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The purpose of this note is to correct a mistake left in our previous paper [2]. The paper
concerns the scalar equation

(1) &(t) = —pa(t) + f(z(t-1)

with p = 1 and a special strictly increasing, continuously differentiable f. The natural
phase space for Eq. (1) is C = C ([-1,0],R) equipped with the supremum norm. For any
¢ € C, there is a unique solution 2% : [—-1,00) — R of (1). For each ¢t > 0, the segment
z{ € C is defined by z{ (s) = z¥ (t + ), —1 < s < 0. Let ® denote the semiflow induced
by E.q. (1):

®:[-1,00) x C 3 (t,p) > af € C.

Theorem 1.1 of paper [2] gives a periodic solution p : R — R of E.q. (1) with p(—1) =0
and p(—1) # 0. The proof of Theorem 1.2 in Section 8 then applies a Poincaré return
map defined on a neighborhood of py in H, where H = {¢p: ¢ (—1) = 0} is a hyperplane
transversal to the periodic orbit O, = {p; : t € R}. As we shall see, this hyperplane was
not selected appropriately.

We evoke results from Floquet theory before pointing at the error and showing its

correction.

1. FLOQUET THEORY

Let w € (1,2) denote the minimal period of p. Consider the period map @ = ¢ (w, -)
with fixed point pg. Consider its derivative M = Dao® (w, po) at po. Then My = ug for all
¢ € C, where u? : [-1,00) — R is the solution of the variational equation

(2) w(t) = —u(t) + f (pt—1)u(t—1)

with uj = ¢. M is called the monodromy operator. M is a compact operator, 0 belongs
to its spectrum o = o (M), and eigenvalues of finite multiplicity — the so called Floquet
multipliers — form o (M) \ {0}.
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As p is a nonzero solution of the variational equation, 1 is a Floquet multiplier with
eigenfunction pg. The paper 2| proves that O), is hyperbolic, which means that the gener-
alized eigenspace of M corresponding to the eigenvalue 1 is one-dimensional, furthermore
there are no Floquet multipliers on the unit circle besides 1.

If ¢ is a nonzero element of the phase space C' = C ([-1,0],R), let V () denote the
number of sign changes of ¢ if it is even or oo, otherwise let V' (¢) be the number of sign
changes plus one. This is the so-called discrete Lyapunov functional of Mallet-Paret and
Sell [4].

By Section 4 of [2], Op has two real and simple Floquet multipliers A\; and A outside the
unit circle with A; > Aa > 1. Regarding the associated eigenspaces, we have the following
information from [4] and from Appendix VII of [3]. The eigenvector u; of M corresponding
to A1 is strictly positive. The realified generalized eigenspace C.), associated with the
spectral set {z € 0 : |z| < A1} satisfies

(3) Cox, NV7H(0) = 0.

Let C<,, p > 0, denote the realified generalized eigenspace of M associated with the
spectral set {z € o : |z| < p}. The set

{p€(0,00): o (M)NpSt #0, C<,NV~1({0,2}) =0}
is nonempty and has a maximum rjy;. Then
4)  C<ry V{021 =0, Cpu<\ {0} cV1({0,2}) and dimC,,,« < 3,

where C),,< is the realified generalized eigenspace of M associated with the nonempty
spectral set {z € o : |z| > ras}. It follows from the construction of p in [2] that V' (pg) = 2.
Hence )y < 1 in our case, and V (ug) = 2 for the eigenvector ug of M corresponding to
Ag.

2. POINCARE RETURN MAPS

Choose X to be a hyperplane with codimension 1 so that po ¢ X. An application
of the implicit function theorem yields a convex bounded open neighborhood N of pg in
C,e € (0,w) and a Cl-map v : N — (w—¢,w+¢) with v(pg) = w so that for each
(t,¢) € (w—¢e,w~+¢) x N, the segment z{ belongs to pg + X if and only if t = y(p) (see
[1], Appendix I in [3]). The Poincaré return map Py is defined by

Px :NN(po+X) 2= 2(v(p),p) € po+ X.

Then Px is continuously differentiable with fixed point py.
Let o (Px) and o (M) denote the spectra of DPx (pg) : X — X and the monodromy
operator M, respectively. We obtain the following result from Theorem XIV.4.5 in [1].



Lemma.
(i) o (Px)\{0,1} = o (M) \ {0,1}, and for every A € o (M) \ {0, 1}, the projection along
Rpg onto X defines an isomorphism from the realified generalized eigenspace of A and M

onto the realified generalized eigenspace of A and DPx (po).
(i) 1 ¢ o (Px).

In Section 8 of [2] we selected the hyperplane H = {¢: ¢ (—1) = 0} and the associated
Poincaré map P = Pp. It follows from the above proposition that DP (pg) has exactly two
real eigenvalues A\; > Ao > 1 outside the unit circle. Let v; and ve denote the eigenvectors
of DP (po) corresponding to A; and Mg, respectively. Section 8 of [2] used the statement
that V' (v1) = 0 and V (ve) = 2. This is not necessarily true. The mistake can be corrected
by selecting a different hyperplane.

Let Cs and C, be the closed subspaces of C' chosen so that C' = Cs ® Rpy & Cy, Cs
and C,, are invariant under M, and the spectra o5 (M) and o, (M) of the induced maps
Cs 2z +— Mz € Csyand Cy, > x — Mz € C, are contained in {u € C: |u| < 1} and
{n e C: |pu| > 1}, respectively. As O, has two real and simple Floquet multipliers A; and
A2 outside the unit circle with eigenvectors u; and ug, we have C, = {ciuy + cous}.

Set Y = Cs @ Cy. Then Y is a hyperplane in C, pg ¢ Y and C =Y & Rpy.

The special choice of Y and Lemma imply that A; and wu; is an eigenvalue-eigenvector
pair of DPy (po) for both i € {1,2}. In addition, Cs and C,, are invariant under D Py (py),
and the spectra o4 (Py) and o, (Py) of the induced maps Cy 3 x — DPy (pg) z € Cj
and Cy, > x — DPy (pg) x € C,, are contained in {u € C: |u| <1} and {u € C: |pu| > 1},
respectively. Summing up, DPy (po) has exactly two real and simple eigenvalues \; >
A2 > 1 outside the unit circle, and for the corresponding eigenvectors u; and us, we have
the desired properties V (u1) =0 and V (u2) = 2.

In accordance, H and P = Py should be changed to Y and Py in Section 8 of [2|. Then
the proof of Theorem 1.2. (found in Section 8 of |2]) becomes correct without any further
change.
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