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1. Introduction

Let n ≥ 1 be an integer, r1, . . . , rn real numbers with r1 > r2 > . . . > rn ≥ 0,

a1, . . . , an positive numbers, α0 > 0. In case n = 1, we assume r1 > 0. Consider

the linear delay di�erential equation

(1.1) ẋ (t) = −α
n∑
j=1

ajx (t− rj)

with a real parameter α ∈ (0, α0].

The natural phase space for Eq. (1.1) is C = C ([−r1, 0] ,R), the space of all

real valued continuous functions de�ned on [−r1, 0] equipped with the supremum

norm ‖·‖. For each ϕ ∈ C, there exists a unique solution xϕ : [−r1,∞) → R with

xϕ (t) = ϕ (t), −r1 ≤ t ≤ 0.

The characteristic function for (1.1) is

∆ (z, α) = z + α

n∑
j=1

aje
−rjz, z ∈ C, 0 < α ≤ α0.
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The zeros of the characteristic function are the eigenvalues of the generator of the

strongly continuous semigroup de�ned by the solution operators

T (t) : C 3 ϕ 7→ xϕt ∈ C, t ≥ 0,

where the segment xϕt ∈ C, t ≥ 0, is de�ned by xϕt (s) = xϕ (t+ s), −r1 ≤ s ≤ 0.

We assume that the following hypothesis holds throughout the paper.

(H1): For α = α0, there exists a unique pair of purely imaginary and simple

eigenvalues iν0, −iν0 with ν0 > 0. There exist α1 ∈ (0, α0) and γ < 0 such

that for all α ∈ [α1, α0), there is a unique complex conjugate pair of simple

eigenvalues λ = λ (α), λ = λ (α) in {z ∈ C : γ < Rez < 0} with

lim
α→α0

Reλ (α) = 0 and lim
α→α0

Imλ (α) = ν0.

For α ∈ [α1, α0], all the other eigenvalues are found in {z ∈ C : Rez < γ}.

For each α, the fundamental solution of Eq. (1.1) is the functionX (·, α) : [−r1,∞)→
R with initial condition

(1.2) X (t, α) =

0 if − r1 ≤ t < 0

1 if t = 0,

that satis�es

(1.3) X(t, α) = 1− α
n∑
j=1

aj

ˆ t

0

X (s− rj , α) ds

for all t ≥ 0. It is clear that X exists uniquely, X|[0,∞) is continuous and X|(r1,∞)

is continuously di�erentiable. It is well known [8] that
´∞
0
|X (t, α)| dt < ∞ pro-

vided Rez < 0 for all zeros of ∆ (z, α). Our aim is to give explicit estimations for´∞
0
|X (t, α)| dt.
The integral

´∞
0
|X (t, α)| dt has a role via the variation-of-constants formula in

perturbation results. For example Eq. (1.1) can appear as the linear variational

equation at a stationary point of a nonlinear delay di�erential equation. If the

solution x = 0 of Eq. (1.1) is asymptotically stable, then the stationary point of the

original nonlinear equation is locally attracting. Integral
´∞
0
|X (t, α)| dt plays an

important role in the estimation of the attractivity region of the stationary point,

see [7, 8].

The technique applied to estimate
´∞
0
|X (t, α)| dt contains a splitting of the

spectrum by the vertical line Rez = γ < 0 so that there is no eigenvalue on Rez =

γ. Then the phase space can be decomposed as C = P ⊕ Q, where P is the

reali�ed generalized eigenspace of the generator corresponding to the spectrum
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in Rez > γ, and Q is the reali�ed generalized eigenspace corresponding to the

spectrum in Rez < γ. The solution operator T (t) is easily estimated on P as it

is �nite dimensional. On Q it is well known that ‖T (t)ϕ‖ ≤ M (γ) eγt ‖ϕ‖ holds
for all ϕ ∈ Q and t ≥ 0 with some constant M (γ) ≥ 1. An explicit upper bound

for M (γ) is crucial in our estimation for
´∞
0
|X (t, α)| dt. Giving an optimal upper

bound for M (γ) is also interesting in the construction of invariant manifolds, in

particular when the size of the manifolds is of key importance. E. g., in order to

prove that the local attractivity of 0 implies global attractivity for the Wright's

equation, the estimates for M (γ) of this paper are used to �nd bounds for the size

of a central manifold [10].

Although the estimates for
´∞
0
|X (t, α)| dt seem to be a fundamental technical

issue, as far as we know, not much is known except for the results of Gy®ri and

Hartung in [5, 6, 7]. In the single delay case n = 1 their estimates are sharp for

small values of α, but not for α close to the critical value α0.

This paper is organized as follows. We present the results in Section 2. Section

3 estimates the location of the leading pair of eigenvalues. Sections 4-5 contain the

proofs. For the single delay case (Theorem 2.4) a di�erent proof is given in Section

5 yielding a shaper result. An example is shown in Section 6 with two delays.

2. Main results

Note that

∆′z (λ, α) =
∂

∂z
∆ (λ, α) = 1− α

n∑
j=1

ajrje
−rjλ,

and for λ = µ+ iν,

|∆′z (λ, α)|2 =

(
1− α

n∑
j=1

ajrje
−rjµ cos (rjν)

)2

+

(
α

n∑
j=1

ajrje
−rjµ sin (rjν)

)2

.

According to the results [5, 6] of Gy®ri and Hartung,
ˆ ∞
0

|X (t, α)| dt = O

(
1

(α0 − α)
2

)
.

Our �rst theorem gives a sharp asymptotic estimation for
´∞
0
|X (t, α)| dt as α →

α0− implying that
´∞
0
|X (t, α)| dt = O

(
(α0 − α)

−1
)
.

Theorem 2.1. Under hypothesis (H1)

lim
α→α0−

(α0 − α)

ˆ ∞
0

|X (t, α)|dt =
4 |∆′z (iν0, α0)|

πα0

(∑n
j=1 ajrj sin (rjν0)

)(∑n
j=1 aj sin (rjν0)

) .
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From the application point of view it is more important to give an explicit upper

bound for
´∞
0
|X (t, α)| dt on interval [α1, α0). This is contained in the next result

in terms of α, λ = λ (α), µ = µ (α) = Reλ (α) and ν = ν (α) = Imλ (α) guaranteed

by (H1).

Theorem 2.2. Under hypothesis (H1)

ˆ ∞
0

|X (t, α)| dt ≤
2νe−

µ
ν π
(
1 + e−

µ
ν π
)

|∆′z (λ, α)| (µ2 + ν2)
(
1− eµν π

) +
max {L1 (α) , L2 (α)}

−γ

for all α1 ≤ α < α0 with

(2.1) L1 (α) =
1

2πr1

(
1 +

ω0

2

)( 8

ω0
+ 2

ˆ ω0

0

dω

|∆ (γ + iω, α)|2

)
<∞,

ω0 = 2α0

n∑
j=1

aje
−rjγ ,

and

(2.2) L2 (α) = e−γr1
(
eα0r1

∑n
j=1 aj +

2

|∆′z (λ, α)|

)
<∞.

We are going to check that the upper bound given by Theorem 2.2 is sharp in

the sense that this upper estimate multiplied by (α0 − α) has the same limit at

α0− as function (α0 − α)
´∞
0
|X (t, α)| dt.

There is a need for easily computable upper bounds. Our next aim is to give an

estimate that is independent of λ = λ (α) .

For simplicity, set c1 = 1 + α0

∑n
j=1 ajrj . For each δ ∈ (0, π/ (2r1)), set c2 =

c2 (δ) = a1r1 sin (r1δ) > 0 and �x K = K (δ) > 0 so large that

K >
2c21e

−r1γ

c2δ

holds. We will need the following additional hypothesis besides (H1).

(H2): There exists δ ∈ (0, π/ (2r1)) such that for all α ∈ [α1, α0], we have

δ ≤ Imλ ≤ π/r1 − δ and

0 <
2c21e

−r1γ

c2δ + c1α
−1
1 Reλ

≤ K (δ) .

The upper bound given by the next result is not sharp, but it is independent of

λ = λ (α) .

EJQTDE, 2011 No. ?, p. 4



Theorem 2.3. If (H1) and (H2) hold, then

(α0 − α)

ˆ ∞
0

|X (t, α)| dt ≤ K (δ)
−2γe

−γ
δ π
(

1 + e
−γ
δ π
)

α1c2δ
(
1− e γδ π

) +
max

{
L̃1, L̃2

}
(α0 − α1)

−γ

for all α1 ≤ α < α0, where L̃1 = supα1≤α≤α0
L1 (α), L1 (α) is de�ned by (2.1) and

L̃2 = e−γr1
(
eα0r1

∑n
j=1 aj +

2

α1c2

)
.

The particular case n = 1, r1 = 1, a1 = 1 is of special interest as equation

(2.3) ẋ (t) = −αx (t− 1)

is the simplest delay di�erential equation, and it appears as a linearization of famous

equations of the form ẋ (t) = f (x (t− 1)). However, surprisingly, little is known

about
´∞
0
|X (t, α)| dt even for this simple case when α ≈ α0.

Theorem 2.1 is a generalization of a result of Krisztin in [9] saying that for this

equation

lim
α→π

2−

(π
2
− α

)ˆ ∞
0

|X (t, α)| dt =
4
√

4 + π2

π2
≈ 1.5.

The result of Theorem 2.3 can be substantially improved for (2.3). This is essential

in the estimation of the attractivity region of x = 0 for the Wright's equation for α

near the critical value π/2, see [2].

Theorem 2.4. If X (·, α) : [−r1,∞)→ R is the fundamental solution of Eq. (2.3),

then (π
2
− α

)ˆ ∞
0

|X (t, α)| dt ≤ 1.93 + 5.99
(π

2
− α

)
for α ∈

[
3

2
,
π

2

)
.

We remark that the upper bound given in [5, 7] for the integral of the fundamental

solution of Eq. (2.3) is sharp only for small α > 0, in particular for α ∈
(
0, e−1

]
.

3. The real part of the leading eigenvalues

It is of key importance to understand the behavior of Reλ (α) near the critical

value α0.

For all z = u+ iv ∈ C and α ≤ α0, set

g (u, v, α) = Re∆ (u+ iv, α) = u+ α

n∑
j=1

aje
−rju cos (rjv) ,

h (u, v, α) = Im∆ (u+ iv, α) = v − α
n∑
j=1

aje
−rju sin (rjv) .
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Then g and h are smooth functions with the following partial derivatives:

∂g

∂u
(u, v, α) = ∂h

∂v (u, v, α) = 1− α
n∑
j=1

ajrje
−rju cos (rjv) ,(3.1)

∂g

∂v
(u, v, α) =−∂h∂u (u, v, α) =−α

n∑
j=1

ajrje
−rju sin (rjv) ,(3.2)

(3.3)
∂g

∂α
(u, v, α) =

n∑
j=1

aje
−rju cos (rjv) ,

(3.4)
∂h

∂α
(u, v, α) = −

n∑
j=1

aje
−rju sin (rjv) .

Note that

(3.5) ∆′z (z, α) = 1− α
n∑
j=1

ajrje
−rjz =

∂g

∂u
(u, v, α)− i∂g

∂v
(u, v, α) .

If µ = µ (α) = Reλ (α) and ν = ν (α) = Imλ (α), where λ is the leading eigen-

value in (H1), then g (µ, ν, α) = 0 and h (µ, ν, α) = 0 for all α1 ≤ α ≤ α0. In

particular, g (0, ν0, α0) = 0 and h (0, ν0, α0) = 0.

By condition (H1), λ (α) is a simple zero of ∆ (λ, α), that is

(3.6) |∆′z (λ, α)|2 =

(
∂g

∂u
(µ, ν, α)

)2

+

(
∂g

∂v
(µ, ν, α)

)2

> 0

for all α1 ≤ α ≤ α0 with a lower bound independent of α.

The smooth dependence of µ and ν on α is easily guaranteed.

Proposition 3.1. Assume that condition (H1) holds. Then µ and ν are C1-smooth

functions of α on [α1, α0] with

(3.7) µ′ (α) =
∂g
∂v (µ, ν, α) ∂h∂α (µ, ν, α)− ∂g

∂u (µ, ν, α) ∂g∂α (µ, ν, α)(
∂g
∂u (µ, ν, α)

)2
+
(
∂g
∂v (µ, ν, α)

)2 , α ∈ [α1, α0] .

Proof. Choose α ∈ [α1, α0] arbitrarily. As g (µ, ν, α) = 0, h (µ, ν, α) = 0, and

det

(
∂g
∂u (µ, ν, α) ∂g

∂v (µ, ν, α)
∂h
∂u (µ, ν, α) ∂h

∂v (µ, ν, α)

)
=

(
∂g

∂u
(µ, ν, α)

)2

+

(
∂g

∂v
(µ, ν, α)

)2

6= 0

by our initial assumption, the Implicit Function Theorem yields the �rst assertion.
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Di�erentiating the equations with respect to α, we get

∂g

∂u
(µ, ν, α)µ′ (α) +

∂g

∂v
(µ, ν, α) ν′ (α) +

∂g

∂α
(µ, ν, α) = 0,

∂h

∂u
(µ, ν, α)µ′ (α) +

∂h

∂v
(µ, ν, α) ν′ (α) +

∂h

∂α
(µ, ν, α) = 0,

from which the formula for µ′ (α) easily follows. �

Corollary 3.2. If (H1) holds, then

lim
α→α0−

µ′ (α) =
α0

(∑n
j=1 ajrj sin (rjv0)

)(∑n
j=1 aj sin (rjv0)

)
|∆′z (iν0, α0)|2

.

Proof. By hypothesis (H1), limα→α0
λ (α) = iν0. Proposition 3.1 with (3.1)-(3.5)

and relation

∂g

∂α
(0, ν0, α0) =

n∑
j=1

aj cos (rjν0) =
g (0, ν0, α0)

α0
= 0

gives the statement of the corollary. �

If ν is bounded away from 0, and |µ| is su�ciently small for all α, then we give an

upper bound for (α0 − α) / |µ (α)|. The following corollary is needed in the proof

of Theorem 2.3.

Corollary 3.3. Suppose that (H1) and (H2) hold. Then

α− α0

µ (α)
≤ K (δ) for each α ∈ [α1, α0) .

Proof. Proposition 3.1 gives

µ′ (α) =

(
−∂g∂v (µ, ν, α)

) (
− ∂h
∂α (µ, ν, α)

)
− ∂g

∂u (µ, ν, α) ∂g∂α (µ, ν, α)(
∂g
∂u (µ, ν, α)

)2
+
(
−∂g∂v (µ, ν, α)

)2 , α ∈ [α1, α0] .

Using this result, we give a positive lower bound for µ′ (α), α ∈ [α1, α0]. It clearly

follows from (3.1)-(3.2) that for all α ∈ [α1, α0],

∂g

∂u
(µ, ν, α) ≤

(
1 + α

n∑
j=1

ajrj

)
e−r1µ ≤ c1e−r1µ,

∂g

∂u
(µ, ν, α) ≥ −α

n∑
j=1

ajrje
−r1µ ≥ −c1e−r1µ

and

−∂g
∂v

(µ, ν, α) ≤
(
α

n∑
j=1

ajrj

)
e−r1µ ≤ c1e−r1µ,
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with constant c1 introduced before Theorem 2.3. Note that if (H2) holds, then

sin (rjν) > 0 for all j ∈ {1, ..., n} and sin (r1ν) > sin (r1δ). Hence

−∂g
∂v

(µ, ν, α) ≥ αa1r1e−r1µ sin (r1ν) ≥ αc2e−r1µ > 0,

where c2 = a1r1 sin (r1δ). Equations (3.3), (3.4) with g (µ, ν, α) = 0 and h (µ, ν, α) =

0 give that
∂g

∂α
(µ, ν, α) =

−µ
α

and − ∂h

∂α
(µ, ν, α) =

ν

α
.

Therefore

µ′ (α) ≥
αc2e

−r1µ ν
α − c1e

−r1µ−µ
α

2c21e
−2r1µ

=
c2ν + c1α

−1µ

2c21e
−r1µ

for α ∈ [α1, α0] .

Conditions given in (H2) now yield

µ′ (α) ≥ c2δ + c1α
−1
1 µ

2c21e
−r1γ

>
1

K (δ)
.

The Lagrange Mean Value Theorem implies that for each α ∈ [α1, α0),

−µ (α) = µ (α0)− µ (α) = µ′ (ξ) (α0 − α)

with some α < ξ < α0. Thus the previous result implies−µ (α) ≥ (α0 − α) /K (δ)

for all α ∈ [α1, α0), and the proof is complete. �

4. The Proofs of Theorems 2.1-2.3

Under hypothesis (H1), the phase space C = C ([−r1, 0] ,R) can be decomposed

as C = P⊕Q into the closed subspaces P and Q, where P is the reali�ed generalized

eigenspace of the generator associated with the leading eigenvalues λ = µ + iν,

λ̄ = µ − iν, and Q is the reali�ed generalized eigenspace associated with the rest

of the spectrum of the generator. Subspace P is spanned by eµt cos (νt) |[−r1,0] and
eµt sin (νt) |[−r1,0], therefore dimP = 2. Both P and Q are invariant subspaces for

the solution segments of Eq. (1.1) in the sense that if x : [−r1,∞)→ R is a solution

of Eq. (1.1) and xT ∈ P (Q) for some T ≥ 0, then xt ∈ P (Q) for all t ≥ T .
The decomposition C = P ⊕Q de�nes a projection PrP onto P along Q and a

projection PrQ onto Q along P .

For all α ∈ [α1, α0] , set functions p(·, α) : [−r1,∞)→ R and q(·, α) : [−r1,∞)→
R by

p(t, α) =
∑
z=λ,λ

Res
ezt

∆ (z, α)
, t ≥ −r1,
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and q (t, α) = X(t, α) − p(t, α), t ≥ −r1. For simplicity we also use notations

p = p (·, α) and q = q (·, α). As∑
z=λ,λ

Res
ezt

∆ (z, α)
=

eλt

∆′z (λ, α)
+

eλt

∆′z
(
λ, α

) = 2Re
eλt

∆′z (λ, α)
,

p(·, α) : [−r1,∞) → R is a solution of (1.1). Thus it follows from the de�nition of

X(·, α) that t = 0 is the only discontinuity of q(·, α), it is di�erentiable for t > r1

and satis�es

q(t, α) = q(0, α)− α
n∑
j=1

aj

ˆ t

0

q (s− rj , α) ds for t ≥ 0.

It is a well known result (see [4] of Diekmann et al.), that pt = PrPXt ∈ P for

all t ≥ r1, hence qt ∈ Q for all t ≥ r1. Moreover, formula

q (t, α) =
1

2π
eγt lim

T→∞

ˆ T

−T

eiωt

∆ (γ + iω, α)
dω

holds for all t > 0 by the Laplace transform technique [4, 8]. In order to estimate´∞
0
|X (t, α)| dt, we estimate

´∞
0
|p (t, α)| dt and

´∞
0
|q (t, α)| dt.

Proposition 4.1. Under hypothesis (H1)

ˆ ∞
0

|p (t, α)| dt ≤
2νe−

µ
ν π
(
1 + e−

µ
ν π
)

|∆′z (λ, α)| (µ2 + ν2)
(
1− eµν π

)
for all α1 ≤ α < α0. Furthermore,

lim
α→α0−

(α0 − α)

ˆ ∞
0

|p (t, α)| dt =
4 |∆′z (iν0, α0)|

πα0

(∑n
j=1 ajrj sin (rjν0)

)(∑n
j=1 aj sin (rjν0)

) .
Proof. For all α ∈ [α1, α0] and t ≥ −r1,

p (t, α) = 2Re
eλt

∆′z (λ, α)

=
2eµt

|∆′z (λ, α)|2

{
cos (νt)

(
1− α

n∑
j=1

ajrje
−rjµ cos (rjν)

)
(4.1)

+ sin (νt)

(
α

n∑
j=1

ajrje
−rjµ sin (rjν)

)}
.

Since for all A,B ∈ R with A2 + B2 > 0 we have A cos (νt) + B sin (νt) =√
A2 +B2 sin (νt+ η) with η ∈ [−π, π) satisfying

sin η =
A√

A2 +B2
and cos η =

B√
A2 +B2

,
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we obtain that there exists η = η (α) ∈ [−π, π) such that

(4.2) p (t, α) = 2eµt
sin (νt+ η)

|∆′z (λ, α)|
, α ∈ [α1, α0] , t ≥ −r1.

Choose 0 < t1 < t2 < . . . < tn < . . . such that νtj + η = jπ for all j ≥ 1.

Then sin (νt+ η) > 0 for all t ∈ (t2j , t2j+1), j ≥ 1, and sin (νt+ η) < 0 for all

t ∈ (t2j−1, t2j), j ≥ 1. With this notation,

ˆ ∞
t1

|p (t, α)| dt =

∞∑
j=1

(−1)
j
ˆ tj+1

tj

p (t, α)dt

=
2

|∆′z (λ, α)|

∞∑
j=1

(−1)
j
ˆ tj+1

tj

eµt sin (νt+ η) dt

=
2e−

µ
ν η

|∆′z (λ, α)| ν

∞∑
j=1

(−1)
j
ˆ (j+1)π

jπ

e
µ
ν s sin sds.

Since ˆ
e
µ
ν s sin sds =

ν2e
µ
ν s

µ2 + ν2

(µ
ν

sin s− cos s
)
,

it follows that ˆ ∞
t1

|p (t, α)| dt =
2νe−

µ
ν η
(
e
µ
ν π + 1

)
|∆′z (λ, α)| (µ2 + ν2)

∞∑
j=1

e
µ
ν jπ

=
2νe−

µ
ν η
(
e
µ
ν π + 1

)
|∆′z (λ, α)| (µ2 + ν2)

e
µ
ν π

1− eµν π

for all α1 ≤ α < α0.

In addition,
ˆ t1

0

|p (t, α)| dt =
2

|∆′z (λ, α)|

ˆ t1

0

eµt |sin (νt+ η)|dt

≤ 2e−
µ
ν η

|∆′z (λ, α)| ν

{
−
ˆ 0

−π
e
µ
ν s sin sds+

ˆ π

0

e
µ
ν s sin sds

}
=

2νe−
µ
ν η
(
e
µ
ν π + 2 + e−

µ
ν π
)

|∆′z (λ, α)| (µ2 + ν2)
.

As

e
µ
ν π + 2 + e−

µ
ν π +

e
µ
ν π
(
e
µ
ν π + 1

)
1− eµν π

=
1 + e−

µ
ν π

1− eµν π
,

the last two results with η ∈ [−π, π) give the �rst statement of the proposition.
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It is clear that
´ t1
0
|p (t, α)| dt is bounded with an upper bound independent of

α. Hence

lim
α→α0−

(α0 − α)

ˆ ∞
0

|p (t, α)| dt = lim
α→α0−

(α0 − α)

ˆ ∞
t1

|p (t, α)| dt

=
4

|∆′z (iν0, α)|π
lim

α→α0−

(
α0 − α
−µ

)( −µν π
1− eµν π

)
.

As limx→0− (−x) / (1− ex) = 1 and −µ = µ′ (ξ) (α0 − α) with some ξ ∈ (α, α0),

we obtain that

lim
α→α0−

(α0 − α)

ˆ ∞
0

|p (t, α)| dt =
4

|∆′z (iν0, α)|π limα→α0− µ
′ (α)

.

Now Corollary 3.2 yields the second statement of the proposition. �

It is a well known result that for each α there exists a constant L (α) > 0 such

that |q (t, α)| < L (α) eγt for all t > 0, see [4, 8]. Next we construct an upper bound

for |q (t, α)| that is independent of α.

Proposition 4.2. If hypothesis (H1) holds, then |q (t, α)| < max {L1 (α) , L2 (α)} eγt

for all t > 0 and α ∈ [α1, α0], where L1 = L1 (α) and L2 = L2 (α) are given by

(2.1) and (2.2), respectively. Consequently,ˆ ∞
0

|q (t, α)| dt < −max {L1 (α) , L2 (α)}
γ

for all α ∈ [α1, α0] .

Proof. Recall that for α ∈ [α1, α0] and t > 0,

q (t, α) =
eγt

2π
lim
T→∞

ˆ T

−T

eiωt

∆ (γ + iω, α)
dω,

where ∆ (γ + iω, α) = γ + iω + α
∑n
j=1 aje

−rj(γ+iω). Partial integration gives that

ˆ T

−T

eiωt

∆ (γ + iω, α)
dω =

[
eiωt

it

1

∆ (γ + iω, α)

]T
−T

+

ˆ T

−T

eiωt∆′z (γ + iω, α)

t∆2 (γ + iω, α)
dω.

Since |∆ (γ + iω, α)| → ∞ as |ω| → ∞ and
∣∣eiωt/t∣∣ = 1/t for all t > 0, we conclude

that

q (t, α) =
eγt

2π
lim
T→∞

ˆ T

−T

eiωt∆′z (γ + iω, α)

t∆2 (γ + iω, α)
dω for α ∈ [α1, α0] and t > 0.

Hence

|q (t, α)| ≤ eγt

2πt

(
1 + α

n∑
j=1

ajrje
−rjγ

)ˆ ∞
−∞

dω

|∆ (γ + iω, α)|2
.

EJQTDE, 2011 No. ?, p. 11



It is clear that

|∆ (γ + iω, α)| ≥ |γ + iω| − α0

n∑
j=1

aje
−rjγ =

√
γ2 + ω2 − α0

n∑
j=1

aje
−rjγ ≥ ω

2

if ω ≥ ω0 = 2α0

∑n
j=1 aje

−rjγ . Therefore

ˆ ∞
−∞

dω

|∆ (γ + iω, α)|2
= 2

ˆ ∞
0

dω

|∆ (γ + iω, α)|2

≤ 2

{ˆ ω0

0

dω

|∆ (γ + iω, α)|2
+

ˆ ∞
ω0

4

ω2
dω

}

=
8

ω0
+ 2

ˆ ω0

0

dω

|∆ (γ + iω, α)|2
.

Thus for t ≥ r1 and α ∈ [α1, α0], |q (t, α)| < L1 (α) eγt, where L1 (α) is de�ned by

(2.1).

We also need an estimate for t ∈ (0, r1). It is clear from (1.2)-(1.3) that

|X (t, α)| ≤ 1 +

(
α0

n∑
j=1

aj

)ˆ t

0

|X (s, α)| ds, t ∈ [0, r1] , α ∈ [α1, α0] ,

thus |X (t)| ≤ exp
(
α0r1

∑n
j=1 aj

)
for t ∈ [0, r1] and α ∈ [α1, α0] by Gronwall's

Lemma. From (4.2) we see that

|p (t, α)| ≤ 2

|∆′z (λ, α)|
for t ∈ (0, r1) and α ∈ [α1, α0] ,

and this upper bound is �nite by (H1). Hence |q (t, α)| ≤ |X (t)| + |p (t, α)| <
L2 (α) eγt for t ∈ (0, r1) and α ∈ [α1, α0] with L2 (α) de�ned by (2.2). �

Proof of Theorem 2.1. Proposition 4.2 implies that
´∞
0
|q (t, α)|dt is bounded

on [α1, α0]. Therefore Theorem 2.1 follows directly from the facts that X(t, α) =

p(t, α) + q(t, α), t ≥ −r1, α ∈ [α1, α0], and that the same limit holds for

(α0 − α)

ˆ ∞
0

|p (t, α)| dt,

see Proposition 4.1. �

Note that if n = 2, r1 = 1, r2 = 0, a1 > a2 ≥ 0 and hypothesis (H1) is satis�ed,

then

a1 cos ν0 + a2 = 0 and sin2 ν0 = 1− cos2 ν0 = 1− a22
a21
.
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Hence Theorem 2.1 implies

lim
α→α0−

(α0 − α)

ˆ ∞
0

|X (t, α)|dt =
4
√

1− 2α0a1 cos ν0 + α2
0a

2
1

πα0 (a1 sin ν0)
2

=
4
√

1 + 2α0a2 + α2
0a

2
1

πα0 (a21 − a22)
.

Proof of Theorem 2.2. The upper bound for
´∞
0
|X (t, α)| dt in the theorem is

simply the sum of the upper bounds for
´∞
0
|p (t, α)| dt and

´∞
0
|q (t, α)| dt given by

Proposition 4.1 and Proposition 4.2, respectively. �

As we have already mentioned, the upper bound given by the Theorem 2.2 is

sharp for parameters close to the critical value α0: the upper estimate multiplied by

(α0 − α) has the same limit at α0− as function (α0 − α)
´∞
0
|X (t, α)|dt. Indeed,

as

−µ = µ′ (ξ) (α0 − α) with some ξ ∈ (α, α0) and lim
x→0−

−x
1− ex

= 1,

we see that

lim
α→α0−

(α0 − α)

{
2νe−

µ
ν π
(
1 + e−

µ
ν π
)

|∆′z (λ, α)| (µ2 + ν2)
(
1− eµν π

) +
max {L1, L2}

−γ

}

= lim
α→α0−

2ν2e−
µ
ν π
(
1 + e−

µ
ν π
)

|∆′z (λ, α)| (µ2 + ν2)π

(
α0 − α
−µ

)( −µν π
1− eµν π

)
=

4

|∆′z (iν0, α)|π
lim

α→α0−

1

µ′ (α)
,

which limit is the same as given by Theorem 2.1, see Corollary 3.2.

Proof of Theorem 2.3. Assume that not only hypothesis (H1) but also (H2) is

satis�ed. In this case δ ≤ ν ≤ π/r1−δ for all α ∈ [α1, α0], hence sin (r1ν) > sin (r1δ)

and sin (rjν) > 0 for all α ∈ [α1, α0] and j ∈ {1, . . . , n}. In consequence,

(4.3) |∆′z (λ, α)| ≥
∣∣∣∣α n∑

j=1

ajrje
−rjµ sin (rjν)

∣∣∣∣ ≥ α1c2 for all α ∈ [α1, α0]

with c2 = a1r1 sin (r1δ). Also, µ > γ and

α− α0

µ
≤ K (δ) for each α ∈ [α1, α0]

by Corollary 3.3.

With Proposition 4.1, these estimates imply that
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(α0 − α)

ˆ ∞
0

|p (t, α)| dt ≤
(
α0 − α
−µ

)( −µν π
1− eµν π

)
2ν2e−

µ
ν π
(
1 + e−

µ
ν π
)

π |∆′z (λ, α)| (µ2 + ν2)

≤ K (δ)

( −µν π
1− eµν π

)
2e−

γ
δ π
(
1 + e−

γ
δ π
)

πα1c2

for all α1 ≤ α < α0. The function x 7→ −x/ (1− ex) is strictly decreasing on

(−∞, 0), hence
−µν π

1− eµν π
<
−γδ π

1− e γδ π
and

(α0 − α)

ˆ ∞
0

|p (t, α)| dt ≤ K (δ)
−2γe−

γ
δ π
(
1 + e−

γ
δ π
)

α1c2δ
(
1− e γδ π

)
for all α1 ≤ α < α0.

In addition,

L2 (α) = e−γr1
(
eα0r1

∑n
j=1 aj +

2

|∆′z (λ, α)|

)
≤ e−γr1

(
eα0r1

∑n
j=1 aj +

2

α1c2

)
= L̃2

for all α1 ≤ α < α0.

With Proposition 4.2 now we deduce that for all α1 ≤ α < α0,

(α0 − α)

ˆ ∞
0

|X (t, α)| dt ≤ (α0 − α)

ˆ ∞
0

|p (t, α)| dt+ (α0 − α)

ˆ ∞
0

|q (t, α)| dt

≤ K (δ)
−2γe

−γ
δ π
(

1 + e
−γ
δ π
)

α1c2δ
(
1− e γδ π

) +
max

{
L̃1, L̃2

}
(α0 − α1)

−γ
,

where L̃1 = supα1≤α≤α0
L1 (α) and L1 (α) is de�ned by (2.1). �

5. The proof of Theorem 2.4

For Eq. (2.3) and α > 1/e the eigenvalues are simple and appear in complex

conjugate pairs
(
λj , λj

)∞
j=0

with

Reλ0 > Reλ1 > . . . > Reλj → −∞ (j →∞)

and

Imλj ∈ (2jπ, (2j + 1)π) for all j ≥ 0.

In coherence with the previous sections, λ = µ + iν and λ = µ − iν denote the

leading eigenvalues λ0 and λ0. As they are roots of the characteristic function,

(5.1) µ+ αe−µ cos ν = 0 and ν − αe−µ sin ν = 0.

In [9] Krisztin has veri�ed that for α ∈ [3/2, π/2),

−1

2
< µ < 0, 1.54 < ν <

π

2
, |λ| > 1, lim

α→π
2−
µ = 0 and lim

α→π
2−
ν =

π

2
,
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moreover the real parts of the remaining eigenvalues are smaller than −1.

With equations (5.1) Proposition 3.1 implies

µ′ (α) =
α (e−µ sin ν)

2 − (1− αe−µ cos ν) e−µ cos ν

(1− αe−µ cos ν)
2

+ (αe−µ sin ν)
2

=
1

α

ν2 + (1 + µ)µ

(1 + µ)
2

+ ν2
, α ∈ [3/2, π/2] .(5.2)

For all α ∈ [3/2, π/2], ν2 > 1 and −0.25 < (1 + µ)µ ≤ 0, hence 0 < µ′ (α) < 1/α.

As −µ (α) = µ′ (ξ) (π/2− α) for all α ∈ [3/2, π/2) with some ξ ∈ (α, π/2), we

obtain that

−µ (α) <
1

ξ

(
π

2
− 3

2

)
<

2

3

(
π

2
− 3

2

)
< 0.05, α ∈ [3/2, π/2) .

Wemention that numerical approximation yields µ > −0.033 for all α ∈ [3/2, π/2),

thus conditions (H1) and (H2) hold with γ = −0.1, δ = 1.54 andK = 15. According

to Theorem 2.3,
´∞
0
|X (t, α)| dt ≤ 29.

In this section we give a better estimate without using any numerical approxi-

mation.

Relation (4.1) and equations (5.1) imply that

(5.3) |∆′z (λ, α)| =
√

(1 + µ)
2

+ ν2

and

(5.4) p (t, α) =
2eµt

(1 + µ)
2

+ ν2
[(1 + µ) cos (νt) + ν sin (νt)]

for t ≥ −1 and α ∈ [3/2, π/2], see also [9].

Proposition 5.1. For each α ∈ [3/2, π/2),(π
2
− α

)ˆ ∞
0

|p (t, α)| dt ≤ 1.93.

Proof. Proposition 4.1 and relation (5.3) implies that for all α ∈ [3/2, π/2) we have

(π
2
− α

)ˆ ∞
0

|p (t, α)| dt ≤
2e−

µ
ν π
(
1 + e−

µ
ν π
)

π |∆′z (λ, α)|

(
ν2

µ2 + ν2

)( −µν π
1− eµν π

)( π
2 − α
−µ

)
≤

2e−
µ
ν π
(
1 + e−

µ
ν π
)

π

√
(1 + µ)

2
+ ν2

( −µν π
1− eµν π

)
1

µ′ (ξ)

with some ξ ∈ (α, π/2).
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As µ ∈ [−0.05, 0] and ν ∈ [1, 54, π/2] for each α ∈ [3/2, π/2), it follows from

result (5.2) that

0 <
1

µ′ (α)
≤ α max

(µ,ν)∈[−0.05,0]×[1,54,π/2]

(
1 +

1 + µ

ν2 + (1 + µ)µ

)
, α ∈

[
3

2
,
π

2

)
.

The expression on the right hand side is strictly decreasing in ν ∈ [1, 54, π/2]. In

addition, as
∂

∂µ

(
1 + µ

ν2 + (1 + µ)µ

)
=

ν2 − (µ+ 1)
2

(ν2 + (1 + µ)µ)
2 > 0

for (µ, ν) ∈ [−0.05, 0] × [1, 54, π/2], it is strictly increasing in µ ∈ [−0.05, 0]. We

deduce that
1

µ′ (α)
≤ π

2

(
1 +

1

1.542

)
for all α ∈

[
3

2
,
π

2

)
.

Recall that the function x 7→ −x/ (1− ex) is strictly decreasing on (−∞, 0). Hence

(π
2
− α

) ˆ ∞
0

|p (t, α)| dt ≤
2e

0.05
1.54π

(
1 + e

0.05
1.54π

)
π
√

0.952 + 1.542

( 0.05
1.54π

1− e− 0.05
1.54π

)
π

2

(
1 +

1

1.542

)
for all α ∈ [3/2, π/2), and this upper bound is smaller than 1.93. �

In order to get a better estimate for
´∞
0
|q (t, α)| dt, we apply an approach dif-

ferent from that of Proposition 4.2. The fact that there is only one delay is crucial

here.

We use the discrete Lyapunov functional V of Mallet-Paret and Sell introduced

in [11]. V (ϕ) counts the sign changes of ϕ ∈ C \ {0} if it is an odd number or

in�nity, otherwise V (ϕ) is the number of sign changes plus one. Then V (ϕ) ∈
{1, 3, . . .} ∪ {∞}. The map t 7→ V (xt) is monotone nonincreasing along solutions

of Eq. (2.3). In addition, V is upper semi-continuous: for each ϕ ∈ C \ {0} and
(ϕn)

∞
0 ⊂ C \ {0} with ϕn → ϕ as n→∞, V (ϕ) ≤ lim infn→∞ V (ϕn).

Proposition 5.2. For each α ∈ [3/2, π/2] and t ≥ 1, V (qt) ≥ 3, that is q has at

least two sign changes on each subinterval [t− 1, t] of [0,∞).

Proof. Suppose for contradiction that V (qs) = 1 for some s ≥ 1. Then the mono-

tone property of V gives that V (qt) = 1 for all t ≥ s. By a result of Cao [3] (see

also Arino [1]) and by the Gronwall-Bellmann inequality there exist C1 > 0, C2 > 0

and t0 such that

(5.5) C1 ‖qt‖ ≤ ‖qt+1‖ ≤ C2 ‖qt‖ for all t > t0.

For n ≥ 1 de�ne yn : [−n,∞)→ R by yn (t) = q (n+ t) / ‖qn‖. Then

ẏn (t) = −αyn (t− 1) for t > −n+ 1,
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and

C1 ‖ynt ‖ ≤
∥∥ynt+1

∥∥ ≤ C2 ‖ynt ‖ if n+ t > t0.

The Arzelà−Ascoli Theorem can be applied to �nd a subsequence (ynk)
∞
k=1 and a

C1-function y : R→ R so that ynk (t)→ y (t), ẏnk (t)→ y (t) as k →∞ uniformly

on compact subintervals of R, moreover

ẏ (t) = −αy (t− 1) for t ∈ R.

As Q is closed, y0 = limk→∞ ynk0 ∈ Q with ‖y0‖ = 1. In addition, C1 ‖yt‖ ≤
‖yt+1‖ ≤ C2 ‖yt‖ for all t ∈ R. Hence for all n ∈ {0, 1, 2, . . .},

‖y−n‖ ≤ C−11 ‖y−n+1‖ ≤ C−21 ‖y−n+2‖ ≤ . . . ≤ C−n1 ‖y0‖ ≤
(
1 + C−11

)n ‖y0‖ .
Let t ≤ 0 be arbitrary and choose integer n so that − (n+ 1) < t ≤ −n holds.

Then

‖yt‖ ≤
∥∥y−(n+1)

∥∥+ ‖y−n‖ ≤
(
1 + C−11

)
‖y−n‖ ≤

(
1 + C−11

)n+1 ‖y0‖ .

As (
1 + C−11

)n
= en ln(1+C−1

1 ) ≤ e−t ln(1+C−1
1 ),

we conclude that ‖yt‖ ≤ Ae−Bt for all t ≤ 0 with A =
(
1 + C−11

)
‖y0‖ > 0 and

B = ln
(
1 + C−11

)
> 0.

Choose c > B so that Rez 6= −c for all roots of the characteristic function. The
space C has the decomposition C = P̂ ⊕ Q̂, where P̂ is the reali�ed generalized

eigenspace of the generator of the semigroup (T (t))t≥0 associated with the eigenval-

ues having real parts greater than −c, and Q̂ is the reali�ed generalized eigenspace

associated with the rest of the spectrum. By [8], there is M > 0 so that

‖T (t)ϕ‖ ≤Me−ct ‖ϕ‖ for all t ≥ 0 and ϕ ∈ Q̂.

Let t ≤ 0 and σ ≤ t. Then∥∥∥PrQ̂yt∥∥∥ =
∥∥∥T (t− σ)PrQ̂yσ

∥∥∥
≤ Me−c(t−σ)

∥∥∥PrQ̂yσ∥∥∥
≤ M

∥∥∥PrQ̂∥∥∥ e−c(t−σ) ‖yσ‖
≤ M

∥∥∥PrQ̂∥∥∥ e−c(t−σ)Ae−Bσ
= M

∥∥∥PrQ̂∥∥∥ e−ctAe−(B−c)σ → 0

as σ → −∞. It follows that PrQ̂yt = 0 and yt ∈ P̂ for all t ≤ 0. If subspace P̂

is trivial, i.e. there are no eigenvalues with real parts greater than −c, then the
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previous result implies y0 = 0, a contradiction to ‖y0‖ = 1. Otherwise

y (t) =

n∑
j=0

Aje
Reλjt cos (Imλjt+Bj) , t ≤ 0,

for some real numbers A0, B0, . . . , An, Bn and integer N > 0 so that

λ0 = λ, λ0 = λ, λ1, λ1, . . . , λN , λN

are the eigenvalues with real parts greater than −c. The upper semi-continuity of

V and V (qt) = 1, t ≥ s, combined yield V (yt) = 1 for all t ∈ R. As Imλj ∈
(2jπ, (2j + 1)π), j ≥ 0, it follows that A1 = A2 = . . . = AN = 0. This means that

yt ∈ P for all t ≤ 0. In particular y0 ∈ P , a contradiction to y0 ∈ Q \ {0}. This

completes the proof. �

We can use this result to give an explicit estimate for the growth of q on [−1,∞).

In the next proposition brc denotes the integer part of the positive real number r.

Proposition 5.3. For each α ∈ [3/2, π/2] and t ≥ −1,

|q (t)| ≤
(α

2

)k
q̄, where q̄ = sup

−1≤s≤ 1
2

|q (s)| and k =

⌊
2

3
(t+ 1)

⌋
.

Proof. The statement is clearly true for −1 ≤ t < 1/2.

It is enough to show that if

t0 ≥
1

2
and sup

s∈[t0− 3
2 ,t0]
|q (s)| ≤ m for some m > 0,

then

|q (t)| ≤ α

2
m for all t ∈

[
t0, t0 +

3

2

]
,

so we con�rm this latter assertion.

For all t0 ≥ 1/2 and t ∈ [t0, t0 + 3/2], there exists z ∈ [t− 1/2, t+ 1/2] with

q (z) = 0, see Proposition 5.2. Hence for t ∈ [t0, t0 + 3/2],

|q (t)| = |q (t)− q (z)| = α

∣∣∣∣ˆ t−1

z−1
q (s)ds

∣∣∣∣
≤ α |t− z| sup

s∈[t− 3
2 ,t−

1
2 ]
|q (s)|

≤ α

2
sup

s∈[t− 3
2 ,t−

1
2 ]
|q (s)| .

It follows that

sup
t∈[t0,t0+ 1

2 ]
|q (t)| ≤ α

2
m,
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sup
t∈[t0+ 1

2 ,t0+1]
|q (t)| ≤ α

2
sup

t∈[t0−1,t0+ 1
2 ]
|q (t)| ≤ α

2
max

{
m,

α

2
m
}

=
α

2
m

and

sup
t∈[t0+1,t0+

3
2 ]
|q (t)| ≤ α

2
sup

t∈[t0− 1
2 ,t0+1]

|q (t)| ≤ α

2
max

{
m,

α

2
m
}

=
α

2
m.

�

The previous statement shows we need an upper bound for q̄.

Proposition 5.4. For all α ∈ [3/2, π/2], q̄ = sup−1≤s≤1/2 |q (s)| ≤ 1.

Proof. Set α ∈ [3/2, π/2] arbitrarily. Di�erentiating (5.4) we get

p′ (t) =
2eµt

(1 + µ)
2

+ ν2

[(
µ+ µ2 + ν2

)
cos (νt)− ν sin (νt)

]
=

2eµt

(1 + µ)
2

+ ν2
ν cos (νt)

[
µ+ µ2 + ν2

ν
− tan (νt)

]
.

Note that as 1.54 < ν ≤ π/2 and −0.05 < µ ≤ 0, we have cos (νt) > 0 for all

t ∈ [−1, π/ (2ν)), and in addition µ + µ2 + ν2 > 0. It follows that there exists

t0 ∈ (0, π/ (2ν)) such that

tan (νt0) =
µ+ µ2 + ν2

ν
,

p increases on [−1, t0] and decreases on [t0, π/ (2ν)).

Clearly,

p (−1) =
2e−µ

(1 + µ)
2

+ ν2
[(1 + µ) cos ν − ν sin ν] < 0

as (1 + µ) cos ν < 1 and ν sin ν > 1.54 · sin (1.54) > 1 for µ ∈ (−0.05, 0] and

ν ∈ (1.54, π/2]. Therefore

|p (−1)| ≤ 2e−µν

(1 + µ)
2

+ ν2
.

As the right hand side is decreasing in ν for ν ∈ (1.54, π/2] and it is decreasing in

µ for µ ∈ (−0.05, 0], we deduce that

|p (−1)| ≤ e0.051.54

0.952 + 1.542
< 1.

Also we �nd that

0 < p (0) =
2 (1 + µ)

(1 + µ)
2

+ ν2
≤ 2

1 + ν2
< 1,
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0 < p(1) =
2eµ

(1 + µ)
2

+ ν2
[(1 + µ) cos ν + ν sin ν] ,

≤ 2ν

(1 + µ)
2

+ ν2
≤ π

0.952 + 1.542
< 1

and

p(t0) =
2eµt0

(1 + µ)
2

+ ν2

[
(1 + µ) +

µ+ µ2 + ν2

ν
ν

]
cos (νt0) = 2eµt0 cos (νt0) ≤ 2.

Clearly, p (t) ∈ (−1, 1) for all t ∈ [−1, 0]. In case t0 > 1 one has p (t) ∈ (0, 1) for

all t ∈ [0, 1]. Otherwise p (t) ∈ (0, 2) for all t ∈ [0, 1]. Using that q (t) = −p (t) for

−1 ≤ t < 0 and q (t) = 1− p (t) for 0 ≤ t ≤ 1, we obtain that q̄ ≤ 1. �

Now we are able to estimate
´∞
0
|q (t, α)|dt. The bound given by the subsequent

proposition is substantially better than bound 3e2 presented in paper [9] and the

bound given by Proposition 4.2.

Proposition 5.5. For each α ∈ [3/2, π/2],ˆ ∞
0

|q (t, α)| dt ≤ 2 + π

4− π
.

Proof. By Propositions 5.3 and 5.4, sup−1≤s≤1/2 |q (s, α)| ≤ 1 for all α ∈ [3/2, π/2],

and |q (t, α)| ≤ (π/4)
k for all α ∈ [3/2, π/2] and t ≥ 0, where k is the greatest

integer with k ≤ 2 (t+ 1) /3. Thusˆ ∞
0

|q (t, α)| dt ≤ 1

2
+

3

2

{
π

4
+
(π

4

)2
+
(π

4

)3
+ . . .

}
=

2 + π

4− π
.

�

Proof of Theorem 2.4. The statement of the theorem follows directly from Propo-

sition 5.1 and Proposition 5.5. �

6. An example with two delays

Consider the linear equation

ẋ (t) = −α (x (t− 1) + x (t− 2)) with 0 < α ≤ π

3
√

3
.

In this case the characteristic function is

(6.1) ∆ (z, α) = z + α
(
e−z + e−2z

)
.

For the eigenvalues z = u+ iv,

(6.2) u+ α
(
e−u cos v + e−2u cos (2v)

)
= 0
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and

(6.3) v − α
(
e−u sin v + e−2u sin (2v)

)
= 0.

There are purely imaginary eigenvalues ±iπ/3 for α = π/
(
3
√

3
)
.

We examine the location of the eigenvalues on the complex plane for 0 < α ≤
π/
(
3
√

3
)
.

If z = u + iv is an eigenvalue with u > 0, then equations (6.2) and (6.3) give

that

u ≤ π

3
√

3

(
e−u |cos v|+ e−2u |cos (2v)|

)
<

2π

3
√

3
and

|v| ≤ π

3
√

3

(
e−u |sin v|+ e−2u |sin (2v)|

)
<

2π

3
√

3
.

However, one can check numerically, that (6.1) has no zeros in the rectangle{
z ∈ C : 0 < Rez <

2π

3
√

3
, |Imz| < 2π

3
√

3

}
for 0 < α ≤ π/

(
3
√

3
)
. So the real parts of the eigenvalues are nonpositive for such

parameters.

Suppose 0 < α ≤ π/
(
3
√

3
)
and z = u + iv is an eigenvalue with u ≤ 0 and

|v| ≥ π. Then it follows from (6.3) that

π ≤ |v| ≤ π

3
√

3

(
e−u |sin v|+ e−2u |sin (2v)|

)
≤ 2π

3
√

3
e−2u,

that is

u ≤ −1

2
ln

3
√

3

2
< −0.4.

It is also known that there is exactly one pair of eigenvalues
(
λ, λ

)
in the subset

{z ∈ C : |Imz| < π} of the complex plane, see [12]. Numerical approximation gives

that for each α ∈
[
0.58, π/

(
3
√

3
))
, there is an eigenvalue λ = λ (α) in the rectangle

{z ∈ C : −0.02 < Rez < 0 and 1.03 ≤ Imz ≤ 1.05} ,

see Fig. 1.

Hence hypotheses (H1) and (H2) are satis�ed with α0 = π/
(
3
√

3
)
, α1 = 0.58,

γ = −0.04, δ = .52 and K = 22. Theorem 2.1 now gives that

lim
α→ π

3
√

3
−

(
π

3
√

3
− α

)ˆ ∞
0

|X (t, α)|dt =
8

√(
1 + π

6
√
3

)2
+ π2

4
√

3π2
≈ 0.95.
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In addition, Theorem 2.3 can be applied, and we get(
π

3
√

3
− α

)ˆ ∞
0

|X (t, α)| dt ≤ 55

for all 0.58 ≤ α < π/
(
3
√

3
)
by Theorem 2.3.

-0.015 -0.010 -0.005

1.036

1.038

1.040

1.042

1.044

1.046

Figure 1. Curve
[
0.58, π/

(
3
√
3
)]

3 α 7→ λ (α) ∈ C.
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