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Abstract

The delay differential equation

ẋ(t) = −µx(t) + f(x(t− 1))

with µ > 0 and a real function f satisfying f(0) = 0 and f ′ > 0 models a system governed

by delayed positive feedback and instantaneous damping. Recently in [KWW] the geomet-

ric, topological and dynamical properties of a 3-dimensional compact invariant set were

described in the phase space C = C([−1, 0],R) of initial data for solutions of the equation.

In this paper, for a set of µ and f which include examples from neural network theory,

we show that this 3-dimensional set is the global attractor, i.e., the compact invariant set

which attracts all bounded subsets of C. The proof involves, among others, results on

uniqueness and absence of periodic orbits.
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1. Introduction

The equation

ẋ(t) = −µx(t) + f(x(t− 1)) (1.1)

with a real µ > 0 and a function f : R→ R satisfying

f(0) = 0 and ξf(ξ) > 0 for all ξ 6= 0

models a system with a rest point given by the zero ξ = 0 of f , which is governed by

delayed positive feedback and instantaneous damping. Specific applications occur e.g. in

neural network theory, for

f(ξ) = α tanh(βξ)

with parameters α > 0 and β > 0 (see e.g. [He], [PMGV] and references therein).

In the monograph [KWW] the geometric, topological and dynamical properties of a

3-dimensional compact invariant set W in the state space C = C([−1, 0],R) of initial data

for solutions of Eq. (1.1) were investigated, for C1-functions f which satisfy f(0) = 0 and

f ′(ξ) > 0 for all ξ ∈ R, have at least 3 zeros of the characteristic function

C ∋ λ 7→ λ+ µ− f ′(0)e−λ ∈ C

in the open right halfplane, and fulfill weak additional global conditions. It was speculated

in [KWW] that for a smaller set of parameters µ > 0 and functions f : R → R, the

invariant set W is in fact the global attractor, i.e., the compact invariant set A which

attracts all bounded subsets of C. In the present paper we prove that this is indeed the

case, for µ and f which include examples from neural network theory.

As global attractors contain all periodic orbits, and since there is exactly one periodic

orbit in W , the proof of the desired result involves a study of uniqueness of periodic orbits:

Based on a technique of Cao [Ca2], which is related to earlier work of Kaplan and Yorke

[KY1,KY2], Nussbaum [Nu], and Walther [Wa2], we obtain a first uniqueness result for

periodic orbits of the positive feedback equation (1.1).

Among the tools we employ are a discrete Lyapunov functional counting sign changes

of elements φ ∈ C \ {0}, which goes back to work of Mallet-Paret [MP], and a Poincaré–

Bendixson theorem of Mallet-Paret and Sell [MPS2]. Also important are results about

Floquet multipliers of periodic solutions [KWW], Poincaré maps, and smooth center-stable

manifolds for maps [KWW].

The general reference for any result which is used in the sequel without proof or source

is [KWW].
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The organization of the paper is as follows: Section 2 contains preliminaries about the

semiflow of Eq. (1.1) on the space C, the existence of a global attractor, a precise statement

of the main result of [KWW], the definition and basic properties of the discrete Lyapunov

functional, and the hypotheses on µ and f we use. Section 3 is devoted to results on

uniqueness and absence of periodic orbits. In Section 4, the equation A = W is proved. In

an Appendix we carry out the proof of a simple result which relates solutions of Eq. (1.1)

converging to a periodic orbit for t → −∞ to backward trajectories of a Poincaré map,

and which is familiar in case of ordinary differential equations.

Notation, preliminaries. N and R+ stand for the nonnegative integers and reals, re-

spectively. S1 and S1
C

denote the unit circles in R2 and C, respectively. Simple closed

curves are either injective continuous maps from S1
C

into Rn, or continuous maps c from

a compact interval [a, b] ⊂ R, a < b, into Rn so that c|[a,b) is injective and c(a) = c(b).

The set of values of a simple closed curve c, or trace, is denoted by |c|. The Jordan curve

theorem guarantees that the complement of the trace of a simple closed curve c in R2

consists of two nonempty connected open sets, one bounded and the other unbounded,

and |c| is the boundary of each of these components. We denote the bounded component

by int(c) and the unbounded one by ext(c).

The interior and the boundary of a subset M of a topological space are denoted by
◦

M

and ∂M , respectively.

For a Banach space E and r > 0 we set

Er = {x ∈ E : ||x|| < r}.

Spectra of continuous linear maps T : E → E are defined as spectra of their complexifica-

tions. If a decomposition

E = F ⊕G

into closed linear subspaces is given then PrF : E → E and PrG : E → E denote the

associated projection operators along G onto F and along F onto G, respectively.

For a given continuous function g : R× R2 → R and τ > 0, solutions x : R→ R of the

equation

ẋ(t) = g(t, x(t), x(t− τ)) (1.2)

are differentiable functions which satisfy Eq. (1.2) everywhere. If I ⊂ R is an interval and

if t0 ∈ I, τ > 0 are given with t0 − τ = min I and t0 < sup I ≤ ∞, and if a continuous

function g : (I ∩ [t0,∞)) × R2 → R is given, then a continuous function x : I → R is

a solution of Eq. (1.2) if x is differentiable on I ∩ (t0,∞) and satisfies Eq. (1.2) for all

t ∈ I ∩ (t0,∞). It is then clear how to define complex-valued solutions of equations given

by functions of the form

g(t, x, y) = a(t)x+ b(t)y.
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For a parameter τ > 0, a map x : D →M , and t ∈ R so that [t− τ, t] ⊂ D the segment

xt : [−τ, 0] →M is defined by xt(s) = x(t+ s) for −τ ≤ s ≤ 0.

C denotes the Banach space of continuous functions φ : [−1, 0] → R, with the norm

given by

||φ|| = max
−1≤t≤0

|φ(t)|.

C1 is the Banach space of all C1-maps φ : [−1, 0] → R, with the norm given by

||φ||1 = ||φ|| + ||φ̇||.

2. The global attractor, the structure of an invariant set,
and a discrete Lyapunov functional

We begin with solutions of the positive feedback equation

ẋ(t) = −µx(t) + f(x(t− 1)) (1.1)

where

(H0) µ > 0, and f : R → R is continuous and strictly increasing, with f(0) = 0 and

|f(ξ)| < µ|ξ| for all ξ outside a bounded neighbourhood of 0.

The particular case

f : R ∋ ξ 7→ α tanh(βξ) ∈ R with α > 0 and β > 0 (2.1)

is used in neural network theory.

We need to recall some basic facts. Every φ ∈ C uniquely determines a solution

xφ : [−1,∞) → R with xφ0 = φ. Any two solutions on a common domain are equal

whenever they coincide on an interval of length one. The set of values of constant solutions

coincides with the zeroset of f − µ id. We have continuous dependence on initial data in

the sense that given φ ∈ C, t ≥ 0, ǫ > 0 there exists δ > 0 so that |xψ(s) − xφ(s)| < ǫ for

all s ∈ [−1, t] and all ψ ∈ C with ||ψ − φ|| < δ.

The map

F : R+ × C ∋ (t, φ) 7→ xφt ∈ C

is a continuous semiflow. Its stationary points are the constant functions in C given by

the zeros of f − µ id. All maps F (t, ·) : C → C, t ≥ 0, are injective and monotone with

respect to the pointwise ordering on C given by the cone

K = {φ ∈ C : φ(s) ≥ 0 for all s ∈ [−1, 0]}.

All maps F (t, ·), t ≥ 1, are compact (i.e., send bounded sets into sets with compact closure),

and all maps

C ∋ φ 7→ F (t, φ) ∈ C1, t ≥ 1,

are continuous. Concerning boundedness properties, we have the following result.
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Proposition 2.1. Let r > 0 be given with |f(ξ)| < µ|ξ| for |ξ| ≥ r. Then

F (R+ × Cr) ⊂ Cr,

and for every φ ∈ C there exists t ≥ 0 so that

F (s, φ) ∈ Cr for all s ≥ t.

Proof. 1. We show

sup
t≥−1

|x(t)| ≤ max{r, ||x0||}

for every solution x : [−1,∞) → R of Eq. (1.1). Otherwise there exist a solution x :

[−1,∞) → R, δ > 0, and s > 0 so that |x(s)| > δ + max{r, ||x0||}. There is a minimal

t > 0 with |x(t)| = δ+max{r, ||x0||}. Suppose x(t) > 0. Then ẋ(t) ≥ 0. By the minimality

of t, |x(t−1)| < δ+max{r, ||x0||}. The last inequality, the monotonicity of f , the inequality

|f(ξ)| < µ|ξ| for |ξ| ≥ r, and Eq. (1.1) combined yield ẋ(t) < 0, which is a contradiction.

The argument in case x(t) < 0 is analogous.

2. It follows that F (R+ × Cr) ⊂ Cr. Let φ ∈ C. Set x = xφ. According to part 1, x is

bounded. Let

c = lim sup
t→∞

|x(t)|.

In case c < r we obtain t ≥ 0 with ||F (s, φ)|| = ||xs|| < r for all s ≥ t.

Suppose c ≥ r. We have c = lim supt→∞ x(t) or c = − lim inft→∞ x(t). Consider the

first case. There exist δ > 0 and T ≥ 0 such that

−µ(c− δ) + f(c+ δ) < −δ

and

x(s) ≤ c+ δ for all s ≥ T.

We have x(t) < c− δ for some t ≥ T + 1 since otherwise

ẋ(s) ≤ −µ(c− δ) + f(c+ δ) for all s ≥ T + 1,

which yields a contradiction. It follows that x(s) < c− δ for all s ≥ t since otherwise there

exists u > t with x(s) < c− δ for t ≤ s < u, x(u) = c− δ, and ẋ(u) ≥ 0, in contradiction

to

ẋ(u) ≤ −µ(c− δ) + f(c+ δ) < −δ < 0.

The last result yields

lim sup
s→∞

x(s) ≤ c− δ,
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which is a contradiction. The argument in the second case is analogous.

Using the Arzèla–Ascoli theorem, Eq. (1.1) and boundedness of solutions on [−1,∞)

we now obtain that for every φ ∈ C the ω-limit set

ω(φ) = {ψ ∈ C : There exists a sequence (tn)
∞
0 in R+ with

tn → ∞ and F (tn, φ) → ψ as n→ ∞}

is nonempty. ω-limit sets are compact, connected, and invariant in the sense that for every

ψ ∈ ω(φ) there is a solution x : R → R with x0 = ψ and xt ∈ ω(φ) for all t ∈ R. For

bounded solutions x : R→ R, the α-limit set

α(x) = {ψ ∈ C : There exists a sequence (tn)
∞
0 in R with

tn → −∞ and xtn → ψ as n→ ∞}

is nonempty, compact, connected, and invariant.

Proposition 2.1 and arguments as in Chapter 17 of [KWW], or in [Ha], yield the exis-

tence of a global attractor of the semiflow F , i.e., of a nonempty compact set A ⊂ C which

is invariant in the sense that

F (t, A) = A for all t ≥ 0

and which attracts bounded sets in the sense that for every bounded set B ⊂ C and for

every open set U ⊃ A there exists t ≥ 0 with

F ([t,∞) ×B) ⊂ U.

Global attractors are uniquely determined.

The compactness of A, its invariance property and the injectivity of the maps F (t, ·),

t ≥ 0, combined permit to show that the map

[0,∞)× A ∋ (t, φ) 7→ F (t, φ) ∈ A

extends to a continuous flow

FA : R×A→ A;

for every φ ∈ A and for all t ∈ R we have

FA(t, φ) = xt

with the uniquely determined solution x : R → R of Eq. (1.1) satisfying x0 = φ. In

particular, A is contained in the set

B = {φ ∈ C : There are a bounded solution x : R→ R

of Eq. (1.1) and t ∈ R so that φ = xt}.
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Proposition 2.2. A = B.

Proof. Proof of B ⊆ A: Every φ ∈ B is contained in an orbit X = {xt : t ∈ R} of a

bounded solution x : R → R. We have F (t, X) = X for all t ≥ 0. Then the attraction

property of A shows that the bounded set X is contained in every open set U ⊃ A. Hence

dist(φ,A) = 0, and by the closedness of A, φ ∈ A.

The compactness and invariance properties of A yield that A is contained in the set B.

Note that we have

A = F (1, A) ⊂ C1;

A is a closed subset of C1. Using the flow FA and the continuity of the map

C ∋ φ 7→ F (1, φ) ∈ C1

one obtains that C and C1 define the same topology on A.

The aim of the present paper is to show that for subsets of parameters µ and functions f

with property (H0), which include examples of the form (2.1), the global attractor coincides

with an invariant set whose fine structure we know very well from the results in [KWW].

Next, we introduce this invariant set, for µ > 0 and C1-functions f : R→ R so that

(H1) f(0) = 0, f ′(ξ) > 0 for all ξ ∈ R, f − µ id has exactly one zero ξ− in (−∞, 0) and

exactly one zero ξ+ in (0,∞), f ′(ξ−) < µ, f ′(ξ+) < µ,

and

(H2) f ′(0) > µ
cos θ for θ ∈

(

3π
2 , 2π

)

with θ = −µ tan θ.

These hypotheses are stronger than those used in [KWW]. Observe that (H1) implies (H0).

We begin with linearizing the semiflow F at its stationary point 0. The smoothness of

f implies that each map F (t, ·), t ≥ 0, is continuously differentiable. For all φ, ψ in C and

t ≥ 0 we have

D2F (t, φ)ψ = vt

with the solution v : [−1,∞) → R of the linear variational equation

v̇(s) = −µv(s) + f ′(xφ(s− 1))v(s− 1)

along xφ which is given by v0 = ψ. The operators

D2F (t, 0), t ≥ 0,

form a strongly continuous semigroup; for φ = 0 the linear variational equation is

v̇(t) = −µv(t) + f ′(0)v(t− 1). (2.2)
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The spectrum σ of the generator of the semigroup (D2F (t, 0))t≥0 consists of the solutions

λ ∈ C of the characteristic equation

λ+ µ− f ′(0)e−λ = 0 (2.3)

obtained from an Ansatz with exponential functions for solutions of Eq. (2.2). Due to

f ′(0) > µ
cos θ > µ, there is exactly one positive λ0 ∈ σ. The remaining points in σ are given

by a sequence of complex conjugate pairs (λj , λj)
∞
1 with

λ0 > Reλ1 > Reλ2 > . . . , 2jπ − π < Imλj < 2jπ

for 1 ≤ j ∈ N, and Reλj → −∞ as j → ∞. Every λ ∈ σ is a simple eigenvalue, i.e., has a

1-dimensional generalized eigenspace. The inequality in condition (H2) is equivalent to

Reλ1 > 0.

Let P, L,Q denote the realified generalized eigenspaces of the spectral sets {λ0}, {λ1, λ1},

and σ \ {λ0, λ1, λ1}, respectively. Then

C = P ⊕ L⊕Q, dimP = 1, P = Rη0 with η0 ∈
◦

K, dimL = 2,

and there exists a 3-dimensional C1-submanifold Wloc of C which is locally positively

invariant under F and has tangent space P ⊕ L at 0 ∈ Wloc; for every φ ∈ Wloc there

exists a solution x : R → R of Eq. (1.1) so that xt ∈ Wloc for t in some unbounded

interval I ⊂ (−∞, 0), and xt → 0 as t → −∞. Clearly Wloc and its forward extension

W = F (R+ ×Wloc) are subsets of the unstable set

Wu(0) = {φ ∈ C : There is a solution x : R→ R of Eq. (1.1)

with x0 = φ and xt → 0 as t→ −∞}

of the stationary point 0, which is contained in A, according to Propositions 2.2 and 2.1.

The closure W ⊆ A is the set which will turn out to be equal to A (and to Wu(0)), for a

subset of the pairs (µ, f) with properties (H1) and (H2).

Before describing the structure of W in detail we address a more elementary result on

solution behaviour related to monotonicity. Solutions x : [−1,∞) → R which are strictly

positive (negative) on an interval [t− 1, t], t ≥ 0, satisfy xs ∈
◦

K (∈ −
◦

K) for all s ≥ t; the

remaining solutions are those with all segments xt in the positively invariant set

S = {φ ∈ C : (xφ)−1(0) is unbounded}.
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The set S is a Lipschitz graph over a closed hyperplane, more precisely, there exists a

Lipschitz continuous map Sep : L⊕Q→ P so that

S = {χ+ Sep(χ) : χ ∈ L⊕Q}.

For φ above S, i.e., PrP φ − Sep(PrL⊕Q φ) = aη0 with a > 0, there exists t ≥ 0 with

F (s, φ) ∈
◦

K for all s ≥ t, while for φ below S, F ([t,∞) × {φ}) ⊂ −
◦

K for some t ≥ 0. So

the graph S is a separatrix for nonoscillatory solution behaviour. For every φ 6= ψ in S,

φ− ψ ∈ C \ (K ∪ (−K)),

i.e., no pair of different points in S is in order relation.

We return to the set W . Observe that condition (H1) implies that F has exactly 3

stationary points, namely the constant functions ξ− ∈ C with value ξ−, 0, and ξ+ ∈ C

with value ξ+; and that ξ− and ξ+ are stable and hyperbolic.

Theorem 2.3.

(i) W is compact and contains ξ−, 0, ξ+. For every φ ∈W ,

ξ− ≤ φ ≤ ξ+.

For every φ ∈ W there exists a uniquely determined solution x(φ) : R → R of Eq.

(1.1) with x(φ)0 = φ, and x(φ)t ∈W for all t ∈ R. The map

FW : R×W ∋ (t, φ) 7→ x(φ)t ∈W

is a continuous flow. W and bdW = W \W are invariant under FW . For every

φ ∈ W , α(x(φ)) = {0}. The points φ ∈ W \ S above (below) S form a connected

set and satisfy FW (t, φ) → ξ+ (→ ξ−) as t → ∞. The set O = W ∩ S \ (W ∩ S)

is the orbit in C of a nonconstant periodic solution p : R → R of Eq. (1.1) with

minimal period ω ∈ (1, 2). For every φ ∈ bdW \ {ξ−, ξ+}, α(x(φ)) = O, and for

every φ ∈W ∩ S \ {0}, ω(φ) = O.

(ii) There are subspaces G1, G2, G3 of C with dimensions 1, 2, 3, respectively, and a

closed subspace E of C with

C = G3 ⊕ E, G3 = G2 ⊕G1,

and compact subsets

DW of G3 with DW = ∂DW ∪
◦

DW
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and

DS of G2 with DS = ∂DS ∪
◦

DS ,

and continuous maps

w : DW → E, wS : DS → G1 ⊕ E

so that
W = {χ+ w(χ) : χ ∈ DW },

W = {χ+ w(χ) : χ ∈
◦

DW },

W ∩ S = {χ+ wS(χ) : χ ∈ DS},

O = {χ+ wS(χ) : χ ∈ ∂DS}.

The set ∂DS is the trace of a simple closed C1-curve c, and
◦

DS is the bounded

component of G2 \ |c|. The map wS is C1-smooth in the sense that its restriction

to
◦

DS is C1-smooth and that for every χ ∈ ∂DS there is an open neighbourhood N

of χ in G2 so that wS |N∩DS
extends to a C1-map on N . The complement in ∂DW

of the set {χ−, χ+} given by

ξ− = χ− + w(χ−), ξ+ = χ+ + w(χ+),

is a 2-dimensional C1-submanifold of G3, and the restriction of w to DW \{χ−, χ+}

is C1-smooth in the sense that the restriction of w to
◦

DW is C1-smooth and for every

χ ∈ ∂DW \{χ−, χ+} there is an open neighbourhood N of χ in G3 so that w|N∩DW
extends to a C1-map on N . There exist homeomorphisms from W and DW onto

the closed unit ball in R3 which send bdW and ∂DW onto the unit sphere.

One may visualize the invariant set W as a smooth solid spindle which is split by the

invariant disk W ∩ S into the basins of attraction towards the tips ξ− and ξ+.

Observe that O = W ∩ S \ (W ∩ S) is the only periodic orbit in W , and recall that

according to Proposition 2.2 the global attractor A contains all periodic orbits. So, a

necessary condition for the desired equation

A = W

is that the semiflow F has exactly one periodic orbit. This uniqueness property is violated

for many µ and f satisfying (H1) and (H2). Simple examples are given by µ > 0 and f

linear in a neighbourhood of 0 so that Reλk = 0 for some integer k ≥ 2 — in these cases

there exist periodic solutions

t 7→ a cos((Imλk)t), a 6= 0,
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with minimal period 2π
Imλk

< 1 < ω. We shall consider µ > 0 and C1-functions f : R→ R

so that in addition to (H1) and (H2) the following properties hold:

(H3) f ′(0) < µ
cos θ for θ ∈ (4π − π

2 , 4π) with θ = −µ tan θ,

(H4) f(ξ) = −f(−ξ) for all ξ ∈ R, and

the function (0,∞) ∋ ξ 7→ ξf ′(ξ)
f(ξ) ∈ R is strictly decreasing.

Condition (H3) is equivalent to Re λ2 < 0, as we shall see. All functions f of the form

(2.1) satisfy condition (H4); for suitable µ, α, β also (H1), (H2), (H3) are satisfied.

The first major steps in the proof of

A ⊆W

are to exclude periodic orbits different from O, and then to deduce from a Poincaré–

Bendixson theorem [MPS2] that as α-limit sets of solutions on R with segments in A only

the subsets

{ξ−}, {0}, {ξ+}, and O of W

occur.

At the end of this section we recall the definition and properties of a discrete Lyapunov

functional

V : C \ {0} → 2N ∪ {∞}

which goes back to work of Mallet-Paret [MP] and older observations of Myshkis [My] and

others that for certain delay differential equations the oscillation frequency of solutions

does not increase with t. The functional played an important role in [KWW] and will also

be used in the sequel.

The definition is as follows, First, set

sc(φ) = sup
{

k ∈ N \ {0} : There is a strictly increasing finite sequence

(si)k0 in [−1, 0] with φ(si−1)φ(si) < 0 for all i ∈ {1, 2, . . . , k}
}

≤ ∞

for φ ∈ C \ (K ∪ (−K)), and sc(φ) = 0 for 0 6= φ ∈ K ∪ (−K). Then, define

V (φ) =

{

sc(φ) if sc(φ) ∈ 2N ∪ {∞},

sc(φ) + 1 if sc(φ) ∈ 2N+ 1.

Set
R = {φ ∈ C1 :φ(0) 6= 0 or φ̇(0)φ(−1) > 0,

φ(−1) 6= 0 or φ̇(−1)φ(0) < 0,

all zeros of φ in (−1, 0) are simple}.

The next proposition lists basic properties of V .
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Proposition 2.4.

(i) For every φ ∈ C \ {0} and for every sequence (φn)∞0 in C \ {0} with φn → φ as

n→ ∞,

V (φ) ≤ lim inf
n→∞

V (φn).

(ii) For every φ ∈ R and for every sequence (φn)
∞
0 in C1 \ {0} with ||φn − φ||C1 → 0

as n→ ∞,

V (φ) = lim
n→∞

V (φn) <∞.

(iii) Let an interval I ⊂ R, a real ν ≥ 0, and continuous functions b : I → (0,∞) and

z : I + [−1, 0] → R be given so that z|I is differentiable with

ż(t) = −νz(t) + b(t)z(t− 1) (2.4)

for inf I < t ∈ I, and z(t) 6= 0 for some t ∈ I + [−1, 0]. Then the map I ∋ t 7→

V (zt) ∈ 2N ∪ {∞} is decreasing, with

V (zt) = ∞ or V (zt−2) > V (zt) in case t ∈ I, t− 2 ∈ I, z(t) = 0 = z(t− 1).

For all t ∈ I with t− 3 ∈ I and V (zt−3) = V (zt), we have zt ∈ R.

Observe that linear variational equations

v̇(t) = −µv(t) + f ′(x(t− 1))v(t− 1)

along solutions of Eq. (1.1) are of the form considered in the last statement, as well as the

equation satisfied by weighted differences y = 1
c
(x− x̂), c 6= 0, of solutions x, x̂ of Eq. (1.1)

on a common domain,

ẏ(t) = −µy(t) +

(
∫ 1

0

f ′((1 − s)x̂(t− 1) + sx(t− 1)) ds

)

y(t− 1).

The next a-priori estimate is a special case of a result which says that solutions with

finite oscillation frequency do not decay too fast as t increases. Estimates of this type go

back to Walther [Wa1] and Mallet-Paret [MP], see also [Ar] and [Ca1].

Proposition 2.5. For every ν > 0, b0, and b1 ≥ b0 there is k > 0 so that for every t0 ∈ R,

and for every continuous function b : [t0 − 5, t0] → R with range in [b0, b1], and for every

solution z : [t0 − 6, t0] → R of Eq. (2.4) with zt0−5 6= 0 and V (zt0−5) ≤ 2, we have

||zt0−1|| ≤ k||zt0 ||.
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Finally we recall that the periodic solution p of Eq. (1.1) satisfies

pt ∈ R and V (pt) = 2 = V (ṗt) for all t ∈ R,

pt − ps ∈ R and V (pt − ps) = 2 for all t 6= s in [0, ω);

and that it was normalized in [KWW] so that p(0) = 0 and ṗ(0) > 0.

3. Periodic orbits

Throughout this section we assume that µ > 0 and the C1-function f : R→ R satisfy

(H1) and (H4). Conditions (H2) and (H3) are supposed only if stated explicitly. We

obtain results on uniqueness and on absence of periodic orbits with prescribed oscillation

frequencies, i.e., in given level sets of V . Our approach uses the technique of Cao [Ca2]

who studied slowly oscillating periodic solutions of negative feedback equations, which have

zeros spaced at distances larger than the delay. The periodic solutions of the equations

considered here have higher oscillation frequencies, and not all arguments from [Ca2] can

easily be adapted to the present situation. We overcome these difficulties by means of the

oddness condition in (H4).

It is convenient to consider a further equation,

ż(t) = −µz(t) + g(z(t− α)) (3.1)

with µ > 0, α > 0, and a C1-function g : R → R which is odd (g(ξ) = −g(−ξ) for all

ξ ∈ R) and satisfies

g′(ξ) > 0 for all ξ ∈ R.

If z is a solution of Eq. (3.1) then the function w given by w(t) = z(αt) is a solution of the

equation

ẇ(t) = α [−µw(t) + g(w(t− 1))] . (3.2)

We begin with a-priori information on periodic solutions of Eq. (3.2) which follows from

general results in [MPS2] for certain systems of delay differential equations.

Proposition 3.1. Let w : R → R be a nonconstant periodic solution of Eq. (3.2) with

minimal period Tw > 0.

(i) There are t0 ∈ R and t1 ∈ (t0, t0 + Tw) with 0 < ẇ(t) for t0 < t < t1, w(R) =

[w(t0), w(t1)], ẇ(t) < 0 for t1 < t < t0 + Tw, and

cw : [0, Tw] ∋ t 7→

(

w(t)

w(t− 1)

)

∈ R2
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is a simple closed curve.

(ii) If w has a zero then

w

(

t+
Tw
2

)

= −w(t) for all t ∈ R.

(iii) {wt : t ∈ R} ⊂ V −1(2k) for some k ∈ N.

(iv) For every nonconstant periodic solution y : R→ R of Eq. (3.2) with minimal period

Ty > 0 and yt 6= ws for all t, s in R, we have |cy| ∩ |cw| = ∅.

We have w(t0) 6= 0 6= w(t1) in assertion (i), as follows from assertion (iii) in combination

with the last statement in Proposition 2.4 and the definition of R.

Observe that for every solution z : R→ R of Eq. (3.1) and for the solution w : R ∋ t 7→

z(αt) ∈ R of Eq. (3.2) we have
{(

z(t)

ż(t)

)

: t ∈ R

}

=

{(

w(t)
1
α
ẇ(t)

)

: t ∈ R

}

.

Notice that for every solution w : R→ R of Eq. (3.2) and for every t ∈ R, the values w(t)

and 1
α
ẇ(t) uniquely determine w(t− 1). Proposition 3.1 combined with these facts yields

the following result.

Corollary 3.2. Let z : R → R be a nonconstant periodic solution of Eq. (3.1) with

minimal period Tz > 0. The map

Z : [0, Tz] ∋ t 7→

(

z(t)

ż(t)

)

∈ R2

is a simple closed curve. If z has a zero then

0 ∈ int(Z).

Let x : R→ R be a nonconstant periodic solution of Eq. (3.1) with minimal period Tx > 0.

Suppose that the functions w : R ∋ t 7→ z(αt) ∈ R and y : R ∋ t 7→ x(αt) ∈ R satisfy

yt 6= ws for all t, s in R.

Then the traces of Z and of the simple closed curve

X : [0, Tx] ∋ t 7→

(

x(t)

ẋ(t)

)

∈ R2

are disjoint.

For θ ∈ [0, 2π) define

l(θ) = {r(cos θ, sin θ)tr ∈ R2 : r ≥ 0}.
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Proposition 3.3. Let z : R → R be a nonconstant periodic solution of Eq. (3.1) with

minimal period T > 0 and with a zero, and let a maximum a ∈ R of z be given. Then the

functions

ψ : [0, 2π) ∋ θ 7→ inf{t ∈ (a, a+ T ] : (z(t), ż(t))tr ∈ l(θ)} ∈ R

and

Ψ : [0, 2π) ∋ θ 7→ sup{t ∈ (a, a+ T ] : (z(t), ż(t))tr ∈ l(θ)} ∈ R

are strictly decreasing.

Proof. Proposition 3.1(i) yields the existence of reals a1, a2, a3 so that a < a1 < a2 < a3 <

a+ T and

z(a1) = ż(a2) = z(a3) = 0,

z(t) > 0 for a < t < a1 and for a3 < t ≤ a+ T,

ż(t) < 0 for a < t < a2,

z(t) < 0 for a1 < t < a3,

ż(t) > 0 for a2 < t < a+ T.

Clearly, ψ(0) = a+ T , ψ(π/2) = a3 and

ψ(θ) ∈ (a3, a+ T ) for all θ ∈
(

0,
π

2

)

.

Let θ ∈ (0, π/2) be given. Observe that

(z(t), ż(t))tr ∈ l(θ) for some t ∈ (a, a+ T ]

if and only if

t ∈ (a3, a+ T ) and θ = arctan
ż(t)

z(t)
.

The function

(a3, a+ T ) ∋ t 7→ arctan
ż(t)

z(t)
∈ R

is continuous with range in (0, π/2), and

lim
t→a

+
3

arctan
ż(t)

z(t)
=
π

2
, lim

t→a+T−
arctan

ż(t)

z(t)
= 0.

It follows that

ψ(θ) = min

{

t ∈ (a3, a+ T ) : θ = arctan
ż(t)

z(t)

}

.
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Let θ1 and θ2 be given in (0, π/2) with θ1 < θ2. Suppose

ψ(θ1) ≤ ψ(θ2).

Then there exist t1 and t2 in (a3, a+ T ) with

ti = ψ(θi), θi = arctan
ż(ti)

z(ti)
, i ∈ {1, 2}.

From t1 = ψ(θ1) ≤ ψ(θ2) = t2 and θ1 < θ2 we infer

t1 < t2.

The facts

lim
t→a

+
3

arctan
ż(t)

z(t)
=
π

2

and

0 < arctan
ż(t1)

z(t1)
< arctan

ż(t2)

z(t2)
<
π

2

yield a real t3 ∈ (a3, t1) so that

arctan
ż(t3)

z(t3)
= arctan

ż(t2)

z(t2)
= θ2.

This contradicts the definition of ψ(θ2) and t2. Consequently, ψ(θ1) > ψ(θ2), and hence ψ

is strictly decreasing on [0, π/2].

The proofs for the intervals [π/2, π], [π, 3π/2], [3π/2, 2π) and for the function Ψ are

analogous.

The next result is the key to uniqueness and absence of periodic orbits. It is analogous

to an earlier result of Cao [Ca2] for slowly oscillating periodic solutions.

Proposition 3.4. Let k ∈ N \ {0}, α ≥ 1. Let an odd C1-function g : R → R be given

which satisfies g′(0) = f ′(0), and

g(ξ) > f(ξ) and
g′(ξ)

g(ξ)
>
f ′(ξ)

f(ξ)
for all ξ > 0.

Let a nonconstant periodic solution x of Eq. (1.1) with minimal period Tx > 0 and a

nonconstant periodic solution z of Eq. (3.1) with minimal period Tz > 0 be given. Suppose

w : R ∋ t 7→ z(αt) ∈ R satisfies V (xt) = V (wt) = 2k for all t ∈ R. Then for

X : [0, Tx] ∋ t 7→

(

x(t)

ẋ(t)

)

∈ R2 and Z : [0, Tz] ∋ t 7→

(

z(t)

ż(t)

)

∈ R2
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the following situation cannot occur:

|Z| ⊂ |X | ∪ ext(X),

|Z| ∩ |X | 6= ∅,

r|Z| ⊂ ext(X) for all r > 1.

Proof. Assume that for the closed curves X and Z,

|Z| ⊂ |X | ∪ ext(X),

|Z| ∩ |X | 6= ∅,

r|Z| ⊂ ext(X) for all r > 1

hold. Our aim is to get a contradiction.

The assumptions k ∈ N \ {0} and V (xt) = V (wt) = 2k for all t ∈ R yield x(t) = 0 for

some t ∈ R and z(s) = 0 for some s ∈ R. Corollary 3.2 implies 0 ∈ int(X) and 0 ∈ int(Z).

Observe that, for every θ ∈ [0, 2π), any point of l(θ) ∩ |Z| is not closer to 0 ∈ R2 than

any point of l(θ) ∩ |X |.

Using |Z| ∩ |X | 6= ∅, we may assume X(0) = Z(0) without loss of generality, i.e.,

x(0) = z(0) and ẋ(0) = ż(0). (3.3)

We distinguish two cases.

Case 1: ẋ(0) = ż(0) = 0.

Then c = x(0) = z(0) 6= 0 since 0 ∈ int(X) and 0 ∈ int(Z). Assume c > 0 (The proof

in case c < 0 is analogous). Proposition 3.1(i) and (ii) yield that x and z have the special

symmetry x(t+ Tx/2) = −x(t) and z(t+ Tz/2) = −z(t) for all t ∈ R, and

c = max
t∈R

x(t) = max
t∈R

z(t),

−c = min
t∈R

x(t) = min
t∈R

z(t),

ẋ(t) > 0 for −
Tx
2
< t < 0,

ż(t) > 0 for −
Tz
2
< t < 0,

x(−
Tx
2

) = −c, ẋ(−
Tx
2

) = 0,

z(−
Tz
2

) = −c, ż(−
Tz
2

) = 0.
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Let T ∗ = min{Tx, Tz}.

Claim: z(s) ≤ x(s) for −T ∗/2 ≤ s ≤ 0.

Proof of the Claim: Let x−1 and z−1 denote the inverses of the functions

[−
Tx
2
, 0] ∋ t 7→ x(t) ∈ R

and

[−
Tz
2
, 0] ∋ t 7→ z(t) ∈ R,

respectively. Then the domain of x−1 and z−1 is [−c, c]. The functions

φx : [−c, c] ∋ u 7→ ẋ(x−1(u)) ∈ R,

φz : [−c, c] ∋ u 7→ ż(z−1(u)) ∈ R

satisfy φx(−c) = φx(c) = φz(−c) = φz(c) = 0, and φx(u) > 0, φz(u) > 0 for all u ∈ (−c, c).

The arcs

Ωx =

{

X(t) : t ∈ [−
Tx
2
, 0]

}

and Ωz =

{

Z(t) : t ∈ [−
Tz
2
, 0]

}

coincide with the graphs

{

(u, φx(u))
tr : u ∈ [−c, c]

}

and
{

(u, φz(u))
tr : u ∈ [−c, c]

}

,

respectively. From the special symmetry of x and z we obtain

|X | = Ωx ∪ (−Ωx) and |Z| = Ωz ∪ (−Ωz).

Hence

int(X) =
{

(u, v)tr : u ∈ (−c, c), −φx(−u) < v < φx(u)
}

.

From |Z| ⊂ |X | ∪ ext(X) we conclude

φx(u) ≤ φz(u) for − c ≤ u ≤ c.

The functions x and z satisfy

ẋ(t) = φx(x(t)) for all t ∈ [−
Tx
2
, 0]

and

ż(t) = φz(z(t)) for all t ∈ [−
Tz
2
, 0].
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For −Tz/2 < s1 < s2 < 0 the last equation and the inequality ż(t) > 0 for −Tz/2 < t < 0

combined yield
∫ z(s2)

z(s1)

du

φz(u)
=

∫ s2

s1

ż(t)

φz(z(t))
dt = s2 − s1.

Also,
∫ x(s2)

x(s1)

du

φx(u)
= s2 − s1 for

−Tx
2

< s1 < s2 < 0.

The continuity of z and x at 0 yields

∫ c

z(s)

du

φz(u)
= −s for

−Tz
2

< s ≤ 0

and
∫ c

x(s)

du

φx(u)
= −s for

−Tx
2

< s ≤ 0.

For −T ∗/2 < s ≤ 0 we obtain immediately that for every such s,

∫ c

z(s)

du

φz(u)
=

∫ c

x(s)

du

φx(u)
,

and using 0 < φx(u) ≤ φz(u) on (−c, c) we infer

z(s) ≤ x(s) for
−T ∗

2
< s ≤ 0.

Using continuity we complete the proof of the claim.

If Tz > Tx then from the claim above and from x(−Tx/2) = −c we obtain z(−Tx/2) ≤

x(−Tx/2) = −c. This is impossible since −Tz/2 < −Tx/2 < 0, z(−Tz/2) = −c and

ż(t) > 0 for −Tz/2 < t < 0. So

Tz ≤ Tx.

Proposition 3.1 implies that all zeros of z are simple and the distance between two

consecutive zeros of z is Tz/2. This fact and the equations V (wt) = 2k for all t ∈ R

combined yield

(k −
1

2
)Tz ≤ α ≤ kTz.

Using V (wt) = 2k for all t ∈ R and the last assertion of Proposition 2.4(iii) we infer

(k −
1

2
)Tz < α < kTz.
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One can similarly obtain

(k −
1

2
)Tx < 1 < kTx.

Combining α ≥ 1, Tz ≤ Tx and the last two inequalities we get

(k −
1

2
)Tz ≤ (k −

1

2
)Tx < 1 ≤ α < kTz ≤ kTx. (3.4)

Hence

−kTz < −α ≤ −1 < −(k −
1

2
)Tz (3.5)

follows. Using the inequalities ż(t) > 0 for −Tz/2 < t < 0, Proposition 3.1(i), and the

periodicity of z, we conclude that

ż(t) < 0 for − kTz < t < −(k −
1

2
)Tz.

This inequality and (3.5) combined imply

z(−α) ≥ z(−1).

From the periodicity and the special symmetry of z we find

z(−1) = z(−1 + kTz) = −z(−1 + (k −
1

2
)Tz).

From (3.4) we obtain

−
Tz
2
< −1 + (k −

1

2
)Tz < 0.

These inequalities, the claim above and T ∗ = Tz combined yield

z(−1 + (k −
1

2
)Tz) ≤ x(−1 + (k −

1

2
)Tz).

Using that x is increasing on [−Tx

2 , 0] and the consequence

−
Tx
2

≤ −
Tz
2
< −1 + (k −

1

2
)Tz ≤ −1 + (k −

1

2
)Tx < 0

of the inequalities Tz ≤ Tx and (3.4), we infer

x(−1 + (k −
1

2
)Tz) ≤ x(−1 + (k −

1

2
)Tx).

By the periodicity and the special symmetry of x,

x(−1 + (k −
1

2
)Tx) = −x(−1 + kTx) = −x(−1).
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Consequently,
z(−α) ≥ z(−1)

= −z(−1 + (k −
1

2
)Tz)

≥ −x(−1 + (k −
1

2
)Tz)

≥ −x(−1 + (k −
1

2
)Tx)

= x(−1).

(3.6)

Using Eq. (3.1) and Eq. (1.1) and ż(0) = ẋ(0) = 0, z(0) = x(0) = c > 0 we obtain

z(−α) > 0, x(−1) > 0

and

g(z(−α)) = f(x(−1)).

Using the inequalities g(ξ) > f(ξ) for all ξ > 0 we infer

f(x(−1)) = g(z(−α)) > f(z(−α)).

The last inequality and the monotonicity of f yield

z(−α) < x(−1),

which contradicts (3.6).

Case 2: ż(0) = ẋ(0) 6= 0.

Let d = z(0) = x(0). There exists ǫ > 0 such that ż(t) 6= 0 and ẋ(t) 6= 0 for all

t ∈ (−ǫ, ǫ). Then there is δ > 0 so that there are inverses

z−1 : (d− δ, d+ δ) → R, x−1 : (d− δ, d+ δ) → R

of restrictions of z and x to open intervals in (−ǫ, ǫ), respectively. The maps

ηz : (d− δ, d+ δ) ∋ u 7→ ż(z−1(u)) ∈ R,

ηx : (d− δ, d+ δ) ∋ u 7→ ẋ(x−1(u)) ∈ R

are C1-smooth since, from equations (1.1) and (3.1), x and z are C2-smooth. We have

ηz(d) = ż(0) = ẋ(0) = ηx(d) 6= 0, and for all u ∈ (d− δ, d+ δ),

ηx
′(u) = ẍ(x−1(u))

d

du
x−1(u) = ẍ(x−1(u))

1

ẋ(x−1(u))
,

ηz
′(u) = z̈(z−1(u))

d

du
z−1(u) = z̈(z−1(u))

1

ż(z−1(u))
.
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In particular,

ηx
′(d) =

ẍ(0)

ẋ(0)
and ηz

′(d) =
z̈(0)

ż(0)
. (3.7)

The sets

{

(u, ηx(u))
tr : u ∈ (d− δ, d+ δ)

}

,
{

(u, ηz(u))
tr : u ∈ (d− δ, d+ δ)

}

are graph representations of pieces of |X | and |Z|, respectively. It is not difficult to show

that there exists γ > 0 so that the sets

{

(u, v)tr : u ∈ (d−
δ

2
, d+

δ

2
), ηx(u) − γ < v < ηx(u)

}

and
{

(u, v)tr : u ∈ (d−
δ

2
, d+

δ

2
), ηx(u) < v < ηx(u) + γ

}

belong to different connected components of R2 \ |X |. Hence, using |Z| ⊂ |X | ∪ ext(X)

and (d, ηz(d)) = (d, ηx(d)), we infer

ηz
′(d) = ηx

′(d).

This fact, the relations ż(0) = ẋ(0) 6= 0, and (3.7) combined imply

z̈(0) = ẍ(0).

Differentiation of Eq. (1.1) and of Eq. (3.1) yields

ẍ(t) = −µẋ(t) + f ′(x(t− 1))ẋ(t− 1),

z̈(t) = −µż(t) + g′(z(t− α))ż(t− α).

From z̈(0) = ẍ(0) and ż(0) = ẋ(0) we obtain

g′(z(−α))ż(−α) = f ′(x(−1))ẋ(−1). (3.8)

Eq. (1.1) and Eq. (3.1) at t = 0, and (3.3) combined yield

g(z(−α)) = f(x(−1)).

There are three subcases of Case 2:

Either z(−α) > 0, x(−1) > 0,

or z(−α) < 0, x(−1) < 0,

or z(−α) = x(−1) = 0.
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Case 2.1: z(−α) > 0, x(−1) > 0.

The equality g(z(−α)) = f(x(−1)) and the inequality g(ξ) > f(ξ) for all ξ > 0 com-

bined imply

f(x(−1)) = g(z(−α)) > f(z(−α)).

Hence, by the monotonicity of f ,

0 < z(−α) < x(−1).

From
g′(ξ)

g(ξ)
>
f ′(ξ)

f(ξ)
for all ξ > 0

we find

ξ
g′(ξ)

g(ξ)
> ξ

f ′(ξ)

f(ξ)
for all ξ > 0.

This fact, 0 < z(−α) < x(−1), and (H4) combined yield

z(−α)
g′(z(−α))

g(z(−α))
> z(−α)

f ′(z(−α))

f(z(−α))
> x(−1)

f ′(x(−1))

f(x(−1))
> 0. (3.9)

The equation (3.8) and g(z(−α)) = f(x(−1)) and the inequality 0 < z(−α) < x(−1)

combined yield

z(−α)
g′(z(−α))

g(z(−α))

ż(−α)

z(−α)
= x(−1)

f ′(x(−1))

f(x(−1))

ẋ(−1)

x(−1)
. (3.10)

According to (3.9) and (3.10) we can distinguish three subcases of Case 2.1:

Either ż(−α) = ẋ(−1) = 0,

or 0 <
ż(−α)

z(−α)
<
ẋ(−1)

x(−1)
,

or
ẋ(−1)

x(−1)
<
ż(−α)

z(−α)
< 0.

Case 2.1.1: ż(−α) = ẋ(−1) = 0.

We have Z(−α) /∈ int(X), and

Z(−α) ∈ {(u, 0)tr ∈ R2 : u > 0}.

It is easy to see from Proposition 3.1 that

{(u, 0)tr ∈ R2 : 0 ≤ u < x(−1)} ⊂ int(X).
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Consequently,

z(−α) ≥ x(−1),

which contradicts z(−α) < x(−1).

Case 2.1.2: 0 < ż(−α)
z(−α) <

ẋ(−1)
x(−1) .

Choose a ∈ R so that z(a) = maxt∈R z(t) and −α ∈ (a, a+Tz]. Select the reals a1, a2, a3

so that a < a1 < a2 < a3 < a+ Tz and

z(a1) = ż(a2) = z(a3) = 0,

z(t) > 0 for a < t < a1 and for a3 < t ≤ a+ Tz,

ż(t) < 0 for a < t < a2,

z(t) < 0 for a1 < t < a3,

ż(t) > 0 for a2 < t < a+ Tz.

Recall Proposition 3.3. Define

θz = arctan
ż(−α)

z(−α)
and θx = arctan

ẋ(−1)

x(−1)
.

Then θz, θx are in (0, π/2), θz < θx and

Z(−α) ∈ l(θz), X(−1) ∈ l(θx).

Let t∗ = ψ(θx). Observe t∗ ∈ [a3, a + Tz). Recall that, for every θ ∈ [0, 2π), any point of

|Z| ∩ l(θ) is not closer to the origin than any point of |X | ∩ l(θ). Consequently,

z(t∗) ≥ x(−1) > 0.

The monotonicity of ψ and the fact Z(−α) ∈ |Z| ∩ l(θz) combined yield

−α ≥ ψ(θz) > ψ(θx) = t∗.

As z is strictly increasing on [a3, a+ Tz], and a3 ≤ t∗ < −α ≤ a+ Tz we infer

z(t∗) < z(−α).

The last inequality and z(t∗) ≥ x(−1) > 0 together imply

z(−α) > x(−1),

a contradiction to z(−α) < x(−1).
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Case 2.1.3: ẋ(−1)
x(−1) <

ż(−α)
z(−α) < 0.

Define

θz = arctan
ż(−α)

z(−α)
+ 2π and θx = arctan

ẋ(−1)

x(−1)
+ 2π.

Then θz, θx are in (3π/2, 2π), θx < θz and

Z(−α) ∈ l(θz), X(−1) ∈ l(θx).

Choose a, a1, a2, a3 as in Case 2.1.2, and apply Proposition 3.3 to z as in Case 2.1.2. Let

t∗ = Ψ(θx). Observe t∗ ∈ (a, a1]. Analogously to Case 2.1.2, we find

z(t∗) ≥ x(−1) > 0.

Proposition 3.3 and Z(−α) ∈ |Z| ∩ l(θz) combined yield

t∗ = Ψ(θx) > Ψ(θz) ≥ −α.

Now we use the inequality a < −α < t∗ ≤ a1 and the fact that z is strictly decreasing on

(a, a1] to obtain

z(−α) > z(t∗).

Then we arrive at the contradiction

z(−α) > x(−1).

Case 2.2: z(−α) < 0, x(−1) < 0.

Arguments analogous to those used in Case 2.1 lead to a contradiction.

Case 2.3: z(−α) = x(−1) = 0.

Then equality (3.8) and the assumption g′(0) = f ′(0) 6= 0 combined imply

ż(−α) = ẋ(−1).

Here ż(−α) = ẋ(−1) 6= 0 since 0 ∈ int(Z) and 0 ∈ int(X).

From Eq. (3.1) at t = −α and from Eq. (1.1) at t = −1, we obtain

z(−2α) 6= 0, x(−2) 6= 0.

Defining z̃ : R ∋ t 7→ z(t − α) ∈ R and x̃ : R ∋ t 7→ x(t − 1) ∈ R, and replacing z and

x with z̃ and x̃, respectively, either Case 2.1 or Case 2.2 holds. As both cases lead to

contradictions we arrive at a contradiction also in Case 2.3.

In order to introduce quantities which are explicit in µ and f ′(0) and characterize

uniqueness and absence of periodic solutions of Eq. (1.1) we make a digression and consider

the characteristic equations

ζ + α[µ− f ′(0)e−ζ ] = 0 (3.11)
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obtained from an Ansatz t 7→ eζt for complex-valued solutions of the linear equations

ẏ(t) = α [−µy(t) + f ′(0)y(t− 1)] (3.12)

with parameter α > 0. The results for Eq. (2.3) are applicable and yield functions ζ0 :

(0,∞) → R and ζj : (0,∞) → R + i(2jπ − π, 2jπ), 0 6= j ∈ N, so that for each α > 0 the

solutions of Eq. (3.11) are

ζ0(α), ζ1(α), ζ1(α), . . . ,

and

ζ0(α) > Re ζ1(α) > . . . , Re ζj(α) → −∞ as j → −∞.

All functions ζj , j ∈ N, are analytic. Obviously, the solutions of Eq. (2.3) are given by

λj = ζj(1).

From f ′(0) > µ in (H1) we get

ζ0(α) > 0 for every α > 0.

If 0 6= j ∈ N then there is a uniquely determined parameter αj so that

Re ζj(αj) = 0;

we have

Im ζj(αj) = 2jπ − arccos
µ

f ′(0)

and

αj =
2jπ − arccos µ

f ′(0)
√

f ′(0)2 − µ2
.

Clearly,

αj < αj+1 for 0 6= j ∈ N.

We compute

(Re ζj)
′(αj) > 0 for 0 6= j ∈ N

and conclude that for every integer j > 0 the inequality

αj ≥ 1 (> 1)

is equivalent to Re ζj(1) ≤ 0 (< 0), or

Reλj ≤ 0 (< 0)
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in terms of the eigenvalues of the generator of the semigroup (D2F (t, 0))t≥0.

Recall from Proposition 3.1 that for any nonconstant periodic solution x : R → R of

Eq. (1.1) there exists k ∈ N so that V (xt) = 2k for all t ∈ R. For k ∈ N, we say that Eq.

(1.1) has a periodic orbit in V −1(2k) if it has a nonconstant periodic solution x : R → R

with V (xt) = 2k for all t ∈ R.

The main result of this section is summarized in the following theorem.

Theorem 3.5. Assume that hypotheses (H1) and (H4) are satisfied.

(i) For every k ∈ N \ {0}, Eq. (1.1) has at most one periodic orbit in V −1(2k).

(ii) For every k ∈ {0} ∪ {j ∈ N \ {0} : αj ≥ 1}, Eq. (1.1) has no periodic orbit in

V −1(2k).

Proof. 1. Suppose that k ∈ N\{0} and there exist nonconstant periodic solutions x : R→ R

and y : R→ R of Eq. (1.1) with minimal periods Tx > 0 and Ty > 0, respectively, so that

V (xt) = V (yt) = 2k for all t ∈ R, and {xt : t ∈ [0, Tx]} ∩ {yt : t ∈ [0, Ty]} = ∅. Consider

X : [0, Tx] ∋ t 7→

(

x(t)

ẋ(t)

)

∈ R2 and Y : [0, Ty] ∋ t 7→

(

y(t)

ẏ(t)

)

∈ R2.

Corollary 3.2 implies that either |X | ⊂ int(Y ) or |Y | ⊂ int(X). Without loss of generality

assume |Y | ⊂ int(X). Corollary 3.2 implies also 0 ∈ int(X) and 0 ∈ int(Y ). It follows that

ρ|Y | ⊂ ext(X) for all sufficiently large ρ > 0. Define

β = inf{ρ ≥ 0 : ρ′|Y | ⊂ ext(X) for all ρ′ > ρ}.

Then β > 1, ρ|Y | ⊂ ext(X) for all ρ > β, β|Y | ∩ |X | 6= ∅, and

β|Y | ⊂ |X | ∪ ext(X).

The function

g : R ∋ ξ 7→ βf

(

ξ

β

)

∈ R

is odd and continuously differentiable. The function

z : R ∋ t 7→ βy(t) ∈ R

is a Ty-periodic solution of Eq. (3.1) with α = 1 and g as just defined. Clearly, V (zt) = 2k

for all t ∈ R. Setting

Z : [0, Ty] ∋ t 7→

(

z(t)

ż(t)

)

∈ R2,
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we have

|Z| ⊂ |X | ∪ ext(X),

|Z| ∩ |X | 6= ∅,

r|Z| ⊂ ext(X) for all r > 1.

Using limξ→0
ξf ′(ξ)
f(ξ) = 1 and hypothesis (H4) we infer

ξf ′(ξ)

f(ξ)
< 1 for all ξ > 0.

For every ξ > 0, the function

(0,∞) ∋ u 7→ uf

(

ξ

u

)

∈ R

is strictly increasing since its derivatives at u > 0 are given by

f

(

ξ

u

)



1 −

ξ
u
f ′

(

ξ
u

)

f
(

ξ
u

)



 > 0.

This fact and β > 1 combined imply

g(ξ) = βf

(

ξ

β

)

> f(ξ) for all ξ > 0.

Using (H4) and β > 1 we obtain

g′(ξ)

g(ξ)
=

1

ξ

ξ
β
f ′

(

ξ
β

)

f
(

ξ
β

) >
1

ξ

ξf ′(ξ)

f(ξ)
=
f ′(ξ)

f(ξ)

for all ξ > 0. Clearly, g′(0) = f ′(0).

Now Proposition 3.4 yields a contradiction. This proves assertion (i).

2. We show that Eq. (1.1) has no periodic orbit in V −1(0). Suppose the contrary, i.e.,

that x : R → R is a nonconstant periodic solution of Eq. (1.1) with V (xt) = 0 for all

t ∈ R. The last statement in Proposition 2.4, the definition of R and periodicity of x

combined yield x(t) 6= 0 for all t ∈ R. Assume x(t) > 0 for all t ∈ R (The proof for the

case x(t) < 0 for all t ∈ R is analogous). Set m = mint∈R x(t) and M = maxt∈R x(t). As

x is nonconstant, either m ∈ (0, ξ+) or M > ξ+ holds. If m ∈ (0, ξ+) and s ∈ R is given



30

so that x(s) = m then ẋ(s) = 0. From hypothesis (H1) we obtain −µξ + f(ξ) > 0 for

0 < ξ < ξ+. Using this and the monotonicity of f we get

ẋ(s) = −µx(s) + f(x(s− 1)) ≥ −µx(s) + f(x(s)) > 0,

which is a contradiction.

If M > ξ+ and u ∈ R is chosen so that x(u) = M then ẋ(u) = 0. On the other hand,

the inequality −µξ + f(ξ) < 0 for ξ > ξ+ and the monotonicity of f combined yield

ẋ(u) = −µx(u) + f(x(u− 1)) ≤ −µx(u) + f(x(u)) < 0,

a contradiction.

3. Let k ∈ N \ {0} be given with αk ≥ 1. Suppose that x : R → R is a nonconstant

periodic solution of Eq. (1.1) with minimal period Tx > 0 and with V (xt) = 2k for all

t ∈ R.

The remarks about the characteristic equations (3.11) imply that

wk : R ∋ t 7→ cos ((Im ζk(αk))t) ∈ R

is a nontrivial periodic solution of Eq. (3.12) with α = αk. We have V (wkt ) = 2k for all

t ∈ R. It follows that

yk : R ∋ t 7→ wk
(

t

αk

)

∈ R

is a nontrivial periodic solution of Eq. (3.1) with α = αk and g(ξ) = f ′(0)ξ for all ξ ∈ R.

The minimal period is Tyk = 2παk

Im ζk(αk) . From Corollary 3.2 we infer that the closed curves

Y k : [0, Tyk ] ∋ t 7→

(

yk(t)

ẏk(t)

)

∈ R2 and X : [0, Tx] ∋ t 7→

(

x(t)

ẋ(t)

)

∈ R2

satisfy 0 ∈ int(Y k) ∩ int(X). Then we find β > 0 such that

β|Y k| ⊂ |X | ∪ ext(X),

β|Y k| ∩ |X | 6= ∅,

rβ|Y k| ⊂ ext(X) for all r > 1.

Consider z : R ∋ t 7→ βyk(t) ∈ R and w : R ∋ t 7→ z(αkt) ∈ R. Clearly, V (wt) = 2k for

all t ∈ R, and z is a Tyk -periodic solution of Eq. (3.1) with α = αk and g as above. The

closed curve

Z : [0, Tyk ] ∋ t 7→

(

z(t)

ż(t)

)

∈ R2
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satisfies |Z| ⊂ |X | ∪ ext(X), |Z| ∩ |X | 6= ∅, and r|Z| ⊂ ext(X) for all r > 1. Clearly,

g′(0) = f ′(0). The fact limξ→0
ξf ′(ξ)
f(ξ) = 1 and (H4) combined yield ξf ′(ξ)

f(ξ) < 1 for all ξ > 0,

or equivalently,
(

f(ξ)
ξ

)′

< 0 for all ξ > 0. Using this and the equation limξ→0
f(ξ)
ξ

= f ′(0)

we obtain g(ξ) = f ′(0)ξ > f(ξ) for all ξ > 0. Moreover,

g′(ξ)

g(ξ)
=

1

ξ
>
f ′(ξ)

f(ξ)
for all ξ > 0.

Applying Proposition 3.4 with α = αk and g(ξ) = f ′(0)ξ we get a contradiction.

Corollary 3.6. If hypotheses (H1), (H2), (H3) and (H4) hold then α2 > 1, Re λ2 < 0,

and the periodic orbit O = {pt : t ∈ R} of Theorem 2.3 is the only periodic orbit of Eq.

(1.1).

Proof. 1. The numbers θ from (H3) and Im ζ2(α2) = 4π − arccos µ
f ′(0) both belong to the

interval (4π − π
2 , 4π). Using the inequality f ′(0) < µ

cos θ in (H3) we get

α2 >
Im ζ2(α2)

µ
√

1
(cos θ)2

− 1
=

Im ζ2(α2)

−µ tan θ
=

Im ζ2(α2)

θ
.

Also,

cos(Im ζ2(α2)) = cos(4π − Im ζ2(α2)) =
µ

f ′(0)
> cos θ,

and it follows that α2 > 1 which gives Re λ2 < 0, according to the remarks preceding

Theorem 3.5.

2. Recall αj < αj+1 for 0 6= j ∈ N and apply Theorem 3.5.
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4. The global attractor is W

The main result of this paper is the following theorem.

Theorem 4.1. Under hypotheses (H1)–(H4) the set W is the global attractor of the semi-

flow F generated by Eq. (1.1).

The remaining part of the paper contains the proof of this result. The proof consists

of several parts which are formulated as propositions. Throughout this section we assume

(H1)–(H4) hold. We emphasize that in the proof of Theorem 4.1 below hypothesis (H4),

in particular the oddness of f , is not used explicitly; it enters only as one of the conditions

which permit to apply Corollary 3.6.

In view of the results of Section 2 it remains to show

A ⊆ W.

Note first that we have

Reλ2 < 0,

due to Corollary 3.6. It follows that the stationary point 0 is hyperbolic, and that Wloc is

a full local unstable manifold of F at 0.

Next, recall the characterization A = B from Proposition 2.2.

We need the following corollary of a general Poincaré–Bendixson theorem for monotone

cyclic feedback systems due to Mallet-Paret and Sell [MPS2].

Proposition 4.2. Let x : R→ R be a bounded solution of Eq. (1.1). Then α(x) is either

the orbit of a nonconstant periodic solution of Eq. (1.1), or for every solution y : R → R

of Eq. (1.1) with y0 ∈ α(x) the sets α(y) and ω(y0) consist of stationary points of F .

The analogue of Proposition 4.2 for ω-limit sets holds as well.

Proposition 4.3. Let x : R→ R be a bounded solution of Eq. (1.1). Then α(x) = O, or

α(x) = {0}, or x(t) = ξ− for all t ∈ R, or x(t) = ξ+ for all t ∈ R.

Proof. Suppose α(x) 6= O. We apply Proposition 4.2 and Corollary 3.6, and the fact that

ξ−, 0, ξ+ are the only stationary points of F , and infer

α(x) ∩ {0, ξ−, ξ+} 6= ∅.

In case ξ− ∈ α(x) the fact that ξ− is stable implies that for every ǫ > 0 and for every t ∈ R

there exists s ≤ t with ||xu− ξ−|| < ǫ for all u ≥ s. It follows that ||xt− ξ−|| < ǫ, and then

x(t) = ξ− for all t ∈ R.
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Analogously, we get in case ξ+ ∈ α(x) that

x(t) = ξ+ for all t ∈ R.

In the remaining case

0 ∈ α(x) and α(x) ∩ {ξ−, ξ+} = ∅.

Suppose there exists φ ∈ α(x) \ {0}. Consider the solution y : R → R of Eq. (1.1) with

y0 = φ. By Proposition 4.2, we have α(y)∪ω(y0) ⊆ {0, ξ−, ξ+}. From α(y)∪ω(y0) ⊆ α(x)

it follows that α(y) = ω(y0) = {0}. Using that 0 is hyperbolic and Wloc is a local unstable

manifold of F at 0, we find s ∈ R so that yu ∈ Wloc for all u ≤ s. The definition of W

gives yt ∈ W for all t ∈ R. Theorem 2.3 and φ ∈ W \ {0} together imply ω(y0) = O, or

ω(y0) = {ξ−}, or ω(y0) = {ξ+}. All these possibilities contradict ω(y0) = {0}.

In case φ ∈ A is the segment x0 of a bounded solution x : R → R of Eq. (1.1) with

α(x) = {0} we obtain φ ∈ W = F ([0,∞) × Wloc) from limt→−∞ xt = 0 and from the

fact that Wloc is a local unstable manifold of F at the hyperbolic stationary point 0. If

φ = ξ− or φ = ξ+ then φ ∈ W according to Theorem 2.3. Thus in view of the preceding

proposition it remains to show that for every segment φ = xt, t ∈ R, of a bounded solution

x : R→ R of Eq. (1.1) with

α(x) = O

we have

φ ∈W.

In order to accomplish this we need several preliminary results. The first one is a version

of Proposition 4.3 for ω-limit sets. Note that the domains of attraction to ξ− and to ξ+,

namely the sets
A− = {φ ∈ C : F (t, φ) → ξ− as t→ ∞} and

A+ = {φ ∈ C : F (t, φ) → ξ+ as t→ ∞},

are nonempty and open.

Proposition 4.4. For φ ∈ C \ (A− ∪A+), either ω(φ) = O or ω(φ) = {0}.

Proof. 1. If ω(ψ) ∩ (A− ∪ A+) 6= ∅ for some ψ ∈ C, then ω(ψ) = {ξ−} or ω(ψ) = {ξ+}.

This follows from the definitions of the domains of attraction and of ω-limit sets.

2. Suppose φ ∈ C \ (A− ∪A+) and ω(φ) 6= O.

2.1. Then ω(φ)∩ {ξ−, ξ+} = ∅ because otherwise, part 1 yields ω(φ) = {ξ−} or ω(φ) =

{ξ+} which implies φ ∈ A− ∪A+, a contradiction.

2.2. Proof of 0 ∈ ω(φ): Let χ ∈ ω(φ) be given. The version of Proposition 4.2 for

ω-limit sets and Corollary 3.6 combined yield ω(χ) ⊆ {0, ξ−, ξ+}. Using ω(χ) ⊆ ω(φ) and

step 2.1 we infer ω(χ) ⊆ {0}, which gives 0 ∈ ω(χ) ⊆ ω(φ).
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2.3. Proof of ω(φ) ⊆ {0}: Let χ ∈ ω(φ) and consider the solution y : R → R of Eq.

(1.1) with y0 = χ. By the version of Proposition 4.2 for ω-limit sets and Corollary 3.6,

α(y) ∪ ω(χ) ⊆ {0, ξ−, ξ+}. ¿From ω(φ) ∩ {ξ−, ξ+} = ∅ and α(y) ∪ ω(χ) ⊆ ω(φ) we get

α(y) = {0} = ω(χ). The equation α(y) = {0} yields χ ∈ W = F (R+ ×Wloc), compare

arguments given before Proposition 4.4. Using Theorem 2.3 we obtain χ = 0 or ω(χ) = O

or ω(χ) = {ξ−} or ω(χ) = {ξ+}. The last three possibilities contradict ω(χ) = {0}.

Therefore, χ = 0, and thus ω(φ) = {0}.

Next we want to exclude bounded solutions x : R→ R of Eq. (1.1) with α(x) = O and

ω(x0) = {0}.

Recall that Q denotes the realified generalized eigenspace of the generator of the semi-

group (D2F (t, 0))t≥0 which is associated with the complement of the three leading eigen-

values λ0, λ1, λ1 in the spectrum.

Proposition 4.5. V (Q \ {0}) ⊆ {4, 6, . . . ,∞}.

Proof. Suppose 0 6= φ ∈ Q and V (φ) ≤ 2. Proposition 2.4(iii) implies that for the solution

y : [−1,∞) → R of the linear equation

ẏ(t) = −µy(t) + f ′(0)y(t− 1) (2.2)

with y0 = φ there exists t ≥ 1 with ys ∈ R for all s ≥ t. Using Proposition 2.4(ii),

continuous dependence on initial data, and Eq. (2.2), we find a neighbourhood U of φ in

C so that for all ψ ∈ U , ||D2F (t, 0)ψ− yt||C1 is so small that V (D2F (t, 0)ψ) = V (yt) ≤ 2,

and consequently

V (D2F (s, 0)ψ) ≤ 2 for all s ≥ t. (4.1)

Choose ψ ∈ U ∩ Q so that its projection χ onto the realified generalized eigenspace of

{λ2, λ2} along the complementary realified generalized eigenspace is nonzero. Then χ ∈ Q,

and there exist reals a 6= 0 and b so that the solution z : [−1,∞) → R of Eq. (2.2) with

z0 = χ is given by

z(s) = ae(Reλ2)s cos((Imλ2)s+ b) for s ≥ −1.

Let v : [−1,∞) → R denote the solution of Eq. (2.2) with v0 = ψ. The estimate on the

complementary subspace (see e.g. [HVL] or [DGVLW]) implies that there exist ǫ > 0 and

c ≥ 0 so that for all s ≥ 0,

|e−(Reλ2)sv(s) − a cos((Imλ2)s+ b)| ≤ ||e−(Re λ2)sD2F (s, 0)(ψ− χ)||

≤ ce−ǫs||ψ − χ||.
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Using 3π < Imλ2 < 4π we infer that for some s ≥ t the segment vs has more than 2 sign

changes, in contradiction to (4.1).

Set A0 = {φ ∈ C : F (t, φ) → 0 as t→ ∞}.

Proposition 4.6. V (A0 \ {0}) ⊆ {4, 6, . . . ,∞}.

Proof. Suppose V (φ) ≤ 2 for some φ ∈ A0 \ {0}. Set x = xφ. From Proposition 2.4 we

obtain t ≥ 0 so that V (xs) = V (xt) ≤ 2 for all s ≥ t. Proposition 2.5 for b : [0,∞) ∋ u 7→
∫ 1

0
f ′(sx(u − 1)) ds ∈ R and the remarks following Proposition 2.4 show that there exist

t1 ≥ t and k ≥ 0 so that for all s ≥ t1,

||xs−1|| ≤ k||xs||.

Then, for all s ≥ t1 and for all u ∈ [s− 1, s],

|ẋ(u)| ≤ µ|x(u)| + max{f ′(ξ) : |ξ| ≤ max
−1≤v

|x(v)|}||xs−1||

≤ µ||xs|| + max{f ′(ξ) : |ξ| ≤ max
−1≤v

|x(v)|}k||xs||,

and it follows that the bounded sequence of the C1-functions ||xj||
−1xj , 1 ≤ j ∈ N,

has uniformly bounded derivatives. The Arzèla–Ascoli theorem yields a subsequence of

points φk = ||xjk ||
−1xjk , k ∈ N, which converges to some unit vector ρ ∈ C. Proposition

2.4(i) gives V (ρ) ≤ lim infk→∞ V (φk) ≤ 2. On the other hand, the points xjk with k

sufficiently large belong to a local stable manifold W s of the map F (1, ·) at 0, which

implies ρ ∈ T0W
s = Q. Then Proposition 4.5 gives V (ρ) ≥ 4, a contradiction.

Corollary 4.7. Solutions x : R→ R of Eq. (1.1) with α(x) = O and ω(x0) = {0} do not

exist.

Proof. Suppose the contrary and consider a solution x : R→ R of Eq. (1.1) with α(x) = O

and ω(x0) = {0}. Proposition 4.6 implies V (xs) ≥ 4 for all s ∈ R. On the other hand,

there is a sequence (sj)
0
−∞ in R with sj → −∞ and xsj

→ p0 as j → −∞. We have

p1 ∈ R because of Proposition 2.4(iii) and periodicity. Using the continuity of C ∋ φ 7→

F (1, φ) ∈ C1, we obtain ||xsj+1 − p1||C1 → 0 as j → −∞. Then Proposition 2.4(ii) yields

V (xsj+1) = 2 for all sufficiently large negative integers j, a contradiction.

In the next step we exclude solutions which are homoclinic with respect to the periodic

orbit O.

Proposition 4.8. There is no solution x : R → R of Eq. (1.1) such that x0 /∈ O and

α(x) = ω(x0) = O.

Proof. 1. Suppose that there exists a solution x : R → R of Eq. (1.1) so that x0 /∈ O and

α(x) = ω(x0) = O. Then Proposition 2.2 gives xt ∈ A for all t ∈ R.
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First we show that

V (xt − xs) = 2 for all t, s in R with t 6= s. (4.2)

For all t, s in R with t 6= s we have xt ∈ S, xs ∈ S, and 0 6= xt − xs. Consequently,

xt − xs ∈ C \ (K ∪ (−K)), and V (xt − xs) ≥ 2. In order to prove V (xt − xs) ≤ 2 we

distinguish two cases.

2. The case t 6= s and xt−nω − xs−nω 6→ 0 as n→ ∞: Using the compactness of O and

α(x) = O, there exist a strictly increasing sequence (nk)
∞
0 and reals t′, s′ in [0, ω) so that

t′ 6= s′ and

xt−nkω → pt′ and xs−nkω → ps′ as k → ∞.

As the topologies induced on A from C and C1 are equivalent, convergence holds also

in the C1-norm. Recall V (pt′ − ps′) = 2 and pt′ − ps′ ∈ R. Proposition 2.4(ii) yields

V (xt−nkω − xs−nkω) = 2 for all sufficiently large k ∈ N. Using Proposition 2.4(iii) and the

remarks thereafter we infer V (xt − xs) ≤ 2.

3. The case t 6= s and xt−nω − xs−nω → 0 as n → ∞: There exist τ ∈ [0, ω) and a

strictly increasing sequence (nk)
∞
0 so that xt−nkω → pτ and xs−nkω → pτ as k → ∞. For

ǫ ∈ (0, ω) we obtain xt+ǫ−nkω → pτ+ǫ 6= pτ for k → ∞, and therefore xt+ǫ−nkω−xs−nkω →

pτ+ǫ − pτ 6= 0 as k → ∞. For 0 < ǫ < min{ω, |t− s|}, part 2 is applicable for t+ ǫ instead

of t. We obtain xt+ǫ−xs 6= 0 and V (xt+ǫ−xs) ≤ 2 for 0 < ǫ < min{ω, |t−s|}. Proposition

2.4(i) yields

V (xt − xs) ≤ lim inf
ǫ→0+

V (xt+ǫ − xs) ≤ 2.

4. V (xt) = 2 for all t ∈ R holds since p0 ∈ R, V (p0) = 2, and there are sequences

(tn)
∞
0 and (sn)

∞
0 so that tn → ∞, sn → −∞, ||xtn − p0||C1 → 0 and ||xsn

− p0||C1 → 0 as

n→ ∞. This implies also xt ∈ R for all t ∈ R. Then all zeros of x are simple and there is

a sequence (tn)∞−∞ such that, for every n ∈ Z,

tn+1 − tn < 1, tn+2 − tn > 1,

x(tn) = 0, ẋ(t2n) > 0, ẋ(t2n+1) < 0,

x(t) > 0 for all t ∈ (t2n, t2n+1),

x(t) < 0 for all t ∈ (t2n−1, t2n).

Using Eq. (1.1) one finds x(t2n − 1) > 0 and x(t2n+1 − 1) < 0 for all n ∈ Z.

5. Claim: For every n ∈ Z, x(tn − 1) 6= x(tn+1 − 1) and x(tn − 1) 6= x(tn+2 − 1). For

every n ∈ Z,

we have x(tn+1 − 1) > x(tn+3 − 1) in case x(tn − 1) < x(tn+2 − 1),
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and

we have x(tn+1 − 1) < x(tn+3 − 1) in case x(tn − 1) > x(tn+2 − 1).

The sequence (x(t2n − 1))∞−∞ is strictly monotone.

Proof of the claim: Proposition 2.4 and (4.2) combined yield xt − xs ∈ R for all t, s in

R with t 6= s. Consequently, the continuous curve

X : R ∋ t 7→

(

x(t)

x(t− 1)

)

∈ R2

is injective. This immediately implies the first assertion of the claim.

Suppose x(tn − 1) < x(tn+2 − 1) and n = 2k. Then 0 < x(t2k − 1) < x(t2k+2 − 1),

x(t2k+1 − 1) < 0, x(t2k+3 − 1) < 0, and x(t) > 0 for all t ∈ (t2k, t2k+1) ∪ (t2k+2, t2k+3).

The restriction X
∣

∣

[t2k,t2k+1]
and the line segment λ : [0, 1] ∋ s 7→ sX(t2k) + (1 −

s)X(t2k+1) ∈ R2 form a simple closed curve γ. The set

{(

u

v

)

∈ R2 : u < 0, or u = 0 and v < x(t2k+1 − 1), or u = 0 and v > x(t2k − 1)

}

belongs to ext(γ) since each of its points can be connected by parallels to the abscissa in

R2\|γ| to points with arbitrarily large negative first components. In particular, X(t2k+2) ∈

ext(γ). The injectivity of X and the inequality x(t) > 0 for all t ∈ (t2k+2, t2k+3) combined

give

X([t2k+2, t2k+3)) ⊂ ext(γ).

Suppose x(t2k+1−1) < x(t2k+3−1). Then X(t2k+3) ∈ λ((0, 1)). The inequality ẋ(t2k+3) <

0 implies that there exists ǫ ∈ (0, t2k+3−t2k+2) so thatX(t2k+3−ǫ) ∈ int(γ), a contradiction

to X([t2k+2, t2k+3)) ⊂ ext(γ). Therefore, x(t2k+1 − 1) > x(t2k+3 − 1). The proofs for the

other cases of the second statement in the claim are analogous.

The assertion about monotonicity follows from the second statement.

6. The properties of p imply that τ = 0 is the unique zero of p in [0, ω) with ṗ(τ) > 0,

or equivalently, p(τ − 1) > 0. From α(x) = ω(x0) = O = {pt : t ∈ [0, ω]} and from the

properties of the sequence (t2n)∞−∞ listed in part 4 it follows that

xt2n → p0 as |n| → ∞.

In particular, x(t2n − 1) → p(−1) as |n| → ∞, which contradicts the last statement in the

claim of part 5.

In addition to Proposition 4.4, Corollary 4.7 and Proposition 4.8, the final step in the

proof of Theorem 4.1 requires a result from [KWW] about the Floquet multipliers of the
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periodic solution p, i.e., about the spectrum σp of the compact operator D2F (ω, p0). We

briefly recall the relevant facts: Every λ ∈ σp \ {0} is an isolated point of σp, and an

eigenvalue with finite-dimensional generalized eigenspace. We have 1 ∈ σp and

D2F (ω, p0)ṗ0 = ṗ0;

the periodic solution is called hyperbolic if σp ∩ S
1
C

= {1} and if 1 is a simple eigenvalue

(i.e., the generalized eigenspace of 1 is one-dimensional). For λ ∈ σp \ {0} with Imλ ≥ 0

and for r > 0 let GR(λ), C≤r and Cr< denote the realified generalized eigenspaces of the

spectral sets {λ, λ}, {ζ ∈ σp : |ζ| ≤ r}, and {ζ ∈ σp : r < |ζ|}, respectively. Then

Cr< =
⊕

λ∈σp,Imλ≥0,r<|λ|

GR(λ),

and we have the following result.

Proposition 4.9. There exist rp ∈ (0, 1), λc ∈ (rp, 1], and λu ∈ (1,∞) so that

either λc < 1, {λ ∈ σp : rp < |λ|} = {λc, 1, λu}, and

1 = dimGR(λc) = dimGR(1) = dimGR(λu),

or λc = 1, {λ ∈ σp : rp < |λ|} = {1, λu}, and

2 = dimGR(1), 1 = dimGR(λu).

In both cases,

C≤rp
∩ V −1({0, 2}) = ∅ and Crp< \ {0} ⊂ V −1({0, 2}).

The remarks preceding Proposition 4.4 show that the following result completes the

proof of Theorem 4.1.

Proposition 4.10. For every bounded solution x : R → R of Eq. (1.1) with α(x) = O

and for every t ∈ R,

xt ∈W.

Proof. 1. The case O is hyperbolic: The set

Y = C<1 ⊕GR(λu)

is a closed subspace of codimension 1 in C. The C1-curve t 7→ pt intersects p0 + Y

transversally at t = ω since

D1F (ω, p0)1 = ṗω = ṗ0 ∈ GR(1).
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As in Appendix I of [KWW] we obtain an open neighbourhood U of p0 in C and a C1-map

τ : U → R

with τ(p0) = ω and F (τ(φ), φ) ∈ p0 + Y for all φ ∈ U , and p0 is a hyperbolic fixed point

of the Poincaré map

P : U ∩ (p0 + Y ) ∋ φ 7→ F (τ(φ), φ) ∈ p0 + Y.

In Section 11 of [KWW] the unstable set

Wu(O) = F (R+ ×Wu(p0, F (ω, ·), Nu))

of the periodic orbit O was defined by means of a local unstable manifold

Wu(p0, F (ω, ·), Nu) of the period map F (ω, ·) at its fixed point p0, and in Section 12

of [KWW] the equation

Wu(O) = bdW \ {ξ−, ξ+}

was established. Proposition V.1 of [KWW] guarantees that a local unstable manifold Wu

of P at p0 is contained in F (R+ ×Wu(p0, F (ω, ·), Nu)). It follows that

Wu ⊂W,

and by invariance,

F (R+ ×Wu) ⊂W.

Now let a bounded solution x : R → R of Eq. (1.1) with α(x) = O be given. In the

Appendix we show how to find a strictly increasing sequence (tj)
0
−∞ in R so that the points

xtj , j ∈ −N, form a trajectory of P with

xtj → p0 as j → −∞.

Hyperbolicity implies that for some j0 ∈ −N all xtj , j ≤ j0, belong to Wu. Consequently,

for every t ∈ R,

xt ∈ F (R+ ×Wu) ⊂W.

2. The case O is not hyperbolic: As the details are somewhat involved we first describe

the idea of the proof. As in part 1 we consider a Poincaré map P associated with the

periodic orbit O and with the fixed point p0. In the present case there is a 2-dimensional

local center-unstable manifold W cu of P at p0, which contains a one-dimensional local

unstable manifold Wu ⊂ W . For a given bounded solution x : R → R of Eq. (1.1) with
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α(x) = O we want to show that all segments xt belong to W . As in part 1 the equation

α(x) = O yields a strictly increasing sequence of reals tj , j ∈ −N, so that the segments

xtj form a trajectory of P and converge to p0 as j → −∞, but now we only obtain

xtj ∈W cu

for all integers j ≤ j0 with some j0 ∈ −N. Suppose the points xtj do not belong to Wu.

Then we get unstable motion away from p0 and Wu on one (open) side W cu
+ of W cu; for

every φ in this side, there is a backward trajectory (φj)
0
−∞ of P with φ0 = φ so that

φj → p0 as j → −∞. (4.3)

There are points on the branches of Wu ⊂ W cu below and above a center manifold

W c ⊂ W cu of P at p0 which belong to the open domains of attraction A− and A+

towards ξ− and ξ+, respectively. A continuity argument yields a point φ ∈ W cu
+ so that

F (t, φ) 6→ ξ−, F (t, φ) 6→ ξ+ as t→ ∞. Then

ω(φ) = O or ω(φ) = {0},

and (4.3) implies that there is a solution y : R→ R of Eq. (1.1) with y0 = φ and α(y) = O.

As there are no nontrivial connections from O to O and no connections from O to 0, we

obtain a contradiction, and have shown

xtj ∈ Wu ⊂Wu(O) ⊂W

for some j ∈ −N. Using the flow FW we get xt ∈W for all t ∈ R.

We begin the description of the details.

2.1. Choose a basis vector ψu of GR(λu) and a vector ψc so that

GR(1) = Rṗ0 ⊕Rψc.

The set Y = C<1 ⊕ Rψc ⊕ Rψu is a linear subspace of codimension 1 in C, and ṗ0 /∈ Y .

Then consider an open neighbourhood U of p0 and a Poincaré map

P : U ∩ (p0 + Y ) → p0 + Y.

Choosing the neighbourhood U of p0 small enough one can achieve that

U ∩ (p0 + Y ) ∩ O = {p0} and U ∩ {0, ξ−, ξ+} = ∅.
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There are a local unstable manifold Wu of P at p0, λ ∈ ( 1
λu
, 1) and an open neigh-

bourhood Nu
Y of 0 in Y so that for every backward trajectory (φj)

0
−∞ of P with

λj(φj − p0) ∈ Nu
Y for all j ∈ −N

and

λj(φj − p0) → 0 as j → −∞

we have

φ0 ∈Wu.

As in part 1

Wu ⊂W.

2.2. Claim: Every neighbourhood of p0 in Wu contains points of A− and points of A+.

Proof: Proposition 12.5 of [KWW] guarantees that the local unstable manifold of a

certain Poincaré map PH associated with O contains points from A− as well as from

A+. An application of Theorem V.3 in [KWW] to PH then shows that Wu(O) ∩ A− 6=

∅ 6= Wu(O) ∩ A+. By Theorem V.3 in [KWW] once again, now applied to P , we get

Wu(O) = F (R+ ×Wu), and it follows that

Wu ∩ A− 6= ∅ 6= Wu ∩ A+.

Finally, use that each point in Wu ∩ A− and Wu ∩ A+ extends to a backward trajectory

(φj)
0
−∞ of P which converges to p0 as j → −∞; it follows that every neighbourhood of p0

contains points from A− and A+.

2.3. Consider a C1-smooth center-unstable manifold W cu of the Poincaré map P at p0

as in [KWW]. It is not difficult to see that there are open neighbourhoods N and V of p0

in C with the following properties:

P (N ∩W cu) = V ∩W cu, and P defines a C1-diffeomorphism from N ∩W cu onto

V ∩W cu. Let P−1
cu denote the inverse.

Every trajectory (φn)
0
−∞ of P in N has all its points in W cu.

The projection PrY1≤
: Y → Y along Y<1 = C<1 onto Y1≤ = Rψc ⊕ Rψu defines a

C1-diffeomorphism from (V ∩W cu) − p0 onto an open neighbourhood N1≤ of 0 in

Y1≤.

The map

T1 : V ∩W cu ∋ φ 7→ PrY1≤
(φ− p0) ∈ Y1≤

satisfies DT1(p0) = idY1≤
. Choose an open neighbourhood V1 of p0 in V so small that

P−1
cu (V1 ∩W

cu) ⊂ V ∩W cu,
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and set

U1 = T1(V1 ∩W
cu)(⊂ N1≤).

Let T−1
1 : N1≤ →W cu denote the inverse of T1. The transformed map

P−1
1 : U1 ∋ φ 7→ T1(P

−1
cu (T−1

1 (φ))) ∈ Y1≤

is C1-smooth with P−1
1 (U1) ⊂ N1≤, P−1

1 (0) = 0. The eigenvalues of DP−1
1 (0) are 1

and λ−1
u (< 1), the corresponding realified eigenspaces are Y1 = Rψc and Y1< = Rψu,

respectively. Using a local center manifold of P−1
1 at 0 and a local stable manifold of P−1

1

at 0 we find a C1-diffeomorphism T2 from an open neighbourhood U2 of 0 in U1 onto an

open neighbourhood ŨR of 0 in Y1≤, with DT2(0) = idY1≤
, and an open neighbourhood

UR of 0 in ŨR so that T2 and the restricted inverse T−1
2 : UR → Y1≤ satisfy

P−1
1 (T−1

2 (UR)) ⊂ U2,

and so that the transformed map

P−1
2 : UR ∋ φ 7→ T2(P

−1
1 (T−1

2 φ)) ∈ Y1≤

has the following properties:

P−1
2 (0) = 0, DP−1

2 (0)ψc = ψc, DP−1
2 (0)ψu = λ−1

u ψu,

P−1
2 (UR ∩ Rψu) ⊂ Rψu, P−1

2 (UR ∩ Rψc) ⊂ Rψc.

So we can apply Appendix IV of [KWW] to the map

fp = P−1
2

and to the 1-dimensional spaces Z = Rψu and Rψc. Fix α ∈ ( 1
λu
, λ). Choose a new

(equivalent) norm || · ||s on Y1≤ so that the projections Y1≤ → Y1≤ along Z onto Rψc and

along Rψc onto Z have norm 1 (with respect to || · ||s). Clearly, ||Dfp(0)φ||s = 1
λu

||φ||s for

all φ ∈ Z. Choose ǫ ∈ (0, 1) so that the quadrangle

R = (−ǫ, ǫ)ψu + (−ǫ, ǫ)ψc

is contained in UR, and

||fp(φ)||s ≤ α||φ||s for all φ ∈ (−ǫ, ǫ)ψu.
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Set

NZ = (−ǫ, ǫ)ψu and Nc = (−ǫ, ǫ)ψc.

Incidentally, let us establish the following relation between Z and Wu.

2.4. Claim: The C1-map

T−1 : UR ∋ φ 7→ T−1
1 (T−1

2 (φ)) ∈ p0 + Y

defines a C1-diffeomorphism from an open subset (−ǫu, ǫu)ψu, ǫu ∈ (0, ǫ), onto an open

neighbourhood of p0 in Wu.

Proof: 2.4.1. DT−1(0)ψu 6= 0 since T1 and T2 are C1-diffeomorphisms. T−1(0) = p0.

2.4.2. fp maps NZ into itself, with

||fp(φ) − fp(0)||s ≤ α||φ− 0||s on NZ .

2.4.3. T1 is given by a translation, followed by a linear continuous map. So it is Lipschitz

continuous. T2 and T−1 are C1-maps, and therefore locally Lipschitz continuous. It follows

that there exist ǫ1 ∈ (0, ǫ) and constants c1 > 0, c2 > 0 with

||T−1(φ) − T−1(ψ)|| ≤ c1||φ− ψ||s on (−ǫ1, ǫ1)ψu,

and

||T2(T1(φ)) − T2(T1(ψ))||s ≤ c2||φ− ψ|| on T−1((−ǫ1, ǫ1)ψu).

2.4.4. Define T : T−1((−ǫ1, ǫ1)ψu) → (−ǫ1, ǫ1)ψu by

T (ψ) = T2(T1(ψ)).

Choose ρ > so that ||ψ|| < ρ and ψ ∈ Y imply ψ ∈ Nu
Y . Then choose ǫ2 ∈ (0, ǫ1) so that

for all φ ∈ (−ǫ2, ǫ2)ψu, the element ψ = T−1(φ) satisfies

c1c2||ψ − p0|| < ρ.

2.4.5. Let φ ∈ (−ǫ2, ǫ2)ψu. Set φj = f jp(φ), for j ∈ N, and ψj = T−1(φ−j), for j ∈ −N.

Then (ψj)
0
−∞ is a trajectory of P , and for all j ∈ −N we have

||λj(ψj − p0)|| = λj ||T−1(φ−j) − T−1(0)|| = λj ||T−1(f−j
p (φ)) − T−1(0)||

≤ λjc1α
−j ||φ− 0||s ≤ c1

(α

λ

)−j

c2||ψ0 − p0||.

Using α
λ
< 1 we infer

λj(ψj − p0) → 0 as j → −∞
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and

||λj(ψj − p0)|| < ρ, or λj(ψj − p0) ∈ Nu
Y .

It follows that

ψ0 = T−1(φ) belongs to Wu.

2.4.6. We have T−1((−ǫ2, ǫ2)ψu) ⊂Wu by part 2.4.5. Hence DT−1(0)T0(−ǫ2, ǫ2)ψu ⊂

Tp0W
u. Using the result of part 2.4.1 and dimTp0W

u = 1 we conclude that T−1 defines a

C1-diffeomorphism from an open neighbourhood (−ǫu, ǫu)ψu, 0 < ǫu < ǫ2, onto an open

neighbourhood of p0 in Wu.

2.5. We define open sides of the quadrangle R by

R+ = NZ + (0, ǫ)ψc, R− = NZ + (−ǫ, 0)ψc,

introduce slopes of vectors ρ = ρZ + ρc with ρZ ∈ Z and 0 6= ρc ∈ Rψc by

sl(ρ) =
||ρZ ||s
||ρc||s

,

choose h > 0, and consider cones

K+
h = {ρ ∈ Y1≤ : PrRψc

ρ ∈ (0,∞)ψc, sl(ρ) < h},

K−
h = {ρ ∈ Y1≤ : PrRψc

ρ ∈ (−∞, 0)ψc, sl(ρ) < h}

as in Appendix IV of [KWW].

We repeat Proposition IV.1 of [KWW]:

For every h > 0 there exists an integer n1(h) ≥ 4 such that for each

χ ∈
1

n1(h)
(NZ +Nc)

we have

fp

(

1

n1(h)
(NZ +Nc) ∩ (χ+K+

h )

)

⊂ fp(χ) +K+
h

and

fp

(

1

n1(h)
(NZ +Nc) ∩ (χ+K−

h )

)

⊂ fp(χ) +K−
h .

Claim: fp maps 1
n1(h)

R+ into Z + (0,∞)ψc and 1
n1(h)

R− into Z + (−∞, 0)ψc.

Proof: Let φ ∈ 1
n1(h)

R+. Then φ = φZ + aψc with φZ ∈ Z ∩ 1
n1(h)

(NZ +Nc) and 0 <

a < ǫ. In particular, φ ∈ φZ +K+
h . Using Proposition IV.1 in [KWW] and fp(Z ∩R) ⊂ Z



45

we infer fp(φ) ∈ fp(φZ) +K+
h ⊂ Z +K+

h ⊂ Z + (0,∞)ψc. The proof for φ ∈ 1
n1(h)R− is

analogous. (So, fp does not interchange the open sides of 1
n1(h)R.)

2.6. Let a bounded solution x : R→ R of Eq. (1.1) be given with

α(x) = O.

In the Appendix we show how to find a trajectory (φj)
0
−∞ of P in N with

φj → p0 as j → −∞

which consists of segments of x; all φj , j ∈ −N, belong to W cu. We may assume that

for every j ∈ −N, φj ∈ V , T1(φj) ∈ U2, and ψ−j = T2(T1(φj)) belongs to 1
n1(h)R. Then

(ψj)
∞
0 is a trajectory of fp in R with

ψj → 0 as j → ∞.

Recall from the description at the beginning of part 2 that the main step of the proof is to

show φj ∈ Wu for some j ∈ −N. This follows from part 2.4 provided we find j ∈ N with

ψj ∈ (−ǫu, ǫu)ψu ⊂ Z. In the next step we show ψ0 ∈ Z.

2.7. Suppose

ψ0 ∈ R \ Z.

2.7.1. Claim: Either there exists a trajectory (χj)
∞
0 of fp in (0, ǫ)ψc with χj → 0 as

j → ∞, or there exists a trajectory (χj)
∞
0 of fp in (−ǫ, 0)ψc with χj → 0 as j → ∞; in

both cases ||χj+1||s < ||χj ||s for all j ∈ N.

Proof: The claim in part 2.5 yields ψj ∈ R\Z for all j ∈ N. Proposition IV.3 of [KWW]

applies and yields δ ∈ (0, ǫ) so that for all r ∈ (0, δ), fp(rψc) = r̂ψc with 0 < r̂ < r, or

for all r ∈ (−δ, 0), fp(rψc) = r̂ψc with r < r̂ < 0. Consider the first case. Set r = δ
2 .

The trajectory (f jp(rψc))
∞
0 of fp in (0, ǫ)ψc converges to a point r0ψc with 0 ≤ r0 < r. In

case 0 < r0, r0ψc is a fixed point of fp in R \ {0}, and ρ0 = T−1
1 (T−1

2 (r0ψc)) is a fixed

point of P in U ∩ (p0 + Y ) \ {p0}. By U ∩ {0, ξ−, ξ+} = ∅, it follows that ρ0 defines a

nontrivial periodic solution of Eq. (1.1) whose orbit is O, due to uniqueness; the relations

ρ0 ∈ O ∩ U ∩ (p0 + Y ) = {p0} yield a contradiction. Therefore,

r0 = 0.

Set χj = f jp (rψc), for j ∈ N. The estimates ||χj+1||s < ||χj ||s, j ∈ N, are obvious. The

proof for the second case is analogous.

2.7.2. Let Ro, o ∈ {+,−}, denote the open side of R so that Rψc ∩ Ro contains a

trajectory (χj)
∞
0 of fp with χj → 0 as j → ∞.
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Claim: There exists an integer n > 0 so that for every ψ ∈ 1
n
Ro there is a trajectory

(ψj)
∞
0 of fp in R with ψ0 = ψ and ψj → 0 as j → ∞.

Proof for o = + (The proof for o = − is analogous): There exists k ∈ N with

(χj +K−
h ) ∩ (Z + (0,∞)ψc) ⊂

1

n1(h)
R+ for all integers j ≥ k.

Consequently,

(χj +K−
h ) ∩

1

n1(h)
R+ ⊂

1

n1(h)
R+ for k ≤ j ∈ N.

Using the result of Proposition IV.1 in [KWW] and the claim in part 2.5 we find

fp

(

(χj +K−
h ) ∩

1

n1(h)
R+

)

⊂ (χj+1 +K−
h ) ∩ (Z + (0,∞)ψc)

⊂ (χj+1 +K−
h ) ∩

1

n1(h)
R+ for k ≤ j ∈ N.

The sets (χj+1 + K−
h ) ∩ 1

n1(h)R+, k ≤ j ∈ N, are decreasing (use ||χj+1||s < ||χj||s),

have empty intersection, and converge to 0 as j → ∞. It follows that for every ψ ∈

(χk +K−
h ) ∩ 1

n1(h)R+ there is a trajectory (ψl)
∞
0 of fp in 1

n1(h)R+ ⊂ R with ψ0 = ψ and

ψl → 0 as l → ∞. Choosing an integer n > n1(h) so that 1
n
R+ ⊂ (χk +K−

h ) ∩ 1
n1(h)R+,

the proof of the claim is complete.

2.7.3. Consider the open neighbourhood 1
n
(−ǫu, ǫu)ψu of 0 in (−ǫu, ǫu)ψu. The claims

in parts 2.2 and 2.4 combined yield that there exist points

φ− and φ+ in
1

n
(−ǫu, ǫu)ψu ⊂

1

n
(−ǫ, ǫ)ψu

so that T−1(φ−) ∈ A−, T−1(φ+) ∈ A+. Then the openness of A− and of A+ and the

continuity of T−1 and the fact that φ−, φ+ belong to the boundary of 1
n
Ro in Y1≤ combined

yield that there exist points ψ−, ψ+ in 1
n
Ro with

T−1(ψ−) ∈ A−, T−1(ψ+) ∈ A+.

So, the open subsets {ψ ∈ 1
n
Ro : T−1(ψ) ∈ A−}, {ψ ∈ 1

n
Ro : T−1(ψ) ∈ A+} of 1

n
Ro are

nonempty. By connectedness, there exists ψ ∈ 1
n
Ro with

T−1(ψ) ∈ C \ (A− ∪A+).

Set φ = T−1(ψ). Then φ 6= p0 (since ψ ∈ 1
n
Ro and 0 /∈ 1

n
Ro), and φ ∈ C \ {0}.
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Using the claim of part 2.7.2 we infer that φ extends to a trajectory (φ̃j)
0
−∞ of P with

φ̃0 = φ and φ̃j → p0 as j → −∞. There is a solution y : R→ R of Eq. (1.1) with y0 = φ.

We deduce

α(y) = O.

Proposition 4.4 and φ /∈ A− ∪ A+ combined give the alternative

ω(φ) = O or ω(φ) = {0}.

Since φ ∈ U∩(p0+Y )\{p0} and U∩(p0+Y )∩O = {p0}, we obtain O∩{yt : t ∈ R} = ∅. The

absence of nontrivial solutions homoclinic to O (Proposition 4.8) rules out the possibility

ω(φ) = O. Corollary 4.7 excludes the remaining possibility. So, altogether we arrived at a

contradiction; (4.4) is false, and we have

ψ0 ∈ R ∩ Z = (−ǫ, ǫ)ψu.

2.8. As fp contracts (−ǫ, ǫ)ψu we obtain j ∈ N with ψj ∈ (−ǫu, ǫu)ψu. By the claim

of part 2.4, φ−j = T−1(ψj) ∈ Wu ⊂ W . Using the invariance properties of W and the

injectivity of all maps F (t, ·), t ≥ 0, we finally conclude that xt ∈W for all t ∈ R.
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Appendix:
Periodic orbits as α-limit sets and

backward trajectories of Poincaré maps

We provide the details of the proof of a result which is familiar for ordinary differential

equations, but seems not available in quotable form for delay differential equations. In the

sequel we consider a strictly monotone C1-function f : R→ R, a real µ > 0, a nonconstant

periodic solution q : R → R of Eq. (1.1) with minimal period tq > 1, and a solution

x : R→ R of Eq. (1.1) so that x is bounded on (−∞, 0] and has α-limit set

Q = {qt : t ∈ R}.

Let F : R+ ×C → C be the semiflow of Eq. (1.1) as in Section 2. Each map F (t, ·), t ≥ 0,

is injective. Let a closed subspace H of C with codimension 1 be given so that

q̇0 = q̇tq = D1F (tq, q0)1 ∈ C \H.

We recall the construction of a Poincaré map associated with Q, tq, H, and q0 ∈ q0 +H.

There is a continuous linear functional η : C → R with

H = η−1(0).

An application of the implicit function theorem to the equation

η(F (t, φ) − q0) = 0

close to its solution (tq, q0) ∈ R×C yields an open neighbourhoodN of q0 in C, ǫ ∈ (0, tq/2),

and a C1-map τ : N → (tq − ǫ, tq + ǫ) so that τ(q0) = tq and F (τ(φ), φ) ∈ q0 +H for all

φ ∈ N , and for every (t, φ) ∈ (tq − ǫ, tq + ǫ) ×N with F (t, φ) ∈ q0 +H, t = τ(φ).

The Poincaré map associated with Q, tq, H, q0 (and N, ǫ, τ) is the map

P : N ∩ (q0 +H) ∋ φ 7→ F (τ(φ), φ) ∈ q0 +H.

Proposition A.1. There is a strictly increasing sequence (tj)
0
−∞ with tj → −∞ as j →

−∞ so that the points xtj , j ∈ −N, form a trajectory of P with xtj → q0 as j → −∞.

Proof. 1. Claim: dist(xt,Q) → 0 as t→ −∞.

Proof: Otherwise there are ǫ0 > 0 and a sequence (tj)
0
−∞ with tj → −∞ as j → −∞

and dist(xtj ,Q) ≥ ǫ0 for all j ∈ −N. The boundedness of x on (−∞, 0], Eq. (1.1), and the
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Arzèla–Ascoli theorem combined yield a subsequence (φk)
0
−∞ of (xtj )

0
−∞ which converges

to some φ ∈ Q as k → −∞. On the other hand,

||φ− φk|| ≥ inf
0≤t≤tq

||qt − φk|| = dist(φk,Q) ≥ ǫ0

for all k ∈ −N, which is a contradiction.

2. Claim: There exists an open neighbourhood N0 ⊂ N of q0 in C with

N0 ∩ (q0 +H) ∩ Q = {q0}.

Proof: We have qt /∈ q0 + H for 0 < |t − tq| < ǫ. By periodicity, qt /∈ q0 + H for

all t ∈ (0, ǫ) ∪ (tq − ǫ, tq). There is an open neighbourhood N01 ⊂ N of q0 in C with

∅ = N01 ∩ {qt : ǫ ≤ t ≤ tq − ǫ}. It follows that

Q \ {q0} ⊂ C \ (N01 ∩ (q0 +H)) .

Choose an open ball N0 centered at q0 with N0 ⊂ N01.

3. Claim: There exists an open neighbourhood N1 ⊂ N0 of q0 in C and ǫ1 ∈ (0, ǫ) so

that for every t ≤ 0 with xt ∈ N1 ∩ (q0 +H), and for all s ∈ (−ǫ1, ǫ1) \ {0},

xt+s /∈ q0 +H.

Proof: Otherwise there are sequences (tj)
∞
0 in (−∞, 0] and (sj)

∞
0 in R \ {0} with

xtj ∈ N0 ∩ (q0 +H) and xtj+sj
∈ q0 +H for all j ∈ N, and xtj → q0, sj → 0 as j → ∞.

Using the mean value theorem we find a sequence (s̃j)
∞
0 in R \ {0} so that s̃j → 0 as

j → ∞ and

η(ẋtj+s̃j
) =

d

ds
(s 7→ η(xs))(tj + s̃j) = 0 for all j ∈ N.

The sequence of the functions

[−3, 0] ∋ s 7→ x(tj + s) ∈ R, j ∈ N,

and the sequence of their derivatives are bounded. The Arzèla–Ascoli theorem yields a

subsequence given by a strictly increasing map χ : N → N, which converges uniformly

on [−3, 0] to a continuous function. In particular, there exists φ ∈ C with xtχ(j)−2 → φ

for j → ∞. It follows that xtχ(j)
→ F (2, φ) as j → ∞. Recall xtj → q0. Consequently,

q0 = F (2, φ), and by injectivity of F (2, ·),

φ = q−2.
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Furthermore, we obtain from continuous dependence on initial data that the functions

[−3, 1] ∋ s 7→ x(tχ(j) + s) ∈ R, j ∈ N,

converge uniformly to q|[−3,1] as j → ∞. Using Eq. (1.1) we get that the derivatives

[−2, 1] ∋ s 7→ ẋ(tχ(j) + s) ∈ R, j ∈ N,

converge uniformly to q̇|[−2,1] as j → ∞. In particular, the numbers

|η(q̇s̃χ(j)
)| = |η(q̇s̃χ(j)

− ẋtχ(j)+sχ(j)
)| ≤ ||η|| max

−2≤s≤1
|q̇(s) − ẋ(tχ(j) + s)|

tend to zero as j → ∞. It follows that η(q̇0) = 0, in contradiction to q̇0 /∈ H.

4. Claim: There exists an open neighbourhood N2 ⊂ N1 of q0 in C so that for all t ≤ 0

with xt ∈ N2 ∩ (q0 +H) and for 0 < s < τ(xt) we have

F (s, xt) /∈ N2 ∩ (q0 +H).

Proof: Find disjoint open neighbourhoods N21 ⊂ N1 of q0 and N∗ of the closed set

{qt : ǫ1 ≤ t ≤ tq − ǫ}. Continuous dependence on initial data permits to find an open

neighbourhood N2 ⊂ N21 of q0 so that for every φ ∈ N2∩(q0 +H) and every t ∈ [ǫ1, tq−ǫ],

F (t, φ) ∈ N∗.

In particular,

F (t, φ) /∈ N2 on [ǫ1, tq − ǫ] ×N2.

By part 3, F (s, xt) /∈ q0 +H for all t ≤ 0 with xt ∈ N2 ∩ (q0 +H) ⊂ N1 ∩ (q0 +H) and all

s ∈ (0, ǫ1]. For the same t and for all s ∈ (tq − ǫ, τ(xt)) we have

F (s, xt) /∈ q0 +H

due to the properties of τ . Now the assertion becomes obvious.

5. Choose an open neighbourhood N3 ⊂ N2 of q0 in C with

P (N3 ∩ (q0 +H)) ⊂ N0.

Claim: There is an open neighbourhood NQ of Q with

NQ ∩ (N0 ∩ (q0 +H)) ⊂ N3.
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Proof: Part 2 permits to find open neighbourhoods Nt of qt, 0 < t < tq, so that

Nt ∩ (N0 ∩ (q0 +H)) = ∅.

Set

NQ = N3 ∪
(

∪0<t<tqNt
)

.

Then each φ ∈ NQ ∩ (N0 ∩ (q0 +H)) satisfies φ /∈ Nt for all t ∈ (0, tq); using φ ∈ NQ we

infer φ ∈ N3.

6. Part 1 permits to find tQ ≤ 0 with

xt ∈ NQ for all t ≤ tQ.

Claim: The set

T = {t ≤ tQ : xt ∈ (N0 ∩ (q0 +H))}

is nonempty and not bounded from below.

Proof: The hypothesis α(x) = Q, boundedness of x|(−∞,0], Eq. (1.1), and the Arzèla–

Ascoli theorem combined yield a sequence (tj)
0
−∞ in (−∞, 0] and t ∈ [0, tq] with tj → −∞

and xtj → qt as j → −∞. It follows that

xtj+tq−t → qt+tq−t = q0 as j → −∞;

there exists j0 ∈ −N with tj + tq − t ≤ tQ, xtj+tq−t ∈ N0, and

F (τ(xtj+tq−t), xtj+tq−t) ∈ N0 ∩ (q0 +H)

for all integers j ≤ j0.

7. Recall NQ ∩ (N0 ∩ (q0 +H)) ⊂ N3 ⊂ N1. Part 3 shows that the set T is discrete.

Using part 6 we obtain that T consists of the values of a strictly increasing sequence (tj)
0
−∞

in (−∞, tQ], with tj → −∞ as j → −∞.

Claim: For every j ∈ −N with j ≤ −1,

tj+1 = tj + τ(xtj ).

Proof: Let j ∈ −N, j ≤ −1. tj ∈ T gives xtj ∈ NQ ∩ (N0 ∩ (q0 +H)) ⊂ N3 ⊂ N2. The

assumption

F (s, xtj ) ∈ NQ ∩ (N0 ∩ (q0 +H)) for some s ∈ (0, τ(xtj ))



52

implies F (s, xtj ) ∈ N3 ∩ (q0 + H), according to the claim in part 5, in contradiction to

N3 ⊂ N2 and to the result of part 4. It follows that

tj + τ(xtj ) ≤ tj+1.

Observe that t = tj + τ(xtj ) satisfies t ≤ tj+1 ≤ tQ, xt ∈ q0 +H, and due to xtj ∈ N3 and

to part 5, xt ∈ N0. Altogether, we obtain t ≤ tQ and

xt ∈ N0 ∩ (q0 +H),

which gives t ∈ T . Using t ≤ tj+1 we infer t = tj+1.

8. It follows that

xtj+1
= P (xtj ) for all j ∈ −N with j ≤ −1.

Every subsequence of (xtj )
0
−∞ has a further subsequence which converges to some qt ∈

Q ∩ (N0 ∩ (q0 +H)) = {q0}. This implies

xtj → q0 as j → −∞.
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