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1. INTRODUCTION

Let n > 1 be an integer, rq,...,7, real numbers with r; > ro > ... > 1, > 0,
ai,...,a, positive numbers, ag > 0. In case n = 1, we assume r; > 0. Consider

the linear delay differential equation
(1.1) B(t)=—a) ajz(t—r;)
j=1

with a real parameter a € (0, «g].

The natural phase space for Eq. (1.1) is C = C'([-r1,0],R), the space of all
real valued continuous functions defined on [—7rq,0] equipped with the supremum
norm ||-||. For each ¢ € C, there exists a unique solution x¥ : [—ry,00) — R with
x?(t) =@ (t), —r1 <t <0.

The characteristic function for (1.1) is

n
Az, ) :z—i—aZaje_”Z, z€C, 0<a<a.
j=1
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The zeros of the characteristic function are the eigenvalues of the generator of the

strongly continuous semigroup defined by the solution operators
Tt):Co>p—afeC, t>0,

where the segment xzf € C, t > 0, is defined by zf (s) = z¥ (t + 5), —r1 < s < 0.
We assume that the following hypothesis holds throughout the paper.

(H1): For a = ay, there exists a unique pair of purely imaginary and simple
eigenvalues ivy, —ivy with vy > 0. There exist a1 € (0, p) and v < 0 such
that for all & € a1, ag), there is a unique complex conjugate pair of simple

eigenvalues A = A (a), A = A(a) in {z € C: v < Rez < 0} with

lim ReA(a) =0 and lim ImA(a) = vp.

a—ro a—roQ

For « € a1, o), all the other eigenvalues are found in {z € C: Rez < 7}.

For each «, the fundamental solution of Eq. (1.1) is the function X (-, ) : [-71,00) —

R with initial condition

0 if —T1§t<0
1 ift=0,

(1.2) X (t,a) =

that satisfies
n t
(1.3) X(t,a)zl—aZaj/X(s—rj,a)ds
j=1 70

for all ¢ > 0. It is clear that X exists uniquely, X|j ) is continuous and X|(,, )
is continuously differentiable. It is well known [8] that [~ |X (t,a)|dt < oo pro-
vided Rez < 0 for all zeros of A (z, ). Our aim is to give explicit estimations for
ST 1X (¢, a)| dt.

The integral fooo | X (t, )| dt has a role via the variation-of-constants formula in
perturbation results. For example Eq. (1.1) can appear as the linear variational
equation at a stationary point of a nonlinear delay differential equation. If the
solution & = 0 of Eq. (1.1) is asymptotically stable, then the stationary point of the
original nonlinear equation is locally attracting. Integral fooo | X (t,«)| dt plays an
important role in the estimation of the attractivity region of the stationary point,
see [7, 8].

The technique applied to estimate fooo | X (t, )| dt contains a splitting of the
spectrum by the vertical line Rez = «v < 0 so that there is no eigenvalue on Rez =
~v. Then the phase space can be decomposed as C = P @ @, where P is the

realified generalized eigenspace of the generator corresponding to the spectrum
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in Rez > =, and @ is the realified generalized eigenspace corresponding to the
spectrum in Rez < 7. The solution operator T (¢) is easily estimated on P as it
is finite dimensional. On Q it is well known that || T (¢) || < M () €"*||¢|| holds
for all ¢ € Q and ¢t > 0 with some constant M (y) > 1. An explicit upper bound
for M () is crucial in our estimation for [ |X (¢,)|dt. Giving an optimal upper
bound for M () is also interesting in the construction of invariant manifolds, in
particular when the size of the manifolds is of key importance. E.g., in order to
prove that the local attractivity of 0 implies global attractivity for the Wright’s
equation, the estimates for M (v) of this paper are used to find bounds for the size
of a central manifold [10].

Although the estimates for fooo | X (¢, )| dt seem to be a fundamental technical
issue, as far as we know, not much is known except for the results of Gy6ri and
Hartung in [5, 6, 7]. In the single delay case n = 1 their estimates are sharp for
small values of «, but not for « close to the critical value ap.

This paper is organized as follows. We present the results in Section 2. Section
3 estimates the location of the leading pair of eigenvalues. Sections 4-5 contain the
proofs. For the single delay case (Theorem 2.4) a different proof is given in Section

5 yielding a shaper result. An example is shown in Section 6 with two delays.

2. MAIN RESULTS
Note that
a n
A; ()‘a a) = @A ()\, Oé) =1 azaﬂje—”)‘,
j=1
and for A = p + v,
n 9 n )
AL (vl = (1 - aZajrje*”“cos (rjy)> * <azaﬂ”j€””sin (rju)> :
j=1 =

According to the results [5, 6] of Gyori and Hartung,

> 1
/0 X (t,a)|dt = O <W> .

Our first theorem gives a sharp asymptotic estimation for fooo | X (¢, )| dt as o —
ap— implying that [ |X (t,a)| dt = O ((ao - a)_1>.

Theorem 2.1. Under hypothesis (H1)
4 |A; (iuo, Oé())'

lim (oo — a)/ | X (¢, )| dt =
a—og— 0

Tayg (Z;.Lzl a;jr;jsin (le/())) (Z?zl aj sin (le/o))
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From the application point of view it is more important to give an explicit upper
bound for fooo | X (t,«)| dt on interval [y, cig). This is contained in the next result
in terms of a, A = A (a), p = p(a) = ReA (a) and v = v () = ImA () guaranteed
by (H1).

Theorem 2.2. Under hypothesis (H1)

Qe v (1+ e_%”) max {L; (o), La () }
AL (A, )| (12 +v2) (1 —eb™) 7

for all aq < a < oy with

1 8 «o dw
(21)  Li(a) = (1+ﬂ) —+2/ — )<,
2er VT2 \wo o A+ iwsa)l

| X e <
0

n 2
— o1 Qo1 D0T g aj .
(2.2) Ly(a)=e (e + | 2()\704)> < 00.

We are going to check that the upper bound given by Theorem 2.2 is sharp in
the sense that this upper estimate multiplied by (ag — ) has the same limit at
ap— as function (g — a) [~ | X (¢, a)| dt.

There is a need for easily computable upper bounds. Our next aim is to give an
estimate that is independent of A = A («).

For simplicity, set ¢; = 1 + ag Z;Zlajrj. For each ¢ € (0,7/ (2r1)), set co =
¢z (0) = ayrysin (r16) > 0 and fix K = K (4) > 0 so large that
2c3e ™Y

20

holds. We will need the following additional hypothesis besides (H1).

K>

(H2): There exists § € (0,7/(2r1)) such that for all & € [a1, ], we have
0 <ImA < 7/r;—§ and
2c2e Y

0< ———o—<
c20 + c1o; "ReA

K (5).

The upper bound given by the next result is not sharp, but it is independent of
A= A(a).
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Theorem 2.3. If (H1) and (H2) hold, then

—2ve T (1 + e%”) max {[Nq, ig} (g — 1)
— 4
a1c20 (1 — ef”) -y

(a0 —a)/ooo X (0| dt < K (5)

for all a; < a < ag, where Ly = SUP,, <a<ao L1 (@), L1 (@) is defined by (2.1) and

Ly em (eonSime 4 2
1Co
The particular case n =1, r; = 1, a1 = 1 is of special interest as equation
(2.3) z(t) = —azx(t—1)

is the simplest delay differential equation, and it appears as a linearization of famous
equations of the form & (t) = f (z (¢ — 1)). However, surprisingly, little is known
about [ |X (¢,)| dt even for this simple case when a ~ «.

Theorem 2.1 is a generalization of a result of Krisztin in [9] saying that for this

o 4+/4 2
lim (g - a)/ | X (t,a)|dt = vetm o 1.5.
0

2
a—5— s

equation

The result of Theorem 2.3 can be substantially improved for (2.3). This is essential
in the estimation of the attractivity region of z = 0 for the Wright’s equation for «

near the critical value 7/2, see [2].

Theorem 2.4. If X (-,a) : [-r1,00) = R is the fundamental solution of Eq. (2.3),
then

(5-9) /OOO|X(t,oz)dt§1.93—|—5.99(72r—a) for a € B;T)

We remark that the upper bound given in [5, 7] for the integral of the fundamental
solution of Eq. (2.3) is sharp only for small « > 0, in particular for o € (07 e_l].

3. THE REAL PART OF THE LEADING EIGENVALUES

It is of key importance to understand the behavior of Re («) near the critical
value «p.

For all z =u+iv € C and «a < ag, set

g (u,v,a) = ReA (u+iv,a) = u+ « Z a;e” " cos (rjv),
j=1

h(u,v,a) = ImA (u +iv,a) =v — aZa]—e—”“ sin (r;v) .
j=1
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Then g and h are smooth functions with the following partial derivatives:

(3.1) % (u,v,a) = % (u,v,0) = 1—« Z a;rje” "% cos (rjv),
9g dh . e
(3.2) M (u,v,0) = =G (w, v, ) = *azaﬂje i%sin (r;v),
Jj=1
(3.3) g (u,v, @) Zae it cos (r;v) ,
h n
(3.4) g— (u,v, ) Z "% sin (rjv).
a '7
Note that

~ e _ 09 09
(3.5) A (z,a)=1— a;ajrje =5 (u,v,a) — U (u,v,a).

If 4 = p(a) =Red () and v = v () = ImA (o), where A is the leading eigen-
value in (H1), then g (p,v,a) = 0 and h(u,v,a) = 0 for all a3 < a < ap. In
particular, g (0,9, ap) = 0 and h (0, 19, ap) = 0.

By condition (H1), A () is a simple zero of A (A, «), that is

(36) |Auxmﬁ=($ﬁmuwf+(§ﬁmuwf>o

for all a1 < a < ag with a lower bound independent of «.

The smooth dependence of 1 and v on « is easily guaranteed.

Proposition 3.1. Assume that condition (H1) holds. Then p and v are C*-smooth

functions of a on [ay, ap] with

3 n.,0) 8 (v, ) = 52 (1,,0) 8 (o0 )

() + (3 )

Proof. Choose « € [aq, o] arbitrarily. As g (u, v, @) =0, h(u,v,a) =0, and

det( gzgu,ya) 31’(“’Va)> <g§(u,ua))2+(gg(u,u,a))2¢0

pyvsa) g (py v, @)

(37) i (a) = . aeas,a.

by our initial assumption, the Implicit Function Theorem yields the first assertion.
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Differentiating the equations with respect to a, we get

99 99 oy 4+ 29 _
au(:uvl/7a) ( )+a (,Lt,y,a)l/(a)—l—aa(,u,y,oz)—o,

oh oh , oh _
au(:uvyﬂa) ( )+87(/~L7Vaa)l/(a)+aZ(U7Vaa)_0a

from which the formula for p' («) easily follows. O
Corollary 3.2. If (H1) holds, then

o (2?21 a;jrjsin (rjvo)) (E?:l a;jsin (rjvo))
lim ' (a) = .

a—rao— | A, (ivg, o)

Proof. By hypothesis (H1), limy_,q, A (®) = 9. Proposition 3.1 with (3.1)-(3.5)
and relation

dg 9(0,v0, a0)
8a (0, vg, ap) Zaj cos (rjvp) o =0

gives the statement of the corollary. O

If v is bounded away from 0, and || is sufficiently small for all «, then we give an
upper bound for (ag — @) / |p («)]. The following corollary is needed in the proof
of Theorem 2.3.

Corollary 3.3. Suppose that (H1) and (H2) hold. Then
a—ag
p(a)
Proof. Proposition 3.1 gives

0 ] 0
(92 () (=22 (v ) = 22 (1, @) B (1,0

p (o) = . 5 . 5 , @€ a1, a).
(52 ra)) + (- 52 (wv)

Using this result, we give a positive lower bound for p/ (), @ € [, avo]. Tt clearly

follows from (3.1)-(3.2) that for all a € o, ao],

0
a—g (1, v, @) (1 + aZa]rj> M < erem

< K (8) for each a € [ag, ).

0
8—3 (uyv, @) > —aZajrje*”“ > —cje
i=1

0
_69 Wy Vy Q) ( Zaj > < e,
v
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with constant ¢; introduced before Theorem 2.3. Note that if (H2) holds, then
sin (r;v) > 0 for all j € {1,...,n} and sin (r;v) > sin (r16). Hence

-l <M7 1/,04) > aairie” " sin (’rly) > acoe T > 0,

v
where ¢y = ayry sin (r16). Equations (3.3), (3.4) with g (¢, v,«) = 0and h (p, v, o) =
0 give that
dg -

9g _H _oh _v
da (M?VV Ol) - a and da (N’a v, Ol) - a'

Therefore
acge” ML — crem TR
2c3e— 2

p(a) >

cov +cra
W for a € [aq, ap) .
Conditions given in (H2) now yield

—1
, c0 +cray 1
> .
W) 2 2c2e"1Y K (9)

The Lagrange Mean Value Theorem implies that for each o € [a1, ap),

—p (@) = p () = p(a) = 1’ (§) (a0 — a)

with some o < £ < ap. Thus the previous result implies—p (o) > (g — @) /K (0)

for all a € [a1, ag), and the proof is complete. O

4. THE PROOFS OF THEOREMS 2.1-2.3

Under hypothesis (H1), the phase space C' = C ([-r1,0],R) can be decomposed
as C'= P®Q into the closed subspaces P and @), where P is the realified generalized
eigenspace of the generator associated with the leading eigenvalues A = u + iv,
X = —iv, and Q is the realified generalized eigenspace associated with the rest
of the spectrum of the generator. Subspace P is spanned by e*! cos (vt) l{=ry,0) and
et sin (vt) |y, ), therefore dim P = 2. Both P and @ are invariant subspaces for
the solution segments of Eq. (1.1) in the sense that if x : [—71,00) — R is a solution
of Eq. (1.1) and z7 € P (Q) for some T > 0, then z; € P (Q) for all ¢t > T.

The decomposition C' = P @ @ defines a projection Prp onto P along @ and a
projection Prg onto () along P.

For all « € [aq, ], set functions p(-, ) : [-r1,00) = R and ¢(-, @) : [-71,00) —
R by

e
p(t,a) = ZﬁResA(AQ), t>—ry,
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and ¢ (t,a) = X(t,a) — p(t,a), t > —ry. For simplicity we also use notations
p:p('va) and QZQ('7Q)' As
At At et

(& (&
— — — 2 -
ZM tRGa) T M) AL (na) CAL(va)

p(, @) : [-r1,00) = R is a solution of (1.1). Thus it follows from the definition of
X (-, «) that ¢ = 0 is the only discontinuity of ¢(-, «), it is differentiable for ¢ > r;
and satisfies

q(t,a) = ¢q(0, @) aZaJ/ —rj,a)ds fort>0.

It is a well known result (see [4] of Diekmann et al.), that p; = PrpX; € P for

all t > 71, hence ¢; € Q for all t > r1. Moreover, formula

e’
a(t,0) = Tl~>oo/ A( v—i—zw a)dw

holds for all ¢ > 0 by the Laplace transform technique [4, 8]. In order to estimate
Jo7 1X (t, )| dt, we estimate [} |p (¢, )| dt and [; |q (t, )| dt.
Proposition 4.1. Under hypothesis (H1)
e e v (14e v
[t s (tersn)
0 AL (vl (62 + 02) (1 o)

for all o < a < . Furthermore,

lim (oo — @) /000 Ip (t, )| dt =

a—og—

4|AY (ivo, ao)|
T (Z?:1 a;r;sin (ijo)> (Z?Zl a; sin (’I"jl/o))

Proof. For all « € [ay, o] and t > —ry,

e}\t

AL (A «)

2 put
(4.1) = W{cos (vt) <1 — aZa rje” "% cos (mu))

+ sin (vt) ( Zajre "itsin (r;v ))}

Since for all A,B € R with A2 + B®> > 0 we have Acos(vt) + Bsin(vt) =
VA? + B?sin (vt +n) with n € [—7, 7) satisfying

p(t,a) = 2Re

B

VAT B
EJQTDE, 2011 No. ?, p. 9
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we obtain that there exists n = 7 (a) € [—m, ) such that

(4.2) p(t,a) = 2kt S|Z( (327)7') ac€lar,ao), t > —r1.

Choose 0 < t; < tp < ... < t, < ...such that vt; + n = jm for all j > 1.
Then sin (vt +1n) > 0 for all t € (t3;,t2541), 5 > 1, and sin (vt +n) < 0 for all
te (tgj_l,tgj), j > 1 With this notation,

oo > ot
[ el =Y 1 [ pa
t j=1 tj
2 &, [T
= mZ(—l) / e sin (vt +n)dt
z ) j=1 7]
2e~ " = ;U B o
= mz(_l)']/ ev®sin sds.
z ) =1 jm

Since

n
Lg & vlevs B
ev?sinsds = ——— (—sins —coss | ,
ne+ve \v

> Que v (e%” + 1) SR
p(t,a)|dt = evIT
], el = s

J=1

it follows that

2ve” u”(e
AL () 1 — b

for all o1 < o < a.
In addition,

t1
/O p(to)]d = o A 5 |/ B |sin (vt + )| dt

o 2 {/ | d+/wﬁ5' d}
—_— 6" Sin sds ev  S1n sas
AL (A a)|v - 0

e~ v (e%” + 24+ e_%’r)
AL (A )| (12 +1?)

B s _ K

evT (ev™+1 1 7
6771'_"_2_’_6—%77_’_ ( - ): +€ﬁ ;
1—ev™ 1—ev™

the last two results with n € [—m, 7) give the first statement of the proposition.
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It is clear that fotl |p (t, )| dt is bounded with an upper bound independent of

«. Hence
Jim (ao—a)/ p(t,a)|dt = Tlim (ao—a)/ Ip (, )| dt
a—rag— 0 a—oo— t1

4 I ag — —Lr
= Y 1m .
|Alz (iVo, Oé)| T a—>apg— — [ 1 _ e%ﬂ'

As limy o (—2) /(1 —€*) =1 and —pu = ¢/ (§) (wo — @) with some & € (o, ),

we obtain that

> 4
li — t dt = .
arag— (2 O[)/0 Ip (& @) |A” (ivg, )| mlimg o — i ()
Now Corollary 3.2 yields the second statement of the proposition. O

It is a well known result that for each « there exists a constant L () > 0 such
that |q (t,a)| < L (a) e for all t > 0, see |4, 8]. Next we construct an upper bound
for |q (¢, «)| that is independent of «.

Proposition 4.2. If hypothesis (H1) holds, then |q (t, )| < max {Ly (a), Lo (a)} €7*
for allt > 0 and o € |y, ], where L1 = Ly () and Ly = Lo («) are given by
(2.1) and (2.2), respectively. Consequently,

/00 lg (t, )| dt < _max{Ly (j)’LQ (c)} for all a € o, ) -
0

Proof. Recall that for a € [ag, ] and ¢ > 0,

a(ta)= o ) .
a) = — lim w
27 T=oo J_p Ay +iw,a)

where A (y +iw, ) = v +iw+ad i, ajef’“f(Vﬂ“’). Partial integration gives that

/T e [1}7” . /T AL (y +iwa)
7 Ay +iw, a) it A(y+iw, )| o Jop tA?2(y+iw, )

Since |A (v + iw, )| — 00 as [w| — oo and |e™! /t| = 1/t for all t > 0, we conclude
that

for a € [y, 9] and ¢ > 0.
T T—o0

vt T iwt A/ :
q(t,a):e— lim / ¢ Z(’y—l—.zw,a)d
2 _p A2 (v 4w, a)

Hence

et ( - , ) o0 dw
t,a)| < — |14+« a;rie 37 / _—
g (t0)] < 5 g 3 TN
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It is clear that

n n
A (v +iw, )| > |y +iw| — QOZaje*Tﬂ =y +w?— aozaje*m > %

Jj=1 Jj=1

if w>wo =209, aje”"7. Therefore

/°° dw _2/°° dw
oo |A (y + iw, @) 0 |A(Y +iw, @)

«o dw 4
<2 / ﬁ+/ —dw
0o |A (Y +iw, )| wo W

8 o dw
I + 2 —.2.
Wo o [|A(y+iw,a)
Thus for ¢t > ry and « € (a1, ), |q (¢, @)| < L1 () 7, where L; («) is defined by
(2.1).
We also need an estimate for ¢ € (0,71). It is clear from (1.2)-(1.3) that

n t
| X (t, )| <1+ (aOZaj)/ |X (s,a)|ds, te€[0,m], a€ a1, a0,
0

j=1

thus |X (¢)| < exp (aorl > aj) for t € [0,r1] and a € [a1,ap] by Gronwall’s

Lemma. From (4.2) we see that

2
Ip(t, )| < A (o) for t € (0,71) and a € [, a],
and this upper bound is finite by (H1). Hence |q(t,a)] < |X ()| + |p(¢, )] <
Ly () e’ for t € (0,71) and « € [y, ap] with Lo («) defined by (2.2). O

Proof of Theorem 2.1. Proposition 4.2 implies that fooo |g (t,a)|dt is bounded
on [ay, o). Therefore Theorem 2.1 follows directly from the facts that X (¢, ) =
p(t,a) + q(t,a), t > —r1, a € [, ), and that the same limit holds for

WrﬂﬂémpUﬂN&,

see Proposition 4.1. [J

Note that if n =2, r; =1, ro =0, a1 > a2 > 0 and hypothesis (H1) is satisfied,

then )
2
a2

1
EJQTDE, 2011 No. ?, p. 12
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Hence Theorem 2.1 implies

2,2
4\/1 — 2apa; cos vy + agag

lim (ag — a) /000 | X (t, )| dt =

a—ag— ma (ay sinvg)”

44/1+ 2apag + aZa?

mag (af — a3)

Proof of Theorem 2.2. The upper bound for [ |X (¢,@)|d¢ in the theorem is
simply the sum of the upper bounds for fooo |p (t, )| dt and fooo lq (t, )| dt given by
Proposition 4.1 and Proposition 4.2, respectively. [

As we have already mentioned, the upper bound given by the Theorem 2.2 is
sharp for parameters close to the critical value «q: the upper estimate multiplied by
(g — @) has the same limit at cg— as function (o — ) fooo | X (t, )| dt. Indeed,
as

o o o . . T _
w=p' (&) (ap — o) with some & € (o, ap) and xl_l}I(I)l_ T 1,

we see that

eV (1 +e o™ Ly, L

lim (ap —«) e (Le ) m +max{ 1, Lo}
a-vao= AL @)l (42 +v2) (1= eo7) at

. 202 v (1+e7v™) (ag—a —L&g

= lim =

oty AL (ha)] (2 102 7
4 ) 1
= - 1m
[AL (v, )| 7 oo 7 (@)

9

which limit is the same as given by Theorem 2.1, see Corollary 3.2.

Proof of Theorem 2.3. Assume that not only hypothesis (H1) but also (H2) is
satisfied. In this case 6 < v < mw/r;—0 for all &« € [a1, avp], hence sin (r1v) > sin (r16)

and sin (r;v) > 0 for all & € [a1,a0] and j € {1,...,n}. In consequence,

(4.3) AL (N a)| =

n
a E ajrje” " sin (rv)| > aqee  for all a € [aq, ag)
J=1

with ¢o = aq7q 8in (r16). Also, p > v and
o — O
1

< K (§) foreach a € [a1, ag]

by Corollary 3.3.

With Proposition 4.1, these estimates imply that
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(Oéoa)/ooo p(t,a)|dt < <aoa) ( —br ) 2% 57 (14 e )

= )T ) sa e e 7o)
—Er ) 2737 (1+e737)

1—ev™

IN

K(5><

for all oy < o < ag. The function z — —x/ (1 —e®) is strictly decreasing on

T C

(—00,0), hence

and
—276_%" (1 + e_%”)

a1C0 (1 — e%”)

wo(mﬂmmwawn5K6>

for all o1 < a < ag.
In addition,

. 9 . 2 .
L — = | peori D07 ay < oL [ g0 2T ay =T
2(@)=e G ’ *mux®0—e G ’ +mq> :

for all o1 < o < a.

With Proposition 4.2 now we deduce that for all ¢ < o < ay,
(@-a) [ X taldt < o -a) [ Iptaldtt(@o—a) [ lafta)ld
0 0 0

—2767TWTr (1 + e%”> max {f)l, ig} (g — 1)
+ )

< K (6
() a1C20 (1 - e%”) -y

where L, = SUP,, <a<ao L1 (@) and Ly () is defined by (2.1). O

5. THE PROOF OF THEOREM 2.4

For Eq. (2.3) and « > 1/e the eigenvalues are simple and appear in complex
conjugate pairs (Aj,rj);io with
ReXdg > Red; > ... > Redj = —o0  (j — 0)

and

Im\; € (247, (25 + 1)) for all j > 0.
In coherence with the previous sections, A\ = p + iv and A = p — iv denote the
leading eigenvalues Ao and \g. As they are roots of the characteristic function,
(5.1) pw+ae Fcosy=0 and v—ae #sinv=0.

In |9] Krisztin has verified that for o € [3/2,7/2),

1
s <p<0,154<v <2 \[>1, lim p=0and lim v=_,
2 2 a—Z— 2

T
a—E—
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moreover the real parts of the remaining eigenvalues are smaller than —1.

With equations (5.1) Proposition 3.1 implies

a (e #sin 1/)2 — (1 —ae *cosv)e *cosv

i
(o) =
() (1 — et cosv)? + (et sinv)?

(5.2) RNk A G DY (1;”‘)“, a€3/2,7/2.
a (L+p)" +v?
For all o € [3/2,7/2], v > 1 and —0.25 < (1 + pu) u < 0, hence 0 < ¢’ (o) < 1/«
As —p(a) = (&) (7/2 — ) for all « € [3/2,7/2) with some & € (a,7/2), we
obtain that
—p(a) < % (g - 2) < % (g - 2) <0.05, acl[3/2,1/2).

We mention that numerical approximation yields p > —0.033 for all « € [3/2,7/2),
thus conditions (H1) and (H2) hold with v = —0.1, § = 1.54 and K = 15. According
to Theorem 2.3, [ |X (t,a)|dt < 29.

In this section we give a better estimate without using any numerical approxi-
mation.

Relation (4.1) and equations (5.1) imply that

(5.3) AL (A a)| = /(1 +p)* +v?
and
(5.4) pta) = —2 [(1+ p) cos (vt) + vsin (vt))]

(1+p)” +v2
for t > —1 and « € [3/2,7/2], see also [9].

Proposition 5.1. For each o € [3/2,7/2),

(Z-a) / Ip (£, a)|dt < 1.93.

2 0

Proof. Proposition 4.1 and relation (5.3) implies that for all o € [3/2,7/2) we have
T oo 2e v (1+e7v7) V2 —Lg I -«
- - t,a)|dt < v 2

(2 a)/o Ip(t e)ldt < 7 |AL (A, ) <u2+v2 1—evm —p

Qe (1+e*%”) < —Lr ) 1
iy /
™ (1—1—,u)2+y2 H

with some £ € (a, 7/2).
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As p € [-0.05,0] and v € [1,54,7/2] for each o € [3/2,7/2), it follows from
result (5.2) that

0< ! <« max 1+ 1—|—,u) o€ § il
() = 7 (,)€[—0.05,0]x [1,54,7/2] 24+ (14+up)’ 2'2)°

The expression on the right hand side is strictly decreasing in v € [1,54,7/2]. In
addition, as

8( L+u > V2 — (u+1)°
o \2+(0+uwp) 2+ 01+ p)p?
for (u,v) € [—0.05,0] x [1,54,7/2], it is strictly increasing in p € [—0.05,0]. We

deduce that )

s 1 3 7
<T(14-—_) foral ° I,
,u’(oz)_2< +1.542) ora QE{Q’Q)

Recall that the function z — —z/ (1 — ) is strictly decreasing on (—oc, 0). Hence

Y 28 (14 eB0T) o ame yo
(770[) |p(t,a)‘dt§ =2 0.05 - | o 1+
0

2 m/0.952 + 1.542 \1—e 157 /) 2 1.542
for all a € [3/2,7/2), and this upper bound is smaller than 1.93. O

In order to get a better estimate for fooo lq (t, )| dt, we apply an approach dif-
ferent from that of Proposition 4.2. The fact that there is only one delay is crucial
here.

We use the discrete Lyapunov functional V' of Mallet-Paret and Sell introduced
in [11]. V (p) counts the sign changes of ¢ € C \ {0} if it is an odd number or
infinity, otherwise V (¢) is the number of sign changes plus one. Then V () €
{1,3,...} U{oc}. The map t — V (z;) is monotone nonincreasing along solutions
of Eq. (2.3). In addition, V is upper semi-continuous: for each ¢ € C'\ {0} and
(¢n)y C C\ {0} with ¢, = ¢ as n — 00, V () < liminf, 00 V (n)-

Proposition 5.2. For each o € [3/2,7/2]) and t > 1, V (q) > 3, that is q has at

least two sign changes on each subinterval [t — 1,t] of [0, 00).

Proof. Suppose for contradiction that V (¢s) = 1 for some s > 1. Then the mono-
tone property of V' gives that V (¢;) = 1 for all ¢ > s. By a result of Cao [3] (see
also Arino [1]) and by the Gronwall-Bellmann inequality there exist C; > 0, Cy > 0
and tg such that

(5.5) Cillgell < llgegill £ Callgel]  for all & > ¢o.
For n > 1 define y" : [-n,00) = R by y" (t) = ¢ (n +t) / ||gn||- Then

() =—ay" (t—1) fort>-n+1,
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and
Crllyrll < |lytall < Collyfl i n+t > to.

The Arzela—Ascoli Theorem can be applied to find a subsequence (y™*);-, and a
Cl-function y : R — R so that y"* (t) — y (¢), §™* (t) — y (t) as k — oo uniformly

on compact subintervals of R, moreover
y(t)=—-ay(t—1) forteR.

As @ is closed, yo = limpooyo® € @ with |Jyo]| = 1. In addition, Ci |lye]| <
lyz1ll < Ca||lyt|l for all ¢ € R. Hence for all n € {0,1,2,...},

[Y—nll < CT ly—nt1ll € CT2 y—nsall < oo < CT™ lwoll < (L+C7H)" [lyoll -

Let ¢ < 0 be arbitrary and choose integer n so that —(n+1) < t < —n holds.
Then

lyell <yl + ly-all < 1+ CT) ly-all < (14+CT)" o]l

As

(1+Cf1)n — enin(1+07) < e—tln(1+0f1)7
we conclude that [y, < Ae™5 for all ¢ < 0 with A = (1+C7") ||lyo]| > 0 and
B=hn(1+Cy') >o0.

Choose ¢ > B so that Rez # —c for all roots of the characteristic function. The
space C has the decomposition C' = Po Q, where P is the realified generalized
eigenspace of the generator of the semigroup (7 (t)),~, associated with the eigenval-
ues having real parts greater than —c, and Q is the realified generalized eigenspace

associated with the rest of the spectrum. By [8], there is M > 0 so that
1T (t) || < Me™ ||| forall t>0and ¢ e Q.
Let £t <0 and o <t. Then
HPrQytH = HT (t —0) Proyes

Mefc(tfa')

IN

’Prng

IN

M ||Pr | =<0~ lya |

IN

M HPTQH e~ c(t=0) ge—Bo
=M HPTQH et he= (B0

as 0 — —oo. It follows that PrQyt =0and y, € P for all ¢t < 0. If subspace P

is trivial, i.e. there are no eigenvalues with real parts greater than —c, then the
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previous result implies yo = 0, a contradiction to ||yo|| = 1. Otherwise

n
y(t) = Z AjeReAjt cos (ImA;t + B;), t<0,
§=0

for some real numbers Ag, By, ..., A,, B,, and integer N > 0 so that
)\0 = )\7)\70:X7>\17)\717"'7)\N7E

are the eigenvalues with real parts greater than —c. The upper semi-continuity of
Vand V(g) = 1, t > s, combined yield V (y,) = 1 for all ¢ € R. As Im); €
(24, (25 + 1) 7), j > 0, it follows that A1 = Ay = ... = Ay = 0. This means that
ys € P for all t < 0. In particular yo € P, a contradiction to yo € @ \ {0}. This
completes the proof. O

We can use this result to give an explicit estimate for the growth of ¢ on [—1, 00).
In the next proposition || denotes the integer part of the positive real number r.

Proposition 5.3. For each o € [3/2,7/2] and t > —1,

lg (t)] < <g>kq‘, where §g= sup |q(s)| and k= \‘2 (t+ 1)J .
2 _1<s<t 3
Proof. The statement is clearly true for —1 <t < 1/2.
It is enough to show that if
1
2

to > and  sup |g(s)| < m for some m > 0,

s€[to—2 ko]
then

3
lg ()] < %m for all t € {toyto + 2} 7

so we confirm this latter assertion.

For all tg > 1/2 and t € [tg,to + 3/2], there exists z € [t —1/2,¢t+ 1/2] with
g (z) = 0, see Proposition 5.2. Hence for ¢ € [to,to + 3/2],

/Z :1 q(s)ds

<alt—z  sup g (s)]

se[t—2,t—1]

g (s)]-
}

lg(t) —q(2)| =a

g (2)]

IN
o Q
wn
=
i)

It follows that
o
sw g (8) < Sm,
tE[tmtoJr%}
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« « « «
sip gl <S s g < 5 max{m,Sm} = Sm
te[to+5,to+1] 2 te[to—1,to+1] 2 2 2

and

sup g (t)] <

o o
sup lg ()] < ) max {m, fm} =
t€[to+1,t0+3]

m.
tE[to—%ﬂfo-‘rl] 2

o
2

| Q

The previous statement shows we need an upper bound for g.
Proposition 5.4. For all a € [3/2,7/2], §=sup_j<,<1/2 /g ()] < 1.

Proof. Set o € [3/2,7/2] arbitrarily. Differentiating (5.4) we get

2eHt ,
p(t) = m (4 p® + v?) cos (vt) — vsin (vt)]
2 ut 2 2
= 672V cos (vt) prp v tan (vt)| .
(1+p)” + 02 v

Note that as 1.54 < v < 7/2 and —0.05 < p < 0, we have cos (vt) > 0 for all
t € [-1,7/(2v)), and in addition p + p? + v? > 0. It follows that there exists
to € (0,7/(2v)) such that

2, 2
tan (Vto) = M’
v
p increases on [—1,tg] and decreases on [ty, 7/ (2v)).

Clearly,

2e™#
= —
(I+p)" +v
as (1+p)cosy < 1 and vsinv > 1.54 -sin(1.54) > 1 for p € (—0.05,0] and
v € (1.54,7/2]. Therefore

[(1+4 p)cosv —vsiny] <0

Py
1+ )+ 22
As the right hand side is decreasing in v for v € (1.54,7/2] and it is decreasing in
w for p € (—0.05, 0], we deduce that
€0951.54

- <—x<
P(=DI= 5oz i
Also we find that

2(14 p) o2

0<p(0)=
PO e ST

<1,
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2et

0<p(l) = —F—[(1+ p)cosv +vsiny],
(14 1) +v2
S —
T (14p)? 42 T 0952 +1.542
and
2 nito 2 2
p(to) = 672 (14 p)+ prprv, cos (vty) = 2eM0 cos (vty) < 2.
e

Clearly, p (t) € (—1,1) for all ¢ € [-1,0]. In case ¢, > 1 one has p (t) € (0,1) for
all t € [0,1]. Otherwise p(t) € (0,2) for all ¢t € [0,1]. Using that ¢ (¢) = —p (¢) for
—1<t<Oandq(t)=1-p(t) for 0 <t <1, we obtain that g < 1. O

Now we are able to estimate [ |¢ (, @) dt. The bound given by the subsequent
proposition is substantially better than bound 3e? presented in paper [9] and the

bound given by Proposition 4.2.

Proposition 5.5. For each o € [3/2,7/2],

o0 2
/ gt )| dt < 27
O 4

-7

Proof. By Propositions 5.3 and 5.4, sup_;<,<1/2[¢ (s, )| < 1forall a € [3/2,7/2],
and | (t,a)| < (7/4)* for all a € [3/2,7/2] and t > 0, where k is the greatest
integer with k¥ <2 (¢t +1) /3. Thus

e 1 3 (= T\ 2 m\3 2+
ta)dt<=+:°42 f) A DI .
A la ;)] 2+2{4+<4 +<Q + } 17

O

Proof of Theorem 2.4. The statement of the theorem follows directly from Propo-
sition 5.1 and Proposition 5.5. [J

6. AN EXAMPLE WITH TWO DELAYS
Consider the linear equation
. . ™
tt)=—a(z(t-1)+2z(t—-2) with0<a< 33
In this case the characteristic function is
(6.1) A(z,a)=z+a(e*+e ).
For the eigenvalues z = u + iv,

(6.2) u+a (e “cosv+e " cos(20)) =0
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and
(6.3) V- (e_“ sinv + e 2% sin (2@)) =0.

There are purely imaginary eigenvalues +in/3 for « = 7/ (3\/5)

We examine the location of the eigenvalues on the complex plane for 0 < a <
7/ (3V7).

If z = u+iv is an eigenvalue with u > 0, then equations (6.2) and (6.3) give

that
2

3V3
T 2
3v3 3V3

However, one can check numerically, that (6.1) has no zeros in the rectangle

e " |cosv| + e " [cos (2v)]) <

U,<L(
_3\/5
and

o] < (e Isinv| + e~ [sin (20)]) <

{ZEC 0 < Rez < [Imz| <

32\/?7 3v3 }

for 0 < a < m/(3v/3). So the real parts of the eigenvalues are nonpositive for such
parameters.

Suppose 0 < a < 7/ (3\/§) and z = u + v is an eigenvalue with v < 0 and
|v| > 7. Then it follows from (6.3) that

s _ . 2 _
(e7¥[sinv| + e " [sin (2v)]) < —=e 2",

3V/3

T < |v| <
ol < 57
that is

1. 3v3

<—71 —< —0.4.

It is also known that there is exactly one pair of eigenvalues ()\, X) in the subset
{z € C: |Imz| < 7} of the complex plane, see [12]. Numerical approximation gives
that for each o € [0.58,7/ (3v/3)), there is an eigenvalue A = A () in the rectangle

{zeC: —0.02 <Rez <0 and 1.03 < Imz < 1.05},

see Fig. 1.
Hence hypotheses (H1) and (H2) are satisfied with ap = 7/ (3v/3), oy = 0.58,
v = —0.04, § = .52 and K = 22. Theorem 2.1 now gives that

2
00 8\/ 1+ +5
lim (”—a>/ X (t,0)]dt = ( ‘M) ~ 0.95.
Wi 3v3 0 \V/3m2
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In addition, Theorem 2.3 can be applied, and we get

(3%_@) /OOOX(t,a)|dt<55

forall 0.58 < a <7/ (3\/5) by Theorem 2.3.

L L L L L Il L L L L Il L L L L
-0.015 -0.010 -0.005 -

Figure 1. Curve [0.58,7r/ (3\/5)] Sar A(a)eC.
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