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Abstract

In this survey paper the delay differential equation ẋ(t) = −µx(t) + g(x(t− 1)) is con-
sidered with µ ≥ 0 and a smooth real function g satisfying g(0) = 0. It is shown that
the dynamics generated by this simple-looking equation can be very rich. The dynam-
ics is completely understood only for a small class of nonlinearities. Open problems are
formulated.

1. Introduction. Delay differential equations model phenomena in which the rate
of change of the state at a given time depends on past states. At the 1908 Interna-
tional Congress of Mathematicians, Picard emphasized the importance of delayed effects
in modeling of physical systems. The works of Volterra on predator-prey models and vis-
coelasticity, the great interest in delayed feedback mechanism in engineering problems and
control theory contributed significantly to the rapid development of the theory. During the
last 50 years the theory of delay differential equations has been developed extensively, see
e.g., [2,5,7,8,9,12,30,39] as the main references. These types of equations were successfully
applied in many areas such as viscoelasticity, mechanics, models for nuclear reactors, dis-
tributed networks, heat flow, neural networks, combustion theory, interaction of species,
microbiology, learning models, epidemiology, physiology [11].

Despite of the wide variety of technical tools applied in the global study of nonlinear
delay differential equations, the understanding even the simplest-looking equations has
been slow.

In these notes we restrict our attention to the equation

ẋ(t) = −µx(t) + g(x(t− 1)) (1.1)

where µ ≥ 0 and g : R→ R is a smooth function with g(0) = 0. Such equations appear in
delayed feedback mechanisms. We show that the dynamics generated by eq. (1.1) can be
very rich. In some cases a complete picture of the global dynamics is available, in other
cases many questions are still open.
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First we consider the monotone feedback case, i.e., either g′ > 0 or g′ < 0. In these cases
very much is known about the global dynamics. In the case of a nonmonotone feedback
function g, the dynamics can be very complicated, and in general very little is known.

2. Preliminaries. Throughout this section we assume that µ ≥ 0 and g : R→ R is a
continuously differentiable function with g(0) = 0.

Let C denote the Banach space of continuous functions φ : [−1, 0] → R with the norm
given by ||φ|| = max−1≤t≤0 |φ(t)|. If I ⊂ R is an interval, x : I → R is a continuous map,
t ∈ R and t− 1 ∈ R, then the segment xt ∈ C is defined by xt(s) = x(t+ s), −1 ≤ s ≤ 0.

Every φ ∈ C uniquely determines a solution x = xφ : [−1,∞) → R of eq. (1.1), i.e., a
continuous function x : [−1,∞) → R such that x is differentiable on (0,∞), x0 = φ, and
x satisfies eq. (1.1) for all t > 0. In fact, x = xφ is easily found via the method of steps: if
n ≥ 0 is an integer and x is known for t ∈ [−1, n], then, for n ≤ t ≤ n+ 1, x is defined by

x(t) = e−µ(t−n)x(n) +

∫ t

n

e−µ(t−s)g(x(s− 1)) ds.

The map

F : R+ × C 3 (t, φ) 7→ xφt ∈ C

is a continuous semiflow. The maps F (t, ·) : C → C are continuously differentiable for all
t ≥ 0, and compact for t ≥ 1. If the nonlinearity g in eq. (1.1) is strictly monotone, then
all maps F (t, ·) : C → C, t ≥ 0, are injective. In that case it follows that for every φ ∈ C
there is at most one solution x : R → R of eq. (1.1) with x0 = φ. We denote also by xφ

such a solution on R whenever it exists.
If φ ∈ C and xφ is bounded on [−1,∞) then the ω-limit set

ω(φ) = {ψ ∈ C : There is a sequence (tn)
∞
0 in [0,∞)

with tn → ∞ and F (tn, φ) → ψ as n→ ∞}

is nonmempty, compact, connected and invariant. If φ ∈ C and there is a bounded solution
x : (−∞, 0] → R with x0 = φ then the α-limit set is

α(x) = {ψ ∈ C : There is a sequence (tn)
∞
0 in (−∞, 0]

with tn → −∞ and xtn → ψ as n→ ∞}.

The global attractor of the semiflow F is a nonempty compact set A ⊂ C which is
invariant in the sense that F (t, A) = A for all t ≥ 0, and which attracts bounded sets in
the sense that for every bounded set B ⊂ C and for every open set U ⊃ A there exists
t ≥ 0 with F ([t,∞)×B) ⊂ U .

An easily verifiable sufficient condition for the existence of the global attractor A is,
for example, µ > 0 and lim sup|x|→∞ |g(x)/x| < µ. Several other sufficient conditions for
the existence of A are also known.
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In case the global attractor A exists, the dynamical, geometrical and topological struc-
ture of A contains all important information about the long time (t→ ∞) behavior of the
semiflow F . It is not difficult to show that

A = {φ ∈ C : There is a bounded solution x : R→ R

of eq. (1.1) so that x0 = φ}.

All equilibria and periodic orbits of F belong to A. A ξ ∈ C is an equilibrium point if
and only if ξ(·) ≡ ξ0 for some ξ0 ∈ R and −µξ0 + g(ξ0) = 0 holds. Clearly 0 ∈ C is an
equilibrium since g(0) = 0. The equilibrium points, in particular 0 ∈ C, play an important
role in the description of the global dynamics.

The linear variational equation along the zero solution of eq. (1.1) is

ẏ(t) = −µy(t) + αy(t− 1) (2.1)

with α = g′(0). If ψ ∈ C and yψ : [−1,∞) → R denotes the unique solution of (2.1)

with y0 = ψ, then we have D2F (t, 0)ψ = yψt , t ≥ 0. The spectrum of the generator of the
C0-semigroup D2F (t, 0), t ≥ 0, consists of solutions λ ∈ C of the characteristic equation
of (2.1)

λ+ µ− αe−λ = 0. (2.2)

If α > 0 then (2.2) has one real root λ0, the other roots appear in complex conjugate
pairs (λj , λj)

∞
1 with

λ0 > Re λ1 > Re λ2 > . . . , 2jπ − π < Imλj < 2jπ

for 1 ≤ j ∈ N, and Reλj → −∞ as j → ∞ [5]. We have λ0 > 0 if and only if α > µ.
If α < 0 and α < −e−µ−1, then all points in the spectrum form a sequence of complex

conjugate pairs (λj , λj)
∞
1 with

Reλ1 > Reλ2 > Re λ2 > . . . , 2(j − 1)π < Imλj < (2j + 1)π

for all j ∈ N, and Re λj → −∞ as j → ∞ [5]. In particular, if the zero solution of (2.1) is
unstable, then all points in the spectrum occur in complex conjugate pairs.

In both cases α > 0 and α < 0 we assume that there is a positive integer N such that

ReλN+1 ≤ 0 < ReλN . (2.3)

Explicit conditions in terms of µ and α can be given for (2.3). For example, in case µ > 0
and α > 0, denoting by θN and θN+1 the unique solutions of the equation θ = −µ tan θ in
(2Nπ − π/2, 2Nπ) and (2(N + 1)π − π/2, 2(N + 1)π), respectively, the inequality

µ

cos θN
≤ α <

µ

cos θN+1
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is equivalent to (2.3).
The oscillation frequency of solutions around zero also plays a role in the global results.

For φ ∈ C let sc(φ) ∈ {0} ∪ N ∪ {∞} denote the number of sign changes of φ. Define
V ± : C \ {0} → {0} ∪ N ∪ {∞} as follows. If sc(φ) is odd then set V +(φ) = sc(φ) + 1. If
sc(φ) is even then let V −(φ) = sc(φ)+1. For all remaining cases we define V ±(φ) = sc(φ).
V + is a discrete Lyapunov functional for eq. (1.1), i.e., it is nonincreasing along solutions,
provided the positive feedback condition

xg(x) > 0 (x 6= 0)

holds. Under the negative feedback condition

xg(x) < 0 (x 6= 0)

V − is a discrete Lyapunov functional for eq. (1.1). See [26] for more details.
A solution x of eq. (1.1) is called slowly oscillatory if |z1 − z2| > 1 for each pair of zeros

z1, z2 of the solution x.
Now we fix an integer k ∈ {1, . . . , N}. There exist a β > 0 (possibly different for α > 0

and α < 0) so that Reλj < β for all integers j > k, and Reλj > β for j ∈ {1, . . . , k}.
Let Pk denote the realified generalized eigenspace of the generator of the semigroup

D2F (t, 0), t ≥ 0, associated with the spectral set

{λ0, λ1, λ1, . . . , λk, λk} provided α > 0,

and associated with

{λ1, λ1, . . . , λk, λk} provided α < 0.

Let Qk be the realified generalized eigenspace of the generator of the semigroup D2F (t, 0),
t ≥ 0, associated with the remaining spectrum. Then we have the decomposition

C = Pk ⊕Qk

with dimPk = 2k + 1 if α > 0, and dimPk = 2k if α < 0.
There exists a C1-smooth local fast unstable manifold Wu

k,loc(0) of 0 (see e.g. [18]) with

T0W
u
k,loc(0) = Pk. W

u
k,loc(0) consists of segments of solutions of eq. (1.1) on the interval

(−∞, 0] approaching zero as t→ −∞ faster than t 7→ eβt. We define the forward extension
of this local fast unstable manifold:

Wk = F ([0,∞)×Wu
k,loc(0)).

If the global attractor A exists then clearly Wk ⊂ A.
Since there are differences between the results, in the sequel we use W+

k and W−
k for

Wk to make a distinction between the cases α > 0 and α < 0.
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In order to describe the structure of the global attractor, a first step can be to do that

for the subsets W±
k , k ∈ {1, . . . , N}, of A. This was successful for the monotone feedback

case.

3. Monotone feedback. In this section we assume that either

g′(x) > 0 for all x ∈ R, (3.1)

that is we have a monotone positive feedback function g, or a monotone negative feedback
function, i.e.,

g′(x) < 0 for all x ∈ R. (3.2)

We need the additional condition

g(x)/x < µ for all x so that |x| is large enough (3.3)

in the positive feedback case, and the hypothesis

either sup
x∈R

g(x) <∞ or inf
x∈R

g(x) > −∞ (3.4)

in the negative feedback case.
In these cases very much is known about the dynamics. Based on the discrete Lyapunov

functionals V ±, Mallet-Paret and Sell [27] proved that a Poincaré–Bendixson type result
is true.

In case (3.2), (3.4) hold and k = 1, Walther [33] showed that W−
1 is a 2-dimensional

C1-smooth submanifold of C with boundary, and it is homeomorphic to the closed unit

disk of R2. The manifold boundary W−
1 \W−

1 of W−
1 is a slowly oscillating periodic orbit

of eq. (1.1).
Defining the set

Wso = {φ ∈ C : There is a bounded slowly oscillating solution x : R→ R

of eq. (1.1) with x0 = φ} ∪ {0},

under conditions (3.2) and (3.4) Walther and Yebdri [35,37] proved more: There is a
C1-map a : P1 ⊃ dom(a) → Q1 such that

Wso = {φ+ a(φ) : φ ∈ dom(a)},

and dom(a) is homeomorphic to the closed unit disk of R2 provided Wso 6= {0}. The man-
ifold boundary of Wso is a slowly oscillating periodic orbit. Additional slowly oscillating
periodic orbits may appear in Wso. In case of multiple periodic orbits, the periodic orbits
are nested with the equilibrium point 0 in the interior of each of them. The nonperiodic
orbits in Wso \ {0} wind around 0, and form heteroclinic connections between periodic
orbits, or between 0 and a periodic orbit.
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The importance of the set Wso is that Wso attracts all solutions starting from an open
dense subset of C [28].

For the positive feedback case, [18] described the structure of W+
1 under conditions

(3.1) and (3.3). Assumption (3.3) combined with g′(0) > µ (which is a consequence of
(2.3) with N ≥ 1) implies the existence of a minimal x+ > 0 and a maximal x− < 0
with −µx± + g(x±) = 0. An additional condition is g′(x±) < µ, i.e., the equilibria e±,

defined by e±(s) = x±, −1 ≤ s ≤ 0, are hyperbolic. [18] shows that the set W+
1 consists

of 3 equilibrium points 0, e−, e+ and a unique periodic orbit O1. W
+
1 is homeomorphic to

the closed unit ball of R3, its manifold boundary W+
1 \W+

1 is homeomorhic to the unit
sphere of R3. W+

1 is a C1-smooth 3-dimensional submanifold of the phase space C. The

set W+
1 \ (W+

1 ∪ {e−, e+}), which is the manifold boundary of W+
1 without the equilibria

e−, e+, is a 2-dimensional C1-smooth submanifold of C, and it contains the periodic orbit
O1 and heteroclinic connections from O1 to e− and e+. There exists a 2-dimensional

smooth disk in W+
1 bordered by the periodic orbit O1. This disk contains 0, the periodic

orbit O1 and heteroclinic connections from 0 to O1, moreover the disk separates W+
1 into

two halves each of which belongs to the domain of attraction of e− and e+. The set W+
1

can be visualized as a solid spindle.
Now we turn to the general case. Assume that either (3.1) and (3.3) or (3.2) and (3.4)

hold, and use either the + or the − sign as an upper index to make a disctinction between

the two cases. The structure of the unstable sets W±
k is described in [17].

W−
k consists of 0, exactly k periodic orbits O1, . . . , Ok, and heteroclinic connections

between 0 and the periodic orbits, and between certain periodic orbits. Introduce the
connecting sets

C0
j = {φ ∈W−

k : There is a solution x : R→ R

of eq. (1.1) with x0 = φ, α(x) = {0}, ω(φ) = Oj},

Cjl = {φ ∈W−
k : There is a solution x : R→ R

of eq. (1.1) with x0 = φ, α(x) = Oj , ω(φ) = Ol}

for j and l in {1, . . . , k}. Then

W−
k = {0} ∪





k
⋃

j=1

Oj



 ∪





k
⋃

j=1

C0
j



 ∪





⋃

1≤l<j≤k

Cjl



 .

In addition [17] shows that the connecting sets are C1-smooth submanifolds of the phase
space C. For the periodic orbits we have Oj ⊂ (V −)−1(2j − 1) , that is the segments of
the periodic orbit Oj have either 2j − 2 or 2j − 1 sign changes in [−1, 0], j ∈ {1, . . . , k}.

The set W+
k contains three equilibrium points 0, e−, e+ and k periodic orbits

O1, . . . , Ok, and heteroclinic connections between 0 and e−, e+ and the periodic orbits,
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between the periodic orbits and e−, e+, and between certain periodic orbits. For this case,
in addition to the connecting sets C0

j and Cjl , which are defined analogously to the ones
of the negative feedback case, we need the sets

C0
± = {φ ∈W+

k : There is a solution x : R→ R

of eq. (1.1) with x0 = φ, α(x) = {0}, ω(φ) = {e±}},

Cj± = {φ ∈W+
k : There is a solution x : R→ R

of eq. (1.1) with x0 = φ, α(x) = Oj , ω(φ) = {e±}}.

for j ∈ {1, . . . , k}. Then

W+
k ={0, e−e+} ∪





k
⋃

j=1

Oj



 ∪





k
⋃

j=1

C0
j



 ∪ C0
− ∪ C0

+

∪





⋃

1≤l<j≤k

Cjl



 ∪





k
⋃

j=1

Cj−



 ∪





k
⋃

j=1

Cj+



 .

The connecting sets are C1-smooth submanifolds of the phase space C. For the periodic
orbits we have Oj ⊂ (V −)−1(2j) , that is the segments of the periodic orbit Oj have either
2j − 1 or 2j sign changes in [−1, 0], j ∈ {1, . . . , k}.

The proof of these results is similar to that of [18], however some parts require new
ideas and methods. The main tools are invariant manifold theory, inclination lemmas,
discrete Lyapunov functionals, Floquet multipliers, transversality. The importance of the
monotonicity conditions (3.1) and (3.2) is that there exist discrete Lyapunov functionals
also for weighted differences of solutions and for the solutions of linear variational equations.
We emphasize that the hyperbolicity of the periodic orbits O1, . . . , Ok is not known for
both cases, and this causes technical difficulties.

The above description of the sets W−
k and W+

k gives a Morse decomposition. There-
fore the dynamics restricted to these sets is gradient like. This is true for more general
equations also for the whole global attractor, see Fiedler and Mallet-Paret [6], McCord and
Mischaikow [29], Polner [31]. However, the above results give more detailed information
about the connecting sets.

In some cases it is expected that the sets W−
N and W+

N coincide with the corrseponding
global attractors A− and A+. This is shown for odd feedback functions with a convexity
property [13,14,15,16,34]. An example is

g(x) = a tanh(bx) or g(x) = a tan−1(bx)

with a 6= 0 and b > 0. The proofs are nontrivial, the main step is the nonexistence of
periodic orbits different from O1, . . . , ON .

Now we formulate some open problems.
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It is expected that the equalities

A− = W−
N , A+ = W+

N

hold for more general feedback functions g. For example, not odd nonlinearities would be
interesting.

Define the set

Σ = {φ ∈ C : xφ has arbitrarily large zeros in [−1,∞)}.

Σ contains initial functions of oscillatory solutions. In the positive feedback case Σ is
a codimension 1 closed Lipschitz submanifold of C, and the sets {e−, e+}, C0

±, Cj± are
disjoint from Σ [18]. The intersection

W+
k ∩ Σ

and W−
k seem to have the same structure. This motivates the next two problems.

It is suspected that the dynamics restricted to the sets W+
k ∩Σ and W−

k in the positive
and negative feedback cases, respectively, are topologically equivalent.

Is it true for a given positive feedback equation with global attractor A+ that there
exists a negative feedback equation with global attractor A− such that the dynamics
restricted to A+ ∩ Σ and A−, respectively, are topologocally equivalent?

There are certain extensions of some of the above results to some particular systems,
see e.g. [3,4]. It is expected that the same technique works for general cyclic feedback
systems studied in [26,27]. However the description of the structure of the unstable sets
and the global attractors can be interesting for each different system.

It seems that the above techniques do not work for equations with more delays or
distributed delays. Only a very little is known in this direction about the global dynamics.

A particular example for monotone negative feedback is

ẋ(t) = −α
[

ex(t−1 − 1
]

, (3.5)

where α > 0 is a parameter. This equation is also called Wright’s equation. E.M. Wright
[38] used it for a heuristic proof for the asymptotic distribution of prime numbers. He
proved deep results on the asymptotic behavior of solutions. In particular, Wright showed
that for 0 < α ≤ 3/2 all solutions approach zero as t→ ∞, and conjectured that the same
is true for all α ∈ (0, π/2) [38]. Using our notation this is equivalent to A(3.5) = {0} for

α ∈ (0, π/2). The problem is still open. A more general problem is whether W
(3.5)
N = A(3.5)

holds. We call this the generalized Wright’s conjecture.
Despite of the simplicity of eq. (3.5) and the variety of deep technical tools applied in

its study, it seems that we are very far from the complete understanding of the dynamics.

4. Nonmonotone feedback. Now we assume that either xg(x) < 0 for all x 6= 0
(negative feedback) or xg(x) > 0 for all x 6= 0. Neither condition (3.1) nor (3.2) is required.
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The unstable sets W±
k and their closures do not have so nice structures as described in

Section 3 for the monotone feedback case.
Based on the existence of the discrete Lyapunov functions V ± a Morse decomposition

can be shown for the global attractor [6,25,29,31]. This means that there exists a finite
ordered collection S1 < S2 < . . . < SM of disjoint compact invariant subsets of the global
attractor A such that for any φ ∈ A there are a bounded solution x : R→ R with x0 = φ
and positive integers j, l ∈ {1, . . . ,M} such that j ≥ l, α(x) ⊂ Sj , ω(φ) ⊂ Sl, and j = l
implies φ ∈ Sj . The Morse sets S0, . . . , SM together with the connecting orbits between
them give the global attractor A. However this does not mean that the dynamics is simple.
In fact, there are examples where chaotic behavior appears within some Morse sets.

The first result about chaotic behavior for delay differential equations was given by an
der Heiden and Walther [10]. They considered eq. (1.1) with a step function nonlinearity
g which is discontinuous, and reduced the problem to an interval map having the Li–Yorke
property for chaos.

Lani-Wayda and Walther [19,22,23] proved complicated behavior for equations of the
form

ẋ(t) = g(x(t− 1))

with a smooth nonlinearity g satisfying the negative feedback condition. In fact they
started from an odd and monotone g, and found a Kaplan–Yorke type slowly oscillating
periodic solution y of period 4 with the special symmetry

y(t) = −y(t− 2) (t ∈ R).

In additon they showed that the periodic orbit O = {yt : t ∈ [0, 4]} is hyperbolic, unstable,
there is exactly one Floquet multiplier outside the unit circle. Then on a hyperplane of C
which is transversal to the periodic orbit, a Poincaré return map can be constructed with
a hyperbolic fixed point whose local unstable manifold Wu is one-dimensional. In the next
step the nonlinearity g is modified outside the set y(R) such that the periodic solution y is
preserved, the local stable and unstable manifolds of the Poincaré map are also preserved,
the solution of the new equation with initial value from Wu leads to a solution homoclinic
to the periodic orbit O, and in addition a transversality condition holds for the homoclinic
orbit. Then the main result of Lani-Wayda and Walther states that there exists a maximal
invariant set for the modified Poincaré map P so that the action of P on the trajectories
in this set is conjugate to a symbol shift, and all of these trajectories of P correspond to
slowly oscillating solutions. In [19] Lani-Wayda constructed a smooth g with the negative
feedback condition so that there was an x∗ < 0 with g′(x) > 0 for all x < x∗ and g′(x) < 0
for all x > x∗.

The results of Lani-Wayda and Walther construct equations where chaotic behavior
appears. It is not clear how to apply their technique for some well known equations. Nu-
merical results show complicated behavior for these equations for some parameter values.
Chaos has not yet been proved for the Mackey–Glass equation [24]

ẋ(t) = −µx(t) +
ax(t− 1)

1 + xn(t− 1)
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and for the Nicholson’s blowflies equation

ẋ(t) = −µx(t) + ax(t− 1)e−x(t−1)

where µ > 0, a > 0, and n > 0 is an integer.
The technique of Lani-Wayda and Walther can guarantee chaos only in a thin Cantor

set in the state space C. Numerical results show that, for example, for the Mackey–Glass
equations for some parameter values, almost all solutions are complicated. It would be
interesting to develop methods for this type of complicated behavior as well.

Other results on chaos can be found e.g. in [20,21].
The result of Mallet-Paret and Walther [28] shows that for monotone negative feedback

slow oscillation dominates the dynamics. Without the monotonicity this is not necessarily
true. There are examples for stable rapidly oscillating periodic orbits for both the negative
and positive feedback cases [1,32].
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