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Abstract. In the survey paper [4] a Lipschitz continuous local center
manifold is constructed at a stationary point for a class of differential
equations with state-dependent delay. Here we show that the obtained
center manifold is continuously differentiable.

1 Introduction

Recently, for a class of functional differential equations including equations
with state-dependent delays, Walther [9, 10] developed the fundamental theory.
This class of equations has in general less smoothness properties than those rep-
resenting equations with constant delay, and the classical theory (see, e.g., [2, 3])
is not applicable. Walther [9, 10] introduced the so called solution manifold, a
smooth submanifold of finite codimension of a function space, and proved under
mild smoothness hypotheses that the initial value problem is well-posed on the so-
lution manifold, and the solutions define a semiflow of continuously differentiable
solution operators. In addition, Walther resolved the problem of linearization for
equations with state-dependent delay by demonstrating that the earlier heuristic
linearization technique (see, e.g., [1]) is the true linearization in his framework.

Under the same hypotheses, at stationary points the continuously differentiable
solution operators have local stable, center and unstable manifolds. It is shown in
the survey paper [4] that these stable and unstable manifolds of maps yield local
stable and unstable manifolds also for the semiflow. The same approach does
not immediately work for center manifolds since the local center manifolds of the
solution operators (or time-t maps) are not necessarily invariant under the semiflow,
see [6].

The survey paper [4] constructed Lipschitz continuous local center manifolds
for the semiflow at stationary points generated by a class of functional differential
equations representing equations with state-dependent delays. The aim of this work

2000 Mathematics Subject Classification. Primary 84K19; Secondary 37D10.

©2006 American Mathematical Society
213



214 Tibor Krisztin

is to prove that these center manifolds are continuously differentiable. In Section
2 we recall certain steps from the construction of [4] and the necessary technical
- tools. The proof of the smoothness is contained in Section 3. The proof applies
the Lyapunov—Perron approach and closely follows that of [2]. However, as the
right hand side of the equation has smoothness properties only on the space of
continuously differentiable functions instead of the space of continuous functions as
in the classical case ([2, 3]), the space, where the fixed point problem is formulated,
is different, and some technical parts are also different. The smoothness proof is
based on a slight modification (proved in [7}]) of a result of Vanderbauwhede and
van Gils [8] on contractions on embedded Banach spaces.

We remark that only C'-smoothness of the semiflow is shown by Walther [9, 10],
and as far as we know, more smoothness is a problem. It is also .an open problem
to construct center manifolds with more smoothness properties. This would be
important in local bifurcation theory through the center manifold reduction. It
is interesting that the paper [5] contains a result about C*-smooth local unstable
manifolds with & > 1 without using any smoothness property of the semiflow.

For motivation, applications and several additional results for functional differ-
ential equations with state-dependent delays we refer to the survey paper [4].

2 Preliminaries

Let | - | be a norm in R®. Fix an h > 0. The Banach spaces of continuous and
continuously differentiable maps ¢ : [~h, 0] — R™ are denoted by
C =C([—h,0],R*) and C*([—h,0],R™),
respectively. The norms are given by

I$lo = max [¢(s)] and [los = [dlo +I¢e,

respectively. If I' is an interval,  : [ — R" ig a function, and t € I witht —h € I,
then the segment z; : [—h, 0] — R™ is defined by
z(8) == z(t + s), —h<s<0.
Let an open subset U C C' and a map f : U — R™ be given. Throughout this
paper, it is assumed that

(S1): f is continuously differentiable,
(S2): each derivative Df(¢), ¢ € U, extends to a linear continuous map
Def(p) : C — R™, and
(83): the map
UxC3(¢x)— Def(p)x € R

is continuous.
Consider the functional differential equation
@' (t) = f(z) (2.1)
with the initial condition
xp=¢cl. (2.2)
We refer to [9] to see that, for example, if g € C*(R,R"), and for 7: U — [0, A]
hypotheses (S1)-(S3) hold with n = 1, then

F(@) =g(¢(=7(#))),  ¢€U,
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satisfies (S1)-(S3). Thus, Equation (2.1) contains state-dependent delay differential
equations of the form
o' (t) = g(a(t — 7(x¢)))-

By a solution of (2.1)-(2.2) we understand a continuously differentiable function
z:[—h,t) = R™ 0 < t, < oo, satisfying z; € U, 0 < t < t,, 3o = ¢, and (2.1) for
0 <t <ty

The closed subset

Xp={oeU:¢'(0)=f(¢)}
of U is called the solution manifold of (2.1). In the sequel we assume X # ). The

papers [9, 10] contain the following basic results. X; is a C'-smooth submanifold
of U with codimension n. Each ¢ € Xy uniquely defines a noncontinuable solution

z? i [~h,ty(¢)) — R™ of (2.1)-(2.2). All segments z¢, 0 < t < t,(4), belong to
Xy, and the relations

F(t,¢) =af, ¢ € Xy, 0<t <t:(9),
define a continuous semiflow F':  — Xy, where @ = {(t,¢) : ¢ € Xy, 0 < ¢t <
t+(¢)}. Each map

F(t,): {¢eXp:(t,¢9) €O} — Xy
is continuously differentiable, and for all (¢, ¢) €  and x € Ty X; we have

Dy F(t, ¢)x = vf™
with the solution v#X : [~h, ¢, (4)) — R” of the linear initial value problem
v'(t) = DF(E(, ¢))vs, Vo = X

The tangent spaces of the manifold Xy are

TpXs={x€C: x'(0) = Df($)x}.

Assume that 0 € U and 0 is a stationary point of F, i.e., f(0) = 0. The
linearization of F' at 0 is the strongly continuous semigroup T'(t) = DyF(t,0),
t > 0, on the Banach space

ToX; = {x € C": X/(0) = DF(0)x}

equipped with the norm |- |g1.
The solutions of the linear initial value problem

Y'(t) = Def(0)ys, yo=¢ € C

define the strongly continuous semigroup T.(t), t > 0, on C. The generator of T’
is G : dom(G,) — C with dom(G,) = To Xy and Gep = ¢'.
Let G denote the generator of T'(t), ¢ > 0. By [4] the domain of G is

{x € C®:x edom(G,), X' €dom(G,)},
and Gy = x’. For the spectra of G, and G,
o(Ge) = 0(G)

holds. All points of ¢(G.) are eigenvalues with finite dimensional generalized
eigenspaces. The eigenvalues coincide with the zeros of the characteristic function

C >z det(z] — D.f(0)e*) € C.
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The realified generalized eigenspaces of G, given by the eigenvalues with nega-
tive, zero and positive real part are the stable Cs, center C,, and unstable C', spaces,
respectively. We have the decomposition

C=C;®dC.®Cy,

C, is infinite dimensional, C, and C,, are finite dimensional, C, C dom(G,), Cy C
dom(G,). The set C} = C,NC" is a closed subset of C*. Hence the decomposition

Cl == O; 69 CC @ C'u, (2'3)

of C! holds as well.
The stable, center and unstable subspaces of G are C; N dom(Ge) = Cs N
dom(Ge), C, and C,, respectively, and

ToXf = dom(G.) = (Cs Ndom(Ge)) ® Cc ® Cy.

In the sequel we assume

o(Ge) NIR # 0,
that is, dim C, > 1.

In [4] we constructed a Lipschitz continuous (local) center manifold of F' at the
stationary point 0.

Theorem A There exist open neighbourhoods Ceo of 0 in C. and C’gu,o of 0 in
Cre®Cy with N = Ce o+ Ch, o C U, o Lipschitz continuous map we : Ceo = Chupo
such that w.(0) = 0 and for the graph

Wc = {¢ +’LUC((Z5) . ¢ S Cc,O}
of w, the following hold.
(i) W. C X, and W, is a dim C,-dimensional Lipschitz smooth submanifold of

Ky

(i) Ifx : R — R™ is a continuously differentiable solution of (2.1) on R with
2, € N for allt € R, then xy € W, for allt € R,

(iil) W, is locally positively invariant with respect to the semiflow F, i.e., if ¢ €
W, and o > 0 such that F(t,¢) is defined for allt € [0,c), and F(t,¢) € N
for all t € [0,a), then F(t,¢) € W, for all t € [0, ).

The aim of this paper is to show the following

Theorem 2.1 The map we : Coo — Ch, o is continuously differentiable, and
Dw.(0) = 0.

The proof of Theorem A in [4] applies the Lyapunov—Perron approach which
is based on a variation-of-constants formula of [2]. We recall some basic facts from
[2], and also some steps from the proof of Theorem A.

We denote dual spaces and adjoint operators by an asterisk * in the sequel.
The elements ¢© of C* for which the curve

[0,00) 3t T ()¢ € C

is continuous form a closed subspace C® (of C*) which is positively invariant under
T*(t), t > 0. The operators '

TO(t) : C° 5 ¢ > To(t)¢° € C°, t >0,

constitute a strongly continuous semigroup on C®. Similarly, we can introduce
the dual space CO* and the semigroup of adjoint operators TO*(t), t > 0, which
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is strongly continuous on C®®, There is an isometric isomorphism between R™ x
L*°(—h, 0; R™) equipped with the norm |(e, ¢)| = max{|a], |f|ec} and CO*, where
L*®(—h,0;R™) denotes the Banach space of measurable and essentially bounded
functions from [—h, 0] into R™ equipped with the L®-norm |- [oo. We will identify
C®* with R™ x L°°(—h,0;R™) and omit the isomorphism. The original state space
is sun-reflexive in the sense that, for the norm-preserving linear map ¢ : C' — C®*
given by t(¢) = ($(0), ¢), we have ¢«(C) = C®®. We also omit the embedding
operator ¢« and identify C and C®®, All of these results as well as the decomposition
of C®* and the variation-of-constants formula can be found in [2].

Let Y©* denote the subspace R™ x {0} of C®*. For the k-th unit vector ey
in R™ set rP* = (e,0) € YO* Let I : R® — Y©* be the linear map given by
lek) =", k€ {1,2,...,n}. Then [ has an inverse [ %, and [I| = |I™| = 1.

Let G@* denote the generator of TO*. For the spectra o(G.) and o(G9*) we
have o(Ge) = o(G2*). Recall that we assumed o(G.) NiR # @. Then C®* can be
decomposed as

Co* = 09 ¢ C, & C,, (2.4)
where C®*, C., C, are closed subspaces of C®*, C, and C, are contained in C*,
1 <dimC, < o0, dimC), < co. The subspaces C2*, C, and C,, are invariant under
TO*(t), t > 0, and T, (t) can be extended to a one-parameter group on both C, and
Cy. There exist real numbers K > 1, ¢ < 0, b > 0 and ¢ > 0 with ¢ < min{—a, b}
such that
T(t)p] < Ke™|gl,  t<0, g€ Cy,

IT.(t)p| < Keltl|gl,  teR, ¢€C, (2.5)
ITO*(1)d| < Ke®|g],  t2>0, g € CE*.
Using the identification of C' and C®®, we obtain C} = C1NC®*, The decomposi-
tions (2.3) and (2.4) define the projection operators Py, Py, P, and PO*, PO* pPo*
with ranges C!, C,, C, and C®*,C,, C,, respectively. P2, denotes the projection
of C* onto C! @ C,, along C.,.
We need a variation-of-constants formula for solutions of
a'(t) = Def(0)ay + q(t) (2.6)

with a continuous function ¢ : R — R",
If ¢,d are reals with ¢ < d, and w : [¢,d] — C©* is continuous, then the
weak-star integral '

d
/ TO(d — r)w(r) dr € CO*
is defined by

d d
( [ eyt dT> (6°) = [ 19"~ r)ulr)°) ar
c (4]

for all ¢© € C©.

If I ¢ R is an interval, ¢ : I — R™ is continuous and z : I + [—h,0] — R”
is a solution of (2.6) on I, that is, = is continuous on I -+ [—h,0], continuously
differentiable on I, and (2.6) holds for all ¢ € I, then the curve u: I 3¢t +— 2, € C
satisfies the integral equation

u(t) = Te(t— s)u(s) + /16 TO*(t — 1)Q(T) dr, t,sel, s<t, (2.7)

8
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with Q(¢t) = 1(q(¢)), t € I. Moreover, if @ : I — Y©* is continuous, and a continuous
w: I — C satisfies (2.7), then there is a continuous function z : I + [—h,0] — R"
such that z; = u(t) for all¢ € I, z is continuously differentiable on I, and z satisfies
(2.6) with ¢(t) = I7*(Q(¢t)), t € I. So, there is a one-to-one correspondence between
the solutions of (2.6) and (2.7).

For a Banach space B with norm | - | and a real n > 0, define the Banach space

Cr(R,B) = {b € C(R, B) : sup e~ |b(t)| < oo}
teR
with norm
[ble,, ,) = sup e [b(1)].
teR

For n > 0, we introduce the notation
Y, = Cp(R,Y®), Cp = Cy(R,C), C} = Cy(R,C?).
For a given @ : R — Y©* we (formally) define
t , t
(CQ)(t) = [ Tt~ P Q) dr+ [ T2 - 1P dr
0

oo
t
+ / TO*(t — 7)PO*Q(7) d.
—o0
The weak-star integrals over unbounded intervals are defined as for finite intervals
above, see the details in [2].
The results in the remaining part of this section are either shown in [4] or can
be obtained in a straightforward manner.
For any 7 € (¢, min{—a, b}),

K(Y,) c Cy,
and the induced linear map K, : ¥, — C’% is linear bounded with
1Kyl < cln),

where

1 1 1
= nh nh.
c(n) = K (1+ €™|D.f(0)]) <n—e+~a—n+b—n>+e

Moreover, if @ € ¥, then u = KQ is the unique solution of

u(t) = Te(t — s)u(s) + /: TO*(t — 1)Q(7) dT, —00 < 8 <t < 00, (2.8)

in C with P2*u(0) = 0.

As dim C, < oo, there is a norm | - |, on C, which is C°°-smooth on C, \ {0}.
Then

|1 :ma'x{|PC¢|c’|Ps1u¢|C'l}’ ¢€CI:

defines the new norm |- | on C* which is equivalent to | - |c1.

Let p: R — R be a C*-smooth function so that p(t) = 1 for ¢ < 1, p(t) = 0
for t > 2, and p(t) € (0,1) for t € (1,2).

Define 7: U 3 ¢ — f(#) — Def(0)¢p € R™ and

oo (), el
r(¢)_{0, itg¢U.
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For any ¢ > 0, let

rx@=fwm(ﬁ%&) <|“M>, ¢ eCl.

Clearly, r5 : C* — R™ is continuous. For v > 0 set B,(C1) = {¢ € C* : |¢|s <~}
Choose §y > 0 so that
3250 (Cl) C U,
and 7’|B%0(Cl), D?‘ledo(ol) are bounded. Then, for any ¢ € (0, dp),

PC c
rsl(pect:|py, ¢l <5} ($) = 7“(¢)P(%> , ¢peCh,

and rs|{gcor:| P2, ¢|, <5} 18 & bounded and C'-smooth function with bounded deriv-
ative.

There exist d; € (0,8p) and a nondecreasing function g : [0, 1] - [0, 1] such
that p is continuous at 0, u(0) = 0, and for all 6 € (0,8;] and for all ¢, € C*

Ir5(¢)] < 6u(8),

r5(68) — ra(W)| < (@16~ Blon. (28)
For § € (0,81] we consider the modified equations
m’(t) = Def(O)a:t + ?"5(.’)%), teR, (210)
and
¢
w(t) = To(t — shu(s) + / TO (b — Ii(rs(u(r))) dr,  —o0 <5<t < co. (211)

These equations are equivalent in the following sense: If z : R — R™ is C'-smooth
and is a solution of Equation (2.10), then u : R 3 ¢t + z; € C! is a solution of
Equation (2.11), and conversely, a continuous u : R — C* satisfying (2.11) defines
a Cl-smooth solution of (2.10) by z(t) = u(t)(0), t € R.

As in [4] we fix an 79 € (¢, min{—a,b}) and a § € (0,d1) such that

clm)p(d) < 3.

By the continuity of c¢(n) for € < n < min{—a,b}, there is 71 € (1o, min{—a, b})
such that .
c(mu(6) < 3 for all n € [no, m]

also holds.
Define the substitution operator

R: (Cl)R — (YQ*)R
by
R(u)(t) = Urs(u(t))).
Then, for each > 0, we have
R(Cp) C Y.
By using inequalities (2.9) and |I| = 1, it follows that for the induced maps
Ry:Cp— Y,
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the inequalities
B (u)ly, < 0u(d),
| B (u) — By(v)ly, < p(8)lu—vlcy
hold for all w € Cy, v € Cy and n € [no,m1].
Define the mapping S :C, — C% by
(58)(t) = Te(t) -
If n > ¢ then S(C,) C C}, and the induced map Sy : C, — C; is bounded linear
with |Sy| < K.
For each n € [no, 71| a mapping
Gy C’% X Cy — C’,%
can be defined by
Gy, ¢) = Sy(8) + Ky 0 Ry(u).
For all u,v € C}, ¢ € C. and 1 € [no,71], this mapping satisfies
|Gy, ¢) — Gn(v,¢)|0% < Kol [Rn(u) — By (v)ly,
< e(mu(d)u — vicy

1
< §IU—U|C’%.

So for every ¢ € C, there is a unique fixed point u,($) € C’}) of the contractions
Gy(9) : Cp — G, n € [no,m]. We have
Peun(9)(0) = (54(6))(0) = ¢.
Therefore u € Cy is a solution of Equation (2.11) with P.u(0) = ¢ € C. if and only
if u = up($). The maps u, : Cc — C%, Mo < N < 1, are Lipschitz continuous, and
un(0) = 0.
Introduce the maps

wy : Ce > ¢ = Phuy(4)(0) € CL @ C,

for no < n < m. The sets
Wn = {un(¢)(0) /RS Cc} = {Qb + wn(¢) P E Cc}
are called the global center manifolds of the modified equation (2.11) at the sta-
tionary point 0, no < n < 1.
An important observation of [4] was that, for each ¢ € C, and 7 € [no, n1],
w3 (#)]1 = | Payin (#)(0) |

= [y (B (un(6))) (0)|or < [KCn (R (uq(4)))lcy

< Kyl | By (g ()],

< e(mou(d) < 4.
It is also observed in [4] that for all ¢ € R,

un () (t) = un(Peun(@)())(0), ¢ € Ce, m € [no,ml.
Therefore,
Ps.luun(Qﬁ) (t) = Wn (Pcun (¢) (t))
and
| Poin ($)(B)], < 6
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hold for all n € [, 7], ¢ € C, and ¢ € R. Setting
Os = {¢p € C":|(idor —Pe)p|1 < 6}

we obtain

{uq(#)(t) : ¢ € Co, t€R}C 05, 1 € [0, 7. (2.12)
[4] shows that Theorem A holds by setting
Cep={p€Cc:|dli <8}, Cop={¢€C; ®Cy: g1 <5},
N =Coo+ Caup={d € C* 1 |¢]1 <},
We = Wyolceor We={¢+we(d): ¢ € Ceol}-
It remains to prove that w, is C*-smooth, and Dw,(0) = 0.

3 Proof of the C'-smoothness
Let jpon, denote the linear continuous inclusion map
1 1
Cpy2u—ueC,y.
For the fixed point up,(¢) of Gy, (-, ¢), ¢ € Ce, we have

G (j770771 Ung (9),¢) = Te()(9) + K(R(unu ()
= Jnony Gno (tne (), 8)
= Jnoms Uno (#)-
SO Jnens Une (@) is & fixed point of Gy, (-, ) : 07171 — C;, and by the uniqueness of
the fixed point,

Uny (¢) = jﬂoﬂluno(¢)’ ¢ € C..
Then wy,(4)(0) = un, ()(0), ¢ € C¢, follows, and consequently

W (¢) = Wy (¢), d) € GC‘
Let ev : Cf — C" be given by ev(u) = u(0). Then

. pl
Wy, = Py oevou,,.

As Pl and ev are linear bounded maps, in order to conclude the C'-smoothness
of wn, , it is sufficient to show that up, : C, — Cj is C'-smooth. At the end of the
proof we shall conclude Dw,, (0) = 0 as well.

We need two abstract results, The first one is a slightly modified version of
Lemma I1.6 in [7] about the smoothness of substitution operators. Although its
proof follows very closely that of Lemma IL6 in [7], we show it here.

Lemma 3.1 Let E and F be real Banach spaces. Forn > 0 set B, = Cp(R, E)
and F, = Cp(R, F). Let a subset O C E and a continuous and bounded map
q: O — F be given. Consider the substitution operator

Q: 0% = FR. Qu)(t) = q(u(t)) forue OF, teR.

(i) Ifn>0 and 71 > 0, then Q(O® N E,) C Fy.
(ii) Assume that O is open, q is C*-smooth with Dq bounded, and 0 < n < 7.
Then, for every u € C(R,O), the linear map

A(u) : E® — FR
given by
A(u)(v)(t) = Dglu(t))v(t) forve ER teR,
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satisfies

A(u)E, C Fy, sup |A(u)v|r, < sup |Dq(z),
vEEy, |v|g, <1 z€0

the induced linear maps
Apii(u) : By — Fy
are continuous, and in case n < i the map
Anj : C(R,0) N Ey 3 u > Agg(u) € L(En, Fy)

1s also continuous.

(i}) If, in addition, n < 7 and O is convex, then for every € > 0 and u €
C(R,0) N E, there ewists § > 0 so that for every v € C(R,0) N E, with
[v—u|g, <6, we have

Q) = Qw) — Aps(w)lv — ul|r, < Ev —ulg,.
Proof 1. Proof of (i). The map R 3 ¢ — ¢(u(t)) € F is continuous provided
ueO®n E,, and

sup emﬁlt”q(u(t))' < sup |q(m)la
teR zeQ

yielding the inclusion.
2. Proof of (ii). For u € C(R,0) and v € E,, the map R 3 ¢ — Dg(u(t))v(t) €
F' is continuous. In addition

e M| Dg(u(®)u(®)] < e=@Me=Mju(t)| sup [ Dg(a))

yielding A(u)E, C Fj, and

sup  |A(u)v|g, < sup|Dg(z)l.
vEEy, |vlp, <1 €0

In order to show the continuity of A,s, let u € C(R,0) N E, be given and let
€ > 0. Choose tg > 0 such that

2e~ =Mt sup |Dg(x)| < € for |t| > to.
ze0

There is such a tg > 0 because of 7 > 7. Find 5 > 0 so that for all £ € [—to, to] the
ball

Bi={y € E:ly—u(t) <dem}
is contained in O, and for all y € B; we have
|Dq(y) — Da(u(t))| <&

Consider 4 € C(R,0) N E, with |& — u|g, < §, and v € B, with [v|g, < 1. Then,
for |t| > to,

e M|[Dq(a(t)) ~ Dau(t)Jo(®) < 2¢~=Me=Mjo(t)| sup [ Da(a)
< 9¢— (-] S“B |Dg(z)]

<&
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and, for |t| < to, by applying |4(t) — u(t)| < sl < §emto, we find
e~ MM|[Da(a(t)) — Da(u(t))]v(t)| < e~ @M=ty ()| [ Dg(a(t)) — D(u(t))]
' < |Dq(a(t)) — Da(u(t))]
< €,
It follows that
[ Anii (@) = Angi (W) L8, ) < €

3. Proof of (iii). For all u,v in C(R,0) N E, and t € R, by using the convexity
of O, we obtain

=M g(u(t)) — q(u(t)) — Da(u(t))[(t) — u(t)]]
1
— e—ﬁ|t|| /0 [Dq(sv(t) + (1 — S)U(t)) - DQ(u(i))][v(t) - u(t)] d3|

< e mmlie=my (1) — u(t)| Jnax, |Dg(sv(t) + (1 — s)u(t)) — Da(u(t))]

< e (=mll]y ulm, m[(zjl)i] [Dg(sv(t) + (1 — s)u(t)) — Dg(u(t))|.
s€|0,
) (3.1)
Let € > 0 and v € C(R,0) N E, be given. Choose t; >0 and § > 0 as in part
2. Let v € C(R,0) N E, be given with |v —u|g, <. For |t| > ty, combining (3.1)
and the choice of tg, it follows that

e~ |q(u(t)) — q(u(t)) — Da(u())fv(t) — u(t)]]

—(Fi—n)|t ~
< e (=n)l |I;1€a())c|Dq(m)| lv —u|m, <&v—ulg,.

For |t| < to, we get [u(t) — u(t)| < Jemo, |t| < tq. Combining this inequality, the
asumption 7 < #, estimation (3.1), and the choice of ¢, one concludes

e Mq(v (1)) - g(u(t)) — Da(u(®)[v(t) — u(®)]| < dv - uls,.
This completes the proof of Lemma 3.1. O

The following C*'-smoothness result is contained in [7]. It is a slightly modified
version of that of [8].

Lemma 3.2 Let X, A be Banach spaces over R, and let an open set P C A, a
map h: X x P — X and a constant k € [0,1) be given with
|h(m,p) — (&, p)| < K|z — Z|

for all z,% in X and all p € P. Consider a convex subset M of X and a map @ :
P — M so that for every p € P, ®(p) is the unique fized point of h(,p): X — X.
Suppose that the following hold.

(i) The restriction hg = h|pxp has a partial derivative Dohy : M X P —
L(A, X), and Dohg is continuous.
(ii) There are a Banach space X1 over R and a continuous injective map j : X —
X1 so that the map k = j o hy is continuously differentiable with respect to
M in the sense that there is a continuous map
B:Mx P - L(X,X1)
so that for every (z,p) € M x P and every €* > 0 there exists §* > 0 with

|]€<i‘,p) - k"(wap) - B(.’,U,p)[ii - LE’]l < 6*|53 - CL’I



L4

224 Tibor Krisztin

Jor all & € M with | — x| < §*.

(i) There exist maps _
B M x P - L(X,X), hY:MxP- L(X,X)
such that
B(z,p)2 = jh (z,p)& = hgl)(m,p)ja“: for all (z,p,2) e M x P x X
and
|W M (2, p)| < &, |h§1) (z,p)| <k for all (z,p) € M x P.
(iv) The map
M x P53 (z,p)— johW(z,p) € L(X, X1)
18 continuous.
Then the map jo® : P — Xy is Ct-smooth, and

D(j o ®)(p) = K (®(p),p) 0 D(j 0 ®)(p) + j 0 Daho(®(p),p) for allp € P.

Now we employ Lemma 3.2 to prove that the map u,, is C*-smooth.
Recall that rs restricted to the convex open set Og of C! is C'-smooth, and,
by inequality (2.9),

sup {Drs(¢)| < u(d).
¢€0;s

An application of Lemma 3.1 with £ = C', F' = Y®* O = Os, ¢ = l o rs and
7= 10, 7 = 11 shows that the linear maps

Au) : (CHF — (Y O)F
induce a continuous map Ang,, from the convex set

M ={ucC) :u(t) € Os for all t e R} C C},

into L(C‘}]O, Y;,,) so that for every u € M and for every & > 0 there exists § > 0 such

that for every v € M with |v — u[c}lo < §, we have
R(u) € Yy, R(v) € Yo, [R(u) — R(v) — Apon, (W) v — U]y, <&v— u|071]0. (3.2)

1

2

Set X = Cp, A=P = C,, h= Gy, and k = 5. By (2.12), up,(P) C M holds.
So, the unique fixed point of A(,¢) ; X — X is the map ® : P — M given by
O(¢p) = U, (¢). In the next steps we verify the hypotheses of Lemma 3.2.

The map hg = h|pxp satisfles

ho(u, §) = Gno(u, §) = Spo (@) + Ky © Ryo (u).
So, the partial derivative Dahg ¢ M x P — L(A, X) exists, and for every (u, ) €
M x P it is given by
Daho(u, @)p = Syo () € Cpyy € Ce

It is clearly continuous since it is a constant map.

Setting X = C’,%l and j = fnon,, the map k = j o hg is given by

k(“‘: ¢) = 5771 (¢) + ]C’Hl © Rnl © .7(“))
and
B:MxP 3 (u,¢)— K 0 App, (v) € L(X, X1)

is continuous.

Y
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Let €* > 0 and (u, ) € M x P be given. Define

5*:5(—6* >’
1+|IC771|

where §(€) is chosen so that (3.2) holds for all v € M with |v — U’IC};O < 6% and
€ =¢"/(1+|Ky,]). Then for all such v € M we find

|k (v, ¢)—k(u, ¢) — B(u, §)[v — ul|x,
= K, (R(v )) = Koy (B(w)) = Koy (Agom, (W0 = u])les,

< |K'f71| |U 'U'|C'l

|’C |
<ée*lv— u|c%0¢
From the facts supgco, |Drs(¢)] < p(d) and [I] = 1, it is clear that, for every
u € M, A(u) defines the elements
Koo © Angne(w) € L(X, X)  with [ICy 0 Aggng (u)| < p(d)
and
Ky 0 Apiny (u) € L(Xy, X1)  with [Cpy 0 Ay, (w)| < p(9).
Now we can define
B S M X P 3 (u,¢) 15 Ky 0 Apeno (1) € L(X, X)
and
WY M X P3 (u,¢) = Ky 0 Apyn, (w) € L(X1, X1).
For all (u, ¢,v) € M x P x X,
B(u, ¢)v = K(A(uyv) = jhD (u, ¢)v = h{" (u, $)jv

holds. Using |Aygn, (w)| < p(8), [Anin, (u)| < p(8), and the choice of ng,n1,4, it is
obvious that

WD (w, )| < 5, W (u,d) < for all (u,¢) €

For the map M X P 3 (z,p) — j o AWM (z,p) € L(X, X;) w
g0 h (u, ¢)v = (§ 0 Ky © Aygno(u))v = K(A(u)v) = Blu, p)v

(

for all (u, $,v) € M x P x X, and the continuity of M x P 3 (z,p) — joh)(z,p) €
L(X, X,) follows from that of B.
Therefore all hypotheses of Lemma 3.2 are fulfilled, and jo® = u,, : C, — C’% .

is C'-smooth. Moreover,

Dty (8) = B (1o (8), 9) © Dty () + 5 © Dahi(uyy (), )

for all ¢ € C,. From Drs(0) =0, A(0) =0 and hgl)((), 0) = 0 follows. Then, using
also uy, (0) = 0, we obtain

Dy, (0)3) = Sy, () for all ¢ € C,.

c M x P.

¢ have

Hence
D, O)y = (Pl o ev o Dup, (0))
suw =0
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follows for all ¢ € C,. Therefore
Dwy,, (0) = 0.
This completes the proof of Theorem 2.1.
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