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Abstract

We consider the delay differential equation ẋ(t) = −μx(t)+f(x(t−τ )),

where μ, τ are positive parameters and f is a strictly monotone, nonlinear C1-

function satisfying f(0) = 0 and some convexity properties. It is well known

that for prescribed oscillation frequencies (characterized by the values of a

discrete Lyapunov functional) there exists τ∗ > 0 such that for every τ > τ∗

there is a unique periodic solution. The period function is the minimal period

of the unique periodic solution as a function of τ > τ∗. First we show that it

is a monotone nondecreasing Lipschitz continuous function of τ with Lipschitz

constant 2. As an application of our theorem we give a new proof of some

recent results of Yi, Chen and Wu [14] about uniqueness and existence of

periodic solutions of a system of delay differential equations.

1. Introduction

Consider the delay differential equation

ẋ(t) = −μx(t) + δf(x(t− τ)), (1)

where μ > 0, δ ∈ {−1, 1} and f :R → R is a strictly increasing, odd C1-function

such that the function ξ �→ ξf ′(ξ)
f(ξ) is strictly monotone decreasing on (0,∞) and there
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4.2.2/08/1/2008-0008 and TÁMOP-4.2.1/B-09/1/KONV-2010-0005 programs of the Hun-
garian National Development Agency.

0031-5303/2011/$20.00 Akadémiai Kiadó, Budapest
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exists ξ∗ ∈ (0,∞) such that f(ξ∗) = μξ∗. These hypotheses are assumed throughout

the paper. The cases δ = −1 and δ = 1 are regarded as the negative and positive

feedback cases, respectively. This equation is often applied in models of neural

networks and time delay appears due to finite conduction velocities or synaptic

transmission. In this topic the feedback functions of type f(ξ) = α arctan(βξ) are

widely applied and satisfy the assumptions above. For a general overview of neural

networks we refer the reader to [15].

In neural systems, periodic solutions are of great importance. From the papers

of Cao, Krisztin and Walther [1], [4], [5], [6] and from the monograph of Krisztin,

Walther and Wu [7] we get a very detailed and clear picture of the periodic orbits of

equation (1). For our purposes, their most important result is that they have proven

that if the feedback is positive, then there exists a threshold τ∗ > 0 such that for

every τ > τ∗ there exists, up to time translation, exactly one periodic solution of

equation (1), which changes signs at least once and at most twice on any interval

with length τ .

In Section 3 we investigate the minimal period of this slowly oscillating peri-

odic solution, as a function of τ , and in Theorem 3.2 we prove that this function

is a monotone nondecreasing Lipschitz continuous function with Lipschitz constant

2. The proof is based on Proposition 3.1, which can be intuitively formulated as

follows: “the greater the parameter τ is, the greater amplitude the slowly oscillating

periodic solution has”.

In Section 4 we investigate the following system of delay differential equations:

ẋ0(t)=−μx0(t) + f(x1(t)),

...

ẋn−1(t)=−μxn−1(t) + f(xn(t)),

ẋn(t)=−μxn(t) + δf(x0(t− 1)),

(2)

where μ, δ and f have the same properties as in equation (1) and 2 ≤ n ∈ N. This

can be a model of a unidirectional ring of interacting neurons. Based on Theorem 3.2

and some ideas of Yi, Chen and Wu [14] we obtain results on uniqueness and absence

of periodic solutions. In the paper [14], the results are only proven for the case of

positive feedback and n = 2. We generalize these results for the case of negative

feedback and n ≥ 3, too (case n = 1 is worked out by Chen and Wu [2]). In terms

of the period function, we also reformulate their conjecture concerning uniqueness

and absence of “relatively slowly oscillating” periodic orbits of (2), and we hope

that this formulation may be the key to the proof of the conjecture.
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2. Preliminaries

First of all, let us clarify some notations. R,R+ and N denote the set of reals,

nonnegative reals and nonnegative integers, respectively. If A,B ⊂ R, then C(A,B)

denotes the set of real-valued functions with domain A and range contained in B.

C1 denotes the set of continuously differentiable real-valued functions with domain

R. For a simple closed curve c, int(c), ext(c) and |c| denote the interior, exterior and

the trace of c, respectively. Now, in this section we recall some earlier definitions

and results.

The natural phase space for (1) is C([−τ, 0],R) equipped with the maximum

norm. Let this be denoted in the sequel by Cτ . If x is a solution of (1) on some

interval, then we let xt,τ ∈ Cτ be defined by

xt,τ (θ) = x(t+ θ) for all θ ∈ [−τ, 0],

at least where it makes sense.

According to Mallet-Paret and Sell [11], we define discrete Lyapunov func-

tionals in order to characterize the periodic solutions of (1). For every τ > 0 let

V +
τ :Cτ \ {0} → {0, 2, 4, . . . ,∞}, V −

τ :Cτ \ {0} → {1, 3, 5, . . . ,∞},

be defined as follows:

V +
τ (ϕ) =

{
sc(ϕ, [−τ, 0]), if sc(ϕ, [−τ, 0]) is even or infinite,

sc(ϕ, [−τ, 0]) + 1, if sc(ϕ, [−τ, 0]) is odd,

V −
τ (ϕ) =

{
sc(ϕ, [−τ, 0]), if sc(ϕ, [−τ, 0]) is odd or infinite,

sc(ϕ, [−τ, 0]) + 1, if sc(ϕ, [−τ, 0]) is even,

where sc:Cτ → N is defined as follows:

sc(ϕ) = sup{k ∈ N : there is a strictly increasing finite sequence (si)k0 ⊂ [−τ, 0]

with ϕ(si−1)ϕ(si) < 0 for all i ∈ {1, 2, . . . , k} } ≤ ∞.

By definition, let sup ∅ = 0.

Definition 2.1. We say that X : [0, Tx] � t �→ (x(t), ẋ(t)) ∈ R
2 is the

D-trajectory of the periodic C1-function x, where Tx denotes the minimal period

of x.

The proposition below follows from general results of [12] and contains a list

of some very important properties of periodic solutions of (1).



176 Á. GARAB and T. KRISZTIN

Proposition 2.2. Let x:R → R be a nonconstant periodic solution of (1)

with minimal period Tx > 0, and let X denote the D-trajectory of x. Then the

following statements are true.

(i) X is a simple closed curve, and if x has a zero, then 0 ∈ int(X).

(ii) There are t0 ∈ R and t1 ∈ (t0, t0 + Tx) such that 0 < ẋ(t) for all t0 < t <

t1, x(R) = [x(t0), x(t1)] and ẋ(t) < 0 for all t1 < t < t0 + Tx.

(iii) If x has a zero, then x(t + Tx

2 ) = −x(t) for all t ∈ R.

(iv) There exists k ∈ N such that

V +
τ (xt,τ ) = 2k for all t ∈ R if δ = 1,

V −
τ (xt,τ ) = 2k + 1 for all t ∈ R if δ = −1.

According to Proposition 2.2 (iv), whenever x is a solution of (1) we shall

write V ±
τ (x) instead of V ±

τ (xt,τ ) for all t ∈ R.

Proposition 2.3. Let τ ≥ 1 and δ ∈ {−1, 1}. Let an odd C1-function

g:R→ R be given which satisfies g′(0) = f ′(0) and

g(ξ) > f(ξ) and
g′(ξ)

g(ξ)
>

f ′(ξ)

f(ξ)
for all ξ > 0.

Let x and z be nonconstant periodic solutions of ẋ(t) = −μx(t) + δf(x(t − 1)) and

ż(t) = −μx(t) + δg(z(t− τ)), respectively, with minimal periods Tx > 0 and Tz > 0.

Let X and Z denote the D-trajectories of x and z, respectively. In the case δ = 1,

suppose that V +
1 (x) = V +

τ (z) ≥ 2. If δ = −1, suppose that V −
1 (x) = V −

τ (z). Then

the following situation cannot occur:

|Z| ⊂ |X | ∪ ext(X), |Z| ∩ |X | �= ∅, r|Z| ⊂ ext(X) for all r > 1.

For the proof of the case δ = 1 we refer the reader to [6]. The same argument

can be applied for the case δ = −1, too. See also [1] for the case δ = −1 and

V −

1 (x) = V −
τ (z) = 1. The foregoing proposition is the key to the next theorem on

uniqueness and absence of periodic orbits of (1).

Proposition 2.4. Let δ ∈ {−1, 1} be fixed. For every k ∈ N\{0} there exists

τ(k, δ) > 0 such that for every fixed τ > τ(k, δ) there exists, up to time translation,

a unique periodic solution x of (1) for which

(i) V −
τ (x) = 2k − 1 if the feedback is negative,

(ii) V +
τ (x) = 2k if the feedback is positive.
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Proof. Uniqueness is contained in [5], [6]. For the case δ = −1, existence can

be found, e.g., in [9]. For the case δ = 1, existence is given in [8], or the technique

applied in Proposition 3.1 of [4], combined with the Poincaré–Bendixson theorem

of Mallet-Paret and Sell [12] can give a solution whose ω-limit set is the required

periodic orbit.

Let τ∗ denote τ(1, 1).

Definition 2.5. For each τ > τ∗, let T (τ) denote the minimal period of the

unique solution guaranteed by Proposition 2.4 in case δ = 1 and k = 1. T : (τ∗,∞)→

R+ is called the period function for equation (1) with δ = 1.

3. The period function and periodic orbits

Proposition 3.1. Let δ ∈ {−1, 1}, 0 < τ1 < τ2 and let ε denote the sign

of δ. Assume that xi, i ∈ {1, 2}, is a nonconstant periodic solution of

ẋ(t) = −μx(t) + δf(x(t− τi))

with minimal period Txi
> 0. Let X1 and X2 denote the D-trajectories of x1 and

x2, respectively. If V ε
τ1(x1) = V ε

τ2(x2) > 0, then

|X2| ⊂ ext(X1) ∪ |X1| and |X2| ∩ ext(X1) �= ∅.

Proof. In part a) we show that |X2| ⊂ ext(X1) ∪ |X1| and in part b) prove

that |X2| ∩ ext(X1) �= ∅.

a) Let u1(t) = x1(τ1t) and u2(t) = x2(τ1t) for all t ∈ R. Then u1 and u2 are

nonconstant periodic solutions of

u̇1(t) = −μ1u1(t) + δf1(u1(t− 1)) and u̇2(t) = −μ1u2(t) + δf1(u2(t− τ)),

respectively, where μ1 = τ1μ, τ = τ2
τ1

and f1:R→ R is defined by f1(ξ) = τ1f(ξ) for

all ξ ∈ R. Let U1 and U2 denote the D-trajectories of u1 and u2, respectively. Note

that |Ui| is a vertical scaling of |Xi| by τ1 for i ∈ {1, 2}.

Now, assume to the contrary that |X2| ∩ int(X1) �= ∅. By the note above

|U2| ∩ int(U1) �= ∅ also holds, thus there exists β > 1 such that

β|U2| ⊂ ext(U1) ∪ |U1| and β|U2| ∩ |U1| �= ∅.

Finally let w2(t) = βu2(t) for all t ∈ R. Then w2 is a nonconstant periodic solution of

ẇ2(t) = −μ1w2(t)+ δg1(w2(t− τ)), where g1:R→ R is defined by g1(ξ) = βf1(ξ/β)

for all ξ ∈ R. For the D-trajectory W2 of w2,

|W2| ⊂ ext(U1) ∪ |U1| and |W2| ∩ |U1| �= ∅
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hold and it is easy to check that g′1(0) = f ′
1(0), V ε

1 (v1) = V ε
τ (w2) > 0. We claim

that

g1(ξ) > f1(ξ) and
g′1(ξ)

g1(ξ)
>

f ′
1(ξ)

f1(ξ)
for all ξ > 0,

which contradicts Proposition 2.3 and proves that |X2| ⊂ ext(X1) ∪ |X1|. To prove

the above claim, recall that ξ �→
ξf ′

1(ξ)
f1(ξ)

is strictly monotone decreasing on (0,∞).

Using limξ→0 ξf
′
1(ξ)/f1(ξ) = 1 we infer

ξf ′
1(ξ)

f1(ξ)
< 1 for all ξ > 0.

For every ξ > 0, the function (0,∞) � u �→ uf1(ξ/u) ∈ R is strictly increasing since

its derivatives at u > 0 are given by

f1

( ξ

u

)(
1−

(ξ/u)f ′
1(ξ/u)

f1(ξ/u)

)
> 0.

This fact and β > 1 combined imply g1(ξ) = βf1(ξ/β) > f1(ξ) for all ξ > 0. Using

again that ξ �→
ξf ′

1(ξ)
f1(ξ)

is strictly decreasing we obtain

g′1(ξ)

g1(ξ)
=

1

ξ

(ξ/β)f ′
1(ξ/β)

f1(ξ/β)
>

1

ξ

ξf ′
1(ξ)

f1(ξ)
=

f ′
1(ξ)

f1(ξ)
.

b) Assume to the contrary that |X2| ∩ ext(X1) = ∅. According to part a),

|X2| = |X1| follows. Proposition 2.2 (i) and (ii) yield that there exist constants

c, a1, a2 ∈ R such that

min
t∈R

x1(t) = x1(a1) = −c = x2(a2) = min
t∈R

x2(t),

max
t∈R

x1(t) = x1(a1 + T (τ1)/2) = c = x2(a2 + T (τ2)/2) = max
t∈R

x2(t),

ẋ1(a1) = ẋ1(a1 + T (τ1)/2) = ẋ2(a2) = ẋ2(a2 + T (τ2)/2) = 0.

We may assume that a1 = a2 = 0. Let x−1
1 and x−1

2 denote the inverses of the

functions

[0, T (τ1)/2] � t �→ x1(t) ∈ R and [0, T (τ2)/2] � t �→ x2(t) ∈ R,

respectively. Then the domain of x−1
1 and x−1

2 is [−c, c]. From |X1| = |X2| we infer

that the functions

φ1: [−c, c] � u �→ ẋ1(x
−1
1 (u)) ∈ R and φ2: [−c, c] � u �→ ẋ2(x

−1
2 (u)) ∈ R

satisfy φ1(u) = φ2(u) for all u ∈ [−c, c] and φ1(u) > 0, φ2(u) > 0 for all u ∈ (−c, c).

Thus on one hand we have ∫ c

−c

du

φ1(u)
=

∫ c

−c

du

φ2(u)
.
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On the other hand∫ c

−c

du

φi(u)
=

∫ xi(T (τi)/2)

xi(0)

du

φi(u)
=

∫ T (τi)/2

0

ẋi(t)

φi(xi(t))
d t =

T (τi)

2

holds for i ∈ {1, 2}, and thus T (τ1) = T (τ2). Let T = T (τ1) = T (τ2). Now for any

b ∈ (−c, c), let t1(b) = x−1
1 (b) and t2(b) = x−1

2 (b). Then

t1(b)=

∫ t1(b)

0

ẋ1(t)

φ1(x1(t))
d t =

∫ x1(t1(b))

−c

du

φ1(u)

=

∫ x2(t2(b))

−c

du

φ2(u)
=

∫ t2(b)

0

ẋ2(t)

φ2(x2(t))
d t = t2(b).

Using Proposition 2.2 again

(x1(t), ẋ1(t)) = (x2(t), ẋ2(t))

follows for all t ∈ R. Thus

−μx1(t) + δf(x1(t− τ1)) = ẋ1(t) = ẋ2(t) = −μx2(t) + δf(x2(t− τ2))

= −μx1(t) + δf(x1(t− τ2))

holds for all t ∈ R. By the monotonicity of f we obtain x1(t−τ1) = x1(t−τ2) for all

t ∈ R. Hence there exists m ∈ N such that τ2 = τ1 +mT . From V ±
τ1 (x1) = V ±

τ2 (x2)

we get m = 0 and thus τ1 = τ2 which contradicts the assumption τ1 < τ2. This

contradiction completes our proof.

Theorem 3.2. The period function T of (1) with positive feedback satisfies

0 ≤ T (τ2)− T (τ1) < 2(τ2 − τ1)

for all τ1, τ2 ∈ (τ∗,∞) with τ1 < τ2.

Proof. Let τ∗ < τ1 < τ2. Suppose that xi is the unique periodic solution of

ẋ(t) = −μx(t) + f(x(t− τi)), i ∈ {1, 2},

such that Vτi(xi) = 2. Let Xi be the D-trajectory of xi for i ∈ {1, 2}. According to

Proposition 3.1 we have

|X2| ⊂ |X1| ∪ ext(X1) and |X2| ∩ ext(X1) �= ∅. (3)

In part a) we prove that T is monotone nondecreasing, then in part b) we show that

T (τ2)− T (τ1) < 2(τ2 − τ1) for all τ
∗ < τ1 < τ2.



180 Á. GARAB and T. KRISZTIN

a) Assume that T (τ2) < T (τ1). Since, for i ∈ {1, 2},

ẋi(t) = −μxi(t) + f(xi(t− τi)) = −μxi(t) + f(xi(t− (τi + l · T (τi))))

holds for every l ∈ N, thus xi is a nonconstant periodic solution of

ẋ = −μx(t) + f(x(t− (τi + l · T (τi)))), l ∈ N,

too, and by Proposition 2.2, V +
τ1+lT (τ1)

(x1) = V +
τ2+lT (τ2)

(x2) = 2(l+1) for all l ∈ N.

Since T (τ2) < T (τ1), thus there exists l
∗ ∈ N such that τ2+l∗ ·T (τ2) < τ1+l∗ ·T (τ1).

Again, by Proposition 3.1 we have

|X1| ⊂ |X2| ∪ ext(X2) and |X1| ∩ ext(X2) �= ∅, (4)

which is a contradiction to (3). This contradiction proves that T is monotone

nondecreasing.

b) Now assume to the contrary that T (τ2) − T (τ1) ≥ 2(τ2 − τ1). Since f is

odd and the solutions have a special symmetry, we have

ẋi(t)= −μxi(t) + f(xi(t− τi)) = −μxi(t) + f(−xi(t− (τi − T (τi)/2))) =

= −μxi(t)− f(xi(t− (τi − T (τi)/2)))

for i ∈ {1, 2}. Hence, for i ∈ {1, 2}, xi is a nonconstant periodic solution of

ẋ(t) = −μx(t)− f(x(t− (τi − T (τi)/2)))

too, and by Proposition 2.2 it is clear that τi − T (τi)/2 > 0 for i ∈ {1, 2} and

V −

τ1−T (τ1)/2
(x1) = V −

τ2−T (τ2)/2
(x2).

If T (τ2) − T (τ1) > 2(τ2 − τ1), then τ2 −
T (τ2)

2 < τ1 −
T (τ1)

2 , thus Proposition 3.1

leads to

|X1| ⊂ |X2| ∪ ext(X2) and |X1| ∩ ext(X2) �= 0, (5)

which contradicts (3). Therefore T (τ2)− T (τ1) > 2(τ2 − τ1) cannot occur.

If T (τ2) − T (τ1) = 2(τ2 − τ1), then x1 and x2 are both nonconstant periodic

solutions of the same delay differential equation:

ẋ(t) = −μx(t)− f(x(t− τ)),

where τ = τ1 − T (τ1)/2 = τ2 − T (τ2)/2. Then by the uniqueness of such non-

constant periodic solutions, we obtain |X1| = |X2|, which contradicts (3). This

contradiction proves that T (τ2) − T (τ1) < 2(τ2 − τ1), and therefore the proof is

complete.
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4. Application: periodic orbits of a delayed system

Consider the system of delay differential equations

ẋ0(t)=−μx0(t) + f(x1(t)),

...

ẋn−1(t)=−μxn−1(t) + f(xn(t)),

ẋn(t)=−μxn(t) + δf(x0(t− 1)),

(6)

where μ, δ and f have the same properties as in equation (1) and 2 ≤ n ∈ N.

For a system of the form (6) the natural phase space (according to [11]) is

C(K,R), where K = [−1, 0] ∪ {1, 2, . . . , n}. We shall use the shorter form: C(K).

If x is a solution of (6) on some interval, then we let xt,K ∈ C(K) be defined

by

xt,K(θ) =

{
x0(t+ θ) for θ ∈ [−1, 0],

xθ(t) for θ ∈ {1, 2, . . . , n},

where it makes sense. Again, according to [11] we define now Lyapunov functionals

similarly as before:

V +
K
:C(K) \ {0} → {0, 2, 4, . . . ,∞}, V −

K
:C(K) \ {0} → {1, 3, 5, . . . ,∞},

by

V +
K
(ϕ) =

{
sc(ϕ,K) if sc(ϕ,K) is even or infinite,

sc(ϕ,K) + 1 if sc(ϕ,K) is odd,

V −

K
(ϕ) =

{
sc(ϕ,K) if sc(ϕ,K) is odd or infinite,

sc(ϕ,K) + 1 if sc(ϕ,K) is even,

where sc(ϕ,K) denotes the sign changes of ϕ just as before. The following proposi-

tion is the analogue of Proposition 2.2 and is also based on results in [12].

Proposition 4.1. Let x:R → R
n+1 be a nonconstant periodic solution of

(6) with minimal period Tx > 0, and for each j ∈ {0, 1, . . . , n} let Xj denote the

D-trajectory of the coordinate-function xj . Then the following statements are true.

(i) For each j ∈ {0, 1, . . . , n}, Xj is a simple closed curve.

(ii) For each j ∈ {0, 1, . . . , n}, there are tj0 ∈ R and tj1 ∈ (tj0, t
j
0 + Tx) such that

0 < ẋj(t) for all tj0 < t < tj1, xj(R) = [xj(tj0), x
j(tj1)], and ẋ(t) < 0 for all

tj1 < t < tj0 + Tx.

(iii) If x0 has a zero, then x(t+Tx/2) = −x(t) for all t ∈ R. Moreover, 0 ∈ int(Xj)

for all j ∈ {0, 1, . . . , n}.
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(iv) There exists k ∈ N such that

V +
K
(xt,K) = 2k for all t ∈ R if δ = 1,

V −

K
(xt,K) = 2k + 1 for all t ∈ R if δ = −1.

(v) For every nonconstant periodic solution y:R → R
n+1 of (6) with minimal

period Ty > 0 and yt,K �= xs,K for all t, s ∈ R we have |Y j | ∩ |Xj| = ∅ for all

j ∈ {0, 1, . . . , n}, where Y j denotes the D-trajectory corresponding to yj.

Just as before in the case of equation (1), if x is a solution of (6), then we

shall write V ±

K
(x) instead of V ±

K
(xt,K) for all t ∈ R. The following two propositions

from [14] are not hard to prove but they play an essential role in the sequel.

Proposition 4.2. Assume that x:R → R
n+1 is a solution of (6). Then

y = (y0, . . . , yn):R � t �→ (x1(t), . . . , xn(t), δx0(t − 1)) ∈ R
n+1 is also a solution

of (6).

Proposition 4.3. Let x:R→ R
n+1 be a nonconstant periodic solution of (6)

with minimal period Tx > 0.

(i) If the feedback is positive and V +
K
(x) ≥ 2, then there exists α+ ∈ [0, Tx) such

that (x1(t), . . . , xn(t), x0(t− 1)) = (x0(t+ α+), . . . , x
n(t+ α+)) for all t ∈ R.

(ii) If the feedback is negative, then there exists α− ∈ [0, Tx) such that

(x1(t), . . . , xn(t),−x0(t− 1)) = (x0(t+ α−), . . . , x
n(t+ α−)) for all t ∈ R.

Proof. The argument exposed in [14] for δ = 1 applies for both cases.

We also need the following lemma, which guarantees that 0 is contained in

the interior of the D-trajectory of the coordinate-functions of periodic solutions.

Lemma 4.4. Suppose that x is a nonconstant periodic solution of (6).

(i) In the case of negative feedback for every j ∈ {0, 1, . . . , n}, xj has sign changes

on each interval (t∗,∞) for all t∗ ∈ R.

(ii) If the feedback is positive, then exactly one of the following statements is true:

a) xj(t) > 0 for all j ∈ {0, 1, . . . , n} and t ∈ R;

b) xj(t) < 0 for all j ∈ {0, 1, . . . , n} and t ∈ R;

c) for each j ∈ {0, 1, . . . , n}, xj has a zero.
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Proof. (i) Let us assume to the contrary that there exists j ∈ {0, 1, . . . , n}

such that 0 ≤ xj(t) for all t ∈ R (the case 0 ≥ xj(t) is similar). By Proposition 4.2

we may assume that j = 0. Since the equation ẋn(t) = −μxn(t)−f(x0(t−1)) holds

for all t ∈ R, we have

ẋn(t) ≤ −μxn(t) for all t ∈ R. (7)

Since xn is periodic, there exists t∗ ∈ R such that ẋn(t∗) = 0. Now, from inequality

(7) we obtain xn(t∗) ≤ 0. Again, by inequality (7) xn(t) ≤ xn(t∗)eμ(t
∗
−t) ≤ 0 for all

t∗ < t follows. Using the periodicity of xn we have that xn(t) ≤ 0 for all t ∈ R. By

induction we obtain that xi(t) ≤ 0 for all t ∈ R and i ∈ {n− 1, n− 2, . . . , 0}. This

together with the assumption x0(t) ≥ 0 for all t ∈ R means that x0(t) = 0 for all

t ∈ R, which contradicts the fact that x is a nonconstant periodic solution of (6).

This contradiction proves our claim.

(ii) See [14].

Remark 4.5. By the method of steps it is obvious that for any given ϕ ∈

C([−τ, 0],R) there exists exactly one solution x: [−τ,∞) → R of (1) that satisfies

x|[−τ,0] = ϕ. It is also clear that in the case δ = 1, if ϕ ∈ C([−τ, 0],R+) and ϕ �= 0,

then we have x(t) > 0 for all large t.

The following proposition was proven in [14] only for the case of positive

feedback and n = 2.

Proposition 4.6. Let x be a nonconstant periodic solution of (6) with min-

imal period Tx.

(i) In the case of positive feedback, if α+ ∈ [0, Tx) and k ∈ N are such that

(x1(t), . . . , xn(t), x0(t−1)) = (x0(t+α+), . . . , x
n(t+α+)) and V +

K
(x) = 2k+2,

then

α+ =
(k + 1)Tx − 1

n+ 1
.

(ii) In the case of negative feedback, if α− ∈ [0, Tx) and k ∈ N are such that

(x1(t), . . . , xn(t),−x0(t − 1)) = (x0(t + α−), . . . , x
n(t + α−)) and V −

K
(x) =

2k + 1, then

α− =
(k + 1

2 )Tx − 1

n+ 1
.

Proof. The proof for the two cases are similar, hence we only prove (i).

First, note that

x0(t− 1) = xn(t+ α+) = xn−1(t+ 2α+) = · · · = x0(t+ (n+ 1)α+) for all t ∈ R.
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From Proposition 4.3 it follows that xi(t) = xi(t + 1 + (n + 1)α+) holds for all

i ∈ {0, 1, . . . , n}. Thus there exists m ∈ N such that mTx = 1 + (n + 1)α+ or

equivalently:

α+ =
mTx − 1

n+ 1
for an appropriate m ∈ N.

We claim that m = k + 1. Note the following:

ẋ0(t)= −μx0(t) + f(x1(t)) = −μx0(t) + f(x0(t+ α+))

= −μx0(t) + f(x0(t− (Tx − α+))).

We claim that

α+ <
Tx

2
. (8)

If this is not the case, then (Tx − α+) ∈ (0, Tx/2). By Proposition 4.1, there exists

t0 such that x0 has no zeros on the interval [t0, t0 + Tx − α+]. Remark 4.5 implies

that x0 has no zeros on R, either. Then, from Lemma 4.4 we obtain V +
K
(x) = 0, a

contradiction which proves the claim. It follows from Proposition 2.2 that x0 cannot

be constant on any interval and hence we may choose t∗ such that

xt∗,K(j) = xj(t∗) = x0(t∗ + jα+) �= 0 for any j ∈ {1, 2, . . . , n}. (9)

By combining (8) and (9) with Proposition 4.1 (i), (ii) and V +
K
(x) = 2k + 2, we

obtain that

sc(xt∗,K,K) = sc(x0, [t∗ − 1, t∗ + nα+]) ∈ {2k + 1, 2k + 2}.

From this and the special symmetry of the solutions we have

(
k +

1

2

)
Tx < nα+ + 1 ≤ (k + 1)Tx.

Using α+ = mTx−1
n+1 we obtain

(n+ 1)
(
k +

1

2

)
Tx − 1 < nmTx ≤ (n+ 1)(k + 1)Tx − 1.

One can see that for given n, k ∈ N and Tx > 0 there is only onem ∈ N for which the

above inequalities hold. By rearrangement we obtain the following two inequalities

for m:
(k + 1

2 )Tx − 1

n
<

mTx − 1

n+ 1
(10)

and
mTx − 1

n+ 1
≤

(k + 1)Tx − 1

n
. (11)
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Now it suffices to show that for m = k + 1 both (10) and (11) hold. Let us assume

to the contrary that this is not the case. Since (11) trivially holds for m = k+1 we

obtain that (10) fails to be true, thus we have

(k + 1
2 )Tx − 1

n
≥

(k + 1)Tx − 1

n+ 1

or equivalently (
k −

n− 1

2

)
Tx ≥ 1. (12)

a) If
(
k − n−1

2

)
Tx > 1, then by an appropriate choice of t∗ ∈ R, we can

assume that sc(x0, [t∗ − 1, t∗]) ≤ 2k − n. Note that

sc(xt∗,K,K) ≤ sc(x0, [t∗ − 1, t∗]) + n = 2k

which is a contradiction to V +
K
(x) = 2k + 2, thus

(
k − n−1

2

)
Tx > 1 cannot occur

and therefore
(
k − n−1

2

)
Tx = 1.

b) If
(
k − n−1

2

)
Tx = 1 and (10) fails, then it also follows that m ≥ k+2, thus

(k + 2)Tx − 1

n+ 1
≤

(k + 1)Tx − 1

n

must hold, which is equivalent to

1 ≤ (k + 1− n)Tx.

Now using n ≥ 2 and (12) we obtain

1 ≤ (k + 1− n)Tx =
(
k −

n− 1

2

)
Tx︸ ︷︷ ︸

=1

+
(n− 1

2
− (n− 1)

)
Tx︸ ︷︷ ︸

<0

< 1,

which is a contradiction. This contradiction proves the claim that m = k + 1 and

thus the proof is complete.

Suppose that x is a nonconstant periodic solution of (6) with δ = 1 and

with minimal period Tx and k ∈ N is such that V +
K
(x) = 2k + 2. By using first

Proposition 4.3 and then Proposition 4.6 and (8) we obtain

ẋ0(t) = −μx0(t) + f(x1(t)) = −μx0(t) + f(x0(t+ α+))

= −μx0(t) + f(x0(t− (Tx − α+))) = −μx
0(t) + f(x0(t− τ+))

for all t ∈ R, where τ+ = (n−k)Tx+1
n+1 ∈ (Tx/2, Tx]. Thus x

0 is a nonconstant periodic

solution of ẋ(t) = −μx(t) + f(x(t − τ+)) with V +
τ+(x

0) = 2 and with a strong

relationship between τ+ and T (τ+):

τ+ =
(n− k)T (τ+) + 1

n+ 1
.
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Analogously, if x is a nonconstant periodic solution of (6) with δ = −1 and with

minimal period Tx and k ∈ N is such that V −

K
(x) = 2k + 1, then x0 is a solution of

ẋ(t) = −μx(t) + f(x(t− τ−)) with V +
τ−(x

0) = 2 and

τ− =
(n− k + 1

2 )T (τ−) + 1

n+ 1
.

Conversely, it is easy to check that if k ∈ N and y is a nonconstant periodic

solution of (1) with δ = 1 such that V +
τ (y) = 2 and τ = (n−k)T (τ)+1

n+1 hold, then

x+(t) = (x0
+(t), . . . , x

j
+(t), . . . , x

n
+(t))

=
(
y(t), . . . , y

(
t+ j ·

(k + 1)T (τ)− 1

n+ 1

)
, . . . , y

(
t+ n ·

(k + 1)T (τ)− 1

n+ 1

))

is a nonconstant periodic solution of (6) with δ = 1. From a similar argument as in

the proof of Proposition 4.6 we obtain V +
K
(x+) = 2k + 2. Analogously

x−(t) = (x0
−(t), . . . , x

j
−(t), . . . , x

n
−(t))

=
(
y(t), . . . , y

(
t+ j ·

(k + 1
2 )T (τ)− 1

n+ 1

)
, . . . , y

(
t+ n ·

(k + 1
2 )T (τ)− 1

n+ 1

))

is a nonconstant periodic solution of (6) with δ = −1 and V −

K
(x−) = 2k + 1. The

above argument leads to our next theorem.

Theorem 4.7. There is a bijection between the nonconstant periodic solutions

of (6) with V +
K
(x) = 2k + 2 and δ = 1 and the intersections of the following two

curves

(τ∗,∞) � τ �→ (τ, T (τ)) and R � ζ �→
((n− k)ζ + 1

n+ 1
, ζ
)
.

Analogously, there is a bijection between the nonconstant periodic solutions of (6)

with V −

K
(x) = 2k + 1 and δ = −1 and the intersections of the curves

(τ∗,∞) � τ �→ (τ, T (τ)) and R � ζ �→
( (n− k + 1

2 )ζ + 1

n+ 1
, ζ
)
.

Lemma 4.8. The following statements hold:

(i) τ∗ =
2π − arccos(μ/f ′(0))√

f ′(0)2 − μ2
and lim

τ→τ∗+
T (τ) =

2π√
f ′(0)2 − μ2

,

(ii) lim
τ→∞

T (τ)

τ
= 1.
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Proof. Statement (i) can be obtained by using the local Hopf bifurcation

theorem [3] and a simple calculation for the value of τ∗. To prove statement (ii),

let us recall that if x is the unique periodic solution of

ẋ(t) = −μx(t) + f(x(t− τ)),

with V +
τ (x) = 2, then x is also the unique periodic solution of the equation

ẋ(t) = −μx(t)− f(x(t− (τ − T (τ)/2))),

with V −

τ−T (τ)/2(x) = 1. Mallet-Paret and Nussbaum [10] showed in case of negative

feedback that, for analogously defined period function, the quotient in statement

(ii) tends to 2 as τ →∞. Combining these we obtain that

lim
τ→∞

T (τ)

τ − T (τ)/2
= 2,

which is equivalent to our claim.

Theorem 4.9. In the positive feedback case the following statements hold.

(i) If N � k ≥ n−1
2 and

(2k + 2)π − (n+ 1) arccos μ
f ′(0)√

f ′(0)2 − μ2
< 1,

then there exists a unique periodic solution x of (6) with V +
K
(x) = 2k + 2.

Otherwise there is no such solution.

(ii) If N � k < n−1
2 and

(2k + 2)π − (n+ 1) arccos μ
f ′(0)√

f ′(0)2 − μ2
< 1,

then there exists a periodic solution x of (6) with V +
K
(x) = 2k + 2.

Proof. First we prove statement (i). We distinguish three different cases

according to the value of k.

a) If k > n, then by Theorem 3.2 and Theorem 4.7 we obtain that the in-

equality
2π√

f ′(0)2 − μ2
<

(n+ 1)τ∗ − 1

n− k
(13)

is a necessary and sufficient condition for the existence and uniqueness of noncon-

stant periodic solutions of (6) with V +
K

= 2k + 2. After using statement (i) of

Lemma 4.8 and by a rearrangement of (13) we obtain the desired form.



188 Á. GARAB and T. KRISZTIN

b) If k = n, then again by Theorem 3.2 and Theorem 4.7 we obtain that the

inequality

τ∗ <
1

n+ 1
(14)

is a necessary and sufficient condition for the existence and uniqueness of noncon-

stant periodic solutions of (6) with V +
K

= 2k + 2. Using again statement (i) of

Lemma 4.8 the desired form is obtained.

c) If n−1
2 ≤ k < n, then by Theorem 3.2 and Theorem 4.7 we obtain that the

inequality

2π√
f ′(0)2 − μ2

>
(n+ 1)τ∗ − 1

n− k
(15)

is a necessary and sufficient condition for the existence and uniqueness of noncon-

stant periodic solutions of (6) with V +
K

= 2k + 2. Using again statement (i) of

Lemma 4.8 the desired form is obtained and so statement (i) is proven.

Statement (ii) follows from Theorem 3.2, Theorem 4.7 and statement (i) of

Lemma 4.8.

By the same argument we obtain an analogous theorem for the negative feed-

back case.

Theorem 4.10. If the feedback is negative, then the following two statements

hold.

(i) Let N � k ≥ n/2. If

(2k + 1)π − (n+ 1) arccos μ
f ′(0)√

f ′(0)2 − μ2
< 1,

then there exists a unique periodic solution x of (6) with V −

K
(x) = 2k + 1.

Otherwise there is no such solution.

(ii) Let N � k < n/2. If

(2k + 1)π − (n+ 1) arccos μ
f ′(0)√

f ′(0)2 − μ2
< 1,

then there exists a periodic solution x of (6) with V −

K
(x) = 2k + 1.

From Theorem 4.7 and the theorem above it is clear that in order to prove

statement (i) of Theorems 4.9 and 4.10 for all k ∈ N it is sufficient to prove that
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Conjecture 4.11. (τ∗,∞) � τ �→ T (τ)/τ is a monotone nonincreasing func-

tion of τ .

Using the idea of Theorem 1.2 in [13], T (τ)/τ �= 4/3 can be shown for all τ >

τ∗. Then by the continuity of T and that limτ→τ∗+ T (τ)/τ = 2π
2π−arccos μ

f′(0)

< 4/3,

we obtain that T (τ)/τ < 4/3 for all τ > τ∗. Since the conjecture can be formulated

as
T (τ2)− T (τ1)

τ2 − τ1
≤

T (τ1)

τ1
for all τ1, τ2 ∈ (τ∗,∞), τ1 < τ2,

hence it is obvious that Conjecture 4.11 is a stronger statement than what we have

already proven in Theorem 3.2.

An equivalent formulation of the above conjecture is that the period function

of the delay differential equation

ẋ(t) = τ (−μx(t) + f(x(t− 1)))

is a monotone nonincreasing function of τ . Numerical simulations are in a good

agreement with this conjecture, too.

As a confirmation of our conjecture we mention that if the feedback function is

chosen to be the sign-function, which can be regarded as a limit of sigmoid functions

with whom we have dealt in the whole paper, then Conjecture 4.11 can be proven.
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