LARGE-AMPLITUDE PERIODIC SOLUTIONS FOR DIFFERENTIAL
EQUATIONS WITH DELAYED MONOTONE POSITIVE FEEDBACK

Tibor Krisztin', Gabriella Vas?

Abstract: The aim of this paper is to show that the structure of the global attractor
for delayed monotone positive feedback can be more complicated than the union of
spindle-like structures between consecutive stable equilibria with respect to the point-
wise ordering. Large amplitude periodic orbits — in the sense that they are not between
two consecutive stable equilibria — are constructed for nonlinearities close to a step
function. For some nonlinearities there are exactly two large amplitude periodic orbits.
By describing the unstable sets of these periodic orbits, a complete picture is obtained

about the global attractor outside the spindle-like structures.
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1. INTRODUCTION

The delay differential equation

(1.1) #(t) = —pa () + f(x(t 1))

with © > 0 and smooth monotone nonlinearity f : R — R appears in several applica-
tions, see e.g. [6, 7, 11, 17, 31| and the references therein.
The natural phase space for Eq. (1.1) is C' = C' (|—1,0],R) equipped with the supre-

mum norm. For any ¢ € C, there is a unique solution z¥ :[—1,00) — R of (1.1). For
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each t > 0, zf € C is defined by z (s) = 2¥ (t + s), =1 < s < 0. The map
O:[-1,00) xC 3 (t,p)—»af €l

is a continuous semiflow. Very much is known about the global dynamics of Eq. (1.1).
A discrete Lyapunov functional, as a key technical tool, combined with several other
dynamical system methods makes is possible to prove a Poincaré—Bendixson type result
for (1.1) |22] and to obtain a lot of information about the structure of the global
attractor [13, 14, 15, 16, 17, 20, 23, 24, 29]. For some particular nonlinearities like
f (z) = atanh (Bz) or f(z) = atan™! (Bx) with a # 0 and 3 > 0, a complete picture
is available [17]. However, for most of the nonlinearities such a nice description is not
known. A famous example is Wright’s equation: p =0, f(z) = —a(e* — 1), a > 0.
Assume (see Fig. 1)

(H1) p>0, feC'(R,R) with f/(£) >0 for all £ € R, and
§2<81<&H=0<8 <&

are five consecutive zeros of R 3 { — —pé + f(§) € Rwith f/(§) < p <
(&) for j € {~2,0,2} and k € {—1,1}.

FIGURE 1. A feedback function satisfying condition (H1)

Under hypothesis (H1), fj € C defined by fj (s) =¢&;, =1 <5 <0, is an equilibrium
point of ® for j € {-2,—1,0,1,2}. In addition, £ o, &, & are stable and £_1,&; are
unstable. By the monotone property of f, the subsets

Cir={peC: &<p(s) <&, —1<s<0}



of the phase space C with j € {—2,0} and k € {0, 2} are positively invariant under the
semiflow ®. The structures of the global attractors A_5, and Ag of the restrictions
Plj0,00)xC_s a0 Do) cy2, Tespectively, are (at least partially) well understood, see
e.g. 13, 14, 15, 16, 17, 18|. In particular cases, A_5y and Ag s have spindle-like struc-
tures described in [13, 16, 17, 18]: A2 is the closure of the unstable set of él containing
the equilibrium points é(], 51, 52, periodic orbits in Cjo and heteroclinic orbits among
them; and analogously for A_, .

Let A denote the global attractor of the restriction ‘I’|[0,oo)xc_2,2- It is easy to see
that if (H1) holds and £ 5,& 1,0, &, & are the only zeros of —ué + f (§), then A is the
global attractor of ®. The problem, whether under hypothesis (H1) the equality

(1.2) A=A_2oUAj>

holds or not, arose in [17], see Fig. 2.

FIGURE 2. A 50U Agy

The main result of this paper is that A can be more complicated than given by (1.2).
We construct examples so that Eq.(1.1) with assumption (H1) has periodic orbits in
A\ (A_20U Ag2). The periodic solutions defining these periodic orbits oscillate slowly
around 0 and have large amplitudes in the following sense.

A periodic solution  : R — R of Eq.(1.1) is called a large amplitude periodic
solution if z(R) D (£-1,&1). A solution z : R — R is slowly oscillatory if for each ¢,
the restriction x|_; 4 has 1 or 2 sign changes. A solution z : R — R is called slowly
oscillatory around &; if R 3 t — z(t) — §; € R is slowly oscillatory. Note that here slow
oscillation is different from the usual one used for equations with negative feedback



condition [6, 29]. A large-amplitude slowly oscillatory periodic solution z : R — R will
be abbreviated as an LSOP solution. We say that an LSOP solution x : R — R is
normalized if z(—1) = 0, and for some 1 > 0, z(s) > 0 for all s € (—1,—1+ 7).

Theorem 1.1. There exist u and f satisfying (H1) such that Eq.(1.1) has exactly two
normalized LSOP solutions p : R — R and ¢ : R — R. For the ranges of p and q,
p(R) € q(R) C (£-2,&) holds. The corresponding periodic orbits

Op:{pttER} andoq:{qttER}

are hyperbolic and unstable with 2 and 1 Floquet multipliers outside the unit circle,

respectively.

In the situation of Theorem 1.1, let W* (O,) and W* (O,) denote the unstable sets
of O, and O,, respectively |6, 17].

The nonlinearity f and constant p in Theorem 1.1 are given so that there exist
periodic solutions oscillating slowly around & and £_; with ranges in (0, &) and (£_s, 0),
respectively [17]. Among these periodic solutions there are ' and 27! so that the ranges
' (R) and 7' (R) are maximal in the sense that z'(R) D x(R) for all periodic solutions
r oscillating slowly around &; with range in (0, &), analogously for 71, see Proposition
2.7. Set

Olz{xiztGR} and(’)_lz{xt_l:teR}.

Under further restriction on f, the dynamics in A\ (A_29U.Ag2) can be completely

described.

Theorem 1.2. One may set p and f satisfying (H1) such that the statement of Theorem
1.1 holds, and for the global attractor A we have the equality

A=A_20UAUW"(O,) UW"(O,).
Moreover, the dynamics on W* (O,) and W* (O,) is as follows.
For each ¢ € W*(O,) \ O,, the omega limit set w (p) is either {5_2} or {ég}7 and
there exist heteroclinic connections from Oy to {é,g} and to {52}
For each ¢ € W*(0,) \ O,, w () is one of the sets {5,2}, {0}, {52}, O, 04, O_;.
There are heteroclinic connections from O, to {5_2}, {O}, {fg}, Oy 01 and O_;.
The system of connecting orbits is represented in Fig. 3. The dashed arrows represent

heteroclinic connections in A_, o and in Ay 2, while the solid ones represent connecting
orbits given by Theorem 1.2.



FIGURE 3. Connecting orbits

In Theorems 1.1-1.2 the nonlinear map f is close to the step function f%° parametrized
by K > 0 and given by f%0(z) =0 for |z| < 1, and f&°(z) = Ksgn () for |z| > 1.
Equations with such nonlinearity model neural networks of identical neurons that do
not react upon small feedback; the feedback has to reach a certain threshold value to
have a considerable effect [8]. Our result may have interesting consequences for the
dynamics of neural networks with the above property. See [2, 3, 4, 5, 31] for a bistable
situation.

Suppose f is odd and satisfies (H1). It follows from results in [22] that if z : R — R is
an LSOP solution of Eq. (1.1) with minimal period w > 0, then the following statements
hold.

(i) we (1,2).

(ii) Solution x is of special symmetry meaning that relation z (t + w/2) = —x (t)
holds for all ¢ € R.

(iii) Solution x is of monotone type in the following sense: if ty < t; < tg + w is set
so that z () = mingeg x(t) and z (t1) = maxyeg 2(t), then z is nondecreasing on [tg, 1]
and nonincreasing on [t1, ty + w].

This motivates the next definition. We say a periodic solution x : R — R of Eq. (1.1)
with feedback function f5° K > 0, is an LSOP solution if properties (i), (ii) and (iii)
hold for x.

For Eq. (1.1) with 4 = 1 and f = f&9 the LSOP solutions are described in Theorem
6.5: there is no such solution if K < K* = 6.8653 and there are two for K > K* (up
to time translation). It can be also verified that there is exactly one LSOP solution for

K = K*. This is the starting point of our construction. The implicit function theorem



and perturbations of Poincaré maps from [19] can be applied to find exactly two LSOP
orbits of Eq. (1.1) for u = 1 and nonlinearities that satisfy (H1) and are close to f&?9
with K > K*. We prove only the case K = 7, which suffices for the proof of Theorem
1.1. Our results and numerical examples suggest that the LSOP orbits appear in a
saddle-node-like bifurcation. However, it remains an open problem to understand this
phenomenon.

The paper is organized as follows. The preliminary Section 2 lists definitions and no-
tations. The notion of LSOP solutions is extended for a slightly wider range of feedback
functions including smooth approximations of f5°. A discrete Lyapunov functional of
Mallet-Paret and Sell [21] is introduced, their feedback inequality is weakened in order
to allow not strictly monotone nonlinearities as well. It is also shown that for cer-
tain nonlinearities satisfying (H1), there are periodic solutions with maximal ranges in
(€_2,0) and (0, &) oscillating slowly around £_; and &;, respectively.

Section 3 introduces a smooth approximation f%¢ & € [0,1), of the step function
KO Fix K > 3. We define an open set U' in (0,1)* x [0,1) and a continuous map
¥ : U — C so that for ¢ > 0 small, U! 3 a — 3 (a,¢) € C is smooth and its derivative
is injective (see Proposition 3.7), where U} denotes the set {a € (0, 1)%: (a,e) € U'}.
Consequently, 3 (U! x {e}) is a 3-dimensional C'-submanifold of C'. There exists an
open subset U? of U' such that if g = 1 and f = f&¢, then for all (a,e) € U3,
the solution #%(@) : [~1,00) — R of Eq.(1.1) returns into X (U} x {e}), i.e., there
exists a minimal ¢ > 0 with ™9 € X (U} x {¢}). This induces a smooth map F :
U3 — R3 so that for all (a,e) € U3, we have F (a,£) = b if 2™ = X (b,¢) with a
minimal ¢ > 0. If F (a,e) = a holds for some (a,e) € U®, then the solution 2*(®*)
of Eq. (1.1) with y = 1 and f = f&¢ is an LSOP solution. Therefore the problem of
finding LSOP solutions is reduced to a 3-dimensional fixed point equation depending
on parameter €. Proposition 3.8 shows that there is K* ~ 6.8653 so that for K > K*,
equation F (a,0) = a has a unique solution a* in U3 = {a € (0,1)° : (a,0) € U*}. The
fixed point a* is hyperbolic; it is rigorously checked for K = 7. Then the implicit
function theorem gives that if K = 7, then equation F'(a,e) = a has a solution a* (¢)
in U2 = {a € (0,1)°: (a,¢) € U} for small £ > 0 so that D,F (a* () &) is hyperbolic.
Analogously to the above construction, Subsection 3.2 gives another LSOP solution of
(1.1) with g = 1 and f = f7* for € > 0 small.

Other examples, in which the problem of finding periodic solutions is reduced to
a finite dimensional fixed point problem, are found e.g in [19, 27, 28]. However, the

corresponding return maps in [27, 28] are contractions, and the obtained periodic orbits



are stable. This is not the case here, thus we cannot apply any contraction mapping
theorem.

Section 4 shows that the hyperbolicity of the fixed points of the 3-dimensional maps of
Section 3 guarantees the hyperbolicity of the corresponding LSOP solutions of Eq. (1.1)
with 4 = 1 and f = f7°, € > 0 small, see Proposition 4.3. The key fact toward the
proof is that a small neighborhood of the fixed point X (a* (¢),¢) in a hyperplane of
C' is mapped into the 3-dimensional submanifold ¥ (U2 x {€}) by a suitable Poincaré
return map (Proposition 4.1). The hyperbolicity of these LSOP solutions together
with a result in [19] guarantee the existence of LSOP solutions for all nonlinearities f
satisfying (H1) that are close to f7¢, ¢ > 0 small, in C'-norm. Thereby the existence
of the two LSOP solutions in Theorem 1.1 is verified.

The conception that the hyperbolicity of certain periodic orbits can be verified via
showing the hyperbolicity of fixed points of suitable finite dimensional maps also appears
in paper [12] of Kennedy. This paper considers state-dependent delay equations with
feedback functions that are close to f (x) = —sgn (z) outside a small neighborhood of
0.

Section 5 contains preparatory results toward the exact number of LSOP solutions.
Propositions 5.1 and 5.2 prove monotone and symmetry properties of periodic solutions
of (1.1). The C'-smoothness and strict monotonicity from [22] is weakened slightly. The
technical result of Proposition 5.3 shows that all LSOP solutions of (1.1) with p =1
and f = f7¢, ¢ > 0 small, have nice regulatory properties.

Section 6 studies the exact number of LSOP solutions for the step function nonlin-
earity f5° K > 0, then for f7°, ¢ > 0 small, and finally for functions f close to f7*.
Summarizing the above results, Theorem 1.1 is obtained.

The next section excludes the existence of periodic solutions oscillating rapidly around

Section 8 completes the proof of Theorem 1.2. The existence of heteroclinic orbits
from O,, where p is the LSOP solution with smaller range, is based on the fact that
the local unstable manifold W*" (py) of a Poincaré return map at its fixed point py is
2-dimensional, and it is separated into two parts by its 1-dimensional leading unsta-
ble manifold W} (pg). Discrete Lyapunov functionals around £_4,0, &, information on
eigenfunctions of the derivative of the Poincaré map associated with the two eigenvalues
outside the unit circle, monotone property of the semiflow, and elementary topological

arguments yield the result.
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2. PRELIMINARIES

Notation. The natural phase space for Eq.(1.1) is the space C' = C(]—1,0],R)
of continuous real functions defined on [—1,0] equipped with the supremum norm
loll = sup_j<ocqle (s)]. C' = C'([-1,0],R) is the space of continuously differen-
tiable functions from [—1,0] into R with norm |l¢|l- = [l¢ll + ||¢']|-

For D C R open, C} (D,R) denotes the space of bounded continuously differ-
entiable functions ¢ : D — R with bounded first derivative together with norm

l9llcy = suPsep |9(2)] 4 sup,ep |9'(2)].
For Banach spaces E and F over R, the space of bounded linear operators is denoted

by L (E, F).

For a simple closed curve ¢ : [a,b] — R? int (c) and ext (¢) denote the interior and
exterior, i.e., the bounded and unbounded component of R? \ ¢([a, b]), respectively.

If U c R™, m > 1, then bdU is for the boundary of U.

For an interval I C R, we define
]—|—[—1,0] :{tGRZ t =t + to with 617 ty € [—170]}

If I C Ris an interval, u : I — R is continuous, then for [t —1,¢] C I, u; € C'is given
by w(s) =u(t+s), -1 <s<0.

Definition of solution. In the sequel we consider Eq. (1.1) with smooth and non-
smooth (e.g. step function) nonlinearities and linear variational equations as well. This
requires a slightly more general form of equation and a more general definition of
solutions.

Consider the equation

(2.1) y(t) =gt m)



assuming that g : R x ' — R satisfies the condition: for each interval I C R and
each continuous function v : I 4+ [—-1,0] — R, the map I > t — ¢(t,u;) € R is
locally integrable (i. e., integrable on compact subintervals of 7). Then for given ¢ty € R
and 0 < a < oo, a function y : [to — 1,tp +a) — R is called a solution of (2.1) on

[to — 1,to + a) if y is continuous and

v =yt + [ gG.p)as

to
holds for all t € [ty,to + a). A function y : R — R is a solution of Eq. (2.1) on R if it is
a solution of (2.1) on [ty — 1,00) for all ¢, € R.

If y : [to—1,to+a) — R is a solution of (2.1) on [to — 1,y + a) and for some
(o, B) C (to,to + a), the map (o, 5) >t — ¢g(t,y;) € R is continuous, then it is clear
that y is continuously differentiable on («a, #), moreover, (2.1) holds for all t € («, /).

Ify:[to—1,t0 + a) — R is a solution of (2.1), then obviously y is absolutely contin-
uous on [tg, tg + a), and (2.1) holds almost everywhere on [tg,to + a).

In the particular case

gt,o)=—pp0) +h(t,p(=1), (t,p)eRxC,

for some p € R and h : R x R — R so that g satisfies the above local integrability
condition, for each ¢ € C' a unique solution y : [—1,00) — R with yo = ¢ can be given
by the method of steps. Set y (t) = ¢ (t) for —1 <t < 0. Suppose that a continuous
y : [—1,n] is already given for some n > 0. Then for ¢ € [n,n + 1], define

t
y (1) = e Py (n) + / =] (5, (s — 1)) ds.

Then y|jnn+1) is absolutely continuous and (2.1) holds almost everywhere on [n,n + 1].

It is easy to see that this construction gives the unique solution y? : [—1,00) — R with

Yy = o

Semiflow. Now assume g (¢, ¢) = —up (0)+ f (¢ (—1)) with 4 € R and f € C' (R, R).
Then the solutions of Eq. (1.1) define the continuous semiflow
O:R*"xC 3 (tp) —af €C.

All maps ® (t,-) : C — C, t > 1, are compact and all maps C > ¢ — @ (¢,p) € C,
t > 1, are continuous.
A set M C C' is called positively invariant under @ if ® (¢, M) C M for all ¢ > 0.



Limit sets. If ¢ € C' and 2% : [-1,00) — R is a bounded solution of Eq. (1.1), then
the w-limit set

w(¢) ={1 € C : there exists a sequence (t,), in [0, c0)

with ¢, — oo and ® (t,, ) — ¥ as n — oo}

is nonempty, compact, connected and invariant in the sense that for every 1 € w (),
there is a solution x : R — R with 2y = ¢ and z; € w (p) for all t € R. For a solution
x : R — R such that z|_ ) is bounded, the a-limit set

a(x) ={1 € C: there exists a sequence (t,), in R

with ¢, — —oo and z;, — ¢ as n — oo}

is nonempty, compact, connected and invariant.

Poincaré return maps. Assume that f € C!' (R,R) in Eq.(1.1). Let p: R - R be a
periodic solution of Eq. (1.1), and w > 1 be the minimal period of p. Let a closed linear
subspace H C C of codimension 1 be given so that py € H and py ¢ H. An application
of The implicit function theorem yields a convex bounded open neighborhood N of 0
in H, v € (0,w) and a C'-map v : {po} + N = (w — v,w +v) with v (py) = w so that
for each (t,¢) € (w—v,w+v) x ({po} + N), segment z{ belongs to H if and only if
t =v(p) (|6], Appendix I in [17], [19]). The Poincaré¢ map is set

P:{p} + N 29— 2(yv(p),p) € H.

Then P is continuously differentiable and has fixed point py. In addition, P depends
smoothly on the right hand side of Eq. (1.1) [19].

Map DP (py) : H — H is a compact operator. The spectrum o of DP (pg) is
countable with one possible accumulation point at 0. All the nonzero points in o are
eigenvalues of finite multiplicity. Periodic solution p is said to be hyperbolic if pg is a
hyperbolic fixed point of P, that is DP (py) has no eigenvalues on the unit circle in C.
This hyperbolicity is the same as the one defined by the spectrum of the monodromy
operator (|6, 17]). The nonzero points of o and 1 are called Floquet multipliers.

The following proposition is a particular case of a more general result of Lani-Wayda
[19].

Proposition 2.1. Assume that f € C* (R, R) and p is a hyperbolic periodic solution of
Eq. (1.1) with minimal period w > 1. Let D C R be open with {p(t):t € [0,w)} C D.
Then there exist an open ball B C C}(D,R) centered at f, an open neighborhood V.C N

10



of 0 in H and a C'-function x : B — {po} +V C H with x (f) = po such that for
g € B, the solution z™” of Eq.(1.1) with initial value x (g) is periodic (and therefore
can be defined on R). The minimal period of 2 s in (w—rvw+v). Ifpe{p}+V
is the initial segment of any periodic solution of ©(t) = —px(t) + g (x(t — 1)) for some
g € B with minimal period in (w — v,w +v), then ¢ = x (g9). If ||lg — ch,} — 0, then
X (9) = x(f) =po in C.

In this paper we are going to set D = R.

A discrete Lyapunov functional. As Mallet-Paret and Sell in [21], we define a
discrete Lyapunov functional V : C'\ {0} — 2NU{oo}. For ¢ € C'\ {0}, set sc(¢) =0
if o >0 or ¢ <0, otherwise define

sc(p) = sup{k: € N\ {0} : there exist a strictly increasing sequence

(s:))6 C [=1,0] with ¢ (s;1) ¢ (s;) <0 fori € {1,2, ,k}}

Then set
sc (), if sc(p) is even or oo,
Vig =g b el
sc(p) + 1, if sc(yp) is odd.

Also define
R = {peC:p(0)#00r¢(0)p(=1)>0,
w(=1)#0or ¢ (—1)p(0) <0, all zeros of ¢ are simple} .

The linear map 7 : C' — R? is given by 7 (¢) = (¢ (0), ¢ (—1)).
V has the following lower semi-continuity and continuity property (for a proof, see
[17, 22|).

Lemma 2.2. For each ¢ € C\ {0} and (v,); C C\ {0} with ¢, — ¢ as n — oo,
V (p) < liminf, o V (¢,). Foreach ¢ € R and (p,)y C C'\{0} with ||, — ¢llcn — 0
asn — 00, V (p) =lim, o V () < o0.

The next result explains why V' is called a Lyapunov functional.

Lemma 2.3. Assume that p € R, J C R is an interval,  : J — R is nonnegative,
z:J+[—1,0] = R is continuous, and z is differentiable on J. Suppose that

(2.2) B(t) = —pz () + B 2 (t— 1)

holds for all t > inf J in J. Then the following statements hold.
(1) If t1,to € J with t; <ty and 2z, # 0, then V (z¢,) >V (21,)-

11



(i) If t,t —2 € J, z(t—1) = 2(t) = 0 but z # 0, then either V (z;) = oo or
V (zi—2) >V (21).

(iii) If B is positive on J, t € J, t —3 € J , z(t) # 0 for somet € J+ [—1,0] and
V(zi—3) =V (2) < 00, then z € R.

(iv) If J =R, B is bounded and measurable, z is bounded and z; # 0 for allt € R, then
V(z) < oo for all t € R.

Proof. For a positive and continuous f, assertions (i), (ii) and (iii) are shown in [17]
and [21]. The proof of Lemma VI.2 in [17] can be modified in a straightforward manner
to cover our slightly more general case. Therefore the details are omitted here.
Statement (iv) is a corollary of Theorem 2.4 in [21] with §* =1, N =0, f° (¢, u,v) =
—pu + B (t)v. Property I of Theorem 2.4 in [21] holds as § is bounded. O

If nonlinearity f is a C'—smooth, nondecreasing function and z, % : J + [~1,0] = R
are solutions of Eq.(1.1), then Lemma 2.3 (i) and Lemma 2.3 (ii) can be applied for

2z = x — & with the nonnegative continuous function
1
B:Jatv—>/ fsx(t—1)+(1—s)2(t—1))ds € [0,00).
0

In addition, if f* > 0 on R, then [ is positive, which condition is needed in Lemma 2.3
(iii).

Proposition 2.4. Assume p € R, f : R — R is nondecreasing, bounded and either it
15 continuously differentiable on R or there exist uy < ug < ... < uy with N > 1 so
that the restrictions of f to the intervals (—oo,uq], [ui,usl,.., [un_1,un], [un,o0) are
continuously differentiable. Let x : R — R and T : R — R be different periodic solutions
of (1.1). Thent — V (z; — ;) is finite and constant. Furthermore, ©(z; — &) # (0,0)
for all t € R.

Proof. The difference z = x — 7 satisfies equation (2.2) with

{ fx(t-1)-f(@(-1)) if (t _ 1) £z (t _ 1) :

2(t—1)—a(t—1)

pE) = DT f(x(t—1)) otherwise,

where D f denotes the right hand side derivative of f. Then 3 is bounded, measurable
and nonnegative. Clearly, z; # 0 for all ¢ € R. Lemma 2.3 (iv) implies V (z;) < oo for
all t € R.

Let w and @ denote the minimal periods of x and Z, respectively. If © = 0 or w/w
is rational, then z is periodic. Thus Lemma 2.3 (i) yields that ¢ — V (z;) is constant.

If w/w is irrational, then one may choose sequences (n;)7° C Z and (k;)° C Z with

192



n; — oo and k; — oo as | — oo so that nyw/@w—k; — 0 as | — oo. Fix t € R arbitrarily.
As for all s € [-1,0],

Rtt+nw (5) = Ttnw (S) - jtJrnzw (S> = Ty (S) - i’t+nzw*k1u~) (S>
:x(t—i-s)—f(t—i-d)(mg—kl) —i—s),
w

we see that 2zyyn,, (s) tends to 2z (s) = x(t+s) — & (t+s) as | — oo uniformly in

€ [-1,0]. So Lemma 2.2 implies
Vi(z) < lilrn inf V (244n0) -
—00

AsR 3 uw V(z,) € 2NU{oo} is monotone nonincreasing by Lemma 2.3 (i), we obtain
that V' (z) = V (244y) for all w > 0. As t is arbitrary, we conclude that ¢ — V' (z;) is
constant also in this case.

The second statement now follows from Lemma 2.3 (ii). O

Notation regarding periodic solutions. If { € Risazeroof R > {+— —ué+f (§) €
R, then we say that a solution = : [-1,00) — R of Eq. (1.1) oscillates around ¢ if the
set of zeros of x — £ is not bounded from above. Solution x : R — R is called slowly
oscillatory around & if V (xt — f) = 2 for each t € R, where f(s) =¢, s€[-1,0. A
slowly oscillatory solution is defined to be slowly oscillatory around 0. Wesay =z : R —+ R
is rapidly oscillatory around & if V' (mt — f) > 4 for all t € R.

Assume z : R — R is a periodic solution of (1.1) with minimal period w. We say
x is of special symmetry if the relation x (t +w/2) = —x (t) holds for all ¢ € R. Set
to < t1 < top+w so that x (typ) = mingeg (t) and z (1) = maxser z(t). Solution x is said
to be of monotone type if x is nondecreasing on [to, 1] and nonincreasing on [t1, to + w].

Assume that 0 is in the range of a periodic solution z : R — R of (1.1). Then x is
normalized if 2(—1) = 0 and for some n > 0, z(s) > 0 for all s € (—1,—1+ 7).

In case f € CT(R,R) with f/(§) >0forallé e R,and € , <& 1 <& =0<& <&
are five consecutive zeros of R 3 & — —ué + f(€) € R, a periodic solution  : R — R
of Eq. (1.1) is called a large amplitude periodic solution if z(R) D ({_1,&1). A large-
amplitude slowly oscillatory periodic solution z : R — R will be abbreviated as an
LSOP solution. This definition is modified for the step function

-K ifx< -1,
@) =90  if 2| <1,
K ifr>1
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in the following way. Solution z : R — R of Eq. (1.1) with nonlinearity f = f5° K > 0,
is a large-amplitude slowly oscillatory periodic (LSOP) solution if x is of monotone type,
special symmetry, and the minimal period of x is in the open interval (1, 2).

We have the following simple observation.

Proposition 2.5. Assume up = 1, f : R — R s continuously differentiable, nonde-
creasing, and
§2<81<8=0<& <&

are five consecutive zeros of & — —&+ f (&) with f' (&) <1 < f' (&) for j € {—2,0,2}
and k € {—1,1}. Suppose x : R — R is a nontrivial periodic solution of Eq.(1.1) with
x; € C_g9 for all't € R. Then the following statements hold. If max;eg x () > 0,
then & < maxerz (1) < &. If maxer@ (t) < 0, then &1 < maxerz (t) < 0.
If mingegx (t) > 0, then 0 < mingerx (t) < &. If mimeraz (1) < 0, then £ o <

mingeg () < £_1.

Proof. Assume x : R — R is a periodic solution of Eq. (1.1) with z; € C_5, for allt € R
and maxcg x (t) > 0. Choose t* € R so that z (t*) = maxeg x (£). In case z (t*) < &
use the fact that f (z) < z for x € (0,&;) to derive that

0=a(t") = -z (") + (" = 1)) < =z (") + [ (x(t7)) <0,
a contradiction. If x (t*) = &, then Proposition 2.4 implies x (t* — 1) < z (t*). As f is
strictly increasing in a neighborhood of &;, we get that

0= (") = -z (") + [z =1)) < -z (") + [ (x(t")) =0,

a contradiction. Hence x (t*) > &;. One may deduce that maxcg x (t) < & in the same

way. We leave the verification of the rest of the statements also to the reader. O

Note that the conditions of the previous proposition are fulfilled if 4 = 1 and (H1)
holds for f.

Boundedness. It is a direct consequence of the next proposition that if f € C' (R, R)
is bounded with sup,cp |f(x)] < M and p : R — R is a periodic solution of (1.1) so
that 0 is in the range of p, then max;er |p(t)| < M/p.

Proposition 2.6. (Boundedness) Ifu >0, f: R — R is continuous, sup,cp | f(x)] <
M and x : [ty — 1,00) — R is a solution of (1.1) with x (to) = 0, then |z ()] < M/u
for all t > t.

14



Proof. Let u : R — R be the solution of the initial value problem

w(t) = —pu(t) + M, teR,
u(tg) = 0.

Then u (t) = M (1 — e =) /p for t € R. Clearly, if 2 : [ty — 1,00) — R is a solution
of (1.1), then & (t) < —ux(t) + M, t € R. In consequence, Corollary 6.2 of Chapter I
in |10] implies that for t > to, z (t) < u(t) < M/pu. The lower bound can be verified

analogously. O

The global attractor. In the remaining part of this section, assume (H1). As [’ (z) >
0 for all € R, backward continuation is unique, if it exists. Hence ® (¢,-) : C' — C,
t > 0, are injective (see also [17]), and for every ¢ € C there is at most one solution
z: R — R of Eq. (1.1) with zy = ¢. Whenever such a solution on R exists, it is also
denoted by x¥.

The maps @ (t,-) : C — C, t > 0, are monotone with respect to the pointwise
ordering on C' [17, 26]. As a result, the sets

Cop={peC:ty<p(s)<&lorallse[-1,0]},

Cooo={peC:&53<yp(s)<O0forallse[-1,0]},
Coa={peC:0<¢p(s) <& forall se[-1,0]}

are positively invariant under the semiflow ®.

There exists a global attractor of the semiflow ® |y o)xc_, ,, i. €., a nonempty, compact
set A C C_o, that is invariant in the sense that ® (¢,.4) = A for all ¢ > 0 and that
attracts bounded sets in the sense that for every bounded set B C C_35 and for every
open set U D A, there exists t > 0 with @ ([t,00) x B) C U. Global attractors are
uniquely determined (]9]).

It can be shown that
A={p € C_y,: thereis a solution = : R — R of Eq. (1.1)
with x (R) C [£_9,&] and ¢ = 20},

see |16, 20, 24]. The compactness of A, its invariance property and the injectivity of
the maps @ (¢,-) : C'— C, t > 0, combined permit to verify that the map

[0,00) x AD (t,p) = P (t,p) € A
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extends to a continuous flow ®4 : R x A — A; for every ¢ € A and for all t € R
we have @4 (t,¢) = x; with a uniquely determined solution = : R — R of Eq.(1.1)
satisfying x¢ = .

Note that we have 4 = @ (1, A) C C'; A'is a closed subset of C'. Using the flow ® 4

and the continuity of the map
Cop— ®(1,p) €,

one obtains that C' and C! define the same topology on A.
Analogously, we define A_,, and A, as the global attractors of the restrictions

®|[0700)X07270 and ®|[0700)X0072, respectively. Clearly, A_s¢ C C_99 and A2 C Cj .

Equilibrium points, periodic solutions and homoclinic connections. All equi-
librium points £ € C of ® are given so that é(s) =¢, —1 < s <0, and ¢ satisfies
—pé + f () = 0. The smoothness of f implies that each map & (¢,-), ¢ > 0, is continu-
ously differentiable. For an equilibrium point é’ € C, the operators D,® (t, é) C—=C,
t > 0, form a strongly continuous semigroup. The spectrum of the generator of the

semigroup consists of the solutions A € C of the characteristic equation
A p—ae =0
with o = f/(£). If a > 0, then there is exactly one real Ay in the spectrum, the rest of

the spectrum is a sequence of complex conjugate pairs ()\j,)\_j)jo with

Ao > Reldy > Redy > ... > Re), > ...
and
(27 —1)m <Im); <2jmfor 1 <jeN.

If0 < f/(£) <, then \g < 0 and £ is stable. If f'(€) > u > 0, then Ay > 0 and ¢ is
unstable. If 4 > 0 and

(2.3) ) > P for 6, € (3n/2,2m) with 0, = —ptand,
cos b,

holds, then ReA; > 0 . In this case if ¢ € A belongs to the stable set

~

we (f) = {gp : w(p) exists and w () = f}

of £ and ¢ #£ &, then V (ap — f) > 2, see Lemma 3.9 in [24] for a proof.
By hypothesis (H1), € 5,6.1,0,61,& are the only equilibrium points of @ in C_g0.
In addition, é_z, 0 and 52 are stable, é_l and él are unstable.

We are going to use the following additional hypothesis.
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(H2) For j € {—1,1} and 6 € (37/2,27) with § = —putan6, the inequality
f'(&;) > p/ cos @ holds.
Note that (H2) is simply condition (2.3) for £ =& and £ = £_;.

It is shown in Chapter 6 of [17] that if (H1) and (H2) hold, then at least one periodic
solution appears with the following two properties: it has range in (0,&), and it is
slowly oscillatory around &;. Analogously, there is at least one periodic solution that
is slowly oscillatory around £ ; and has range in (£_5,0). It is not excluded that more
solutions exist with the above properties. It can be proved that the minimal periods of

these solutions are in (1,2). The following proposition holds.

Proposition 2.7. If conditions (H1) and (H2) are satisfied by f, then there exist
periodic solutions z' : R — R and x7' : R — R of Eq. (1.1) oscillating slowly around
& and &1 with ranges in (0,&) and (€_9,0), respectively, so thal the ranges z'(R)
and x7H(R) are mazimal in the sense that x'(R) D x(R) for all periodic solutions x

oscillating slowly around & with ranges in (0,&); and analogously for v

Proof. From the paper [22] of Mallet-Paret and Sell we know that the map
03¢0 (p(0),0(-1)) €R?

takes the nontrivial periodic orbits of Eq. (1.1) into simple closed curves in R?, and the
images of different periodic orbits are disjoint curves in R%. Hence for two periodic
solutions & and  of Eq. (1.1) oscillating slowly around &, either {wZ; : ¢t € R} belongs
to the interior of {7z, : t € R}, or vice versa. Hence it is not difficult to see that either
Z(R) 22 (R) or (R) C z (R) follows.

Suppose for contradiction that there is no periodic solution oscillating slowly around
& with the stated properties. Then there exists a sequence of periodic solutions z" :
R — R of (1.1) with minimal period w, € (1,2), 1 < n € N, so that 2" is slowly
oscillatory around &;, z" (R) C 2" (R) C (0,&) for n > 1, and there exists no
solution z : R — R oscillating slowly around &; with 2™ (R) C x (R) C (0,&;) for each
n > 1.

As 2" (t) € (0,&) for all t € R and f is bounded on (0,&,), Eq. (1.1) gives a uniform
upper bound for |2"| on R, n > 1. Applying the Arzela—Ascoli theorem and choosing
a subsequence if necessary, we obtain that there exist w, € [1,2] and a continuous
function z* : R — R such that w, — w, and 2™ converges to z* as n — oo uniformly
on each compact subset of the real line. It is easy to see that z* is periodic with period
wy. Also, we find that

" (t) = —px™ (t) + f(z*(t —1)) asn — o0
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uniformly on each compact subinterval of the real line. It follows that x* is differentiable
and satisfies Eq. (1.1) for all t € R.
As 2" (R) C "™ (R) C (0,&) for all n > 1, necessarily

< minz* < min z" " < * <
0< min z (t) < min z (1) <& < max (t) < maxx (1) <&

for all n > 1. We claim that min,cg 2* (t) > 0. Indeed, if ¢,,;, € R is chosen so that

T* (tmin) = mingeg 2* (¢) = 0, then

f (.Z'* (tmm - 1)) =" (tmin) + ,U:E* (tmin) =0
and hypothesis (H1) implies z* (¢, — 1) = 0, a contradiction to Lemma 2.3 (ii), (iv)
and the periodicity of z*. Similarly, max;cg z* () < &.

Proposition 2.4 implies t — V' (x;k — él) is finite and constant. It follows from Lemma
2.2 that

% (xf — él> <liminfV (:z:? — él> =2
n—oo
forallt € R and n > 1. However, V' (:E;“ — §1> > 0 as function z* — &; has sign changes.
SOV(:):;:—§1> —2forallt € R,
We conclude that solution z* is periodic, slowly oscillatory around &;, has range in
(0,&), and 2™ (R) C z(R) C (0,&) for each n > 1, a contradiction to our initial

assumption.

The proof is analogous for x71. 0

Note that under hypothesis (H1) there is no homoclinic orbit to éj, j€{-2,0,2} as
they are stable. It follows from Proposition 3.1 in [15], that there exit no homoclinic
orbits to &, i € {—1,1}.

The Poincaré—Bendixson Theorem. Suppose that f satisfies (H1). If ¢ € C_5o,

then w () is either a single nonconstant periodic orbit or for each ¢ € w (),

a (w) Uw (@D) g {5—27 é—la 507 élv 52} )
see [22|. An analogous result holds for a (x) in case x is defined on R and {z; : t <0} C
C,Q’Q.
3. LSOP SOLUTIONS FOR SPECIAL NONLINEARITIES

In the remaining part of the paper we fix 4 = 1. The results can be easily modified
for different values of > 0.

Let p: R — [0, 1] be a C*-smooth function such that p (¢) = 0for ¢t <0, p(t) = 1 for
t>1and p/ (t) >0 fort e (0,1). For given K >0 and ¢ € (0,1), define f5°: R - R
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(Fig.4) by

x| —1
7 @) = K (M ) san o)
The function f5°:R — R (Fig.4) is given by
—-K ifr< -1,
FEO () = lim £5 (x) = { 0 if 2] <1,
e—0+
K if x> 1.
A A
Kt FK o—————

ea | ) e
| 1 1+¢ | )
| | % Lk

FIGURE 4. The plot of %< for e > 0 small and for e = 0

Note that for all € € (0,1) and K > 1 + ¢, the function £ — —& + f5¢(£) admits

exactly five zeros
o <& 1< <& <&
with 5_2 = —K7 5_1 € (—1 — E,—1)7 &) = 0, 51 € (1,1 +€) and 52 =K.
Consider the delay differential equation
(3.1) i(t)=—x(t)+ f (x(t-1)).

Set JE = (f5<) 7" (4) for i € {~K,0, K}.

If to < ¢ty and z : [tp — 1,#1] — R is a solution of Eq.(3.1) such that for some
i€ {—K,0,K}, we have x (t — 1) € J; for all t € (to,t1), then Eq. (3.1) reduces to the
ordinary differential equation

T(t)=—xz(t)+1

on the interval (to,t;), and thus

(3.2) z(t) =i+ (z(tg) —i) e~ fort € [to,t1].
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We say that a function z : [tg, t1] — R is of type (i) on [to, t1] for some i € {—K,0, K}
if (3.2) holds. If x : [tp — 1,¢;] — R is a solution of Eq. (3.1) so that x is type of (i) on
[to — 1,t; — 1] for some i € {—K,0, K}, then with j = x (¢, — 1) the equality

t—to
(3.3) z(t) =z (t) e~ 4 / e (tto=s) e (i4+(—i)e®)ds
0

holds for all ¢ € [tg,t1]. This motivates the next definition. A function = : [to,t;] — R
is of type (i,7) on [to,t1] with i € {—K,0, K} and j € R if (3.3) holds for all t € [to, t;].
In the rest of the section assume that K > 3.
Let

A K-—-1 ~ K+1+¢
T(E) —1H(1+€), T(E) _an——l—g’ T(€) _an—_H

denote the times that a function of type (0) needs to decrease from 1+ ¢ to 1 or to
increase from —1 — ¢ to —1, a function of type (—K) needs to decrease from —1 to
—(1+4¢), a function of type (—K) needs to decrease from 1 + ¢ to 1, respectively.
Clearly, T (0) =T (0) =T (0) =0 .

3.1. An LSOP solution for nonlinearity f%*°. Define
U' = {(a,e) € (0,1)° x[0,1): a=(a1,a9,a3), ay +ay+as+ 2T () + T () < 1}.

It is easy to see that U! is open in (0,1)° x [0,1).
For given (a,e) € U, set

s = —1,

$1=8y+a = —1+4 aq,

si=s1+T(€)=—-14a+T (),

So =81 +ay=—-14+a1+T(¢)+ as,
st=so+T(e)=—14a,+T () +ay+T(e),
33:3§+a3:—1+a1+T(5)+a2+T(5)+a3,
st=s3+T(e)=—14+a+T () +ar+T () +azs+T(e).

Clearly s; = s}, i € {1,2,3}, for e = 0.
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Define h = h(a,e) : R — R (Fig.5) by

K ift < S1,

fK,E ((1 _I_ 8) ef(tisl)) 1f S1 S t < ST,

0 if s7 <t < s9,
ht)=q f5 (~K+ (K —1)e =) if s, <t < s,

-K if 8; <t < s3,

fK’E <_ (1 + g) e_(t_SS)) if s3 <t < S;,

0 it s5 <t.

—\ K

-1 5SS 0

+ -K

FIGURE 5. The plot of h (a,¢)

Define the map ¥ : U! — C' by

(3.4) zmﬁxn:et/‘ahmﬁﬂgds (C1<t<0).

-1
We look for initial segments of LSOP solutions in the set ¥ (U') C C.

Notice that X (a,€) is the unique solution of the initial value problem

§(t)=—y(t) +h(ae) () (~1<t<0)

(3.5)
y(=1)=0.
Proposition 3.1. X : U! — C is continuous.

Proof. The continuity of the map
U' 3 (a,e) — h(a,e) |10 € L' (0,1)

follows in a straightforward way from the definition of h (a,¢). Applying formula (3.4),

the continuity of X is obvious. 0
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For each fixed (a,e) € U' N (0,1)° x (0,1), the map [—=1,0] 3 ¢t — h(a,e) (t) € R is
Cl-smooth with derivative 1’ (a,€) ().
For given € € [0, 1), define

Ul={ae (0,1)*: (a,¢) € U'}.

The definition of U! implies that U! is open.
If a € U} and |6] <  min{a, as, as}, then

=h(a,e)(t—0) forte[-1,0],

)

{h(a,e) (t) fort € [-1,s7 + %],
|: a

{ |
[

h (al + 67 Gz, a3, 8) (t

h (a1, az + 6, a3,¢€) (t)
) ()

h(al,ag,ag +5,€ t

Now it is clear that we have

o _Jo for t € [—1, s/]
8aih (@€) ()= —h (a,e) (t) fort e [s;,0]

for i € {1,2,3}. Define ¢, € C, i € {1,2,3}, by
Lo
1688aih(a’€) (s)ds (t € [-1,0]).

Obviously 11, 99 and 3 are linearly independent elements of C. With the above

Gi () = b (a,e) (1) = ' /

notation, we obtain the following C'-smoothness property of 3.

Proposition 3.2. For each fized ¢ € (0,1), the map U} 3 a — X (a,e) € C is C'-
smooth with D,Y (a,€) (b) = bitby + bathy + bzthz for all a € Ul and b = (by, by, b3) € R3.

Proof. ¥ (a,¢€) is the unique solution of the initial value problem (3.5). Hence the claim
of the proposition follows from the differentiability of solutions of ordinary differential

equations with respect to the parameters. O
Let
U? ={(a,e) € U" : S (a,e) (s) > 1+¢ for s € [s1,5]],
X (a,€) (s)] < 1for s € [sq, s3],
Y (a,e)(s) < —1—¢ for s € [s3, s3]}

Proposition 3.1 and the definition of U2 imply that U? is open in (0,1)* x [0,1).
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For (a,¢) € U?, consider the solution z = 2@ : [~1,00) — R of Eq. (3.1).

FIGURE 6. Solution =~ of Eq. (3.1)

By the definition of U?, there exist ¢y, ts, ..., s in [—1,0] such that
—1 <t <ty <5y <5] <ty <ty <s9< sy <ty <tg<s3< sy
and
z(t) =1 x(t)=1+4e x(ts) =1+¢e, x(ty) =1, x(ts) = -1, x(tg) =—1—¢
(see Fig.6).
For € € (0,1), introduce

T(e) ()
o (E) _ /0 eSfK,a ((1 + E) e—s) dS, Co (€> _ /0 eSfK75 (K _ (K — 1) e—s) ds.

These integrals appear in the explicit evaluation of a return map. Observe that

B 15(1+6) ) du
c1<e>—/0 ke (e 0.1),

02(5):/0 KU et d e ).

From the last two equalities it is elementary to show that with the extension ¢; (0) = 0,
c2(0) =0 of ¢1, g from (0,1) to [0, 1), the functions ¢; and ¢, are C*'-smooth on [0, 1).

We also need the following integrals:

29



-1
s7 st
he = [ en@e s = n+ [ et (et ds
-1 1

I, = / e*h(a,e) (s)ds = I .,

L. = / e’h(a,e)(s)ds = I +/52 e (K + (K — 1) e” ")) ds
-1 s
= I, —e%cy(e) 2
— é [K (em . 1) T ey (5) _ emitaz (1 + 8) Co (€>] 7
Iy = / e*h(a,e) (s)ds = I, + / ¢* (—K)ds = I, + Ke* — Ke*
9 o
1 2

ZgPﬂw—w+wm@wwwwu+a@@

+€a1+a2 (1 o 6“3)

(1+5)K(K—1)}

K—-1-¢
53 5%
I = / e’h(a,¢e) (s)ds = I +/ e ffe (= (1+e)e 573)) ds
1 s3
= I3—e%c (e)

:équ—w+wm@wwm“a+@@@

(1+e)K (K -1)
K—-1-¢

Notice that Iy, I1 ., ..., I3, I3, are C'-smooth functions from U? into R, and

+eT2 (1 — ™ — e%¢) (€))

el =Y (a,e)(s;), e .= (a,e) (s})

for all j € {1,2,3}.
For t1 and to,

t1 t2
el / Ke’ds =1 and etQ/ Ke’ds=1+¢
—1 —1
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hold, respectively. Hence

K K K—1 .
e b= —land =l =T (e).

. t; =1
(36) ! n K—-1-¢ K—-1-—¢

Proposition 3.3. The maps

K-1
U? 3 (a,e) = 279 (4, +1) = ——13, € R,

K
K—-1-¢ K—-1-¢
U2 =] (a,e) — mZ(a,e) (tz—f-l) = T]37*+ ﬁCQ (5) € R,
K(1+¢)

U? 5 (a,e) — 2™ (t3+ 1) = K + (xz(“’a) (ta+1)—K)eR

e(K—l—g)[L*

are continuously differentiable.

Proof. Since I3, co, I . are C'-smooth functions on U?, one has to show only the
stated equalities for =) (t; + 1), i € {1,2,3}. Set = 2>,

From z (s) € [0,1], =1 < s < ¢y, it follows that z is of type (0) on [0,¢; + 1]. The
definition of X (a, ) gives that x is of type (0) on [s}, 0] as well. Then

(3.7) v(t)=eTa(sy)  (s5<t<h+1),

and using (3.4), (3.6) and the definitions of I3, and ¢, (€), we get
K -1

z(t 4 1) = e Wby (s7) = 7

[3,*

and

Tty +1) = e ot +1) et / e ff (K — (K —1)e®)ds
0

L Kelee,  Koloe
- Kk T TR o1 2%)s

As x is of type (K) on [ty + 1,t3 + 1], we find that

(3.8) z(ts+1)=e?"(x(ta+1) - K) + K.

From s < t3 < sg, (3.4) and h(a,e) (t) = 0 for t € [s7,t3], x (t3) = e 1, follows.
Since z (t3) = 1 + ¢, one concludes that

Il *
3.9 t3 =1 ’
(3.9) 3= T
Substituting o and t3 from (3.6) and (3.9) into (3.8), the proof is complete. O
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Now we are in a position to define a further proper subset of U!. Let
Us = {(a,e) cU?: p>@o) (t1+1) > —1, > (@e) (ta +1) <0, () (t3 +1) > 0} i

At this stage we do not know whether U? # 0. However, Proposition 3.3 and the
definition of U imply that U is open in (0,1)* x [0,1). A typical element of ¥ (U?) is
presented in Fig. 6.

The next remark plays a prominent role in proving Theorem 1.1, as well as Remark

3.14 of the next subsection.

Remark 3.4. Observe that any ¢ € 3 (U®) can be characterized as follows: there exist
e €0,1) and

—1<s5 <8 <855<55<53<55<0
with
st —s1=T(e), s5—sy=T(¢), s5—s3="T(e)

so that ¢ € C satisfies

(1) p(=1) =0,

ii) ¢ is of type (K) on [—1,s1],

iii) ¢ is of type (0,1 +¢) on [sq, s}],

iv) ¢ is of type (0) on [s7, sq],

v) ¢ is of type (—K,—1) on [sq, s3],

vi) @ is of type (—K) on [s3, s3],

vii) ¢ is of type (0, —1 —¢) on [s3, s3],

ix) p(s) > 1+¢ for s € [sq,s]],

xX) |p(s)] <1 for s € [sq, s3],

xi) p(s) < —1—c¢ for s € [s3, s3],

xii) if —1 < ¢; < sy with ¢ (¢1) = 1, then 2% (¢; + 1) > —1,

xiil) if ¢; <ty < s with ¢ (t3) =14 ¢€, then ¥ (t5 + 1) <0,

xiv) if §7 < t3 < sy with ¢ (t3) =1+ ¢, then z?(t3+1) > 0.

Notice that (i)-(viii) characterize ¢ € 3 (U'), and (i)-(xi) characterize ¢ € ¥ (U?).

(
(
(
(
(
(
(viii) ¢ is of type (0) on [s3, 0],
(i
(
(
(
(
(

If (a,e) € U3, then for z = 2™(%°) we have z (s) < —1 — ¢, x is of type (0) on
[s5,t1 + 1] and x (t; + 1) > —1. So t; and tg can be uniquely defined by

sy<tr<tg<ti+1, x(ty)=-1-¢, x(ts)=-1
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In addition, from (a,c) € U? it follows that z has a zero in (t5 + 1,¢3 + 1). Since z is
of type (K) on [ty + 1,t5 + 1], there is a unique zero. Let 7 denote the zero of 2>(®*)

3(a

Proposition 3.5. Suppose (a,c) € U? and define t,ty,...,ts and T for v = 2> qs

above. Then x,.1 € X (U') and

Try1 =N (t3 +1— 7,15 — ty, t7 — tg,€) .

Proof. Notice that 7 is the first positive zero of x. Indeed, we know that the function x
strictly increases on [s3,¢; + 1] from x (s) < —1—c to z (t; + 1) € (—1,0) and strictly
increases on [ty + 1,t3 + 1] from z (t2 + 1) < 0 to = (t3+ 1) > 0. It remains to consider
x on [ty + 1,ty + 1], where it is of type (K, 1), that is

t—t1—1
(310)  a(t)=e Vg (t +1) + / e (mhIms) fRe (K4 (1 - K) e ) ds
0
fort;+1 <t <ty+1. The case ¢ =0 1is evident. If ¢ > 0 and z € (t; + 1,t5+ 1) is
any zero of x, then
i(2)=f(x(z—1) = (K—Ke™) > ff (K- Ke ") = f5 (1) = 0.

Hence it is easy to see that the existence of a zero of z in (t; + 1,t3 + 1) implies
x (ta + 1) > 0, a contradiction. Thus z (t) < 0 follows for all ¢ € [0, 7).

From (3.10) one easily obtains that x (t; + 1) < x (t) for ¢t € [t; + 1,t5 + 1].

Now it should be clear that

z (1) =0,

x is of type (K) on [r,t3 + 1],

z is of type (0,14 ¢) on [t3 + 1,t4 + 1],
x is of type (0) on [ty + 1,t5 + 1],

x is of type (=K, —1) on [t5s + 1,t5 + 1],
x is of type (—K) on [tg + 1,7 + 1],

x is of type (0, —1 —¢€) on [t; + 1,15 + 1],

x is of type (0) on [tg + 1,7 + 1].
It remains to show that

t4—t3:T(€), tﬁ_t5:T(€)7 tg—t7:T(€),

which relations are consequences of the definitions of t3, t4, t5, ts, t7, ts, T (), T( ) and
(—

K) on

[ts5,t6]. The proof is complete. O

the facts that x is of type (0) on [ts,t4] and on [tr,ts] and that z is of type
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We remark that if 2% = ¥ (a,¢) holds for some (a,) € U3, i.e.,
a =1l3+1—7, ag =15 —t4, a3 =17 — s,

then z is a periodic solution of Eq. (3.1) with minimal period 7 4+ 1. The dependence

of t34+ 1 — 7, t5 —ty and t7 — tg on (a,¢) is considered in the next result.

Proposition 3.6. Suppose (a,e) € U? and define t3, ty, ts, te, t7 and T as in Proposition

3.5. Then
I« K I3 . ca (€)
t 1-— = 141 o nf —— T2
sEETT M H(K—l—s K K-1)°
IQ*+K683
ty—ty = In—22l "~
5 4 n(K—l)IL*’
—I3, (K —1-—
tr — g e )

" (1+¢) (I + Kes2)
In particular, if e = 0, that is (a,0) € U3, then

K(K—-1)(1—e™)
K+ (K _ 1) e~ 1 (1 + eartaztaz _ car 6a1+a2)’
e (l—e™)+1
(K—1)(1—e )’

ea1+a2

t7—t6 = (13—|—1I1|:(K—1)( 1—€_a3):|.

et | eaitaz

ts+1—7 = a1 +1n

t5—t4 = a2+ln

Proof. Applying that x is of type (K) on [t2 + 1, 7|, an integration gives
O=cz(r)=ce2Ma(ty +1)+ K (eT — etQH) )

Hence, using also Proposition 3.3,

(3.11) T:m(KL—ﬁ— C2<5>).

—-1-e K K-1
This formula combined with (3.9) yields the result for t3+ 1 — 7.
It follows from (3.9) and the definition of T"(¢) that t4 = In [} ,. Since s§ < t5 < tg <

53,

ts
-1 = 6_t5 (127* +/ e’ <_K) dS) = e_ts (]2,* + K€5§) - K)

2%

te
—1-e = e_t6 (IQ,* +/ e’ <_K) dS) = €_t6 (]2,* + Kesg) - K.

2%
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So

ts = 1 I2’*+K83
57 MK 1ITK-1° )

t 1 LN (SR
= n e .
6 K-1—-¢ K-1-¢

Using that x is of type (0) on [s},t; + 1] and s§ < t7 < t; + 1,

—1—e=e (ms)y (s3) =€ I3,

and I
t7 =In 3
1+e¢
follow. Therefore
IQ « T Kess
ts —ty, = In———
5 4 n (K _ 1) ]—1’*7
—]3 * (K —1- 5)
tr—t¢ = In : —-
T (1+¢) (I, + Ke)
The case € = 0 is an elementary exercise. O

The above results allow us to define the map F : U3 — R? by
F(G,E) = (tg +1 —T,t5 —t4,t7 —tﬁ),

where t3,ty,ts5,ts,t7 and 7 are uniquely determined by the solution x> of Eq. (3.1).
An immediate consequence of the explicit representation of F'(a,e) in terms of (a,¢)

and the C''-smoothness of the involved functions:
Proposition 3.7. F is C'-smooth.

If (a,e) € U? and F (a,e) = a, then 2%(%%) is a periodic solution of Eq.(3.1) with
minimal period 7+ 1. A first step to find a solution of F (a,¢) = a in U? is to consider
the case € = 0. Set

Ul ={aeR’: (a,0) € U’}.

Let K* be the unique solution of w (K) = 1/e on (3, 00), where
K? - 2K —1)°
w(K) = ( ) 5.

(K—-1)(K+1)
Then K* is well-defined. Indeed, w(3) = 1/32, limg o w (K) = 1, and as K +—
9K/ (K2 —1)and K — (4K +2) / (K 4 1)? are strictly decreasing functions on (3, 0c),

w(K) = (1_K§[i1) (1_%)
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is strictly increasing on (3, 00). Evaluating w (6) and w (7), one sees that K* € (6,7).
We have the numerical approximation K* ~ 6.8653. Note that w (K) > 1/e for K >
K.

Proposition 3.8. For K € (3, K*], equation F (a,0) = a admits no solution in US.
For K > K*, there is a unique a* € U3 with F (a*,0) = a*.

Proof. Assume K > 3. First observe that a € R? is a solution of F (a,0) = a if and
only if
(3.12) a; = —In (K—l—;>,
l—e @

(3.13) a; = In((K—1)(e" —-1)),
and g (a1, K) = 1/e, where
(K- -em)-1]

(K =1)*(1—e)?
Indeed, (3.12) comes from the equation given for ¢t5 — ¢4 in Proposition 3.6, (3.13) is
obtained by substituting (3.12) in the t; — tg-equation, and g (a1, K) = 1/e follows by

substituting (3.12) and (3.13) in the ¢34+ 1 — T-equation.
Recall that by definition, a € R? belongs to U if and only if

g(u,K)=Ke™

ar >0, a3 >0, a3 >0, a1 +as+ az < 1,

2200 (5)) > 1, !xE(“’O) (s2)| <1, =@ (g3) < —1,
—1 < 2%@0 (1) +1) = %@ (¢, + 1) < 0 and 270 (t5 4+ 1) > 0.

If a € R® with F (a,0) = a, then not only ay and a3 can be expressed as functions
of K and a;, but also a; + ay + as, @9 (s;) and 2™ (¢; + 1) for all i € {1,2,3}.
Computing €27 from (3.12) and (3.13), and substituting for e?*** from the equation
g (a1, K) = €', one obtains that

(3.14) a1+a2+a3:1+ln([(_(K—l)i(l—e—“l))'

By (3.4) and the definition of I, we get 29 (s;) = e[} = K (1 — e~™). Relations
(3.4), (3.12), (3.13) and the definitions of I and I3 yield

2@ (g)) = e[ =K (K-1)(1—e™)—1],
(3.15) 200 (54) = e[ =—K (1—e™) = —22(@0) (g}
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Also, (3.12), (3.13), g (a1, K) = e~ ', Proposition 3.3 and the definitions of I; . and I3
give
K-—-1

200 (# +1) = 250 (1, +1) = 713,* =K[1-(K-1)(1-e)]
_ _IE(a,O) (82) 7
K
Ot = Kt oy T (i D = K)
- 1,%

= K (1 — e_‘”) = g>(@0) (s1) .
As one can check by elementary calculations, these relations imply that ¢ € R?
satisfying F'(a,0) = a belongs to U3 if and only if

K—-1 K? - K
aleJK:<ln | >

K—2 "K2—2K —1
Hence we get a unique solution a* = (af, a},a}) of F (a,0) = a in UJ if there exist a
unique a} € Ji with g (af, K) = e™!, furthermore a} and a} are defined by (3.12) and
(3.13), respectively.
We claim that g (-, K) is strictly increasing on Jx for K > 3. Note that

g (u, K) 24e "+ (K—-1)(1—-ee ™ =2(K—-1)(1—e")

" ou (K—1)(1—e)—1(1-e") |
If u e Jg, then (K —1)(1—e")—1¢€ (0,1/K). Hence it suffices to show that for
K >3 and u € Jg,

= g(uaK)

24e "+ (K-1)(1—e")e"—2(K-1)(1—€e") >0,
which inequality is equivalent to the second order inequality

(2K —4)2* —(BK —2)z+ (K —1) <0

u

with z = e“. The solution formula gives that we have to show that for K > 3,

Jr C (Inzy,1n z5), where

3K —2—/K2+12(K —1) 1 3K -2+ K?4+12(K — 1)
- AK —8 and == AK —8 '

As /K2 +12(K — 1) > K + 2 for all K > 2, we see that

3K —2— (K +2 1 .
4K—(8 ):ln§<1anK.

21

Inz; <lIn
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The same estimate yields that zo > K/ (K — 2), and it is easy to see that
K - K? - K
K-2 K?2-2K-1
for K > 3. Hence Inzy > sup Jx and ¢}, (u, K) > 0 for K > 3 and u € Jg.
In addition, g (u, K) — 0 as u — inf Jgx + 0. Also,

<i, 3<K<Kr
lim g¢guK)=w(K){ =% K=K
u—ssup Jg—0 ¢
>1 K>K*

Therefore the continuity and monotonicity of g implies that for K > 3, there exists
a; € Ji with g(a}, K) = e7! if and only if K > K*, and the solution is unique if it

exists. O

One may verify using a construction similar to the one given above that for K = K*,
F (-,0) has a fixed point on the boundary of UJ.

Proposition 3.9. For K > K*, 20 : R = R is an LSOP solution.

Proof. Consider solution z = z>@"0 : R — R. Tt follows from the construction in-
troduced above that the minimal period of x is 7 + 1 with 7 > 0, and z is monotone

nonincreasing on [sy, s3]. Therefore is suffices to prove that 7 < 1,
(3.16) 2(s3—s1)=717+1
and

(3.17) . (t+ o 1) —

for t € [s1, s3).
By (3.11), (3.15) and I = I3 = x (s3) €%,

B K r(s3)e® K —ary s
T—lﬂ(K_l— 7 )—1n<ﬁ+(l—e )e

Substituting result (3.14) into the right hand side, we get

(3.18) T=In(K(1-e")).

Sor < lifand only if a} <In K —1In (K —e). As aj € Ji (see the proof of Proposition
3.8), this bound holds.

29



Relations (3.12) and (3.13) imply
4

(K —1)* (1 —e)

62(33751) _ e2(a§+a§) . e2a1‘ . .
(K =1)(1—e)—1]

Using relation g (a1, K) = ™! from the proof of Proposition 3.8,
2(s3 —s1) =In (Ke (1 —e)).

This result together with (3.18) gives (3.16).

As x (s1) = —x (s3) by (3.15) and x is of type (0) on [s1, se] and on [s3,t; + 1], the
special symmetry follows for t € [s1, s9] if s — 57 = t; + 1 — s3 holds. This equation is
the direct consequence of (3.6), (3.12) and (3.14). In particular, = (sg) = —x (t; + 1).
As x is of type (—K) on [sq, s3] and of type (K) on [t; + 1,13 + 1], special symmetry
holds for t € [sq, s3] if a3 = s3 — $9 = t3 — t1. This result comes from (3.6), (3.9), the
definition of I, , and (3.13). So (3.17) follows.

The proof is complete. H

Remark 3.10. A numerical study executed with the aid of the CAPD program [1] gives
that for K =7,

a* € [0.2108,0.2109] x [0.3003, 0.3004] x [0.3426,0.3427).
It is shown that the eigenvalues A, Ay, A3 of D, F (a*,0) € £ (R3 R3) are real with

A1 € [0.7933,0.7934], A, € [3.9187,3.9188] and A; € [6.8362, 6.8363] .

Now we are capable of verifying the existence of an LSOP solution for Eq. (3.1) for
small € > 0. In the sequel we fix K = 7, but the results below can be easily modified
for any K > K*. Since we look for an example with large amplitude periodic orbits, a

particular K is sufficient.

Proposition 3.11. Set K = 7. There exists g > 0 such that for all € € [0,¢),
F (a,€) = a has a solution a* (¢) in U3 = {a € R® : (a,¢) € U3}, and 2¥@ )9 : R — R
is an LSOP solution of Eq.(3.1) with nonlinearity f7°. The range =@ <) (R) is a
subset of (=7,7) for all € € [0,¢ep).

Proof. As U? is open in R? x [0, 1),

U={(ace): (a,e]) € U’}
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is open in R*. We extend the definition of F' for ¢ < 0 because we intend to use the

implicit function theorem. Let G : U — R? be given by

F(CL7€> lff‘?ZOa

G (a,e) =
2F (a,0) — F' (a,—¢) ife <.

Then G is C'-smooth and G (a*,0) — a* = 0. As 1 is not an eigenvalue of D,G (a*,0)
by Remark 3.10, the implicit function theorem yields the existence of ¢y > 0, a convex
bounded open neighborhood N of a* in R? and a C! function a* : (—&g, &) — R? so that
N x (—eg,e0) C U, a* ((—¢0,€0)) C N, a*(0) = a* and for every (a,e) € N x (—&¢, ),
G (a,e) —a = 0if and only if @ = a* (¢). That is F' (a* (¢) ,¢) = a* (¢) for all € € [0, &).

Then ¥ () : [~1,00) — R is a periodic solution of Eq. (3.1) with feedback func-
tion f7¢ for all € € [0,&), and it can be extended to R.

According to Proposition 3.9, 29 is an LSOP solution. It is also clear from
Remark 3.4 and the special symmetry property of =9 that

max >0 (t) =% (a",0)(s1) =7 (1 — €_QI) <7

teR
and therefore min,cg 270 () > —7.
For ¢ € (0,¢0), Lemma 2.3 (i) and the periodicity of (")) gives that V/ <x?(a*(€)’5))
is the same constant for all ¢ € R. Tt follows from the construction that V (X (a* (¢) ,¢)) =
2. Thus V <x§(a*(5)’5)) =2 for all ¢ € R. Tt remains to confirm that

(£1,61) C 2”@ O R) C (-7,7)
for all € € (0,e0). Proposition 2.6 ensures that

2@ (€)e) (R) C (—7, 7) = (f—2a£2>

holds for all € € (0,¢), that is the segments of ¥ (£)€) belong to C_,, for all € €
(0,£0). Then 2= () (R) D (£_,&) by Proposition 2.5. Hence 27 )€ is an LSOP
solution with range in (—7,7) for all € € (0,¢). O

Remark 3.12. D, F (a* (€) ,¢) has at most 3 distinct (possibly complex) eigenvalues, and
as F' is smooth (see Proposition 3.7), they are close to the eigenvalues of D,F (a*,0)
in C for ¢ > 0 small. Because of Remark 3.10, we may choose ¢q > 0 sufficiently small
such that for € € [0, g¢), the eigenvalues Aj, Ay, A3 of D, F (a* (¢),¢) are real, simple and
satisfy

0< A <09, 3<A<bh<As.
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Consider the case ¢ = 0. As equation @(¢) = —x(t) admits no nontrivial periodic
solution, any periodic solution x of Eq. (3.1) with initial function in ¥ (U}) necessarily
satisfies x (s1) > 1 or z (s3) < —1. However, condition z (s3) < 1 is not self-evident.
This recognition leads to an alternative construction yielding a second periodic solution
of Eq. (3.1) for K > K* and ¢ = 0 and a second LSOP solution of Eq. (3.1) for K =7
and € > 0 small. Next we introduce this construction but omit the detailed calculations

as they are analogous to the previous ones.

3.2. Another LSOP solution for nonlinearity <. For K > 3, define

0" ={(a,2) € (0,1 x [0,1): @1+ + a5+ 2T (2) + T () < 1}
and
ﬁg:{aERS:(a,g)Eﬁl}, eel0,1).

Note that U = UL. For given (a,¢) € U, set

So = —1,

s1=58y+a =—1+4a,

st=s514+T()=—-1+a+T (),
32:3I+a2:—1+a1+f(6)+a2,
st=so+T(e)=—14a,+T(c)+ay+T(e),
s3=s5+a3=—1+a +T(c)+ay+T(c)+ as,
st=s3+T(e)=—14+a1+T(e)+ay+T(c)+as+T(e).

Similarly, define h = h (a,¢) : R — R by

(K if ¢ < sy,
[ (=K + (K +1+e)e 7)) if sy <t <sf,
0 if s7 <1 < s9,
h(t) = fEe (=K + (K — 1) e (t722)) if 59 <t < s3,
~K if 55 <t < ss,
[ (K= (K+1+¢e)e %)) if 53 <t < s,
k0 it s5 <t.

and the continuous map % : U — C by

S (a,e) () = e—t/t eh(a,e)(s)ds  (=1<t<0).

-1
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Note that for a € Ul = UL, 3 (a,0) = X (a,0).

Proposition 3.13. For each fized ¢ € (0,1), the map (751 S5 a i(a,é) e C is
C'-smooth with

D, (a,e) (b) = byt + bathy + byt
for all a € U} and b= (by, by, bs) € R®, where

t
es
1

h(a,e)(s)ds € R, i€{l,2,3},

v+ [~1,0] 9t»—>e_t/

8ai

are linearly independent elements of C'.

Now let

U? = {(a,e) e U3 (a,e)(s) > 1+efor s € [s,s] U[sa, 5],
S (a,e)(s) < —1—cforse [33,3§]}.

If (a,e) € U? and z = g¥(ee) [—1,00) — R is the solution of Eq. (3.1) with initial
function & (a, ), then there exist t1,t, ..., ts in [—1,0] such that

—1<t1§t2<81SST<82§S;<t3§t4<t5§t6<83§5§
and
x(t) =1, xz(te) =1+4¢, x(ts) =1+¢, x(ty) =1, z(t5) = -1, x(tg) = —1—¢

(see Fig. 7). A second subset of U is

U3 = {(a,é) c 2. o=@ (ta+1) < —1—c¢, g >(@e) (tz+1) > 0}.

One may show that U3 is open in (0, 1)3 x [0,1). Fig.7 shows a typical element of
()
The following remark resembles Remark 3.4 and we are going to refer to it throughout

the paper.

Remark 3.14. Observe that any ¢ € 5 (173> can be characterized as follows: there exist
e €0,1) and

—1<s5<s]<55<55<53<55<0
with

si—s1=T(e), ss—sa=T(e), s5—s3="T (¢)

so that ¢ € C' and
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i) p(=1) =0,

ii) ¢ is of type (K) on [—1, s1],
iii) ¢ is of type (—K,1+¢) on [sq, s7],
iv) ¢ is of type (0) on [s7], sq],

v) ¢ is of type (=K, —1) on [sq, s3],

vii) ¢ is of type (K,—1 —¢€) on [s3, s3],

viii) ¢ is of type (0) on [s3, 0],

ix) p(s) > 1+¢ for s € [s1,s]] U|[s2,s5],

X) ¢ (s) < —1—c¢for s € [s3, s3],

xi) if —1 <ty < sy with @ (t2) =14¢, then 2% (t3+ 1) <0,
xii) if s7 < t3 < s with ¢ (t3) =1+ ¢, then 2% (t3+ 1) > 0.

(
(
(
(
(
(vi) ¢ is of type (—K) on [s3, s3],
(
(
(
(
(
(
Note that (i)-(viii) characterize ¢ € 5 <U1> and (i)-(x) characterize ¢ € D <(72>

FIGURE 7. Solution z~“” of Eq. (3.1)

For (a,e) € U3, let 7 be the (unique) zero of z = 2@ on [ty + 1,t5+1]. If
(a,e) € U3 and tq, t, ..., ts,7 are defined as in this subsection, then x,,; € ((71) and

x7'+1:i(t3+1_7-7t5_t47t7_t67€)'

As in the previous subsection, 7 and ¢;, i € {1,..,6}, are C'-smooth functions of
(a,e). Therefore we may introduce the C'-smooth map F : U — R3, F(a,¢) =
(ts + 1 —7,t5 — t4,t7 — tg). In case F (a,¢) = a for (a,¢) € U3, then 25(@9) is a periodic
solution of Eq. (3.1).
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Introduce the notation
U? = {a €R?: (a,e) € (73}, e€0,1),
and recall the definition of K* from the previous subsection. We obtain the following

results analogously to Proposition 3.8 and Proposition 3.11.

Proposition 3.15. For K > K*, there exists a unique a € (75’ with F (a,0) =a. For
K € (3,K*], F (a,0) = a has no solution in U3.

It can be shown that for K = K*, F (+,0) has a fixed point on the boundary of [75’
and it equals the fixed point of F' (-,0).

Proposition 3.16. For K > K*, 2@ . R — R is an LSOP solution.

Remark 3.17. For K = 7, a numerical study executed with the aid of the CAPD
program |[1| gives that

@ € [0.2202,0.2203] x [0.2876,0.2877] x [0.3585, 0.3586].

In addition, it is shown that the eigenvalues A, Ao, A3 of D,F (a,0) € £ (R3 R?) are
real with
A =0, Ay € [—0.2415,0.2347] and \; € [2.3226, 2.3227].

Proposition 3.18. For K = 7, there exists g > 0 such that for all € € [0,&),
F (a,¢) = a has a solution @ (&) in U3, and =@ : R — R is an LSOP solution. The

range PCIOR) (R) is a proper subset of (—=7,7).

Remark 3.19. It follows from the smoothness of F' and Remark 3.17, that one may set
€0 > 0 so small that for € € [0, &p), the eigenvalues A1, Ay and A3 of D,F (a(e),e) satisty
0< ‘)\1‘ < ’)\2’ < .5, 2 < /\3.

Note that \s is necessarily real. Either both A; and )\, are real, or Ay = \;.

Remark 3.20. Tt is clear from Remarks 3.4 and 3.14 that for K =7,

max =0 (t) = £ (a*,0) (1) = 7 (1—e)

teR

and

¥(a,0) N (x _ &
max (t) = X (a,0) (s1) (1—e ).
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As a7 < a; by Remarks 3.10 and 3.17, we see that
max 279 (t) < max 22(@0) (1).
teR teR

Both periodic solutions are of special symmetry, hence

. %(a*,0) _ % S — min - 2(@0)
min ™0 (£) = 5 (a*,0) (s3) > £ (@,0) (s3) = mina™@ (¢).

As 3 and ¥ are continuous functions of (a,e), furthermore a* and a are continuous

functions of €, we may suppose that the same inequalities,

S(a*(g),e) 1) = Y (a* £ < i ~ 1) — S(a@(e),e) ¢
max ™0 (1) = max $(a*(2),2) () < mae 5@ 6),) (1) = maxa™0) (1

and

. 3(a*(e),e) 1) = . Y (a* £) > . S (a £) = mi 3(a(e),e) ¢
min z (t) Jpin, (a" (e),e) (t) Jpin, (a(e),¢)(t) = minz (t)

hold for all ¢ € (0, min (o, €9))-

Remark on the choice of K. We can summarize our results regarding case ¢ = 0 as
follows. For K € (3, K*), Eq. (3.1) admits no periodic solution with initial function in
> (U3,0)US ([75’, O) . For K > K*, Eq. (3.1) has a unique periodic solution with initial

segment in ¥ (U3,0) and a unique periodic solution with initial segment in 3 ([703, 0).
It can be shown that for K = K™, there is a single periodic solution with initial function
in bds (U2, 0) N bdS ((73, o).

Fig. 8 shows the graphs of the first components of the fixed points of F'(-,0) and
F(-,0) for K > K* (as functions of K).

FIGURE 8. The plot of a} = a} (K) and a; = a; (K) for K > K*
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This suggests that for each fixed small ¢ > 0 there exists K* (¢) so that Eq.(3.1)
undergoes a saddle-node-like bifurcation of periodic orbits at K = K* (¢).

To give a more detailed picture of the case ¢ = 0, we are going to show the following
results in Section 6. For K > K* and e = 0, 2@ : R — R and 2°@0 : R — R are
the only normalized LSOP solutions of Eq. (3.1) (see Proposition 6.4). For 0 < K < K*
and ¢ = 0, Eq.(3.1) has no such nontrivial periodic solutions (see Corollary 6.2 and
Proposition 6.4).

4. THE EXISTENCE OF LSOP SOLUTIONS FOR A MONOTONE NONLINEARITY

Theorem 1.1 states that one may give a strictly increasing feedback function f so
that (1.1) has exactly two LSOP solutions. In this section we discuss the existence of
these LSOP solutions.

Let K = 7and ¢ € (0, min (g9, &p)) be fixed, where 5 and &; are given by Propositions
3.11 and 3.18, respectively. Proposition 3.11 implies that Eq. (3.1) has an LSOP solution
with initial function ¥ (a* (¢),¢) and with range in ({2, &).

Observe that 2@ (4)) is a normalized LSOP solution of (3.1) with

Y(a"(e),e) e H={peC: p(—-1)=0}, %Z(a*(s),5)¢H.

Then a Poincaré return map can be defined on {X (a* (¢),¢)} + N, where N is a convex
bounded open neighborhood of 0 in H, see Section 2. As P is C'-smooth and has
fixed point X (a* (¢) ,¢), there exists a convex open neighborhood N € N of 0 in H so
that P2 = P o P is defined on {X (a* (¢),€)} + N. We have the following observation
regarding the range of P2.

Proposition 4.1. There exists an open neighborhood V C N of 0 in H so that

if p€{S(a"(g),e)}+V, then P?>(p) € & (U2 x {e}).

Proof. If ¢ € {3 (a* (¢),e)} + V, with an appropriate open ball V' centered at 0 in H,

%(a*(e).e)
1

then ¥ and = are close in C''-norm, and there exist
1 )

1<ty <ty <ty <ty<ts<tsg<t;<tsg<0<T,
such that
go(fl =1, gp(fg) =1+c¢, <p(Z3) =1+e¢, 90(54) =1,
e(t:)=—1, ¢(tg) =—1—¢, p(&r) =—1—¢, ¢ (&) = -1, 2¥(7,) =0,
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¢(t) e (-1,1) forte [-1,11),
p(t)>14+e forte (&)
¢ (t) e (—1,1) forte (fy,15),
p(t)<—-1—¢ forte (ls 1),
22 (t) € (-1,1) fort € (&5, 7],
and the smallest positive zero 7, of ¥ is simple and belongs to (fg + 1,43+ 1). In
consequence, P () = z7 , and we have

P () (=1) =0,

P (i) is of type (7) on [—1,13 — 7],

P () is of type (0) on [ty — 7y, t5 — 7],

P () is of type (—7) on [ T@,t7—7<p]7

P () is of type (0) on [ts — 7,,0].

If the radius of V' is small enough, then also

P(p)(t)>1+eforte [ty — 75t — 7],

[P (@) (t)] < 1forte [tz — Ty 6 — 7y

and P () (t) < =1 —efor t € [tz — 7,15 — 7).

In this case it also follows that whenever P () maps the disjoint subintervals Jj,
Jo, J3, Jy of [—1,0] onto the intervals [1,1+¢], [1,1+¢], [-1—¢,—1], [-1—¢,—1],
respectively, then P (¢) is of type (7), (0), (=7), (0) on Jy, Jo, J3, Jy, respectively, and
therefore 27 is of type (7,1), (0,1 +¢), (=7,—1), (0,—1 —¢)on J,+1, Jo+1, Js+1,
Jy + 1, respectively. Using an argument similar to the one given above, now it is easy
to see that if we take neighborhood V small enough, then P? () satisfies conditions
(i)-(viiil) of Remark 3.4 with some

—1 <5 <3 <52 <35 <353 <35 <0,
where
EI —31 :T(€), g;—gg :T(€), §§—§3 :T(€>
Using the smooth dependence of solutions on initial data and decreasing the radius of

V further, we can achieve that P? () satisfies conditions (ix)-(xiv) of Remark 3.4 and
thus P? () € (U2 x {}). O

Note that for any small neighborhood V of 0 in H, there is ¢ € {¥ (a* (¢),2)}+V so
that P(p) does not satisfy conditions (iii), (v) and (vii) of Remark 3.4. So we cannot
state that P(p) € X (U2 x {e}).

Proposition 3.18 yields that Eq. (3.1) has another LSOP solution with initial segment

5 (@ (e),e) and with range in (£_s,&). Then one may define a Poincaré return map
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P in a neighborhood of 3 (d(¢),¢) in H in an analogous fashion. The analogue of

Proposition 4.1 holds.

Proposition 4.2. There is an open neighborhood 1% of 0 in H such that
if g {S(@(e).0)} + 7, then P*(p) € S (0? x {e}).

We omit the proof.
The hyperbolicity of the LSOP solutions is confirmed with the aid of the next propo-

sition.

Proposition 4.3. Suppose that X is a real Banach space, Vo, V1 and Uy, U, are open
subsets of X and R™, respectively, V1 C Vo, Uy C Uy , xg € V1, ug € Uy, the maps

QU —>R" R:Uy— X, S:Vy— X

are C'—smooth, Q (ug) = ug, R(ug) = xo, S (o) = zo, Q Uy) C Uy, R(U) C W,
S (V1) C R (Uy), moreover, DR (ug) € L(R™, X) is injective and S (R (u)) = R (Q (u))
for allw e Uy. Then

0 (DS (20)) = {0} Uo (DQ (u0)),
and for each X\ € o (DS (x))\{0}, the corresponding generalized eigenspaces of DS (xo)

and DQ (uy) have the same dimension.

Proof. By introducing the maps
u— Q(u+uy) —Q(u), ur— R(u+ug) — R(u), ©—S(x+z0) — S (x0),
we may assume that zog = 0 and ug = 0.
By the injectivity of DR (0), the set Y = {DR(0)u : u € R™} is an m-dimensional
subspace of X and
A:R">u— DR(0O)ueyY
is a linear isomorphism. Let A~! denote the inverse of A. Since Y is finite dimensional,

there is a closed complementary subspace Z of Y in X, i.e., X =Y @& Z. The set
Yo = A (Up) is an open neighborhood of 0 € Y. Define the map

T:Yo+Z>y+z—R(A " (y)+2z€X.

Clearly T is C'—smooth, T'(0) = 0, DT (0) = idx and T (Yy) = R (Uy). The inverse
mapping theorem shows that 7" is a local C'-isomorphism at 0 € X.

If z is in a small neighborhood of 0 € X and z € R (U,), then there exist y € Y
and u € U so that = R(u), y = T~ (z), u = A~'y. Then by applying S (R (u)) =
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R(Q (u)), we find that

(4.1) S(r)=S(R(u) =R(Qu)=R(A"(A(Q(u))) =T (A(Q (u)))
:T(A (Q (A_ly))) =ToAoQoA ' oT ! (2).
In a sufficiently small open neighborhood of 0 € X define the C'-smooth map s into
X by
s(2) =T (S (T (x))).
If  is in the domain of s and T' (x) € Vy, then by the assumption S (V) C R (U,) there
exists u € U; so that

S(T (z)) = R(u) = R(A™ (A(u))) = T (A(u)).

Hence for such an x we obtain that s(x) = Au € Y. Therefore s maps a small
neighborhood of 0 € X into Y. Consequently, Ds(0) (y+2) = By+ Cz for all y € Y
and z € Z, where B € L(Y,Y) is the derivative of s restricted to a neighborhood of
0€Y and C € L(Z,Y) is the derivative of s restricted to a neighborhood of 0 € Z.

If y € Y is in a sufficiently small neighborhood of 0 € Y, then there is u € U; with
y = Au,

T(y)=T(A()=R(A(A(w))) = R(u) € R(Uh),

and consequently, by applying (4.1),

s(y) =T oSoT(y)=T 'oToAocQoA ' oT ' oT(y)=A0cQo A (y).

Therefore B = Ao DQ (0)o A~!. From DT (0) = DT~'(0) = idx one gets DS (0) =
Ds (0). Thus
DS(0)(y+2z)=(AoDQ(0)o A ) y+Cx

forally € Y, z € Z, with range (C) C Y , and the statements of the proposition follow

in a straightforward way. OJ

Proposition 4.4. The orbits defined by LSOP solutions x> )2 and 22@©9) gre

hyperbolic with 2 and 1 Floquet multipliers outside the unit circle, respectively.

Proof. First we prove that DP? (X (a* (¢) ,¢)) has real Floquet multipliers jiy, pa, p3 of
multiplicity 1 with
0<p <081, 9<puy<25< us.
Set X = H, m =3, 2o = X (a*(¢),¢) and up to be the fixed point a* (¢) of F (-, ¢)
in U3 given by Proposition 3.11. Choose Vy = {z¢} + V, where the open set V is given
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by Proposition 4.1. Set Uy to be the open set on which F?(- ¢) is defined, that is
Uy={acU’: Fla,e) U} .

Let

L[l = {CLEZ/{OZ F2(CL,€) EZ/{[) and E(a,e) GV[)}.
Clearly U; C Uy is open and ug € U;. Let Vi C V, be an open ball with g € V)
and P? (V1) C X (U, x {e}). The latter set exists because zy € X (U; x {e}), P? is

continuous and maps V, into X (U2 x {€}) by Proposition 4.1.
Define

Q=F":U —~R R=X(,e):Uy—H S=P:Vy— H.

Proposition 3.7 yields that @ is C''-smooth, Proposition 3.2 gives that R is C'-smooth
and DR (up) is injective. The map S is also smooth [19]. Clearly @ (ug) = uo, R (ug) =
zo and S (xg) = xp, moreover U; and V; are chosen so that Q (Uy) C Uy, R (Uy) C Vo
and S (Vy) C R (Uy) hold. Tt is easy to see that S (R (u)) = R(Q (u)) for all u € U;.

Remark 3.12 implies that the eigenvalues of DQ (ug) are u;, i € {1,2,3}, with 0 <
1 < 0.81 and 9 < py < 25 < pg. It follows from Proposition 4.3 that the eigenvalues
of DP? (x) are 0, ji1, j12, 13 with the above bounds, and u;, i € {1,2,3}, are simple
eigenvalues.

If p is an eigenvalue of DP (), then p? is an eigenvalue of DP? (xg) = DP (z¢) o
DP (x), and the generalized eigenspace of DP (z) associated to pu is clearly a subset of
the generalized eigenspace of DP? () associated to u?. Consequently, DP (z,) has two
simple real eigenvalues outside the unit circle, and it has no eigenvalue with absolute
value 1.

The statement for 2> can be verified in a similar way. O

Choose D = R and the consider the Banach space C} (D,R) = C} (R,R). Clearly
[ e C}(R,R) for all e € [0, 1).

Proposition 4.5. Set u =1, K = 7. Then for each ¢ € (0, min (9, &y)), where €y and
o are given by Propositions 3.11 and 3.18, respectively, there exists 69 = g (¢) > 0 so
that if f € C} (R, R) satisfies (H1), and ||f — fm”c; < 8y, then Eq.(1.1) admits two
normalized LSOP solutions p : R — R and ¢ : R — R with p(R) € ¢(R) C (£{-2,&).

The corresponding periodic orbils
Op,={p::t€R} and O, ={q : t € R}

are hyperbolic and have 2 and 1 Floquet multipliers outside the unit circle, respectively.
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Proof. Consider nonlinearities f € C} (R, R) satisfying hypothesis (H1). Then Propo-
sition 2.1 and Proposition 4.4 imply that there exists dp = o (¢) > 0 such that if
Ilf— f7’5||0b1 < 0o, then Eq. (1.1) has two periodic solutions p: R - Rand ¢: R - R
with

po— S (a* (¢),¢) and gy — S (a(e),e) in C as /- fK’EHC; — 0.

As the initial segments py and ¢y are arbitrarily close to ¥ (a* (¢),¢) and £ (@ (¢) , ),
respectively, and the periodic solutions are of monotone type, we get V (py) = V (qo) = 2
if 9 is small enough. In this case the periodicity of p and ¢ and the monotonicity of V'
gives that V (p;) = V (¢) = 2 for all t € R. In addition, it is easy to see that one may

choose dy so small that

(5—1751) C p(R) C (§—27€2) and (g—hgl) C q(R) - (5—2a§2) :
Hence p and ¢ are LSOP solutions of Eq. (1.1) with range in (§_5,&). Obviously we

may assume that p and ¢ are normalized. It was pointed out in Remark 3.20 that
22(@ ()9 (R) C 25@©)9) (R). Therefore p(R) C ¢ (R) provided d is small enough.

As we have seen in Section 2, one may define a C'-smooth Poincaré return map P
in a small neighborhood of py in H = {p € C': ¢ (—1) = 0} with fixed point py. As the
Poincaré return map depends smoothly on the right side of the equation and as f is close
to f7¢ in C}-norm, we may suppose using Proposition 4.4 that DP (py) has exactly two
eigenvalues A\; > Ay > 1 with absolute value not smaller than 1. So O, is hyperbolic
with two Floquet multipliers outside the unit circle. Similarly, Proposition 4.4 implies

O, is hyperbolic with exactly one Floquet multiplier outside the unit circle. [l

The statement of the previous proposition holds even if we consider functions in

C}(D,R), where D is chosen to be any open set containing
{xz(“*(s)’s) (t):te ]R} U {xi(a(s)’s) (t):te ]R} :

In order to verify Theorem 1.1, we have to exclude the existence of more normalized
LSOP solutions. The proof of Theorem 1.1 is completed at the end of Section 6.

5. PROPERTIES OF PERIODIC SOLUTIONS

This section describes some useful properties of periodic solutions of Eq.(1.1). The
next two results are well-known for the case when f is smooth and strictly increasing,
see [17],]21] and [22]|. The first proposition is analogous to Theorem 7.1 in [22] and the
proof presented here is a slight modification of the proof of Theorem 7.1 in [22].
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Proposition 5.1. (Monotonicity) Assume that f : R — R is nondecreasing and
bounded, f is either continuously differentiable or there exist u1 < us < ... < uy
with N > 1 so that f|(—ccu]s fliunusls - flun.co) are continuously differentiable. If
p: R — R is a nontrivial periodic solution of Eq.(1.1), then p is of monotone type.

Proof. Set points ty < t; < tp + w so that p (ty) = minegr p(t) and p (t1) = maxer p(t),
where w is the minimal period of p. We have to verify that p(t) > 0 for ¢t € (o,¢;) and
p(t) <0 fort e (t1,t) +w).

To prove the lemma indirectly, assume that p(t) < 0 for some t € (o, 7).

Recall that £ is a regular value of p, if for each ¢t € R with p(t) = &, p(t) # 0
holds. According to Sard’s Lemma [25], we may choose £ € (p(to),p (t1)) so that & is
a regular value of p and p (t*) = &, p(t*) < 0 for some t* € (to,t;). Fix such £ and ¢*.
Since p is continuously differentiable, one may give ty € (to,t*) and t3 € (¢*,¢;) so that
p(t2) =p(ts) =& p(t2) >0, p(ts) > 0 and for t € (t2,t5) \ {t*}, p(t) # &

Define the curves

T [to,to+w] >t — mp, = (p(t),p(t—1)) € R?
and
L:[0,1]2s= (&sp(ta—1))+ (1 —8)p(ts — 1)) € R

We claim that I is a simple closed curve. If not, then there exist t4, t5 with t; <
ty < t5 < to+w so that T (t;) = T (t5). With 2 (t) := p (t + t4) and Z () := p (t + t5),
Proposition 2.4 implies mxg # 7%, a contradiction. Thus curve I' is simple.

Next we claim that if t € [to, 1] with p () = £ and p(¢) <0, then I' (¢) ¢ L. Indeed,
for such t we have f(p(t—1)) =p(t)+& <& while f(p(ti—1)) =p(t;) +& > € for
i € {2,3}. As f is monotone nondecreasing, the claim follows.

As a result, J =I'|(,4,) U L is a simple closed curve.

Since p(t2) > 0, p(t3) > 0 and I'(t3) # T (¢3), there exist e > 0, C'-maps ~; :
[€ —e,&+¢] = R, constants §; > 0, d; > 0 for j € {2,3} so that

{(w, 7 () ruel§—e&+el} =T ([t;—d;.t;+5]]), Jje{2.3}
and
R~ = {(u,v):u€ (£ —¢),vis in the open interval defined by v, (u) and 3 (u)}
RT = {(u,v):u € (§&+¢€),vis in the open interval defined by v, (u) and 3 (u)}

belongs to different connected components of R?\ J (since T (¢) ¢ L for all ¢ € (ta,t3)).
We have T (t; —05) ¢ J, T (ts+65) ¢ Jand I'(t2—6;) € R, I' (t3+65) € RT.
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Combining the above facts, we conclude that I’ (t2 — 52_) and T’ (t3 + 5;) belong to
different connected components of R?\J. Clearly, T (to) and T (¢;) belong to the exterior
of J. Thenin case I' (f — &5 ) € int (J) there exists t** € (fo, ¢2) such that I' enters from
ext (J) into int (J) through T' (¢**) € L. In this case R™ C ext(J), R~ C int (J) and
p(t*) < 0 follows. This is a contradiction to the fact that if ¢ € [ty,t;] with p(t) = ¢
and p(t) <0, then I" (t) ¢ L.

If T (t3 + 67 ) € int (J), then there is t** € (t3,¢1) so that I' enters from int (J) into
ext (J) through I' (t**) € L. We also have Rt C int (J), R~ C ext (J) in this case and
again p (t**) < 0 follows, a contradiction.

The assumption that p(t) > 0 for some ¢ € (t1,t)+ w) leads to a contradiction

analogously. O

The following statement resembles Theorem 7.2 in [22|. As we consider only scalar

equations, the proof is elementary in our case.

Proposition 5.2. (Symmetry) Assume the hypotheses of Proposition 5.1 and in ad-
dition suppose that f(0) = 0, f is odd and O belongs to the range of p. Then p is of

special symmetry.

Proof. Let w denote the minimal period of p. Set points to < t; < tg + w as in the
previous proof, that is with p(ty9) = miner p(t) < 0 and p(t1) = maxyeg p(t) > 0.

According to Proposition 5.1, the set of zeros of p in (to, ;) is an interval:

[20,,21] = {t € (to,t1) : p(t) = 0}

with tg < zg < 27 < t1. Similarly, one may set 2z, and z3 so that [z9, 23] C (¢1,t0 + w),
p(t) =0 for t € [z2, 23] and p(t) # 0 for ¢t € (t1,t0 +w) \ [22,, 23]. Of course, zy = 2z or
29 = z3 18 possible.

Consider the curve I : [tg, to +w] > t — 7p; € R% As we have verified in the proof
of Proposition 5.1, I' is a simple closed curve. Setting x = p and & = 0, Proposition 2.4
yields that ' (t) # (0,0)" for t € [to, to + w).

Next we verify that (0,0)" € int(I'). For t € (z1,ti], p(t) > 0, p(t) > 0, hence
f(pt—1))=p(t)+p(t) > 0 and necessarily p(t — 1) > 0. We claim that p(t — 1) > 0
holds also for t € [z, z1]. If not, then there exists z* € [z, 1] so that p(z* — 1) =0,
which contradicts I' (2*) # (0,0)"". Therefore

I(t) € {(u,v) ER*:u>0,v>0} fort € [z,t].

If t € (23,10 +w], then p(t) < 0, p(t) < 0, hence f(p(t—1)) = p(t) + p(t) < 0 and
p(t—1) < 0. It can be verified in a similar manner that p(t —1) < 0 holds for ¢ € [z, 23]
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and thus

T(t) € {(u,v) ER*:u <0, v <0} fort€ [z,t0+w].
Since I is a simple closed curve and there exists no ¢ € [to, to + w] \ ([20, t1] U [22, to + w])
such that T'(t) is on the ordinate-axis, we obtain that (0,0)" € int (T").

Now take the periodic function ¢ : R 5 t — —p(¢t) € R with minimal period w and
consider the curve T : [to,tg +w] D ¢ +— 7g € R Since f is odd, ¢ is a solution
of Eq. (1.1). Clearly I (t) = —I'(t) for all t € [to,to + w]. Because (0,0)" € int ('),
curves I and I intersect, that is t* € [ty, to + w] and t** € [ty, to + w] can be given with
L) =T"("). Set g:R>t—p(t+t*—t*) € R. If ¢ and ¢ are different periodic
solutions of Eq. (1.1), then Proposition 2.4 implies mq« # mqp+, that is T (¢*) # TV (t**),
a contradiction. So p (t +t* — t**) = —p (t) for all ¢. Necessarily t* — t** = w/2. O

Note that we have an analogous result for special nonlinearity f%9; it is shown in
Section 3 that for K > K*, periodic solutions 259 : R — R and #°@9 : R — R
of Eq. (3.1) are of monotone type and special symmetry. We conjecture that for case
e = 0, all nontrivial periodic solutions of Eq. (3.1) are in possession of these properties.

Let Ky > 3 and K; > K| be fixed. Choose

‘ /K _ 1
g T R

The next result is slightly more general than necessary in this paper. The stated

property uniformly holds for K in a compact interval.

Proposition 5.3. Assume p =1, K € [Ky, Ki], € € (0,9) and p : R — R is a nor-
malized LSOP solution of Eq. (3.1) with minimal period w > 0. Then p is of monotone
type and special symmetry, and the following assertions hold.

(i) The zeros of p are simple.

(i) we (1+%,2— 5).

(i) maxeg p (t) > e'/K.

(iv) Choose tmax € (—1,0) with p(tmax) = maxwer p (). Let t1 be the largest t €
(=1, tmax) with p(t) =1, and let t, be the smallest t € (tymax, 00) with p(t) = 1. Then

p(t) > K —2 forallt e (t, —d,t1+90),

() < —% for all t € (s — 6,14 + 6).

Let ty be the largest t € (t1,tmax) with p(t) = 1+ &, and let t3 be the smallest
t € (tmax, t1) with p(t) = 1+ €.
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(v) Ifts +2 <w and ty — t; < 1 —w/2, then py € X (U2, €) with

p0:E<t3+2—w,t1—t4+g7t3—t2,€>.

(i) Ifts+2 <w and t5 —t; > 1 —w/2, then py € & (ﬁf,s) with

= w
p0:E<t3+2—w,t1—t4—|—§7t3—t2,5>.

Proof. Assume p : R — R is a normalized LSOP solution of Eq. (3.1). By definition,
V (p:) = 2 for all t € R. Proposition 5.1 and Proposition 5.2 imply p is of monotone
type and special symmetry. Setting tin = tmax + w/2, we have —p (tmax) = P (tmin) =
mingeg p (t), p is monotone nondecreasing on intervals [t + kw, tmax + (K + 1) w], and

monotone nonincreasing on intervals [tyax + kw, tmin + kw|, k € Z. By Proposition 2.4,
(p(t—1),p(t)) # (0,0) for all t € R.

Claim (i). w € (1,2).

Proof. If w > 2, then ty, = tmax +w/2 > —1 +w/2 > 0. By the special sym-
metry, p(—1+w/2) = p(—1) = 0. The monotone property yields p(s) > 0 for
s € [-1,-1+w/2]. Consequently V (py) = 0, a contradiction. Suppose w < 1.
Then —1 < fpax < tin < —1+w <0, and p(—1+4+w) =0, p(—1+w+s) >0
for all s € (0,n) for some n > 0. Clearly there is an arbitrarily small s > 0 with
p(—=1+w+s)>0. Then from Eq. (3.1)

A p(-14+w+s—1))=p(-1+w+s)+p(-1+w+s)>0

and p(—14+w+s—1) > 1 follow. By continuity, p(—2+w) > 1. Hence, by using
—2+w < —1, p(—1) = 0 and the monotone property of p, one obtains u € (=2 + w, —1)
with p(u) < 0. Then p has at least 3 sign changes on [—2 + w, —1 4+ w], a contradiction.
Therefore 1 < w < 2. 0J

Claim (ii). p(0) <O0.

Proof. The equality p(0) = 0 contradicts Proposition 2.4 since p(—1) = 0. If
p(0) > 0, then by (3.1) and p(—1) = 0, p(0) < 0. The monotone property of p yields
either p(s) > 0 for all s € [—1,0] or w < 1, a contradiction. Thus p (0) < 0. O

From p (0) < 0, by (3.1) and p(—1) =0, p(0) > 0 follows. Hence i, < 0.

Set 7 =w —1¢€ (0,1). It is easy to see that p(t) < 0 for all ¢ € [0, 7], and p (t) > 0
for all t € (7,7 +n) for some n > 0.
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Define t5 = tl +CU/2, ts = t4 + (U/27 tg = tl +w and tlg = t4 +w (see Flg 9) Clearly,
ty > 7 . Note that z = =14 w/2 = TSt € (t4,15) is also a negative zero of p.
Observe that 0 < € < § implies
e

< 1 de<
— a —_—.
19 K nd € oK

Claim (ZZZ) T € (tl + 1,t4 + 1)
Proof. As p(0) < 0 and p is of type (0) on [0, + 1],

(5.1) p(t) = p(0)e~" < 0 for all t € [0, + 1].

Sot >t +1. If p(ty +1) <0, then on the one hand p(t) < 0 for all t € [t4 + 1,2 + 1]
(as p is of type (0) on [t4 + 1,z + 1]), on the other hand

z+1:E € (T,T—f—o—J)

2 2

and p (t) > 0 for all t € [1,7 4+ w/2|, a contradiction. If p(t;+ 1) = 0, then p(t) =0
forall t € [ty + 1,2z + 1]. By (7 + 1)-periodicity, p (t) = 0 follows for ¢t € [ty — 7,2 — 7].
By the definitions of ¢;,t, and z, the minimal zero of p in (—1,z] is in (f4,2]. As
z=(r—1)/2 > 7 —1 and thus z — 7 > —1, this a contradiction. Consequently,
p(tas+1)>0and 7€ (¢, + 1,84+ 1). O

Proofs of Assertions (i) and (ii). Assertion (i) is a direct consequence of Claim (iii).
Note that if t € (¢; +1,t4 4+ 1) with p(¢) = 0, then

p(t)=—p )+ [ (p(t-1) = f(p(t—1)>0.

Hence 7 is a simple zero of p, and it is the only zero in (¢; + 1,%, + 1). By the special
symmetry of p, all zeros of p are simple, and —1, z, 7 are the only zeros in [—1, 7].

Assertion (ii) also follows from Claim (iii). Indeed, for ¢t € |7, to],
D) = —p(0) + F5 (bt — 1) < FX (p(t— 1) < K.
Hence
(5.2) to—T=t+w—717>1/K.

Applying (5.2) and 7 > t; + 1, we get
1

1 1
>T—thh+—==7—(t1 +1 1+ —=>1+—.
W2T—t+ =T (t1+1)+ + +
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For all t € R, |p(t)| < K by Proposition 2.6, and thus p (t) > —2K by Eq. (3.1). Hence
ty < z— L < —L,
- 2K 2K
and by Claim (iii),

1
= 1<t 2<2——.
w=T7++ 4+ 5K

Claim (iv). maxyeg p (t) > /K.

Proof. We have already shown that p(t4+1) > 0. Fort € [ty + 1,t5+ 1], p(t) =
p(ty +1)e ¢t=1 thus p strictly decreases on [ty + 1,5+ 1]. So tg < t4 + 1. As
ty+14+1/K <ty +w = ty5, we derive that [ty + 1,t4+ 1+ 1/K] C [tg,t12) and thus
p(ta+1+1/K)>1.

From (5.2), t; — ty > 1/K follows by special symmetry. So p is of type (0) on
[ty +1,t4+ 1+ 1/K] and thus

(0> pltat D) =p(tat 14— ) ek > et
maxp (t) > p(ts +1) =p | ta ) ex zew

OJ

As a consequence of Claim (iv), maxerp (t) > 1+ 1/K > 1 + ¢ and one may set ¢y
and t3, so that ¢ is the maximal ¢ € (t1, tyax) With p(¢) = 1+ € and ¢3 is the minimal
t e (tmaX7t4) with p(t) = 1+ €. Define te = to —|—LU/27 t7 = 13 —|—w/2, tip =t +w and
t11 = t3 + w (see Fig.9).

Note that it is also verified in the proof of the previous claim that
(53) t10 — (t4 + 1) > ?

Claim (v). p(t) < —1 fort € [ty + 1,t12], and thus ty — t3 = t1o — t13 < €.

Proof. First note that t;o < 7+ w/2 < 7+ 1. Hence for t € [ty + 1,112}, p(t) > 1,
p(t—1) <1, and

p(t)=—p(t)+ [ (p(t—1) < —pt) < -1,

which is our first assertion. In addition, using p(t12) = 1 and estimation (5.3), we
obtain that p(t1o —s) > 1+ sforall 0 < s <1/K. Hence ty5 —t;; <e. O

Claim (vi). 1 +1ty <tg and tig < t3+ 1. In consequence, ty —t; < e/ (K — 2).
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Proof. Tt follows from the previous claim that p(¢) > 0 for all ¢t € [t3+ 1,4 + 1].
Indeed, p(t) > p(ty+1) — 2Ke > e/ —2Ke > 0 for all t € [t3 + 1,t4 + 1] because
ty—t3 < e plta+1) > ex and p(t) > —2K for all t € R. Hence p(t) < K for
te€[ts+1,t4 +1].

Suppose that t34+1 < t19, that is p (t3 + 1) < 14+¢e. Applying the facts that t,—t3 < ¢
and p strictly decreases on [ty + 1,%15] (see Claim (v)), we obtain that

1
I?GEI%RXP( ) te[tg?,ii—i-l]p( ) = lted e +( * )6 ‘

by € € (0,9), a contradiction to Claim (iv). Thus ¢;9 < t3 + 1.
If tg § t2 + 1, then
1
t9§t2+1<t2+1+E<t2—|—w:t10<t3+1
and hence for t € [to + 1,1, + 1+ 1/K],

pit)y=—pt)+K>—-(1+4¢)+ K.

Thus

K+1

K—-1-¢ K—-1-—¢
l+e=p(to) 2p tr+ —— zple+ 1)+ ——F7— 2=

14"
K = K ’
which contradicts € < 9. So 1+ t5 < ty.

As aresult, p(t) = —p(t) + K > K — 2 for all t € [ty, t10), and £ = [ p(s)ds

tg

>
(K — 2) (t1o — tg). As ty —t1 = t1p — lg, the third statement follows. O

Claim (vii). tg — (t2+1) >0 and t3 +1 —tg > 0.
Proof. Applying p(t; +1) < 0 by (5.1), to —t; < ¢/ (K —2) by Claim (vi) and
p(t) <2K for all t € R, we find p(t2 + 1) < 2Ke/ (K — 2). Therefore

2K
K -2

tg

5<p(t9)—p(t2+1):/ p(s)ds < 2K (tg —ty — 1),
to+1

1—

and we obtain that
1 €

A tg — (T 1 — —
(5.4) 9 (2+)>2K K _9

Claim (iv) implies that max p (t) > e!/%. Claim (vi) gives that tg < t3+1 <t;+1 <
t12. For t € [t97t4 + ]_]7

> 0.

pt)=—pO)+fpt-1)<-pH)+K<K-1
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tmin

FIGURE 9. The plot of p in the proof of Proposition 5.3

In addition, p strictly decreases on [ty + 1,%12] by Claim (v), that is maxycrp (t) =

MaXye(r,t4+1] P (t). So, by using Claim (v) again, we obtain that

1
x < 1) = ) < 14 (K—=1)(ts+1—t
e _I?&Xp() teﬁ?,?ﬁup() < 14 ) (ta + 9)

= 14+ (K—=1)(tz+1—tg+ts—13)
< 14+ (K =1)(ts+1—ty) + (K —1)¢,

from which
eI/K -1 eI/K -1
. t 1l—tg> ——m —e>——— > ¢
(5:5) e S B Yy T Vi
follows. O

Proof of Assertion (iv). Note that if ¢ > t15, then p(t) > —2K and

Thus

1
. > — .
(5 6) p(t) =~ 1/2 for all ¢ c |:t12,t12 + 4K:|

Then Claim (vii) implies that for ¢t € (tg — d,tg +9), t — 1 € (t2,t3). Also, p(t) <
p(tyg) +omaxp(t) <1+2K6 <2fort e (tg — d,t9 + 0). Hence

pt)=—pt)+ 5 (pt—1)) > 24K fort € (tg — 6,19 +6) .
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Astip—(ts+1)=ts+w—(ta+1) > 1/K > 0, Claim (v) and p(t12) = 1 imply that
p(t)>1and p(t) < —% for t € (t1o — 6,t12]. It was pointed out in the proof of Claim
(iv) that t4 + 1/K <5 < 0. In consequence,

to+0—1={fs+14+7)+0—-1=74+U+0<T+t;<T

that is t — 1 € (t4,7) for all t € [t12,t12 + 0). Thus from (5.6) we conclude that
. . 1 1
Statement (iv) follows by periodicity. O

Proofs of Assertions (v) and (vi). Suppose to +2 < w and 4 < t; + 1 — w/2. Then
to+l<w—1=7,tg<tg+0d<tz3+1and

t4+1<t11<t12:t4+w<t1+1+W/2:t5+1.

It follows that p is of type (K) on |7, ¢35+ 1], it is of type (0) on [ty + 1,5+ 1]. The
periodicity of p implies that p is of type (0) on [t3,t4]. Therefore p is of type (0,1 + ¢)
on [t3 + 1,t4 + 1]. By periodicity and special symmetry, p is of type (—K) on [ts, ts],
and it is of type (=K, —1) on [t5 + 1,ts + 1]. The special symmetry and monotonicity
vield po = p, € ¥ (U2, €) with
w
Po = b <t3+2—w,t1 —t4+§,t3—t2,8) .

The case ty+2 < w and t3—t; > 1 —w/2 is analogous. Note that under these conditions
t2—|—1<T7t10<t3—|—1andt5—|—1<t11. O

6. ON THE NUMBER OF PERIODIC SOLUTIONS

Set u = 1. We study the exact number of LSOP solutions of Eq.(1.1) first for
nonlinearity f%° with K > 0, then for f™¢ with ¢ > 0 small, finally for those feedback
functions, that are close to f™¢ in C-norm. As a consequence, we prove Theorem 1.1.

For simplicity, we use notations introduced in Section 3 - without repeating defini-

tions.

6.1. The number of periodic solutions for the step function. As a preliminary
result, we show that K has to be sufficiently large so that Eq. (3.1) has periodic solutions

of monotone type and special symmetry.

Proposition 6.1. Suppose K > 0, ¢ € [0,1), p : R — R is a nontrivial periodic
solution of Eq.(3.1), and p is of monotone type and special symmetry. Then K > 1
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and K K41
w

— > 9] |

R TN R T

where w > 0 denotes the minimal period of p.

Proof. Let p: R — R be a periodic solution of Eq. (3.1) of monotone type and special
symmetry and with minimal period w > 0. It is no restriction to assume that p
is normalized. Then p(—1) = p(—1+w/2) = 0. Clearly, max;cgp (t) > 1 as @ (t) =
—x (t) has no periodic solutions. Then there exists (¢y, ¢z, c3) € (0,1)” with ¢;+cy+c5 =
w/2 so that p(—1+4¢;) = p(—=1+c¢1 +c2) = 1, p is nondecreasing on [—1,—1+ ¢]
with range [0,1], p(t) > 1 for t € (=14 ¢1,—1+ ¢ + ¢2) and p is nonincreasing on
[—14 ¢1 + ¢o, —1 + w/2] with range [0,1]. The choice of constants ¢; and the special
symmetry of p imply the following: if p (¢) > 1 for all t € I, where I C R is an interval,
then the length of I is not greater than cs.
As p(t) > 0 almost everywhere on [—1, —1 + ¢4],

e pt—1)=p@t)+pt)>0fort e (~1,-1+c],

that is p (t) > 1 for t € (=2, -2+ ¢;]. We conclude that ¢y > ¢;.
Obviously, (e'p(t)) = e'f%¢(p(t — 1)) almost everywhere on R. Integrating on
[—1, =1+ 1], we get
—14c; —1+c1
et = / e (p(s—1)ds < K e’ds =K [e7T —e7],
-1 -1
thus 1 < K(1—e ). As1—e @ <1, necessarily K > 1 and ¢; > In(K/(K —1)).
Integrating on [—1 4 ¢; + ¢o, —1 + ¢1 + ¢2 + ¢3], we obtain that

—14c1+co+c3
—_e Hta+te > K eSds = — K [6—1+01+C2+63 _ 6—1-&-01-&-02} 7
—1+ci+c2
hence 1 < K (e — 1) and ¢3 > In ((K +1) /K).
Therefore K Kol
g:Cl—i‘CQ—i‘ngleK_l—i‘hl ;— .

Corollary 6.2. For K € (0,3] and ¢ =0, Eq. (3.1) admits no LSOP solutions.

Proof. Tt is excluded by the previous proposition that we have LSOP solutions for
K € (0,1] and £ = 0. Suppose K € (1,3], e =0 and p: R — R is an LSOP solution of
Eq. (3.1) with minimal period w < 2. Then Proposition 6.1 yields that

w K K+1 K(K+1)
1>—>21 | =1
>2_ nK_1+n 1% H(K—1)27
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that is

- K(K+1) " 3 N 2
e> —— = :
(K —1)° K-1 (K-1)
This is a second order inequality for z = 1/ (K — 1), hence the solution formula gives
that
—3—v8+1 1 —3+v8e+1
Z1 = < <=
4 K-1 4

The first inequality is clearly satisfied as K > 1 and 2z; < 0. The second inequality
implies K > 1+ 1/2, > 3, a contradiction. O

Recall from Remarks 3.4 and 3.14 that ¢ € C'is in ¥ (U},0) = 3 <l701, O) if and only
if ¢ (—1) = 0 and there there exist —1 < s1 < s5 < s3 < 0 so that z¥ is of type (K) on
[—1, s1], of type (0) on [s1, s3], of type (—K) on [s2, s3] and of type (0) on [s3,0].

Proposition 6.3. Assume K > 3, ¢ = 0 and v : R — R is a nontrivial periodic
solution of Eq.(3.1), x is of special symmetry and zy € X (Uj,0) = > ([7&,0). Then
x (s9) = 1 implies K = K*.

Proof. Assume that x satisfies the conditions of the proposition with z (s9) = 1.

Then using (3.4) and the definitions of I, and I, we get

(6.1) z(s))=e L =K(1-e™)
and
(6.2) e =%z (s9) = e®e L =K (1—e ™).

From (3.4), the definition of I3 and relation (6.2) it follows that
(6.3) wz(s3)=e 2Il3=K (1 — e_‘“) e B 4+ K (e_“3 — 1) e B+ K (6_“3 — 1) )

Let —1 < t; =ty <t3=1t4 <...Dbe the consecutive times for which z (¢;) € {—1,1}.
As z strictly increases on [—1, s1], strictly decreases on [sq, $9], maxeg z (£) > 1 and
z(s2) = 1, we obtain that —1 < ¢; < s; and t3 = sy. Similarly, so < t5 < s3. By
special symmetry, = (s3) = —xz (s1), and z (sg) = —z (t; + 1) = 1. So combining (6.1)
and (6.3), we get

K+1
(6.4) e” = —; e,
As in the proof of Proposition 3.3, we can show that
K-1
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Using « (t; + 1) = —1, the definition of I3, relations (6.2) and (6.4), it follows that

K-1 -1
[e‘“ —1+emte (1 - 6“3)] = —
e e

65  —1=

(K% —1) (em —1)%.

As z is periodic, ay = t5 — ty (see the remark preceding Proposition 3.6). One may

show analogously to the proof of Proposition 3.6 that

I, + Ke*? eM — 1 4 emrtaz
In

K-  (K—1)(em —1)

a2:t5—t4:1n

Combining this relation with (6.2), we get that a; is the following function of K:
K(K—-1)

K2 -2K -1

Substituting the last result to (6.5), we obtain that equation

(K2 —1)(K+1)°

alzln

(K2 —2K —1)
holds for K, which equation has a unique solution on (3,00) and that is K* (see the
definition of K* before Proposition 3.8). So K = K*. O

Proposition 6.4. Assume K € (3,00) \ {K*}, e =0 and z : R — R is a normalized

LSOP solution of Eq.(3.1). Then K > K*, and either xy = X (a*,0), or o = X (a,0),

where X (a*,0) and ¥ (a,0) are given in Section 3.

Proof. Let 7 denote the smallest zero of z on [0, 00) with the property that z > 0 on
(1,7 4+ n) with some 1 > 0 small. Since z is normalized periodic solution with minimal
period in (1,2), and as it is of special symmetry and of monotone type, the minimal
period is w =7+ 1 and 2(0) <0

Set tmax € (—1,0) so that x (fmax) = maxyer = (t) and choose tyin = tmax + wW/2.
Clearly @ (tmin) = miner (). As equation @ (t) = —z (t) has no periodic solution,
T (tmax) = = (tmin) > 1.

As x is of monotone type and & (tmax) = — (tmin) > 1, there exists 1 € (=1, timax)
maximal with z () = 1 and ¢35 € (timax, tmin) Mminimal with z (¢) = 1. Then t5 = t; +w/2
is the maximal ¢ € (tmax, tmin) With x (t) = —1 and t; = t3 + w/2 is the minimal
t € (tmin, 7) With z (t) = —1.

Solution x must be piecewise of type (i) with i € {—K,0, K}. To be more precise,
x is of type (0) on interval [0,¢; + 1], of type (K) on [t; + 1,t35 + 1], of type (0) on
[ts + 1,t5 + 1], of type (—K) on [ts + 1,t7 + 1] and of type (0) on [t; + 1,7+ 1]. If
T <tl3+1, then (t5+1—7,t5 —t3,t7 —t5) € (0,1)° and

(ts+1—7)+(ts —t3)+(tr —t5) =t; +1—7 <1,
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therefore
(ts+ 1 —7,t5 — t3, t7 — t5,0) € U = U
If condition t; + 1 < 7 is satisfied besides 7 < t3 + 1, then

[BU:[B.FH:Z(t3+1—7,t5—t3,t7—t5,0):i(t3+1—7,t5—t3,t7—t5,0)

by Remarks 3.4 and 3.14.

So we claim that 7 € [t; + 1,t3 4+ 1). Aszis of type (0) on [0, ¢ + 1], (¢
0 for t € [0,¢; + 1]. So 7 > t; + 1. Suppose for contradiction that x (¢35 +
T (t) < —z(t) + K for almost all ¢t > —1 and z (—1) = 0, estimate

) =2(0)e" <

=z
1) <0. Since

z(t)<K(l-e ") <K

holds for all ¢ > —1. Then as

(66) $<t):—£€(t>+K>0, h+1l<t<ts+1,
and as
(6.7) w(t) = (ts+1) e TN 41 <t <t5+1,

we get that = is nondecreasing and nonpositive on [t; + 1,5+ 1]. So z(t) < 0 on
[ts,t5 + 1]. On the other hand, for t5 + w/2 € [ts5,t5 + 1] we have z (t5 +w/2) =
z (t; +w) = 1, a contradiction. Thus x(t3+1) >0, 7 € [t1 +1,t3+1) and 2,4, €
S (UL0) =3 ((701,0).

Equations (6.6) and (6.7) now imply that z strictly increases on [ty + 1,¢5 + 1] and
strictly decreases on [tz + 1,¢5 + 1]. Thus x (¢3 + 1) is a local maximum of z. As z is
of monotone type and maxicg z (t) > 1, z (t3 + 1) > 1 follows. Also, z (t5 +1) > 0 by
(6.7). By special symmetry,

r(tr+1)=x(ts+w/2+1)=—x(ts+1) < —1.
Remarks 3.4 and 3.14 yield that if x (t5+1) < 1, then zy = 2,41 € X (UE,0); if
z(t;+1) > 1, then 29 = 7,1 € <ﬁ02,0>. The case x (t5 + 1) = 1 is excluded by
Proposition 6.3.

We have already verified that x (t; +1) < 0 and = (t3 +1) > 0. If 2y € X (UZ,0),
then x (t; +1) = —z (t5 + 1) > —1, so Remark 3.4 yields that zq € X (U3, 0) and thus
(ts + 1 —7,t5 — t3,t7 — t5) is a fixed point of F'(-,0). Proposition 3.8 implies K > K*
and 7o = ¥ (a*,0). Similarly, if zo € & ((73,0), then zy € ((7(‘;5,0). By Proposition
3.18, K > K* and 2o = % (@, 0). O

As a direct consequence of Corollary 6.2 and Proposition 6.4, we get the following.
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Theorem 6.5. For K € (0, K*) and ¢ = 0, Fq.(3.1) has no LSOP solutions. For
K > K* and € = 0, there are exactly two normalized LSOP solutions of Eq. (3.1).

It can be also shown that in case K = K* and € = 0, there is exactly one normalized
LSOP solution.

6.2. There are two LSOP solutions for f7¢ with ¢ > 0, and for close nonlin-
earities. Recall that if K = 7 and ¢ € (0, min (9, &p)), where gy and &, are given by
Propositions 3.11 and 3.18, respectively, then Eq. (3.1) admits two LSOP solutions with
initial functions ¥ (a* (¢),¢) and 3 (@ (¢) , ).

Proposition 6.6. Let K = 7. A threshold number ¢, € (0, min (e9,8g)) can be given
s0 that for e € (0,¢,), 254 : R — R and x@)9) . R — R are the only normalized
LSOP solutions of Eq.(3.1).

Proof. Suppose for contradiction that there exists a sequence (™) in (0, min (g, £9))
converging to 0 as n — oo and a sequence of functions (z"),” so that for n > 0,
z" : R — R is a normalized LSOP solution of (3.1) with K =7 and ¢ = £", and

7 ¢ {Z(0 (), S @), )}
Let w, > 0 denote the minimal period of 2. According to Proposition 5.3 (ii), w, €
(8/7,27/14) for all sufficiently large n.

For all t € R and n € N, Proposition 2.6 implies |2"(t)| < 7, therefore Eq. (3.1)
gives |2"(t)| < 14. Applying the Arzela—Ascoli theorem and changing to a subsequence
if necessary, we may assume that there is w € [8/7,27/14] and a continuous function
z : R — R such that w,, = w as n — oo, and 2" (t) — x (t) as n — oo uniformly on all
compact subsets of the real line. It is easy to see that x is periodic with minimal period
w, it is of monotone type and special symmetry. In addition, z (—=1) =z (-1 +w/2) =0
and x (t) > 0 for t € [-1, —1 + w/2]. By Proposition 5.3 (iii),

max zx (t) > liminf max z" (t) > er.
teR n—oo  teR

Proposition 5.3 (iv) gives that if ¢y € R and |z (to)| = 1, then
x(t+h)—x(t)
h
with constant 6 > 0 defined before Proposition 5.3. Therefore there exist unique ¢, ¢, €
[—1,—1 4+ w/2] with —1 < t; <ty < —14w/2 such that = (t;) = = (t4) = 1. In addition,
for all v € (0,6/2) fixed, |z (t) — 1| > ~ for all t € [—1,—1 +w/2] with [t — t;]| > 2y

lim inf
h—0

1
> 5 forall t € (t — 0.t + )
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and |t — t4] > 27. Set
S,={s€[-1,0]: z(s) € (-1—7,-1+7)Ul -~ 14+7)}.

As x is the limit of LSOP solutions, S is the union of at most 4 intervals. Our previous
observations and the special symmetry of z imply that for the Lebesgue measure x (.S,)

of S,, we have estimation yu (S,) < 4 -4~y = 167. Similarly, the measure of
ST = {s€[-1,0] 2" (s) € (<17, —147)U(L—7147))

is not larger than 16+ for all sufficiently large n by Proposition 5.3 (iv).
We claim that for ¢ € [0, 1],
t

t
lim [ e ) 7" (2" (s — 1)) ds = / e 10 (1 (s — 1)) ds,

that is to each n > 0 small, there corresponds n, > 1 so that

/ e [F70 (i (s — 1)) — f7" (a" (s — 1))] ds

0

<

| e w s = 1) = 770 @ (s = 1) s

; / e ) | [0 (2 (s — 1)) — f7" (2" (s — 1) ds <

0
for all n > n, and for all t € [0,1]. Set n > 0 and 0 < v < min{d/2,7/224} . There

exists n; = ny (7) > 1 so that for n > ny, we have
[P (s =1)) = fMO(a" (s =1)) =0 fors—1¢5,

and

1Pz (s=1) = fO2"(s—1))| <7 fors—1€5,.
Therefore the first term is not larger than 7- 16+t < 112 < /2 for n > ny. Also there
is ny = ny (7) > 1 so that e” <~y for all n > ny. Then for s — 1 ¢ S7,

O™ (=1 48) =[5 (a" (=1 +s)) =0,
and for s — 1 € 57,
’fm (" (=1+8)) — f" (2" (=1 + s))’ <T7.

So the second term is is not larger than 7 - 16yt < 112y < n/2 if n > ny. Set

n. = min {ny,ny}. The claim is verified.
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It follows that for all ¢ € [0, 1],

z(t) = lim 2" (t) = lim (e_tx" (0) + /0 t e =) fT" (g7 (5 — 1))ds>

n—oo n—oo

=e 'z (0) + /t e =) f10 (1 (s — 1)) ds,
0

that is, = satisfies Eq. (3.1) with K = 7 and € = 0 for all £ € [0,1]. Tt is analogous to
show that z satisfies the equation on [1,2]. As z,, = xy, we gain that x is a solution on
R.

Proposition 6.4 yields zo = X (a*,0) or xy = f](’éi, 0). Suppose zo = X (a*,0) for

example. Note that as x is of special symmetry, the construction of 3 (a*,0) yields that
w
a" = <t4—|—2—w,t1—t4—|—§,t4—t1> .

Proposition 5.3 gives that if n is large enough, then there exist uniquely defined
—1 <t} <ty <ty <t} <0 with

" () =1,2" (th) =1+ 2" (t5) =14+, 2" (t)) = 1.
Also, lim,, o0 t7 = lim,, 00 t5 = t1 and lim,, o t5 = lim,, oo t] = 4.
It follows from the definition of U3, that t; + 2 < w and t; < ¢; + 1 — w/2. Thus
there exists n.. > 1 so that for n > n,,, we have t§ +2 < w” and t} <} +1 — w"/2.
By Proposition 5.3 (v), zf = X (a”,&") for n > n,., where

wn
a" = (t§+2—w",t?—t2+7,t§—t§)

is a fixed point of F'(-,&"). According to the proof of Proposition 3.11, there is a
neighborhood N of a* in (0,1)® so that the fixed point of F (-, &) is unique in N for
e € [0,e9). As a™ is arbitrary close to a*, we may suppose that " € N and thus
a™ = a* ("), a contradiction to our initial assumption.

At last suppose 29 = % (@,0). Then with the aid of Proposition (5.3) (vi), one
can verify the existence of 7 > 1 so that 27 = S (a(¢"),e") for n > 71, which is a

contradiction again. O

Consider K = 7 and ¢ € (0,min (g¢,&p)). Proposition 4.5 implies that there exists
8o = g (¢) > 0 so that if f € C} (R,R) with ||f — fm“cg < 0o, and (H1) holds for
f, then Eq.(1.1) with ¢ = 1 and nonlinearity f has two normalized LSOP solutions
p=p(f): R—>Randg=q(f): R—=>R.

Proposition 6.7. Set y =1, K = 7. To each € € (0,¢,), where e, € (0, min (g¢,&g))
is given by Proposition 6.6, there corresponds 0, = 01(¢) € (0,90 (g)) such that if
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f € CH(R,R) satisfies (H1), and || f — f7’EHC§ < 01, then Eq.(1.1) admits at most two

normalized LSOP solutions.

Proof. Suppose for contradiction that a sequence (f™) " exists in C}} (R, R) with
Hf" — f7’8H01 <1/nforneN
b
so that for n € N, f" satisfies (H1), and the equation

(6.8) #(t) = —x(t)+ " (x(t 1))

has a normalized LSOP solution z™ : R — R with zf ¢ {po ("), q0 (")}, where LSOP
solutions p (f™) and ¢ (f™) are given by Proposition 4.5. Note that ||f" — f”HC; < dg
for all large n, hence it is no restriction to assume that p (f™) and ¢ (f") exist for all
n > 1. Let w™ € (1,2) denote the minimal period of 2™, n € N. Since

sup |/ @) < 1"y < /%]l ¢y +1 <00, meN.

Proposition 2.6 yields that ||z} < ||f7’EHC§ + 1 and thus [|2}|| < 2 ||f7’€||cg + 2 for
all n € N and t € R. Applying the Arzela—Ascoli theorem, we may suppose that
w" = w € [1,2] as n — oo, and z" converges to a continuous function z : R — R
uniformly on each compact subset of R. Then it is easy to see that x is a solution
of Eq. (3.1) with minimal period w € [1,2]. Proposition 2.4 excludes the possibility
that the period is 1, Proposition 2.4 and Proposition 5.2 exclude the possibility that
the period is 2. So w € (1,2). As z is necessary of monotone type, this yields that
Vi(xy) =V (xg) =2forallt € R. As 2™, n € N, is an LSOP solution, it is also easy
to see that x is of large amplitude, i.e. x (R) D (£-1,&). We conclude that z is an
LSOP solution of (3.1). Hence Proposition 6.6 implies we may assume that xq is either
S (a* (€),¢) or £ (a(e),e). If n is chosen large enough, then f™ is arbitrarily close to
7€ in Cf norm, zf € {29} +V and w" € (w — v,w + ), where V and v are given by
Proposition 2.1. So Proposition 2.1 gives 2" equals p (f™) or ¢ (f"), a contradiction to

our initial assumption. O

The proof of Theorem 1.1. Fix y = 1, K = 7 and ¢ € (0,&,). Choose a
nonlinearity f € C} (R, R) satisfying (H1) so that || f — f7’€||q} < 61 (e) < dp (). Then
Theorem 1.1 follows from Propositions 4.5 and 6.7. 0

7. RAPIDLY OSCILLATORY PERIODIC SOLUTIONS

We give conditions for the nonexistence of rapidly oscillatory solutions.
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Proposition 7.1. For K <8 and ¢ € (0,1), Eq. (3.1) has no periodic solution p : R —
R with V (p;) > 4 fort € R.

Proof. Propositions 5.1, 5.2 and 6.1 give that Eq.(3.1) has no periodic solution for
K € (0,1]. Set K >1and ¢ € (0,1). If p: R — R is a periodic solution of Eq.(3.1),
then it is of monotone type and of special symmetry. Hence if V' (p;) > 4, then 3w/2 < 1,

where w > 0 is the minimal period of p. Proposition 6.1 gives that

3 K+1 K+1
Zo > -
1>2w_61nK_1+31n I > 91In 7
that is
2 3
1 1 (5, ()
< 1 1+1 L 2—i— = L _
9 9 \9 T)o91-4% 08
Thus K > 8 and the statement is verified. O

Proposition 7.2. Set u =1, K = 7. To each ¢ € (0,¢.), where €, € (0, min (g9,&p))
is given by Proposition 6.6, there corresponds 0y = b3 (€) > 0 such that if f € C} (R, R)
satisfies hypothesis (H1), and || f — fk”c; < 0o, then FEq.(1.1) with p =1 and nonlin-

earity f has no periodic solutions oscillating rapidly around 0.

Proof. Suppose for contradiction that there is a sequence (f™)° in C} (R,R) with
If - mec; — 0 as n — oo so that for n € N, (H1) holds for f™, and

E(t) = —x(t)+ f"(x(t—1))

has a periodic solution p" : R — R, with V (p}") > 2 for all t € R. Applying the
Arzela—Ascoli theorem, we get that there exists a continuous function p : R — R such
that p™, p" converge to p, p uniformly on compact subsets of R, respectively. Then p is
a periodic solution of Eq. (3.1) with feedback function f7°.

As V (pp) > 0 for all n € N and ¢ € R, it is clear that max,cg p" (t) > 0 for all
n > 1. Applying the argument in the proof of Proposition 2.5 for periodic solution p”,
one obtains that max,eg p” (t) > & > 1 for all n > 1. Hence max;cg p (t) > 0. Using
this estimate and the reasoning in the proof of Proposition 2.5 for the second time,
maxeg p (t) > & follows. Similarly, mineg p () < &_;.

As p is periodic, V' (p;) is the same constant for all t € R. As p oscillates around 0,
Vip) >2foralteR If V(p,) = 2, then p is an LSOP solution, and it is either

2@ (€)e) or 2@ yp to time translation. roposition 5. € 7eros o are
Z(a*(e).e) 2(a#)8) yp to time translat By Proposition 5.3, th fp

63



simple. As p” — p and p" — p uniformly on compact subsets of R, we obtain that
V (p) = 2 for all large n, a contradiction to the choice of p™. V (p;) > 4 contradicts
Proposition 7.1. The proof is complete. 0

8. CONNECTING ORBITS

This section assumes that we are in the situation of Theorem 1.1, namely p = 1,
f € C" satisfies (H1), furthermore p : R — R and ¢ : R — R are the normalized LSOP
solutions of Eq. (1.1) with p(R) € ¢(R) C (£_2,&).

Consider the C'-smooth Poincaré return map P defined in a small neighborhood
of poin H={peC:p(—1)=0} with fixed point py. Theorem 1.1 states that py is
hyperbolic and DP (py) has exactly two eigenvalues A; > Ay with absolute value greater
than 1. Let H, and H, be the closed subspaces of H chosen so that H = H, ® H,,
H, and H, are invariant under L = DP (py), and the spectra o, and o, of the induced
maps H; > v — Lz € Hy and H, > v — Lu € H, are contained in {y € C: |u| < 1}
and {p € C: |u| > 1}, respectively. Then H, is 2-dimensional (Appendix VII in [17]).

The unstable manifold. According to Appendix I in [17], there exist convex bounded
neighborhoods N,, N, of 0 in H,, H,, respectively, and a C'-map w : N, — H, with
range in N so that w (0) =0, Dw (0) = 0, and the subset

W (po) = {po + 2 +w(x): x € Ny}
of C'is equal to

{m € po + Ny + N, : there is a trajectory (xn)(i of P in

o0

po + N + N, with 2y =z and z,, — py as n — —o0}.

W (po) is called the (2-dimensional) local unstable manifold of P at py.

The leading unstable manifold. Let H!, H? be the linear subspaces in H, generated by
v1, Vg, the eigenvectors corresponding to A1, Ay, respectively. Then H, = H.® H?. Set
so that 1 < Ay < 8 < Ay. There exist §y > 0 and a C'—map @ : (=, dg) v — H2 P H,
with 0 (0) = 0 and D (0) = 0 such that for §* € (—dy, dy), there is a trajectory (z,)”__
of P with zy = po+w (6*v1) +d*vy and with 87" (z,, — po) — 0 as n — —oo. Moreover,
x, belongs to

WY (po) = {po + w (dv1) + dvq = 8] < o}
for n < 0. Then W} (po) is the leading unstable manifold of P at py. It is a 1-
dimensional submanifold of W* (py).

Similarly, there is a Poincaré map (also denoted by P) with fixed point go. By

Theorem 1.1, DP (qo) has exactly one eigenvalue with absolute value greater than 1.
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W (qo) denotes the (1-dimensional) unstable manifold of P at go. The characterization
of W* (qo) is analogous to the one given for WY (po).
The unstable set of the orbit O, = {p, : t € R} is defined as

W (O,) ={xo: = :R— Ris asolution of (1.1), o (x) exists and o (z) = O,}.
It is the forward extension of W* (pg):
W (Op) =A{f : ¢ € W*(po), t >0},
Set W* (0O,) is defined and described analogously. We also introduce the leading un-
stable set
WY (Op) ={zf : o € WY (po), t 20}
We say ¢ < 9 for p,9p € C'if p(s) <1 (s) for all s € [-1,0]. Relation ¢ < ) holds
if ¢ < and ¢ # 1. In addition, p < P if ¢ (s) < ¥ (s) for all s € [—1,0]. Relations

“>7 4>7 and “>>” are defined analogously.

The semiflow ® is monotone in the following sense.

Proposition 8.1. Suppose ¢, v € C with ¢ # 1. Then xf # xff forallt > 0. If p <
(¢ > 1), then af < x¥ (:Uf > 93}5’) for all t > 1. In addition, if ¢ < 1 (¢ > 1)), then

ol <z’ (mf > xf) for allt > 0.

The assertion follows easily from the variation-of-constant formula. For a proof we
refer to [26].

Since p (R) C (£-2,&2) and ¢ (R) C (£-2, &),
W (O,) uW* (0,) Cc A

by Proposition 8.1. Consequently, {z7 : t € R} is precompact for each ¢ € W* (O,) U
W (O,).

We need a few more propositions before proving Theorem 1.2.

Let p° denote the periodic solution of Eq. (3.1) with K = 7 and ¢ = 0 determined by
the unique fixed point a* of F (+,0) in U3.

Recall that if =1 and K = 7, then for each ¢ € (0, ¢,), there exists d; (¢) > 0 such
that if a nonlinearity f € C} (R,R) satisfies (H1), and ||f — f“”cbl < 41 (g), then the
statement of Theorem 1.1 holds for f. Without loss of generality, we may assume that

01 () = 0+ as € — 0+. Hence we may assume that
(8.1) max_[p(t) —p° ()] -0 ase—0+.

—1<t<2

We also have £ — 1 and & — 7 as € — 0+.

65



Proposition 8.2. Let r : R — R be a periodic solution of Eq.(1.1) either with range
in (0,&) and with V (rt — £1> = 2 for all t € R, or with range in ({_2,0) and with

V <7’t — é_1> =2 for allt € R. If ¢ > 0 is sufficiently small, then V (p, —rs) = 2 for
allt € R and s € R.

Proof. We consider the case when r has range in (0,&) and V (rt — él> = 2 for all
t € R. The other case is analogous.

By Proposition 2.4, V (p; — ) is the same constant for all ¢ € R and s € R. Thus
it is sufficient to find a pair (¢,s) € R x R with V (p; —rs) = 2. It is obvious that
V(pr —rs) >0 forall (f,s) € R x R.

Let w®, @, p denote the minimal periods of p°, p, 7, respectively. Define t,, s, 4, $2, 7 =
w? — 1 for p° as in Section 3. Set z = —1 + w"/2. Then p° strictly increases on
[—1, s1], decreases on [sy, 2], p° (t) < 0 for t € (2,7), p° (—=1) = p°(2) = p°(7) = 0 and
P’ (t1) =p°(ts) = 1. As f'(z) > 0 for all x € R, Theorem 7.1 in [22] implies that p is
strictly monotone between two extremum points. So there exist #1,5,4,2,7 = @0 — 1
such that p strictly increases on [—1, 8], decreases on [51, 2], p(t) < 0 for t € (Z,7),
p(=1)=p(E)=p(T)=0and p(t1) = p(ts) = & (see Fig. 11). Property (8.1) implies
that t; — t1, 51 — 81, t4 — ts, 2 — 2, T — T as € — 0+.

From Section 3 we know that
w? 1 0
T—1>t1,1>7'—t4>?>§andw > 1.

Fix &y with
(50 € (O,min{sl —tl,Z—t4,t4 — 81, T — 1 —tl,wo — 1}) .

Choose g so small that for each ¢ € (0,e0), T — 1>, 1 > 7 — 4, >1/2, 0> 1 and

also
do € (0,min {8, — t1,2 —ty, bty — 51,7 — 1 —t1,00 — 1}).

hold.

Claim. There exists ¢; € (0,&¢) such that for all € € (0,¢),

(i) if r (to + o) = & for some ty € [t; + do, 51] and o € R, then 7 (0 + s) < p(s) for
all s € [to, 51] (see Fig. 10),

(ii) if r (to + o) = & for some tg € [ty + o, Z] and o € R, then 7 (o + s) > p(s) for
all s € [to, z],

(iii) if r (to + o) = & for some ty € [51,t4 — &) and o € R, then r (0 + s) < p(s) for
all s € [51,1%0].
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FIGURE 10. The periodic solutions in Claim (i)

Proof of (i). For r, the differential inequality
() < =1 (t) + f (&)
holds for all ¢ € R. Hence
r(o+s) <&+ (1—€7%) f (&) for s > to.
For a fixed tg € [t; + 0o, s1], the right side of the inequality tends to 7—6e"~* as e — 0+
uniformly in s € [tg, s1]. Using p° (s) = 7 — 6e"'7%, s € [t1, s1], one finds

min (po (S) _ (7 _ 66t0—5)) —6 (1 _ 6t1—t0) min efo—s > 6 (660 _ 1) s S (.

s€[to,s1] s€[to,s1]

These facts and (8.1) imply Claim (i) for all sufficiently small € > 0.

Assertions (ii) and (iii) of the Claim can be shown analogously, therefore we omit the
details.

Let u;, ¢ € {0,1,2,3,4}, be given so that ug < u; < us < uz < uy, ug = ug +
p, T(up) = 1(ug) = &, r(u1) = mingerr (t) > 0 and r (u3) = maxeerr (t) < &o.
Proposition 2.5 and Theorem 7.1 in [22] guarantee the existence of ug, .., u4 and the fact
that r strictly increases on [u1, us] and strictly decreases on [us, us] with us = uy + p.

We distinguish two cases according to the length of [us, uy).

Case 1: uy —uy > 7 —t4. As T —ty > 1/2 by the choice of &, uy —ug < 7 — 4 or
Uz — uy < 7 — t4 holds because uy — uy < 1. So two subcases need to be considered.

Case 1.1: If uy —ug < 7 — t4, set y(t) = r(t — T +ug). Then y decreases on

[T — uyq + us, 7|, increases on [T — uy + uy, T — uy + ug), decreases on [T — ug + ug, T — uy + u1]

and
y(7) =y (T —us+uz) =y (T — us + o) = &1
Case 1.1.1: If in addition, T — uy + uy € [51,14], then p — y has one sign change
on [T—1,7] since y(t) < & for t € (T —ug+ uo, T —ug +uz), p(t) > & for t €
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(T—1,7 —ug+us), T—ug+ug < 7—1, p decreases on [T — uy + us, 4], y increases on
[T — ug + us, ta), and y (t) > & > p(t) for t € (t4,7) (see Fig. 11).

Case 1.1.2: If T —uy+us < 51, then T —uy +us € (T — 1, 51). The choice of € implies
{1+ 00 <7 —1, hence T — uy + us € (t; + dp, 51), and Claim (i) can be applied to get
y(t) <p(t) forall t € [T —ug+ ug,51]. As T —uy + up < 7 — 1, inequality y (t) < &
holds for all ¢ € [T — 1,7 — uy + ug). Now it is obvious that p — y has exactly one sign

change on [T — 1, 7| (see Fig. 12).

1 T-1 5 \

FiGURE 11. Case 1.1.1 in the proof of Proposition 8.2

= A
T-U;tu,

FIGURE 12. Case 1.1.2 in the proof of Proposition 8.2

Case 1.2: If ug — ug < T — 1y, define y (t) = 7 (t — t4 + uy). Then
Yty +ug —u2) =y (ty) =y (b +ug —ug) =&,

y decreases on [ty + ug — ug,t4 + up — usl, increases on [ty + uy — ug, t4 + ug — uz| and
decreases on [ty + uz — ug, t4 + us — ug|. With this choice of y, function p—y has exactly

one sign change on [max {7 — 1,t4 + ug — u2}, 7}, since

y(t) <& <p(t) forte (max{7 —1,t4 +ug— uz},ts)
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and

pt) <& <y(t) forte (ty,7).
The proof is clearly complete if 7 — 1 > t4 + uy — up, hence we may suppose that
T—1<ty+uy— us.

Case 1.2.1: If in addition, t4 + u4 — us € [T, 81 + @], then p — y has at most one sign
change on [T,t, + uy — us), since y decreases and p increases on this interval. Therefore
p — y has at most two sign changes on [ty + ug — uz,t4 + ug — us], which interval has
length p > 1.

Case 1.2.2: If t4 + ug — ug > 5 + @, then {4 +uy —us € [51 +©,4 +© — |, as
ug—uy < 1 < @w—20y. According to Claim (iii), y (¢) < p(t) for t € [51 + @, 4 + ug — us).
As p increases and y increases on [T, 5; + @], function p— y has at most one sign change
on this interval. So p — y has at most two sign changes on [ty + ug — g, t4 + ug — us).

Case 2: If uy — uy < 7 — ty, then the proof is separated into three subcases according
to the length of [uy, uy).

Case 2.1: I 7 —ty < ug—uy, set y(t) =7 (t —7 + uq). As in the previous cases, the
property that p and y are monotone on the intervals on which they are not bounded
away from each other implies that p — y has at most two sign changes on [T — 1, 7].

Case 2.2: If 2 — ¢y < wuy —uy < T —ty, choose y(t) =7 (t — 4 +uy). Then p — y has
at most two sing changes on [t4, 4 + 1].

Case 2.3: If ug—uy < z—ty, set y(t) = r (t — t4 + u1) again. Note that as u;—ug < 1 <
w—10y, inequality t,—u; +ug > ts—w-+0dp holds. So either t,—w+0dy < ty—ui+uy < Z2—w
orty —uy +up >z — .

Case 2.3.1: If {4 — u; +ug > zZ — @, then p — y admits at most two sign changes on
[t4 — uy + ug, t4 — uy + w4, which interval has length p > 1.

Case 2.3.2: Ity —w+ 0y < ty —ug +uy < zZ— o, apply Claim (ii) to get that
y(t) > p(t) for all t € [ty — u1 + ug, 2 — @]. It follows that p — y has at most two sign
changes on [t; — uy + ug, t4 — ug + uyl.

The proof is complete. O

Proposition 8.3. Assume x : R — R is a solution of Fq.(1.1) with initial function
g € W (po) \ po such that x oscillates around & € {£-1,0,&}. Then V (a:t — é) =2
for all t € R, where ¢ € C is the equilibrium é(s) = ¢, s € [-1,0]. In addition,
V (@tpu —pt) =2 for all u,t € R and V (x44y — x1) = 2 for allu € R\ {0} and t € R.
If there exists i € {—1,1} so that x oscillates around &;, then V (zyy, — ) = 2 for all
u,t € R, where 2' : R — R is given by Proposition 2.7.
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Proof. Let = be a solution of Eq.(1.1) oscillating around & € {£_1,0,&} with xy €
W (po) \ po. Clearly, o # &, hence x, # € for t € R by Proposition 8.1.

Since xg € W*" (py), there exists (¢,);” C R so that ¢, — —oo as n — oo, x4, €
W (po) for n > 0 and x;, — pg in C' as n — oo. Clearly, py € A and z; € A for all
t € R. The norms ||-|] and ||-||; are equivalent on A. Thus z;, — pg also in C'-norm as
n— 0o.

Let w € (1,2) be the minimal period of p. Cleatly, V (pt - é) —2forall t € [0,w),

hence Lemma 2.3 (iii) gives that p, — € € R for all ¢ € [0,w), where function class R is

defined in Section 2. Lemma 2.2 implies that
2:V(p0—é) = lim V(:z:tn—f).
n—oo
Hence by Lemma 2.3 (i), V (:zt — f) < 2 for all real t. If V (xt* — f) = 0 for some
t* € R, that is x4 < é or Ty > f, then Proposition 8.1 implies x; < f or Ty > f

for all ¢ > t* + 1, respectively. This is a contradiction as z oscillates around £. So
V(xt—€> — 2 forall t € R.
It is easy to deduce from the monotone property of p that V' (py1r — pr1o) = 2 in case
teR, 7,0 € [0,w) and o # 7. In consequence p; 1, — pi1, € R all for t € R and o # 7.
Now choose any u € R. Using the continuity of the low ® 4, we obtain that z;, ., —
Py in Cl-norm as n — co. By compactness, we may assume the existence of o € [0, w)
such that p;, — p, in C'-norm as n — oco. If 0 # u, then Lemma 2.2 implies that

2=V (pu—po) = im V(e 4u = Prv),

and Lemma 2.3 (i) gives that V (244, — p;) < 2 for all real ¢. In case 0 = u, observe
that & 1 yire = Duse 7# Do for any small € > 0, thus we may use our previous result and

Lemma 2.2 to get

V (J:H_u — pt) S hm lan <$t+u+5 — pt) S 2
e—=0+4+

for all real ¢.

Now assume that V' (x4, — pp) = 0 for some t* > 0, that is zpp, < Py OF Ty >
Pee. Suppose Ty, < pp for example. As xy ¢ O,, Proposition 8.1 gives @y, # pi
and thus xp 42 < ppio. By [26], the set of those functions ¢ for which xf converges
to an equilibrium as ¢ — oo is dense in C. Consequently there exists n € C so that
x} tends to one of the equilibrium points as t — 0o, and Ty yyy0 K N K Ppeyo. As

Tyt pure K X K pyypeyo for all t > 0 again by Proposition 8.1, this equilibrium point
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is necessarily 5_2 contradicting to the fact that x oscillates around £. One comes to the
same conclusion assuming that xy ., > pe.
The argument confirming the rest of the claim is similar, so we leave it to the reader.

To prove the last assertion, use Proposition 8.2. O

A second key tool besides the Lyapunov functional is the linear map 7 : C' 5 ¢ —
(0 (0),¢(—1)) € R? introduced in Section 2. From the paper [22] of Mallet-Paret and
Sell we know that 7 maps nontrivial periodic orbits of Eq. (1.1) into simple closed curves

in R?, and the images of different periodic orbits are disjoint curves in R?. So
O, Rot—np, €R*® O,:R>t+— 7q € R?,

Op:Rot—qz; €R?and O :R >t ot € R

are simple closed curves and disjoint. Here 2 and 2~! are the periodic solutions given
by Proposition 2.7. As p(R) € ¢ (R) C (£_5,&), O, C ext (0,) and w€_,, 7€, belong to
ext (O,). Also, 70,01,0_; € int (O,). For the images of the unstable equilibria, we have
7€y € int (O_1) and 7€, € int (O1). If z : R — R is periodic solution oscillating slowly
around £_; with = (R) C (£_2,0), then either {7z, :t € R} = O_y or {may : t € R} C
int (O_;) by Proposition 2.7. Similarly, for a periodic solution x oscillating slowly
around & with range in (0, &), either {7z, : t € R} = Oy or {mz; : t € R} C int (Oy).

Note that as p(—1) = ¢(—1) =0, p(0) < 0, ¢(0) < 0 and O, C ext (O,), we have
q(0) <p(0) <.

Corollary 8.4. Let 2 : R — R be a solution of Eq. (1.1) with initial data xo € W* (po) \
po such that x oscillates around & € {£_1,0,&}. Then curve S : R >t — 7w, € R? is

simple and does not intersect Op.

Proof. Proposition 8.3 yields that ¢ — V (x4, — 2;) is finite and constant for all u €
R\ {0}. If there exist t € R and u € R\ {0} such that 7z; = 7x;,,, then by Lemma 2.3
(i), V (2430, — ) < V (4342 — T1_2), a contradiction. So S is simple. It follows from

Proposition 8.3 and Lemma 2.3 (ii) in a similar way that S and O, are disjoint. O]

The Proof of Theorem 1.2. Set =1, K =7 and € € (0,¢,), where ¢, is given
by Proposition 6.6. Choose nonlinearity f € C} (R, R) satisfying hypothesis (H1) so
that || f — f”HC; < min {07, 02}. Then the conditions of Propositions 4.5, 6.7 and 7.2
are satisfied by f, which means that the statement of Theorem 1.1 holds, and Eq. (1.1)

admits no rapidly oscillatory solutions.

Remark 8.5. We may assume that f satisfies hypothesis (H2) introduced in Section

2. As fis close to f7° in Cl-norm, it suffices to verify this statement for f7° with
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e € (0,&,). Recall that f7¢ is defined by

P =7 (M) s

for all € € [0,1), where p € C®, p(t) =0fort <0, p(t) =1fort > 1 and p'(t) > 0 for
all t € (0,1). Set interval I, = p~'[1/7,(1 +¢)/7]. Clearly,

[ =1
€

> : o '
)2 ni g p =m0
As (H1) holds and & € (1,1 + ¢), there exists tg € I. such that tg = (§& — 1) /e and
p (to) = &1/7. We obtain that
7 7
(f7’€)/(§1) = gpl (to) > ?m —ooase— 0+.

Similarly, (f7¢)" (€.1) — oo as € — 0+. So we may assume that e, > 0 is chosen so
small that (H2) holds for ™ with ¢ € (0, ¢,).

Theorem 1.2 is a consequence of Claims 8.6-8.12 below.
Claim 8.6. .A\ (.A_270 U Ao,z) =W (Op) uwe (Oq)

Proof. Clearly, A\(A_30 U Ag2) 2 W (O,)UW" (O,). Suppose z : R — R is a solution
of (1.1) with zp € A\ (A_20U Ag2). Then a (z) contains no stable equilibrium point,
as in this case 7o would be the stable equilibrium itself. If & € a (x), then Proposition
8.1 implies x; € Cy5 for all t € R, a contradiction to zo ¢ Ag,. Similarly, £_; ¢ a ().
As x is necessarily bounded, the Poincaré-Bendixson theorem implies «v () is a periodic
orbit. Theorem 7.2 gives that there are no periodic orbits in A\ (A_29 U Ag2) besides
O, and O,. So xy € W* (O,) UW" (O,). O

Claim 8.7. There exist connecting orbits from O, and O, to the equilibrium points 5_2
and &. Moreover, for each ¢ € W (0,) \ O, and for each o € W* (O,) \ Oy, w (¢p) is

either {5,2} or {52}

Proof. First consider the 1-dimensional leading unstable manifold W} (po). By Appen-
dix VII in [17], the eigenfunction v; corresponding to the greatest positive eigenvalue A
of DP (po) is strictly positive. Choose d; so small that ||Dw (dvy)|| < 1/2 for || < 4y,

where w is the map introduced on page 64. Observe that

1
w (0vy) + 0vy = / D (sévy) dvids + dvy >0
0
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if 6 € (0,61), and w (dv1) + dv; K 0 if 6 € (—01,0). Setting

+ il + 1@ a and al + @ 01
p— — — n f— —_— — R —
T = Do 5 U1+~ W 5 U1 712 = Po 5 U1+~ W 5 v,

we get 01,7 € W (po) and ny < po < 1. By [26], there exist 1", ny,n5, 17, € C such
that
ny K <Ly L po L1y L <Ly

- +
and for i = 1,2, z* and z,° converge to one of the equilibrium points as ¢t — co. Since

maxer p (t) > &1, mingeg p (1) < €1 and
Ty ny n ni
) Lr? L pp <Lt Lxt forallt >0

by Proposition 8.1, we obtain that
x?; — 5_2, x?’j — é_g, x?; — 52 and x?f — 52 as t — o0.
Using again Proposition 8.1, we get 22 — £_ and 2" — & as t — oo.

For each ¢ € W} (O,) \ O,, there is a solution x : R — R of Eq. (1.1) and a sequence
(tn)g such that zo = ¢, z,, € Wi (po) \ po for all n > 0 and x,, — py as n — co. Hence
there exist 0 € (—6d;,0)U(0,07) and n* > 0 so that z; . = po+w (dvy) +0v;. The above
reasoning shows that if § < 0, then w (¢) = {é_g}, and if § > 0, then w (¢) = {52}

Since W" (qo) is a 1-dimensional unstable manifold as well, and W" (Q,)) is the for-
ward extension of W" (qp), it is analogous to show that for each ¢ € W"(O,) \ O,,

w (¢) is either {5_2} or {éz}, moreover these connections indeed exist. 0
It remains to describe W¥ (O,) \ Wi (O,).

Claim 8.8. Suppose that for ¢ € W* (O,) \ O,, the limit set w (¢) is a non-constant
periodic orbit. Then if the solution 2% : R — R oscillates around 0, then w (¢) = O,.
Otherwise w () is either O_; or O;.

Proof. Suppose ¢ € W" (0,)\O,, and w () is a non-constant periodic orbit {r; : ¢t € R}.

First let us examine the case when 2% : R — R oscillates around 0. Then as W* (O,)
is the forward extension of W*" (py), Proposition 8.3 implies V' (x}) = 2 for all t € R. For
any t € R fixed, there exists (t,), with ¢, — 0o as n — oo so that r, is the limit of 2} in
C'. As we have seen before, this implies convergence also in C''-norm. As the segments
of any periodic solution belong to R, Lemma 2.2 gives V' (r;) = lim,, o V (xfn) =2.In
addition, Proposition 2.5 yields r (R) D (£_1,&;). Therefore r equals p or ¢ apart from
shift by Theorem 1.1. We claim that w (¢) # O,. Indeed, Corollary 8.4 implies R > ¢

mz{ € R? is a simple curve winding around (0, 0). This fact and dist (rz], 7O0,) — 0
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as t — £oo give a contradiction by the Jordan curve theorem. So we obtain that if
z¥ : R — R oscillates around 0, then w (¢) = O,.

Now assume z¥ is not oscillatory around 0. Then there exists ¢, € R such that
xf > 0or zf < 0. Suppose zf > 0 for example. Then z7 > 0 for all t > ¢, + 1.
Necessarily r (t) > 0 for all t € R. Proposition 2.5 gives that

0< r%élr(t) <& < r?ezlxer(t) < &.
As w(p) = {r;:t € R}, it follows that x¥ is also oscillatory around &. Therefore
%4 <xf — él> = 2 for all t € R by Proposition 8.3. For each ¢t € R, there corresponds a
sequence (t,),” C R with ¢,, — 0o as n — oo such that 2 — r; in C' (and thus in C') as
n — oo. Hence V (rt = §1> =2 for all t € R by Lemma 2.2. We obtain that r is slowly
oscillatory around &; and has range in (0,&). Recall from Proposition 2.7 that the
periodic solution z! : R — R is set so that it oscillates slowly around & with x!'(R) C
(0,&), and the range z'(R) is maximal in the sense that z'(R) D z(R) for all periodic
solutions x oscillating slowly around &; with ranges in (0,&;). Therefore {mr; : t € R}
either equals O; or belongs to int (O;). Proposition 8.3 implies V (27, — z;) = 2 for
all u,t € R. With Lemma 2.3 (ii), this yields that the curve S : R 3 ¢ — 7z{ € R? does
not intersect O;. So necessarily r equals z! apart from shift and w (p) = O;. In case

there is ¢, € R such that 27 < 0, we deduce in a similar way that w (¢) = O_;. O

Claim 8.9. Assume that for ¢ € W* (O,) \ O,, the limit set w (¢) is not a non-constant

periodic orbit. Then it is a stable equilibrium.

Proof. As for all ¢ € W*(O,) \ O,, the orbit {z} : ¢ > 0} is bounded, the Poincaré-
Bendixson theorem can be applied (see Section 2). Hence if w () is not a non-constant

periodic orbit, then for each ¢ € w (¢), we have

If & is in w (), then w (¢) = {50} as the equilibrium is stable. Similarly for £_, and

&o.

Suppose for contradiction that w (@) contains no stable equilibrium point. If ¢ is
in the stable set of & with i € {—1,1}, then as (H2) holds, V <xf — fz> > 2 for all
t € R (see Section 2), a contradiction to Proposition 8.3. So there exists ¢ € w (p)
such that ¢ is not an equilibrium. Then « (¢) Uw (1) C {5_1, él} As it is mentioned
in Section 2, there exists no homoclinic orbit to & and to £_;. Hence « (V) # w (V).
If a(y) = {f_l}, then there is t* € R with zf, < &. By Proposition 8.1, z¥ < &
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for each t > t*, a contradiction to w (¢)) = {él} One comes to the same conclusion
assuming that « (¢) = {él} and w (¢) = {5,1}. O

It remains to show that the above connections indeed exist.

Recall that the unstable space
Hu = {01211 + CoUg & C1,C0 € R}

of DP (pg) is 2-dimensional, where vy is a positive eigenfunction corresponding to the
leading eigenvalue A; and v, is the eigenfunction corresponding to the second eigenvalue

A greater than one. Then for the solution 2, : R — R of the linear variational equation

(8.2) t(t)=-z(®)+f(pt-1)z(-1)

with initial segment ve, we have V (2;?) = 2 for all real ¢t [17|. Clearly vy (—1) = 0
and so v9 (0) # 0 by Lemma 2.3. Either vy (0) > 0 or vy (0) < 0 is possible. Assume
eigenfunction v, is chosen so that vy (0) > 0. Also, we may set ||v1]| = ||ve] = 1.

For n > 0, let

1
s,={peCilo-ml-1]

denote the sphere in C' centered at py with radius 1/n. As W* (py) and WY (po) are
2-dimensional and 1-dimensional local manifolds tangent to {po} + H, and {po} + H,
at po, respectively, there is ng > 0 such that for n > ng, S, N W" (pg) is homeomorphic
to S, and in addition S,, and W} (py) intersect in 57 € H and in 5 € H. Based on
the proof of Claim 8.7, we may suppose that nf < py < nj for each n > ng, therefore
x?? — é_g and x?g — {;:2 as t — oo for each n > ny.

For n > nyg, let C,, : [-1,1] — S, N W*" (py) be a simple closed curve with C, (—1) =
C,, (1) = 0 and C,, (0) = n% oriented so that Pry, (C, (—1,0) — po) intersects {cvy : ¢ < 0} C
H? and Pry, (C,, (0,1) — po) intersects {cvy : ¢ > 0} C H2, see Fig. 13. This choice is
possible. Obviously, C,, (s) # po for all n > ny and s € [—1, 1].

In order to prove the existence of the heteroclinic connections, we are going to apply
the next assertion.

Claim 8.10. To each £ € {£_1,&,&1}, there correspond initial functions ¢ € W*" (po)
and 1 € W* (pg) with
q(0) <9 (0) <p(0) < (0) <0

such that solutions ¥ : R — R and z¥ : R — R oscillate around ¢.
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FI1GURE 13. The unstable manifold and the image of C,

Proof. Assume that £ € {£_1,&, &} and define
Ay = {nGW“(po): x> € for sometZO}

and
A= {nGW“(pO): x?<<éforsomet20}.

Clearly nf € A_ and n} € A, for all n > ny because l’?? — é,g and x:'g — ég as
t — 0o. Then sets A, NC,, [—1,0] and A_NC, [—1,0] are disjoint, open and nonempty
in C,, [-1,0] for all n > ng. It follows from connectedness that there exists s, € (—1,0)
with C,, (s,) € (Ay U A_), that is 2¢7(*») : R — R oscillates around &.

For n > ng, the function y" : R — R with

£ (1)~ p (1)
1Cn (50) = poll
satisfies the equation 3" (t) = —y™ (t) + a™ (t) y™ (t — 1), where

y" (1) = ,teR,

a":R9t|—>/1]"(63:0"(5”)@—1)+(1—9)p(t—1))d9€R.
0

Because of the choice of curves C,, a" (t) — f'(p(t —1)) as n — oo uniformly on
compact subsets of [0, 00).

Since C,, (8,) € W™ (po) \ {po} for all n > ny, C,, (s,) — po as n — oo and W* (py) is
tangent to {po} + H, at py, we may suppose yj — 2o € C' as n — —oo, where zy € H,,.
Since ||yg|| = 1 for all n > ny, ||20]| = 1. Let z: [=1,00) — R be the solution of (8.2)

with initial data zy. Then ™ — z uniformly on compact subsets of [—1, c0).
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We claim that zyp = —ve. Assume that zp = c;v1 +covy with ¢y # 0. As vy is a positive
eigenfunction corresponding to the leading eigenvalue A\; > 1, there exists t* = t* (¢;)
such that z;+ > 0 (or 2+ < 0) and thus yt > 0 (or yj < 0) for some n > ng. This is
impossible by Proposition 8.3. So zy = covs with ¢o € R. The definition of C), and the
fact that s, € (—1,0) implies ¢ < 0. Also, |ca] =1 as ||2o]| = [Jv2]| = 1. So ¢ = —1.

As v5(0) > 0, we conclude that z,(0) < 0. Since y§ — 2z and C, (s,) — po
as n — oo, there exist ny € N so that for n > ny, ¢ (0) < C, (s,)(0) < po(0).
Accordingly set ¢ = C, (sp,) -

Cn(tn)

Similarly, there exists ¢, € (0,1) so that solution x : R — R oscillates around

§. The same reasoning carried out for (C,, (¢,)),. instead of (C, (s,)),. implies that

po (0) < C, (t,) (0) < 0 for all n > ny with some ny € N. So choose ¥ = C,,, (tp,)-

Clearly ¢ and ¢ are in possession of the required properties. [l
Claim 8.11. There exist heteroclinic connections from O, to 0 and to O,

Proof. Claim 8.10 gives that there exists 93,74 € W*" (po) with

q(0) <n3(0) <p(0) <m(0) <0

such that solutions ' : R — R and ™ : R — R oscillate around 0. Claim 8.9 gives
that w(n;), © € {3,4}, is either a periodic orbit or a stable equilibrium. If w(n3) =
{52}, then by the monotone property of the semiflow ® (see Proposition 8.1) there is

to > 0 such that x® > 0 for t > t, a contradiction. Similarly, w (n3) # {5_2} and

w(m) € {é_z,ég}. We prove that w (n3) = O, and w (n4) = {0}.
Consider the curves

Ss:Rot— mz® € R*>and Sy : R 3t ma]* € R%

By Corollary 8.4, S3 and Sy are simple, furthermore they have no points in common
with O,.

Function 73 is selected so that S3(0) = (73(0),n3(—1)) € ext(0,). Thus S5(t) €
ext (O,) for all t € R. As a consequence, (0 is not in w (n3). Note that all the other
stable equilibria have already been excluded, hence it follows from Claim 8.9 that
w(ns) = {r::t € R}, where r is a nontrivial periodic solution of Eq.(1.1). As z™
oscillates around 0, w (n3) = O, by Claim 8.8.

Similarly, Claim 8.8 yields that if w (1) is a non-constant periodic orbit, then w (1) =
O,. However, the choice of 1, implies Sy (0) = (13 (0),73(—1))" € int (O,), hence
Sy (t) € int (O,) for all t € R. It follows immediately that w (74) # Oy So w (1) is a
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stable equilibrium by Claim 8.9. As 5_2 and 52 have been excluded at the beginning of
the proof, necessarily w (n4) = {0} O]

Claim 8.12. There are heteroclinic connections from O, to the orbits O; and O_;.

Proof. According to Claim 8.10, there exists 175 € W" (py) with 0 > 15 (0) > p(0) such
that solution 2 : R — R oscillates around &;. Curve S5 : R > ¢t — 72}® € R? does not
intersect O,. Hence S (t) € int (O,) for all t € R and w (n5) # O,. Also, w (n5) is not a
stable equilibrium or O_; as 2" oscillates around &;. So w (n5) = Oq, see Claim 8.8.
At last, set ng € WY (pg) with 0 > 75 (0) > p(0) so that 2™ : R — R oscillates
around & ;. This is possible by Claim 8.10. An analogous argument verifies that
w (1) = O-1. O
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