)

)
(t ∈ R, j ∈ N).

Observe that, for all t ∈ R and j ∈ N \ {0},
d

dt
ηj(t) = η′

(
ηj−1(t)

) d

dt
ηj−1(t)

= η′
(
ηj−1(t)

)
η′
(
ηj−2(t)

)
· · · η′ (η(t)) η′ (t) .
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Introduce the notation b(t) = a(x(t), ẋ(t)). Differentiating the equation
´ t

η(t)
b(s) ds =

ρ, we find that

η′(t) =
b(t)

b(η(t))
, η′

(
ηk(t)

)
=

b(ηk(t))

b(ηk−1(t))
.

Consequently,

d

dt
ηj(t) =

b(ηj−1(t))

b(ηj(t))

b(ηj−2(t))

b(ηj−1(t))
· · · b(η(t))

b(η2(t))

b(t)

b(η(t))

=
b(t)

b(ηj(t))

=
a(x(t), ẋ(t))

a(x(ηj(t)), ẋ(ηj(t)))

=
a (x(t), f(x(t), x(η(t))))

a (x(ηj(t)), f(x(ηj(t)), x(ηj+1(t))))
.

Define the mapping Y : R → l∞(RN) as follows:

Y (t) = (Y0(t), Y1(t), . . .) , Yj(t) = x(ηj(t)).

Then, for all t ∈ R and j ∈ N, we have

Ẏj(t) = ẋ
(
ηj(t)

) d

dt
ηj(t)

= f
(
x(ηj(t)), x(ηj+1(t))

) b(t)

b(ηj(t))

= f (Yj(t), Yj+1(t))
a (Y0(t), f(Y0(t), Y1(t)))

a (Yj(t), f(Yj(t), Yj+1(t)))
.

By using these equations and the smoothness of f , a, it follows that Yj is C2-smooth
and there is a K > 0 such that |Ÿj(t)| ≤ K for all t ∈ R and j ∈ N. This is sufficient
to guarantee that Y : R → l∞(RN) is C1-smooth and satisfies the differential equation

Ẏ (t) = G(Y (t))

in l∞(RN) for all t ∈ R, where

G : l∞(Ũ) → l∞(RN)

is given by

Gj(Y ) = f (Yj, Yj+1)
a (Y0, f(Y0, Y1))

a (Yj, f(Yj, Yj+1))
.

By conditions (H1) and (H2) there are open neighborhoods ÛC ⊂ U and V̂C ⊂ V

in C of the sets Û and V̂ , respectively, such that f
(
ÛC × ÛC

)
⊂ V̂C, and the map
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c :
(
ÛC

)4

→ CN given by

c(u0, u1, u2, u3) = f (u2, u3)
a (u0, f(u0, u1))

a (u2, f(u2, u3))

is analytic. Moreover, by choosing the neighborhoods ÛC ⊂ U and V̂C ⊂ V small
enough, there is L > 0 so that for the derivatives Dc and D2c of c the inequalities

||Dc(u)|| ≤ L, ||D2c(u)|| ≤ L hold for all u ∈
(
ÛC

)4

. Hence it is easy to show that the
map

H : l∞(ÛC) → l∞(CN)

given by
Hj(u) = c(u0, u1, uj, uj+1)

is continuously differentiable with

(DH(u)v)j =D1c(u0, u1, uj, uj+1)v0 +D2c(u0, u1, uj, uj+1)v1

+D3c(u0, u1, uj, uj+1)vj +D4c(u0, u1, uj, uj+1)vj+1,

where u ∈ l∞(ÛC), v ∈ l∞(CN).
Now Cauchy’s existence theorem (see e.g. [1]) gives that for any t0 ∈ R the differential

equation
u̇ = H(u)

with initial condition u(t0) = Y (t0) has a unique continuously differentiable solution
defined on an open ball J in C with center t0. The continuous differentiability of
u : J → l∞(CN) implies its analyticity in J [1].

Clearly, G and H coincide on l∞(Ũ ∩ ÛC), and their restrictions to l∞(Ũ ∩ ÛC) are
C1-smooth, considering them as mappings into l∞(CN). Then the Cauchy problem

v̇ = G(v), v(t0) = Y (t0)

has a unique continuously differentiable solution from an open interval I ⊂ R with
center at t0 into l∞(CN). Both Y |I and u|R∩J are solutions. Consequently, Y |I∩J =

u|I∩J . Therefore, the analyticity of u implies the analyticity of Y in a neighborhood of
t0. Then obviously x(t) = Y0(t) is also analytic in a neighborhood of t0. This completes
the proof. �
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Remark. In the introduction of the paper [9] Mallet-Paret and Nussbaum remark that
(if a in condition (1.2) depends only on x(s)) by introducing the new time variable

τ =

ˆ t

t0

a(x(s)) ds,

and letting y(τ) = x(t), the differential equation with constant delay

ẏ(τ) =
1

a(y(τ))
f(y(τ), y(τ − ρ))

is obtained. For this equation Nussbaum’s classic result [10] gives the analyticity of y.
Reversing the change of variables by

t = t0 +

ˆ τ

0

a(y(s))−1 ds,

the analyticity of x follows.
This idea of Mallet-Paret and Nussbaum [9] can be applied to extend Theorem 2.1

to equations of the form

ẋ(t) = f(x(t), x(t− r1), x(t− r2), . . . , x(t− rM)), rk = rk(x(·)),

with the threshold conditions ˆ t

t−rk

a(x(s), ẋ(s)) ds = ρk,

where f , a, ρk, 1 ≤ k ≤ M , are assumed to satisfy hypotheses analogous to (H1), (H2)
and (H3).

Examples. 1. The threshold conditionˆ t

t−r

a(x(s)) ds = ρ

appears naturally in the modeling of infection disease transmission, the modeling of
immune response systems, the modeling of respiration, in the study of population dy-
namics involving structured models. See the review paper [3] and the references therein.

2. In cutting processes [6] the equation

αr = ρ+ x(t)− x(t− r)

with positive α and ρ determines the time delay r = r(x(·)) as a function of the solution
x. Clearly, this equation is equivalent to the threshold conditionˆ t

t−r

[α− ẋ(s)] ds = ρ,
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and this is a particular case of (1.2) with a(u, v) = α−v. Function a is positive provided
the derivative of the solution x is sufficiently small.

3. A nonlinear version of the above example isˆ t

t−r

[A(x(s))−DB(x(s))ẋ(s)] ds = ρ

which is equivalent toˆ t

t−r

A(x(s)) ds = ρ+B(x(t))−B(x(t− r))

with analytic functions A : RN → R and B : RN → R.
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