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Abstract

The delay differential equation

ẋ(t) = −µx(t) + f(x(t− r)), r = r(x(t))

with µ > 0 and smooth real functions f, r satisfying f(0) = 0, f ′ < 0 and r(0) = 1

models a system governed by state-dependent delayed negative feedback and instantaneous

damping. For a suitable R ≥ 1 the solutions generate a semiflow F on a compact subset

LK of C([−R, 0],R). F leaves invariant the subset S of φ ∈ LK with at most one sign

change on all subintervals of [−R, 0] of length one. The induced semiflow on S has a global

attractor A. A\ {0} coincides with the set of segments of bounded globally defined slowly

oscillating solutions. If A 6= {0} then A is homeomorphic to the closed unit disk, the unit

circle corresponds to a periodic orbit.
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1. Introduction

In this paper we study the state-dependent delay equation

ẋ(t) = −µx(t) + f(x(t− r)), r = r(x(t)), (1.1)

where µ > 0, f and r are smooth real functions, r(0) = 1 and f satisfies the negative

feedback condition ξf(ξ) < 0 for all ξ 6= 0. Equation (1.1) with r ≡ 1 appears in several

applications, see e.g. [15,30,34,36,37,40,52] and references therein. Over the past several

years it has become apparent that equations with state-dependent delay arise also in several

areas such as in classical electrodynamics [18–22], in population models [7], in models of

commodity price fluctuations [8,35] and in models of blood cell productions [38].

In case r ≡ 1 Eq. (1.1) generates a semiflow on the phase space C([−1, 0],R). Under

the additional assumptions f ′ < 0, sup f < ∞ or inf f > −∞, the semiflow leaves the

subset T of elements φ ∈ C([−1, 0],R) with at most one sign change invariant. A recent

result of Mallet-Paret and Walther [46] shows that the domain of absorption into T is

open and dense. Walther [49,50], Walther and Yebdri [51] described the global attractor

A of the induced semiflow on T : either A = {0} or A is a 2-dimensional C1-smooth graph

which is homeomorphic to the closed unit disk, the unit circle corresponds to a periodic

orbit. A solution is called slowly oscillating if its zeros are spaced at distances larger than

1. A contains 0 and the segments x(t+ ·) ∈ C([−1, 0],R) of all bounded slowly oscillating

solutions x : R→ R.

Recent results of Mallet-Paret and Nussbaum [41,42], Mallet-Paret, Nussbaum and

Paraskevopoulos [43], Kuang and Smith [33] and numerical studies suggest that the slowly

oscillating solutions play an important role in the global dynamics of (1.1) also in the case

r 6≡ 1 for certain µ, f, r.

Our goal in this paper is to describe the asymptotic behavior of the slowly oscillating

solutions of Eq. (1.1). The obtained results are in part analogous to that of Walther [50],

but in the proofs a variety of new mathematical phenomena arise which are not present in

the case r ≡ 1.

In addition to the above conditions on µ, f, r, we assume that f ∈ C1(R,R), f ′ < 0,

and sup f <∞ provided r(u) > 0 for all u ∈ R.

Some basic existence, uniqueness, continuation and continuous dependence results for

differential equations with state-dependent delay are contained in [41,43]. The results of

[41,43] are applicable to Eq. (1.1) and give existence, uniqueness, etc. for solutions having

values in a certain compact interval. However, it is possible that there are slowly oscillating

periodic solutions of the equation outside the region guaranteed by the results of [41,43]. In

this paper we are interested in the asymptotic behavior of all slowly oscillating solutions of
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Eq. (1.1). A slight modification of the technique of [41,43] gives the existence, uniqueness

and continuous dependence results which are satisfactory for our purpose.

Let Ir denote the maximal subinterval of R with 0 ∈ Ir and r(u) ≥ 0 for all u ∈ Ir.

Our first result is that for every bounded continuous initial function φ : (−∞, 0] → Ir,

there is a solution x : R → R of equation (1.1) through φ, that is x is continuous on R,

continuously differentiable on (0,∞), x|(−∞,0] = φ and (1.1) holds for all t > 0. If φ is

Lipschitz continuous then x is unique. Then we show the existence of positive constants

A,B,R,K such that

0 < r(u) ≤ R for all u ∈ [−B,A], max
u,v∈[−B,A]

| − µu+ f(v)| ≤ K,

moreover for every solution x : R→ R belonging to a bounded continuous initial function

φ with φ((−∞, 0]) ⊂ Ir, there exists s ≥ 0 such that

x(t) ∈ [−B,A] for all t ≥ s.

Consequently, as we are interested in the asymptotic (t → ∞) behavior of solutions, it

suffices to consider only solutions with values in [−B,A].

Let X denote the space of continuous real functions on [−R, 0] equipped with the

supremum-norm. The set

LK =

{

φ ∈ X : φ([−R, 0]) ⊂ [−B,A],

∣

∣

∣

∣

φ(t) − φ(s)

t− s

∣

∣

∣

∣

≤ K for −R ≤ s < t ≤ 0

}

is a compact convex subset of X . For every φ ∈ LK there is a unique continuous function

xφ : [−R,∞) → R such that xφ|[−R,0] = φ, xφ is continuously differentiable on (0,∞), and

xφ satisfies Eq. (1.1) for all t > 0. Then the relations

F (t, φ) = xφt for t ≥ 0, xφt (s) = xφ(t+ s) for −R ≤ s ≤ 0

define a semiflow F on LK .

Motivated by the conjecture, which is true in the constant delay case [46], that the be-

havior of slowly oscillating solutions govern the typical long-term behavior of the solutions

of Eq. (1.1), we consider the compact subset

S = {φ ∈ LK : sc(φ, [t− 1, t]) ≤ 1 for all t ∈ [−R + 1, 0]}

of LK , where sc(φ, [t−1, t]) denotes the number of sign changes of φ on the interval [t−1, t].

All segments xt of slowly oscillating solutions x with values in [−B,A] belong to S. The

set S is positively invariant under the semiflow. The restriction of F to R+ × S defines
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a semiflow FS. FS has a global attractor A which is a subset of the global attractor of

the full semiflow F . A consists of 0 and the segments xt of the globally defined slowly

oscillating solutions x : R→ [−B,A].

We prove a Poincaré–Bendixson type result on A: the α- and ω-limit sets of phase

curves in A are either {0} or periodic orbits given by slowly oscillating periodic solutions.

The second main result is that in the case A 6= {0}, the set A is homeomorphic to the

2-dimensional closed unit disk so that the unit circle corresponds to a periodic orbit given

by a slowly oscillating periodic solution.

The paper is organized as follows. Section 2 gives the appropriate framework for the

study of the asymptotic behavior of solutions. An additional condition on r is introduced

to guarantee that the function t 7→ t − r(x(t)) is strictly increasing. For example, the

smallness of r′ or concavity of r are sufficient. This monotone property of t 7→ t− r(x(t))

plays an important role in the proofs.

Section 3 contains results on the associated linear equation

ẏ(t) = −µy(t) + f ′(0)y(t− 1). (1.2)

Although the map X ∋ φ 7→ −µφ(0)+f(φ(−r(φ(0)))) ∈ R is not, in general, differentiable,

equation (1.2) can be considered as the linearization of (1.1) at 0 (see Cooke and Huang

[14] and also [9,27]).

Section 4 introduces a discrete Lyapunov functional which counts the sign changes of

solutions over intervals of the form [t − r(x(t)), t]. We need a modified version of the

results of Mallet-Paret and Sell [44] on discrete Lyapunov functionals in order to handle

the state-dependent delay case instead of the constant delay case. It seems to be crucial

that the delay r depends only on x(t) and not on xt. We prove an analogue of the a priori

estimate of Mallet-Paret [39], Cao [10], Arino [4] which can be used to show that slowly

oscillating solutions do not decay faster than any exponential.

Section 5 introduces the set S, the global attractor A and intersection maps associated

with the compact convex subset

U = {φ ∈ LK : φ(s) ≥ 0 for all s ∈ [−1, 0], φ(0) = 0}

of LK . We find that A ∩ U is connected, which is an essential step in the construction of

a homeomorphism from A onto the closed unit disk.

Section 6 proves asymptotic expansion for slowly oscillating solutions converging to

zero as t→ −∞. The related result for the constant delay case is due to Cao [10].

Section 7 shows that if φ, ψ are different elements of A and xφ, xψ : R → R are the

solutions through φ, ψ, respectively, then the difference xφ−xψ has at most one sign change
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on the interval [t− r(xφ(t)), t] for all t ∈ R. This fact guarantees the injectivity of a map

from A into R2 in Section 8. The proof uses, among others, properties of slowly oscillating

periodic solutions obtained by Mallet-Paret and Nussbaum [41].

The last two sections contain the two main results with proofs.

We remark that the results can be easily modified to the case µ = 0 and to the case

when f is bounded below. Only the construction of the constants A,B,R,K in Section 2

is slightly different. So, Wright’s equation [54] with state-dependent delay is a particular

case.

We mention that related results on attractors for differential equations with constant

delay are contained in [11,31–32]. For other results on functional differential equations

with state-dependent delay we refer to [1,2,3,5,6,12,13,16,23,24,28,29,47,53,55,56].

Notation. The symbols N and R+ denote the nonnegative integers and reals, respec-

tively. R and Z stand for the set of all reals and all integers, respectively.

An upper index tr denotes the transpose of a vector in Rn.

A trajectory of a map g : M → N , M ⊂ N , is a finite or infinite sequence (xj)j∈I∩Z,

I ⊂ R an interval, in M with xj+1 = g(xj) for all j ∈ I ∩ Z with j + 1 ∈ I ∩ Z.

A simple closed curve is a continuous map c from a compact interval [a, b] ⊂ R, a < b,

into Rn so that c|[a,b) is injective and c(a) = c(b). The set of values of a simple closed curve

c, or trace, is denoted by |c|. The Jordan curve theorem guarantees that the complement of

the trace of a simple closed curve c in R2 consists of two nonempty connected open sets, one

bounded and the other unbounded, and |c| is the boundary of each of these components.

We denote the bounded component by int(c) and the unbounded one by ext(c).

Spectra of continuous linear maps T : E → E are defined as spectra of their complexi-

fications. If a decomposition

E = F ⊕G

into closed linear subspaces is given then PrF : E → E and PrG : E → E denote the

associated projection operators along G onto F and along F onto G, respectively.

For given reals a, b with a < b, C([a, b],R) denotes the Banach space of continuous

functions φ : [a, b] → R with the norm given by

||φ||C([a,b],R) = max
a≤t≤b

|φ(t)|.

C1([a, b],R) is the Banach space of all C1-maps φ : [a, b] → R, with the norm given by

||φ||C1([a,b],R) = ||φ||C([a,b],R) + ||φ̇||C([a,b],R).
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2. The equation and some basic properties

Consider the equation

ẋ(t) = −µx(t) + f(x(t− r)), r = r(x(t)), (2.1)

under the hypotheses























µ > 0,

f ∈ C2(R,R), f(0) = 0, f ′(u) < 0 for all u ∈ R,

r ∈ C1(R,R) and r(0) = 1,

sup{f(u) : u ∈ R} <∞ if r(u) > 0 for all u ∈ R.

(H1)

For intervals I, J ⊆ R with I ⊆ J , we say that x is a solution of Eq. (2.1) on (I, J) if

x : J → R is continuous, continuously differentiable on I, satisfies

t− r(x(t)) ∈ J for all t ∈ I,

and is such that (2.1) holds for all t ∈ I. (If t is an endpoint of I, then by ẋ(t) we always

mean the appropriate one-sided derivative.)

Let Ir be the maximal subinterval of R such that 0 ∈ Ir and r(u) ≥ 0 for all u ∈ Ir.

Let BC((−∞, 0], Ir) denote the set of bounded continuous functions on (−∞, 0] with

values in Ir.

The following results on the existence, uniqueness and continuous dependence of solu-

tions can be obtained by using the technique of [41,43]. We need a slight modification of

the results of [41,43] since we want to study the asymptotic behavior of all slowly oscillating

solutions of Eq. (2.1).

Proposition 2.1.

(i) If φ ∈ BC((−∞, 0], Ir), then there exists a solution x of (2.1) on ([0,∞),R) with

x|(−∞,0] = φ.

(ii) If φ ∈ BC((−∞, 0], Ir), β ∈ (0,∞] and x is a noncontinuable solution of (2.1) on

([0, β), (−∞, β)) with x|(−∞,0] = φ, then β = ∞ and x(t) ∈ Ir for all t ∈ R.

(iii) If φ ∈ BC((−∞, 0], Ir) is Lipschitz continuous and x, x̄ are solutions of (2.1) on

([0,∞),R) with x|(−∞,0] = φ = x̄|(−∞,0], then x(t) = x̄(t) for all t ∈ R.

Proof. 1. Let φ ∈ BC((−∞, 0], Ir) be given. Define

mφ = min{0, inf{φ(s) : s ≤ 0}}, Mφ = max{0, sup{φ(s) : s ≤ 0}}.
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First we determine two positive constants Cφ and Dφ such that [mφ,Mφ] ⊆

[−Dφ, Cφ] ⊆ Ir and any solution x of (2.1) on ([0, β), (−∞, β)) with x|(−∞,0] = φ sat-

isfies

x(t) ∈ (−Dφ, Cφ) for all t ∈ (0, β). (2.2)

Let −b ∈ [−∞, 0) and a ∈ (0,∞] denote the (possibly infinite) endpoints of Ir. Let

I+
r denote the maximal subinterval of R such that r(u) > 0 for all u ∈ I+

r . Choose

c, d ∈ (0,∞] such that I+
r = (−d, c). Clearly, −∞ ≤ −b ≤ −d < 0 < c ≤ a ≤ ∞ and

−b ≤ mφ ≤ 0 ≤Mφ ≤ a. In the definition of Cφ and Dφ, we distinguish four cases.

Case 1: c <∞, d <∞. In this case we choose Cφ and Dφ such that

Cφ = min

{

a,max

{

c,Mφ, 1 +
1

µ
f(mφ)

}}

and

−Dφ = max

{

−b,min

{

−d,mφ,−1 +
1

µ
f(Mφ)

}}

.

Case 2: c = ∞, d <∞. In this case first we define Dφ such that

−Dφ = max

{

−b,min

{

−d,mφ,−1 +
1

µ
f(Mφ)

}}

.

Then choose Cφ such that

Cφ > max

{

Mφ,
1

µ
f(−Dφ)

}

.

Case 3: c <∞, d = ∞. In this case first we define Cφ such that

Cφ = min

{

a,max

{

c,Mφ, 1 +
1

µ
f(mφ)

}}

.

Then choose Dφ such that

−Dφ < min

{

mφ,
1

µ
f(Cφ)

}

.

Case 4: c = d = ∞. Then I+
r = (−∞,∞) and, by (H1), sup f <∞. So we may choose

Cφ such that

Cφ > max

{

Mφ,
1

µ
sup f

}

and then Dφ so that

−Dφ < min

{

mφ,
1

µ
f(Cφ)

}

.
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Now we prove (2.2). First observe that −b ≤ −Dφ ≤ mφ ≤ Mφ ≤ Cφ ≤ a because of

the definition of Cφ and Dφ. Therefore, x(t) ∈ [−Dφ, Cφ] for all t ≤ 0.

Another observation, from Eq. (2.1) and (H1), is that

t ∈ [0, β), x(t) > 0, r(x(t)) = 0 imply ẋ(t) < 0,

t ∈ [0, β), x(t) < 0, r(x(t)) = 0 imply ẋ(t) > 0.
(2.3)

If (2.2) is not true, then there exists t0 ∈ [0, β) such that x(t) ∈ [−Dφ, Cφ] for all t ≤ t0
and either x(t0) = Cφ, ẋ(t0) ≥ 0 or x(t0) = −Dφ, ẋ(t0) ≤ 0.

Assume that x(t) ∈ [−Dφ, Cφ] for all t ≤ t0, x(t0) = Cφ and ẋ(t0) ≥ 0. Then

r(x(t)) ≥ 0 for all t ≤ t0 because of [−Dφ, Cφ] ⊆ Ir. From (2.3) it follows that r(x(t0)) > 0.

In Case 1, the facts r(a) = 0 provided a <∞, r(c) = 0, r(x(t0)) > 0 and the definition

of Cφ combined imply c < Cφ < a. We also have x(t) 6= 0 for all t ∈ [0, t0), since x(t1) = 0

for some t1 ∈ [0, t0) and (2.3), r(c) = 0 together would imply x(t) < c < Cφ for all

t ∈ [t1, β), contradicting x(t0) = Cφ. In particular, x(t) ≥ mφ for all t ≤ t0. Then, using

Eq. (2.1) and that Cφ >
1
µf(mφ), we obtain

ẋ(t0) ≤ −µCφ + f(mφ) < 0,

a contradiction.

In Case 2, from −Dφ ≤ x(t) for all t ≤ t0, Eq. (2.1) and the definition of Cφ it follows

that

ẋ(t0) ≤ −µCφ + f(−Dφ) < 0,

a contradiction.

In Case 3 the same proof works as in Case 1.

In Case 4, by Eq. (2.1) and the definition of Cφ, we obtain again the contradiction

ẋ(t0) < 0.

In the case when x(t) ∈ [−Dφ, Cφ] for all t ≤ t0, x(t0) = −Dφ and ẋ(t0) ≤ 0, we can

get a contradiction in the same way as above. Therefore, (2.2) holds.

We modify the right hand side of Eq. (2.1) and r outside the sets [−Dφ, Cφ]×[−Dφ, Cφ]

and [−Dφ, Cφ], respectively. Let

g(x, y) = −µκ(x) + f(κ(y)), r̃ = r(κ(x)),

where

κ(x) =











−Dφ if x < −Dφ,

x if −Dφ ≤ x ≤ Cφ,

Cφ if x > Cφ.
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Consider the equation

ẋ(t) = g(x(t), x(t− r̃)), r̃ = r̃(x(t)). (2.4)

Let R̃ = max{r(u) : u ∈ [−Dφ, Cφ]} and let C̃ = C([−R̃, 0],R) be the Banach space

of continuous functions equipped with the maximum norm. It is easy to see that the

mapping C̃ ∋ ψ 7→ g(ψ(0), ψ(−r̃(ψ(0)))) ∈ R is continuous and there exists c1 > 0 such

that |g(ψ)| ≤ c1 maxs∈[−R̃,0] |ψ(s)| for all ψ ∈ C̃. Therefore, the existence theorem of [26,

Chapter 2] can be applied to Eq. (2.4). Let φ̃ ∈ C̃ be such that φ̃ = φ|[−R̃,0]. Then Eq.

(2.4) has a solution x̃ : [−R̃,∞) → R with x̃|[−R̃,0] = φ̃. Since the right hand sides of

(2.1) and (2.4) are the same on [−Dφ, Cφ] × [−Dφ, Cφ], and the functions r and r̃ are the

same on [−Dφ, Cφ], the proof of (2.2) works also for x̃ to show that x̃(t) ∈ (−Dφ, Cφ) for

all t > 0. Then the extension x of x̃ to R, such that x|(−∞,0] = φ and x|[−R̃,∞) = x̃, is a

solution of (2.1) on ([0,∞),R with x̃|(−∞,0] = φ. This completes the proof of (i).

2. Now let x be a noncontinuable solution of (2.1) as in (ii). (2.2) holds for this x.

Therefore, the restriction of x to the interval [−R̃, β) is also a noncontinuable solution of

Eq. (2.4) on [−R̃, β). Since |g(ψ)| ≤ c1 maxs∈[−R̃,0] |ψ(s)| for all ψ ∈ C̃, the continuation

theorem of [26] gives β = ∞.

3. To prove the claim of uniqueness in (iii), assume that x and x̄ are solutions of Eq. (2.1)

on ([0,∞),R) with x|(−∞,0] = φ = x̄|(−∞,0]. For both solutions x and x̄, (2.2) is satisfied

with β = ∞. Therefore, we may choose M ≥ µ such that x and x̄ are Lipschitz continuous

on R and f, r are also Lipschitz continuous on [−Dφ, Cφ] with Lipschitz constant M . Let

y(t) = x(t) − x̄(t), η(t) = t− r(x(t)) and η̄(t) = t− r(x̄(t)). Then

ẏ(t) = −µy(t) + f(x(η(t)))− f(x̄(η̄(t)))

and
|ẏ(t)| ≤ µ|y(t)| + |f(x(η(t)))− f(x̄(η̄(t))|

≤M |y(t)|+M |x(η(t))− x̄(η(t))|+M |x̄(η(t)) − x̄(η̄(t))|

≤M |y(t)|+M |y(η(t))|+M3|y(t)|.

Hence with z(t) = maxs∈[0,t] |y(s)|,

|y(t)| ≤

∫ t

0

(M3 + 2M)z(s) ds

≤

∫ τ

0

(M3 + 2M)z(s) ds for all 0 ≤ t ≤ τ.

Then

z(τ) ≤

∫ τ

0

(M3 + 2M)z(s) ds for all τ ≥ 0,



11

and the Gronwall lemma implies z(τ) = 0 for all τ ≥ 0. This proves the uniqueness.

Now we need the following two simple observations about the asymptotic behavior of

the solutions of (2.1).

Lemma 2.2.

(i) If t0 ∈ R and x is a solution of Eq. (2.1) on ([t0,∞),R) with x(R) ⊂ Ir such that x

has no zero on [t0,∞), then x(t) → 0 as t→ ∞.

(ii) If x is a bounded solution of Eq. (2.1) on (R,R) with x(R) ⊂ Ir then there is a sequence

(tn)
∞
0 such that tn → −∞ as n→ ∞ and x(tn) = 0 for all n ∈ N.

Proof. 1. The proof of (i). By the proof of Proposition 2.1, there are constants C0, D0 ∈

(0,∞), depending on x|(−∞,t0], such that x(t) ∈ [−D0, C0] for all t ∈ R. Let R0 =

max{r(u) : u ∈ [−D0, C0]}. If x(s) > 0 for all s ≥ t0, and t ≥ t0 + R0, then, from Eq.

(2.1) and hypothesis (H1), it follows that ẋ(t) < 0. Therefore, x(t) converges to some

α ≥ 0 as t → ∞. Suppose α > 0. Then, by Eq. (2.1) and (H1), ẋ(t) → −µα + f(α) < 0

as t→ ∞, a contradiction. The case, when x(s) < 0 for all s ≥ t0, is analogous.

2. The proof of (ii). By the boundedness of x, there are constants C0, D0 ∈ (0,∞) such

that x(t) ∈ [−D0, C0] for all t ∈ R. Suppose that the statement is not true. Consider the

case when x(t) > 0 for all t ≤ t0 for some t0 ∈ R. Then, by (H1),

ẋ(t) = −µx(t) + f(x(t− r(x(t)))) ≤ −µx(t), t ≤ t0.

Hence

0 < x(t0) ≤ x(t)e−µ(t0−t) ≤ C0e
−µ(t0−t), t ≤ t0.

Letting t→ ∞, we obtain that x(t0) = 0, a contradiction. The case x(t) < 0 for all t ≤ t0,

is analogous.

Now we show that all solutions of Eq. (2.1) with initial values in BC((−∞, 0], Ir) are

eventually in a finite interval.

Proposition 2.3. There exist positive constants A,B,R,K such that:

(i)
R ≥ max {r(u) : u ∈ [−B,A]} ,

min {r(u) : u ∈ [−B,A]} > 0,

K ≥ max {| − µu+ f(v)| : (u, v) ∈ [−B,A] × [−B,A]} .

(ii) For each solution x of (2.1) on ([0,∞),R) with x|(−∞,0] = φ ∈ BC((−∞, 0], Ir), there

exists s ≥ 0 such that

x(t) ∈ [−B,A] for all t ≥ s.
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(iii) If φ ∈ C([−R, 0], [−B,A]) is Lipschitz continuous with Lipschitz constant K, then

there exists a unique solution x of (2.1) on ([0,∞), [−R,∞)) with x|[−R,0] = φ, and

this solution satisfies

x(t) ∈ [−B,A], |ẋ(t)| ≤ K for all t ≥ 0.

(iv) If x is a bounded solution of (2.1) on (R,R) with x(R) ⊂ Ir, then x(R) ⊂ [−B,A].

Proof. 1. The proof of (i). First we define two constants C > 0 and D > 0. As in the

proof of Proposition 2.1, c, d ∈ (0,∞] are chosen such that r(u) > 0 for all u ∈ (−d, c)

and c < ∞ implies r(c) = 0, d < ∞ implies r(−d) = 0. In order to define C and D, we

distinguish four cases.

Case 1. If c <∞ and d <∞, then let C = c and D = d.

Case 2. If c = ∞ and d <∞, then let D = d and choose C such that C > 1
µf(−D).

Case 3. If c <∞ and d = ∞, then let C = c and choose D such that −D < 1
µf(C).

Case 4. If c = d = ∞, then, by (H1), sup f < ∞. Choose C such that

C > 1
µ supu∈R f(u) and D such that −D < 1

µf(C).

Set

K = max {| − µu+ f(v)| : (u, v) ∈ [−D,C] × [−D,C]}

and let L = max{|f ′(u)| : u ∈ [−D,C]}.

Now we define the two positive constants A and B. Let

A = C if c = ∞,

and

B = D if d = ∞.

In case c <∞, choose A ∈ (0, c) such that

r(u) <
µA

2LK
for all u ∈ [A, c].

If d <∞, then choose B ∈ (0, d) such that

r(u) <
µB

2LK
for all u ∈ [−d,−B].

The existence of A and B in the cases c < ∞ and d <∞ follows from the continuity of r

and r(c) = r(−d) = 0.

Let

R = max {r(u) : u ∈ [−D,C]} ,
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r0 = min {r(u) : u ∈ [−B,A]} .

Clearly, r0 > 0 and (i) is satisfied.

2. The proof of (ii). By the proof of Proposition 2.1, there are constants Cφ, Dφ ∈ (0,∞)

such that x(t) ∈ [−Dφ, Cφ] for all t ∈ R. Let Rφ = max{r(u) : u ∈ [−Dφ, Cφ]}.

If there exists t0 ≥ 0 such that x has no zero on [t0,∞), then limt→∞ x(t) = 0 because

of Lemma 2.2(i). Therefore, x(t) ∈ [−B,A] for all large t.

Assume that x has arbitrarily large zeros. Pick two zeros z1, z2 of x such that z2 ≥

z1 +Rφ, z1 ≥ 0. Then (2.3) can be used to get that

x(t) ∈ (−d, c) for all t ≥ z1. (2.5)

We want to prove that

x(t) ∈ (−D,C) for all t ≥ z2. (2.6)

We follow the four cases of the definition of C and D.

Case 1 is clear from (2.5).

In Case 2, (2.5) implies that x(t) > −d = −D for all t ≥ z1. Thus, it suffices to

show that x(t) = C and t ≥ z2 imply ẋ(t) < 0. Indeed, this is the case by Eq. (2.1) and

C > 1
µf(−D).

Case 3 is analogous to Case 2.

In Case 4, if x(t) < C for all t ≥ z1 does not hold, then there is a smallest t > z1
such that x(t) = C. We have ẋ(t) ≥ 0 because of the definition of t. On the other

hand, x(t) = C and the definition of C imply ẋ(t) ≤ −µC + sup f < 0, a contradiction.

Consequently, x(t) < C for all t ≥ z1. If t ≥ z2 and x(t) = D, then, using the definition of

D, we find ẋ(t) ≥ µD + f(C) > 0. Therefore, x(t) > −D can be obtained for all t ≥ z2.

Thus (2.6) is proved. As a consequence, x is Lipschitz continuous on [z2 + R,∞) with

Lipschitz constant K.

In order to complete the proof of (ii), we need the following claim.

CLAIM. Assume that x is a solution of (2.1) on ([0,∞),R) with x|(−∞,0] = φ ∈

BC((−∞, 0], Ir), there exists t0 ≥ 0 such that x(t) ∈ [−D,C] for all t ∈ [t0 −R, t0] and x

is Lipschitz continuous on [t0 −R, t0] with Lipschitz constant K. Then x(t) ∈ [−D,C] for

all t ≥ t0, there exists T > 0 such that x(t) ∈ [−B,A] for all t ≥ t0 + T , and

x(t0) ∈ [−B,A] implies x(t) ∈ [−B,A] for all t ≥ t0.

Proof of the Claim. Assume that x(t) ∈ [−D,C] for all t ≥ t0 does not hold. Then

there exists t ≥ t0 such that x(s) ∈ [−D,C] for all s ∈ [t0 − R, t] and either x(t) = C,

ẋ(t) ≥ 0 or x(t) = −D, ẋ(t) ≤ 0. We can get a contradiction exactly in the same way as
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in the proof of (2.6). Therefore, x(t) ∈ [−D,C] for all t ≥ t0. If A = C and B = D, the

proof is complete. Assume that A < C. Let s ≥ t0 be such that x(s) ∈ [A,C]. Using the

definition of A, we have

ẋ(s) = −µx(s) + f(x(s− r(x(s))))

= −µx(s) + f(x(s)) + f(x(s− r(x(s))))− f(x(s))

≤ −µA+ |f(x(s− r(x(s))))− f(x(s))|

≤ −µA+ L|x(s− r(x(s)))− x(s)|

≤ −µA+ LKr(x(s))

< −µA+
µA

2
= −

µA

2
.

Then it is easy to see that x(t) ≤ A for all t ≥ t0 + 2(C − A)/(µA). Moreover, x(t0) ≤ A

implies x(t) ≤ A for all t ≥ t0. In the case B < D, we get analogously that x(t) ≥ −B for

all t ≥ t0 + 2(D − B)/(µB), and that x(t0) ≥ −B implies x(t) ≥ −B for all t ≥ t0. This

completes the proof of the claim.

Obviously, the Claim implies (ii).

3. The proof of (iii). Statement (iii) also follows from the above claim. Indeed, ex-

tending x to R with x(t) = x(−R) for t ≤ −R, we can apply the Claim with t0 = 0 to

get x(t) ∈ [−B,A] for all t ≥ 0. The estimation for |ẋ(t)| is an obvious consequence. The

uniqueness comes from Proposition 2.1.

4. The proof of (iv). If x is a bounded solution on (R,R) with values in Ir, then Lemma

2.2 (ii) implies that x has arbitrarily large negative zeros. Hence, in the same way as in the

proof of (2.5) and (2.6), we get first that x(t) ∈ (−d, c) and then that x(t) ∈ [−D,C] for all

t ∈ R. Since the Claim can be applied with any t0 ∈ R, it is obtained that x(t) ∈ [−B,A]

for all t ∈ R.

On the basis of Proposition 2.3, in the remaining part of the paper we consider only

solutions with values in the interval [−B,A]. We define a suitable phase space and show

that Eq. (2.1) generates a continuous semiflow on this phase space.

Let X = C([−R, 0],R) denote the Banach space of continuous functions on [−R, 0]

with the maximum norm denoted by || · ||. Define

LK = {φ ∈ X : −B ≤ φ(s) ≤ A, |φ(t) − φ(s)| ≤ K|t− s| for all t, s ∈ [−R, 0]}.

(The constants A,B,R,K are given in Proposition 2.3.) By the Arzèla–Ascoli theorem,

LK is a compact convex subset of X .

If a > 0, x ∈ C([t0−R, t0 +a), [−B,A]) and x is Lipschitz continuous on [t0−R, t0 +a)

with Lipschitz constant K, then, for t ∈ [t0, t0 +a), xt ∈ LK is defined by xt(s) = x(t+ s),
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−R ≤ s ≤ 0. In the followings, for given φ ∈ LK , xφ : [−R,∞) → [−B,A] denotes the

unique solution of (2.1) on ([0,∞), [−R,∞)) with xφ0 = φ guaranteed by Proposition 2.3.

Define

F : [0,∞)× LK ∋ (t, φ) 7→ xφt ∈ LK .

Proposition 2.3 shows that F is well defined and maps [0,∞)× LK into LK . It is easy to

check that, for every φ ∈ LK , the function [0,∞) ∋ t 7→ F (t, φ) ∈ LK is continuous and

F (t + s, φ) = F (t, F (s, φ)) for all t, s ∈ [0,∞). The continuity of F in φ and more are

contained in the next lemma.

Lemma 2.4. If (φn)∞0 is a sequence in LK , φ ∈ LK , ||φn−φ|| → 0 as n→ ∞, and xn, x

denote the solutions of Eq. (2.1) on ([0,∞), [−R,∞)) with xn0 = φn, x0 = φ, respectively,

then for any T > 0,

xn(t) → x(t) as n→ ∞ uniformly in t ∈ [−R, T ],

ẋn(t) → ẋ(t) as n→ ∞ uniformly in t ∈ [0, T ].

Proof. If the first statement does not hold, then there exists δ > 0 and a subsequence

(nk)
∞
0 such that

sup
−R≤t≤T

|xnk(t) − x(t)| ≥ δ for all k ∈ N.

By the Arzèla–Ascoli theorem, there is a subsequence (nkl
)∞l=0 of (nk)

∞
0 with

xnkl (t) → y(t) as l → ∞ uniformly in t ∈ [−R, T ]

for some y ∈ C([−R, T ], [−B,A]) which is also Lipschitz continuous with Lipschitz con-

stant K and y|[−R,T ] 6= x|[−R,T ]. It is easy to see that y is a solution of Eq. (2.1) on

([0, T ], [−R, T ]) with y0 = φ. This contradicts the uniqueness.

The second statement follows from the first one and

|ẋn(t) − ẋ(t)| ≤µ|xn(t) − x(t)| + |f(xn(t− r(xn(t)))) − f(x(t− r(x(t))))|

≤µ|xn(t) − x(t)| + Lf |x
n(t− r(xn(t))) − x(t− r(xn(t)))|

+ Lf |x(t− r(xn(t))) − x(t− r(x(t)))|

≤µ|xn(t) − x(t)| + Lf |x
n(t− r(xn(t))) − x(t− r(xn(t)))|

+ LfK|r(xn(t)) − r(x(t))|

≤µ|xn(t) − x(t)| + Lf |x
n(t− r(xn(t))) − x(t− r(xn(t)))|

+ LfKLr|r(x
n(t)) − r(x(t))|

≤(µ+ Lf + LfKLr) max
−R≤s≤T

|xn(s) − x(s)|, 0 ≤ t ≤ T,
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where Lf and Lr are Lipschitz constants for f and r on the interval [−B,A].

As a consequence, we obtain that F is a continuous semiflow on the compact metric

space LK .

The increasing property of the function t 7→ η(t) = t− r(x(t)), where x is a solution of

Eq. (2.1) with values in [−B,A], plays an important role in the theory. Either one of the

following two hypotheses guarantees η̇(t) > 0 for some interval.

|r′(u)| <
1

K
for all u ∈ [−B,A]. (H2)

{

r ∈ C2([−B,A],R) and there exists a ∈ (0, 1)

with r′′(u) ≤ aµ
(

r′(u)
)2

for all u ∈ [−B,A].
(H2’)

Condition (H2’) was introduced by Mallet-Paret and Nussbaum [41]. The advantage

of (H2’) comparing to (H2) is that it is independent of f , and if it holds for some µ0 > 0,

then it holds for all µ ≥ µ0. This was important in [41], where a singularly perturbed

equation was considered.

In the remaining part of the paper we always assume that, in addition to (H1), either

(H2) or (H2’) holds.

Lemma 2.5. Let t0 ∈ R and let x : [t0 − R,∞) → [−B,A] be a solution of (2.1) on

([t0,∞), [t0 − R,∞)). Suppose ẋ(ρ) = 0 for some ρ ≥ t0. Then d
dt (t − r(x(t)) > 0 for all

t ≥ ρ.

Proof. Set η : [t0,∞) ∋ t 7→ t − r(x(t)) ∈ R. If (H2) is assumed, then η̇(t) = 1 −

r′(x(t))ẋ(t) ≥ 1 − |r′(x(t))ẋ(t)| > 1 − 1
K
K = 0 for all t ≥ t0.

Assume that (H2’) holds and let ρ ≥ t0 with ẋ(ρ) = 0. Then η̇(ρ) = 1−r′(x(ρ))ẋ(ρ) = 1.

We show that η̇(t) > 0 for all t ≥ ρ. If this is false, then define

t1 = inf{t > ρ : η̇(t) = 0}.

At t = t1 we have η̇(t1) = 0, r′(x(t1)ẋ(t1) = 1 and so

d2

dt2
η(t1) = −r′′(x(t1))(ẋ(t1))

2 − r′(x(t1))
d2

dt2
x(t1)

= −r′′(x(t1))(r
′(x(t1)))

−2 + µ.

The definition of t1 implies d2

dt2 η(t1) ≤ 0. So, it follows that at u = x(t1) we have r′′(u) ≥

µ(r′(u))2, which is a contradiction since r′(u) = r′(x(t1)) 6= 0.

The next lemma gives an equation for the difference of two solutions of Eq. (2.1). This

fact enables us to define a discrete Lyapunov functional as a basic tool. The fact that the

dependence of the delay on the state is of the form r(x(t)) seems to be crucial.
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Lemma 2.6. There are negative reals α0 ≤ α1 with the following properties. For all

solutions x, y of Eq. (2.1) on (R,R) with x(R) ⊂ [−B,A] and y(R) ⊂ [−B,A], there exist

continuous functions a : R → R and α : R → R such that α(R) ⊂ [α0, α1], a is bounded,

and the function

v : R ∋ t 7→ [x(t) − y(t)] exp

(

−

∫ t

0

a(s) ds

)

∈ R

satisfies

v̇(t) = α(t)v(t− r(x(t))) for all t ∈ R.

Proof. Define the real numbers a0, b0, b1, α0 and α1 by

a0 = µ+K max
u∈[−B,A]

|f ′(u)| max
u∈[−B,A]

|r′(u)|,

b0 = min
u∈[−B,A]

f ′(u), b1 = max
u∈[−B,A]

f ′(u),

α0 = b0e
a0R, α1 = b1e

−a0R.

Then α0 ≤ α1 < 0.

Set

z : R ∋ t 7→ x(t) − y(t) ∈ R,

a : R ∋ t 7→ = −µ−

∫ 1

0

f ′ {[1 − s]y(t− r(y(t))) + sy(t− r(x(t)))} ds

×

∫ 1

0

ẏ {[1 − s](t− r(y(t))) + s(t− r(x(t)))} ds

×

∫ 1

0

r′ { [1 − s]x(t) + sy(t)} ds ∈ R,

b : R ∋ t 7→

∫ 1

0

f ′ {[1 − s]y(t− r(x(t))) + sx(t− r(x(t)))} ds ∈ R.

Clearly, z, a, b are continuous functions and

|a(t)| ≤ a0, b0 ≤ b(t) ≤ b1 for all t ∈ R.

It is not difficult to see that z is continuously differentiable and satisfies

ż(t) = a(t)z(t) + b(t)z(t− r(x(t))) for all t ∈ R.

Setting

v : R ∋ t 7→ z(t) exp

(

−

∫ t

0

a(s) ds

)

∈ R,
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we obtain that v is continuously differentiable and

v̇(t) = b(t) exp

(

−

∫ t

t−r(x(t))

a(s) ds

)

v(t− r(x(t))) for all t ∈ R.

Define

α : R ∋ t 7→ b(t) exp

(

−

∫ t

t−r(x(t))

a(s) ds

)

∈ R.

Then α is continuous, and by using the bounds on a, b and the inequality 0 ≤ r(x(t)) ≤ R,

t ∈ R, we conclude α(R) ⊂ [α0, α1].

Backward uniqueness also holds for the solutions of Eq. (2.1) in the following sense.

Lemma 2.7. If x, y are solutions of Eq. (2.1) on (R,R) with x(R) ⊂ [−B,A], y(R) ⊂

[−B,A], and xs = ys for some s ∈ R, then x(t) = y(t) for all t ∈ R.

Proof. Clearly xt, yt ∈ LK for all t ∈ R. Proposition 2.3 yields x(t) = y(t) for all t ≥ s−R.

Let

t0 = inf{t : x(u) = y(u) for all u ≥ t}.

It is enough to show t0 = −∞. Suppose t0 > −∞. We apply Lemma 2.6. It follows that

v(t) = 0 for all t ≥ t0. In particular v̇(t) = 0 for all t ≥ t0. The differential equation for v

and the fact α < 0 combined yield

v(t− r(x(t))) = 0 for all t ≥ t0.

By Proposition 2.3(i) we have r0 = minu∈[−B,A] r(u) > 0. Consequently, v(t) = 0 for all

t ≥ t0 − r0, which contradicts the definition of t0.

Since F is a continuous semiflow on the compact metric space LK , it follows from [25]

that, for every φ ∈ LK , the solution xφ : [−R,∞) → [−B,A] has a nonempty ω-limit set

ω(φ) = {ψ ∈ LK : there is a sequence (tn)
∞
0 in R+ such that

tn → ∞ and F (tn, φ) → ψ as n→ ∞},

which is compact, connected and invariant. If φ ∈ LK and there is a solution x : R →

[−B,A] of (2.1) on (R,R) such that x0 = φ, then Lemma 2.7 implies that x is unique. For

such a φ ∈ LK , the α-limit set

α(φ) = {ψ ∈ LK : there is a sequence (tn)
∞
0 in (−∞, 0] such that

tn → −∞ and xtn → ψ as n→ ∞}
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is nonempty, compact, connected and invariant. By Lemma 2.7, the invariance of the α-

and ω-limit sets means that, for each ψ ∈ α(φ) (ψ ∈ ω(φ)), there is a unique solution

y : R→ [−B,A] of (2.1) on (R,R) so that y0 = ψ and yt ∈ α(φ) (yt ∈ ω(φ)) for all t ∈ R.

In case φ ∈ LK and there is a solution x on (R,R) with x(R) ⊂ [−B,A] and x0 = φ,

we shall also use the symbol xφ to denote such a solution.

3. The associated linear equation

The linear autonomous equation

ẋ(t) = −µx(t) + f ′(0)x(t− 1) (3.1)

can be associated to solutions of Eq. (2.1) tending to zero as t→ ∞ or t→ −∞. We recall

some basic facts.

The phase space is C = C([−1, 0],R) with the maximum norm || · ||C . For each φ ∈ C,

there exists a unique solution of (3.1) starting from φ. Namely, there exists a unique

continuous xφ : [−1,∞) → R such that xφ|[−1,0] = φ, and xφ : [0,∞) → R is differentiable

and satisfies (3.1). Backward solutions, if exist, are also unique in the following sense: if

I is an interval on R and x, y are continuous on ∪t∈I [t − 1, t], are C1 on I, satisfy (3.1)

on I and x(t + s) = y(t + s), −1 ≤ s ≤ 0, for some t ∈ I, then x(u) = y(u) for all

u ∈ ∪t∈I [t−1, t]. For each (t, φ) ∈ [0,∞)×C, defining T (t)φ = ψ, where ψ(s) = xφ(t+s),

−1 ≤ s ≤ 0, (T (t))t≥0 is a linear C0-semigroup on C. T (1) is a compact operator. The

spectrum Σ = {λ ∈ C : λ + µ − f ′(0)e−λ = 0} of the generator of (T (t))t≥0 consists of

complex conjugate pairs of eigenvalues in the double strips Sk given by

2kπ < | Im(λ)| < 2kπ + π, k = 1, 2, . . . ,

and at most two eigenvalues in the strip S0 given by

| Im(λ)| < π;

the total multiplicity of Σ in S0 is 2.

We have

maxRe (∪∞
k=1(Σ ∩ Sk)) < min Re(Σ ∩ S0).

Let L and Q denote the realified generalized eigenspaces associated with the spectral sets

Σ ∩ S0 and ∪∞
k=1(Σ ∩ Sk), respectively. Then

C = L⊕Q,



20

dimL = 2, and both L and Q are positively invariant under the maps T (t). Let TL(t) and

TQ(t) denote the restrictions of T (t) to L and Q, respectively. TL(t) can be defined for all

t ∈ R so that TL is a flow on L.

Let u0 = maxRe(Σ ∩ S0). Define

v(µ) ∈ (
π

2
, π) by v(µ) = −µ tan(v(µ)).

Then

u0 < 0 for f ′(0) >
µ

cos(v(µ))
,

u0 = 0 at f ′(0) =
µ

cos(v(µ))
,

u0 > 0 for f ′(0) <
µ

cos(v(µ))
.

If u0 ≥ 0 then Σ ∩ S0 consists of a complex conjugate pair {u0 ± iv0} with v0 ∈ (π
2
, π).

The standard notation xt is occupied to denote an element of C([−R, 0],R). If x a

solution of (3.1) on I and [t − 1, t] ⊂ I, then xt,C ∈ C is defined by xt,C(s) = x(t + s),

−1 ≤ s ≤ 0.

A solution of (3.1) is called slowly oscillating if for every pair of zeros z′ > z, we have

z′ − z > 1.

Lemma 3.1.

(i) If φ ∈ L \ {0} then the unique solution xφ : R→ R of (3.1) is slowly oscillating on R.

(ii) If u0 < 0 and z : (−∞, 0] → R is a solution of (3.1) with

||zt,C ||C ≤ ||z0,C ||C for all t ≤ 0,

then z(t) = 0 for all t ≤ 0.

(iii) If u0 = 0 and z : (−∞, 0] → R is a solution of (3.1) with

||zt,C ||C ≤ ||z0,C ||C = 1 for all t ≤ 0,

then z has at most one sign change on the intervals [t− 1, t] for all t ≤ 0.

(iv) If u0 > 0, ǫ > 0 and z : (−∞, 0] → R is a solution of (3.1) with

||zt,C ||C ≤ e(u0+ǫ)t||z0,C ||C for all t ≤ 0,

then z(t) = 0 for all t ≤ 0.

(v) If u0 > 0 and z : R→ R is a slowly oscillating solution of (3.1) with

|z(t)| ≤ k1e
k2|t| for all t ∈ R,
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for some k1 > 0 and k2 > 0, then zt,C ∈ L for all t ∈ R.

Proof. 1. The elementary proof of (i) can be found e.g. in [50].

2. The proof of (ii). There exist K1 > 0 and δ > 0 such that u0 + δ < 0 and

||T (t)|| ≤ K1e
(u0+δ)t, t ≥ 0.

For σ ≤ t ≤ 0, we have zt,C = T (t− σ)zσ,C and thus

||zt,C ||C = ||T (t− σ)zσ,C ||C ≤ K1e
(u0+δ)(t−σ)||zσ,C ||C

≤ K1e
(u0+δ)(t−σ)||z0,C ||C → 0

as σ → −∞. Therefore, zt,C = 0 for all t ≤ 0.

3. The proof of (iii). There exist K2 > 0 and δ > 0 such that

||TQ(t)|| ≤ K2e
−δt, t ≥ 0.

If σ ≤ t ≤ 0 and zu,C = zQu,C + zLu,C with zQu,C ∈ Q, zLu,C ∈ L, then

||zQt,C ||C = ||TQ(t− σ)zQσ,C ||C ≤ ||TQ(t− σ)||||zQσ,C ||C

≤ K ′
2||TQ(t− σ)||||zσ,C||C ≤ K ′

2||TQ(t− σ)||||z0,C||C ≤ K ′
2K2e

−δ(t−σ) → 0

as σ → −∞, where K ′
2 > 0 is a bound for the norm of the projection operator from C

onto Q along L. It follows that zt,C ∈ L for all t ≤ 0. zt,C 6= 0 since ||z0,C || = 1. Thus (i)

can be applied to get the statement.

4. The proof of (iv). There exist δ ∈ (0, ǫ) and K3 > 0 such that

||T (t)|| ≤ K3e
(u0+δ)t, t ≥ 0.

Then for t ≤ 0

||z0,C ||C = ||T (−t)zt,C ||C ≤ K3e
(u0+δ)(−t)||zt,C ||C

≤ K3e
(u0+δ)(−t)e(u0+ǫ)t||z0,C ||C = K3e

(ǫ−δ)t||z0,C ||.

Hence, for sufficiently large negative t, ||z0,C || = 0 follows. Then z(t) = 0 for all t ≤ 0.

5. The proof of (v). Consider another decomposition

C = Q̃⊕ L̃

of C into T (t) positively invariant subspaces such that Reλ < −k2 for all λ ∈ Σ associated

with Q̃. Then there exists α > 0 such that Reλ < −α < −k2 for all λ ∈ Σ associated with

Q̃ and

||TQ̃(t)|| ≤ K4e
−αt, t ≥ 0.
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We have zt,C = zQ̃t,C + zL̃t,C with zQ̃t,C ∈ Q̃, zL̃t,C ∈ L̃. Then, for σ ≤ t,

||zQ̃t,C ||C = ||TQ̃(t− σ)zQ̃σ,C || ≤ K ′
4K4e

−α(t−σ)k1e
k2|σ|

= K ′
4K4k1e

−αte(α−k2)σ → 0

as σ → −∞, where K ′
4 > 0 is a bound for the norm of the projection operator from C

onto Q̃ along L̃. Therefore, zt,C ∈ L̃ for all t ∈ R. Consequently,

z(t) =
N
∑

k=0

ake
ukt sin(vkt+ bk),

for some nonnegative integer N such that aN 6= 0. For large negative t, the term with

greatest index is dominant in this sum. Since sin(vN t+bN ) has zeros at distances π
|vN | < 1

for N ≥ 1 and z is slowly oscillating, it follows that N = 0, and thus zt,C ∈ L for all t ∈ R.

4. A discrete Lyapunov functional

In this section we define a discrete, integer-valued Lyapunov functional. For equations

with constant delay Mallet-Paret [39] introduced a discrete Lyapunov functional. A more

general version is contained in [44]. The state-dependent delay requires a modified version

of the functional. We have to count sign changes of solutions x of Eq. (2.1) on intervals of

the form [t− r(x(t)), t] instead of on intervals with fixed length.

Let [a, b] be an interval and φ be a real valued continuous function defined on an interval

containing [a, b] such that φ|[a,b] 6= 0. Then the number of sign changes sc(φ, [a, b]) of φ

on [a, b] is 0 if either φ(s) ≥ 0 for all s ∈ [a, b] or φ(s) ≤ 0 for all s ∈ [a, b], otherwise

sc(φ, [a, b]) is given by

sc(φ, [a, b]) = sup
{

k : there exists s0 < s1 < . . . < sk such that si ∈ [a, b] for

i = 0, 1, . . . , k, and φ(si)φ(si+1) < 0 for i = 0, 1, . . . , k − 1
}

.

Let

V (φ, [a, b]) =

{

sc(φ, [a, b]) if sc(φ, [a, b]) is odd or infinite,

sc(φ, [a, b]) + 1 if sc(φ, [a, b]) is even.

Therefore V (φ, [a, b]) ∈ {1, 3, . . .} ∪ {∞}. Define

H[a,b] =
{

φ ∈ C1([a, b],R) : φ(b) 6= 0 or φ(a)φ̇(b) < 0,

φ(a) 6= 0 or φ̇(a)φ(b) > 0,

all zeros of φ in (a, b) are simple
}

.
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H[a,b] is an open dense subset of C1([a, b],R).

Lemma 4.1.

(i) V is lower semi-continuous in the following sense. If φ, φn are nonzero continuous

functions on the intervals [a, b], [an, bn], respectively, and

max
s∈[a,b]∩[an,bn]

|φn(s) − φ(s)| → 0, an → a, bn → b as n→ ∞,

then

V (φ, [a, b]) ≤ lim inf
n→∞

V (φn, [an, bn]).

(ii) If φ ∈ H[a,b] then V (φ, [a, b]) <∞.

(iii) If φ ∈ C1([a − δ, b + δ],R) for some δ > 0 and φ|[a,b] ∈ H[a,b], then there is γ ∈ (0, δ)

such that

|a− c| < γ, |b− d| < γ, ψ ∈ C1([c, d],R), ||ψ − φ||C1([c,d],R) < γ

imply

V (ψ, [c, d]) = V (φ, [a, b]).

Proof. 1. The proof of (i). The cases V (φ, [a, b]) = ∞ and a = b are clear. Assume that

a < b and V (φ, [a, b]) < ∞. Then there exists γ ∈ (0, b−a4 ) such that φ does not change

sign on the intervals [a, a+2γ] and [b−2γ, b]. For large n, we have [an, bn] ⊃ [a+γ, b−γ].

If |φn(s)−φ(s)| is sufficiently small for all s ∈ [a+γ, b−γ], which is the case for sufficiently

large n, then obviously

V (φn, [an, bn]) ≥ V (φn, [a+ γ, b− γ]) ≥ V (φ, [a+ γ, b− γ]) = V (φ, [a, b]).

2. The proof of (ii). V (φ, [a, b]) = ∞ implies the existence of an s ∈ [a, b] with φ(s) =

φ̇(s) = 0, a contradiction.

3. The proof of (iii). If φ(a) 6= 0 and φ(b) 6= 0, then clearly sc(ψ, [c, d]) = sc(φ, [a, b])

provided |a − c|, |b − d| and ||ψ − φ||C1([c,d],R) are small enough. In the case φ(b) = 0,

φ(a)φ̇(b) < 0, the number of sign changes sc(φ, [a, b]) of φ on [a, b] is an even number. If

|a− c|, |b− d| and ||ψ − φ||C1([c,d],R) are sufficiently small, then

sc(φ, [a, b]) ≤ sc(ψ, [c, d]) ≤ sc(φ, [a, b]) + 1,

that is V (ψ, [c, d]) = V (φ, [a, b]). The same works for the case φ(a) = 0, φ̇(a)φ(b) > 0.

Let I = [c, d] be an interval and let α : I → R, τ : I → R be continuous functions such

that α(t) < 0, τ(t) > 0 for all t ∈ I, and the function η : I ∋ t 7→ t − τ(t) ∈ R is strictly

increasing on I.
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Let k ∈ N \ {0, 1} be given. Assume that there exists a finite sequence (cj)
k
1 in [c, d]

such that c1 = c and η(cj) = cj−1 for all j ∈ {2, . . . , k}. Then we define the functions

η0, η1, . . . , ηk by η0(t) = t for all t ∈ [c, d], and

ηj : [c, d] ∋ t 7→ η(ηj−1(t)) ∈ R

for j ∈ {1, 2, . . . , k}.

Set J = {t − τ(t) : t ∈ I} ∪ I. Let v : J → R be a continuous function which is

continuously differentiable on I and satisfies

v̇(s) = α(s)v(s− τ(s)) (4.1)

for all s ∈ I.

Lemma 4.2. Assume that I = [c, d], α, τ, η, v, k and (cj)
k
1 are given as above, moreover,

for all t ∈ I, v|[η(t),t] is not identically zero. Then

(i) t1, t2 ∈ I, t1 < t2 imply V (v, [η(t1), t1]) ≥ V (v, [η(t2), t2]);

(ii) k ≥ 3, t ∈ [c3, d], v(t) = v(η(t)) = 0 imply that either V (v, [η(t), t]) = ∞ or

V (v, [η(t), t]) < V (v, [η3(t), η2(t)]);

(iii) k ≥ 4, t ∈ [c4, d] and V (v, [η(t), t]) = V (v[η4(t), η3(t)]) <∞ imply v|[η(t),t] ∈ H[η(t),t].

Proof. 1. The proof of (i). We claim that it suffices to show that for all t ∈ I there exists

ǫ0 = ǫ0(t) > 0 such that for all ǫ ∈ [0, ǫ0] with t+ ǫ ∈ I,

V (v, [η(t), t]) ≥ V (η(t+ ǫ), t+ ǫ). (4.2)

Indeed, let t1, t2 in I with t1 < t2 be given and assume that for every t ∈ I there is

ǫ0 = ǫ0(t) > 0 so that for all ǫ ∈ [0, ǫ0] with t+ ǫ ∈ I we have (4.2). Define

t∗ = sup{s ∈ [t1, t2] : V (v, [η(t1), t1]) ≥ V (v, [η(u), u]) for all t1 ≤ u ≤ s}.

Then t1 < t∗ ≤ t2. From the definition of t∗ it follows that there is a sequence

(sn)∞0 in [t1, t∗] so that sn → t∗ as n → ∞ and V (v, [η(t1), t1]) ≥ V (v, [η(sn), sn])

for all n ∈ N. Clearly, η(sn) → η(t∗) as n → ∞. Then Lemma 4.1(i) yields

V (v, [η(t1), t1]) ≥ V (v, [η(t∗), t∗]). If t∗ < t2 then there is ǫ0(t∗) ∈ (0, t2 − t∗] so that

V (v, [η(t∗), t∗]) ≥ V (v, [η(t∗ + ǫ), t∗ + ǫ]) for all ǫ ∈ [0, ǫ0(t∗)]. This contradicts the defini-

tion of t∗. Consequently, t∗ = t2, and the claim holds.

If V (v, [η(t1), t1]) = ∞, then there is nothing to prove. Assume that V (v, [η(t1), t1]) <

∞. Again, the case v(t1) 6= 0 is obvious by using the increasing property of η. Assume

that v(t1) = 0. From the finiteness of V (v, [η(t1), t1]), it follows that v does not change
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sign on [η(t1), η(t1) + δ] for some δ > 0. Assume that v(t) ≥ 0 on this interval. Since

(4.1) is linear, the case v(t) ≤ 0 is analogous. By the continuity and increasing property

of η, there is ǫ0 > 0 such that t ∈ [t1, t1 + ǫ0] implies η(t) ∈ [η(t1), η(t1) + δ]. Hence, using

(4.1), v̇(t) ≤ 0 follows for t ∈ [t1, t1 + ǫ0]. Since v(t1) = 0, we obtain that v(t) ≤ 0 for all

t ∈ [t1, t1 + ǫ0]. If v(t) = 0 for all t ∈ [t1, t1 + ǫ0], then (4.2) holds with equality for all

ǫ ∈ [0, ǫ0]. If v(t) < 0 for some t ∈ [t1, t1+ǫ0], then, by (4.1) and α < 0, we have v(η(t̄)) > 0

for some t̄ ∈ (t1, t) with η(t̄) ∈ [η(t1), η(t1) + δ]. Then there exists γ ∈ (0, t1 − η(t1)) such

that v is not identically zero on [t1 − γ, t1] and either v(t) ≥ 0 for all t ∈ [t1 − γ, t1] or

v(t) ≤ 0 for all t ∈ [t1 − γ, t1]. If v(t) ≥ 0 on [t1 − γ, t1], then

sc(v, [η(t1), t1 + ǫ]) ≤ sc(v, [η(t1), t1]) + 1, 0 ≤ ǫ ≤ ǫ0.

But sc(v, [η(t1), t1]) is even (since v has the same sign on the right of η(t1) and on the left

of t1), and thus (4.2) is satisfied for all ǫ ∈ [0, ǫ0]. If v(t) ≤ 0 on [t1 − γ, t1], then

sc(v, [η(t1), t1 + ǫ0]) = sc(v, [η(t1), t1]),

and (4.2) holds again for all ǫ ∈ [0, ǫ0].

2. The proof of (ii). Assume V (v, [η(t), t]) <∞, since there is nothing to prove if V is

infinite. Let k = sc(v, [η(t), t]). We can choose (ti)k+2
i=0 such that

η(t) = tk+2 < tk+1 < . . . < t1 < t0 = t

and

v(ti)v(ti+1) < 0, i = 1, 2, . . . , k.

Applying the mean value theorem to each interval [ti+1, ti] and using the facts that v(t0) =

v(tk+2) = 0, that v̇(s) and v(η(s)) have different signs (if none of them is zero), and that

η is increasing, we get a sequence (t̄)k+1
i=0 such that

η2(t) < t̄k+1 < t̄k < . . . < t̄1 < t̄0 < η(t)

and

v(t̄i)v(t̄i+1) < 0, i = 0, 1, . . . , k.

Therefore sc(v, [η2(t), η(t)]) ≥ k + 1, and thus, in case of odd k,

V (v, [η2(t), η(t)]) ≥ k + 2 > k = V (v, [η(t), t]),

and the stated inequality follows from (i).
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Assume that k is even. Then v(t̄0) and v(t̄k+1) have different signs. Using that v(η(t)) =

0, we can choose t∗ ∈ (t̄0, η(t)) such that v(t∗) and v(t̄0) have the same sign, and v̇(t∗) and

v(t̄0) have different signs. Then, since v̇(t∗) and v(η(t∗)) have different signs, we conclude

that the signs of v(η(t∗)) and v(t̄k+1) are different. Consequently, sc(v, [η(t∗), t∗]) ≥ k + 2

because of η(t∗) < η2(t) < t̄k+1. Thus, from η(t∗) > η3(t) and statement (i),

V (v, [η3(t), η2(t)]) ≥ V (v, [η(t∗), t∗]) ≥ k + 3 > k + 1 = V (v, [η(t), t]).

3. The proof of (iii). Assume that V (v, [η(t), t]) = V (v, [η4(t), η3(t)]) < ∞. Then, for

any s ∈ [η(t), t], we have η3(t) ≤ η2(s) ≤ s ≤ t. Consequently, by statement (i),

V (v, [η(s), s]) = V (v, [η3(s), η2(s)]) <∞, s ∈ [η(t), t].

From statement (ii) it follows that

(

v(s), v(η(s))
)

6= (0, 0) for all s ∈ [η(t), t].

Using that v̇(s) = α(s)v(η(s)) and α(s) 6= 0, we obtain

(

v(s), v̇(s)
)

6= (0, 0) for all s ∈ [η(t), t],

that is, the zeros of v on [η(t), t] are simple. As a consequence, in case v(t) = 0 we get 0 6=

v̇(t) = α(t)v(η(t)) and v̇(t)v(η(t)) < 0 because of α(t) < 0. Now assume v(η(t)) = 0. By

statement (ii), v(t) 6= 0, v(η2(t)) 6= 0, and thus v̇(η(t)) 6= 0. Assume that v̇(η(t))v(t) < 0.

Then sc(v, [η(t), t]) is an odd number k, and similarly to the proof of statement (ii), there

is a sequence (ti)k+2
i=0 such that

η(t) = tk+1 < tk < . . . t1 < t0 = t

and

v(ti)v(ti+1) < 0, i = 1, 2, . . . , k.

Applying the mean value theorem and using v̇(η(t))v(t) < 0, we get k + 1 sign changes in

the interval [η2(t), η(t)]. This gives that

V (v, [η2(t), η(t)]) ≥ k + 2 > k = sc(v, [η(t), t]) = V (v, [η(t), t]),

a contradiction. Therefore, v|[η(t),t] ∈ H[η(t),t].

The next result shows that the Lyapunov functional V can be effectively used to show

that solutions of (4.1) can not decay too fast at ∞. For constant delay Mallet-Paret [39]

Cao [10] and Arino [4] proved estimates of this type.
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Lemma 4.3. Assume that t′, t are real numbers with t′ < t, α : [t′, t] → R and τ : [t′, t] →

R are continuous functions, and there are positive constants a0, a1, τ0, Lτ such that

−a1 ≤ α(s) ≤ −a0 for all s ∈ [t′, t],

τ0 ≤ τ(s) for all s ∈ [t′, t],

|τ(s1) − τ(s2)| ≤ Lτ |s
1 − s2| for all s1, s2 in [t′, t],

the function η : [t′, t] ∋ s 7→ s − τ(s) ∈ R is strictly increasing, and t′ = η4(t). Let

v be a continuous function on [η5(t), t] such that (4.1) holds for all s ∈ [η4(t), t] and

V (v, [η5(t), η4(t)]) = 1.

Then there exists a constant k = k(a0, a1, τ0, Lτ) > 0 such that

max
s∈[η2(t),η(t)]

|v(s)| ≤ k max
s∈[η(t),t]

|v(s)|. (4.3)

Proof. First we prove the following claim.

CLAIM. For any δ ∈ (0, τ0) there exists c = c(δ, a0, Lτ ) > 0 such that for each interval

∆ ⊂ [η4(t), η(t)] with length δ, we have

min
s∈∆

|v(s)| ≤ c max
s∈[η(t),t]

|v(s)|. (4.4)

Proof of Claim. Let v̄ = maxs∈[η(t),t] |v(s)|. First choose ∆ in the interval [η2(t), η(t)],

that is, ∆ = [η(s1), η(s2)], δ = η(s2) − η(s1) and η(t) ≤ s1 < s2 ≤ t. Integrating (4.1) on

[s1, s2], we get

v(s2) − v(s1) =

∫ s2

s1
α(u)v(η(u)) du.

The length of [s1, s2] can be estimated from

δ = η(s2) − η(s1) ≤ s2 − s1 + |τ(s2) − τ(s1)| ≤ (1 + Lτ )(s
2 − s1).

Hence

min
s∈∆

|v(s)| ≤
2(1 + Lτ )

a0δ
v̄.

Define c1 = c1(δ, a0, Lτ ) = 2(1+Lτ )
a0δ

.

Now consider any interval ∆ ⊂ [η3(t), η(t)] of length δ. If the length of ∆∩[η2(t), η(t)] is

greater than or equal to δ
2 , then we choose c = c1(

δ
2 ). Assume that |∆∩ [η3(t), η2(t)]| > δ

2 .
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There are t1, t2 ∈ [η2(t), η(t)] such that [η(t1), η(t2)] ⊂ ∆ and η(t2)− η(t1) = δ
2 . From the

Lipschitz continuity of τ , we obtain

t2 − t1 ≥
δ

2(1 + Lτ )
.

Considering the intervals

[t1, t1 +
δ

6(1 + Lτ )
], [t2 −

δ

6(1 + Lτ )
, t2] ⊂ [η2(t), η(t)]

of length δ̄ = δ
6(1+Lτ ) , the first part of the proof gives that

min
s∈[t1,t1+δ̄]

|v(s)| ≤ c1(δ̄, a0, Lτ )v̄, min
s∈[t2−δ̄,t2]

|v(s)| ≤ c1(δ̄, a0, Lτ)v̄.

Applying the mean value theorem, we obtain a t∗ ∈ (t1, t2) such that

|v̇(t∗)| ≤
2c1(δ̄, a0, Lτ )v̄

δ̄
.

Using equation (4.1),

|v(η(t∗))| ≤
|v̇(t∗)|

a0
≤

2c1(δ̄, a0, Lτ )v̄

a0δ̄
.

Since η(t∗) ∈ ∆, it follows that

min
s∈∆

|v(s)| ≤
2c1(δ̄, a0, Lτ )

a0δ̄
v̄.

Then, for any interval ∆ ⊂ [η3(t), η(t)] of length δ, (4.4) holds with c = c2, where

c2 = c2(δ, a0, Lτ ) = max

{

c1(
δ

2
, a0, Lτ ), 2

c1(δ̄, a0, Lτ )

a0δ̄

}

.

Repeating the above argument we obtain that

c = c(δ, a0, Lτ ) = max

{

c2(
δ

2
, a0, Lτ ),

c2(δ̄), a0, Lτ

a0δ̄

}

is an appropriate constant for any ∆ ⊂ [η4(t), η(t)]. This completes the proof of the claim.

Now we prove Lemma 4.3. Choose δ > 0 such that 2δ(1 + Lτ )(2 + Lτ ) ≤ τ0. By

the above claim, there is a c = c(δ) > 0 such that (4.4) holds. Clearly, c > 1 may be

assumed. We prove that (4.3) is satisfied if k > 0 is chosen such that k−c
a1δ

> c. Let
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v̄ = maxs∈[η(t),t] |v(s)| and assume that (4.3) is not true. Then there is t∗ ∈ [η2(t), η(t)]

such that |v(t∗)| > kv̄. By the above claim,

min
s∈[t∗−δ,t∗]

|v(s)| ≤ cv̄, min
s∈[t∗,t∗+δ]

|v(s)| ≤ cv̄.

If t∗+δ > η(t), then the claim does not apply to get the second inequality. But in that case

it clearly holds since c > 1. The mean value theorem implies the existence of s1 ∈ [t∗−δ, t∗]

and s2 ∈ [t∗, t∗ + δ] such that

|v̇(si)| ≥
(k − c)v̄

δ
, i = 1, 2,

moreover v̇(s1)v̇(s2) < 0. Hence it follows that

|v(η(si))| ≥
|v̇(si)|

a1
≥

(k − c)v̄

a1δ
> cv̄

and v(η(s1))v(η(s2)) < 0. A second application of the claim gives

min
s∈[η(s1)−δ,η(s1)]

|v(s)| ≤ cv̄, min
s∈[η(s2),η(s2)+δ]

|v(s)| ≤ cv̄.

We prove later that η(s1) − δ ≥ η4(t), i.e., that the claim is applicable. Then, again by

the mean value theorem, it is obtained that v̇ has at least two sign changes on the interval

[η(s1) − δ, η(s2) + δ]. Eq. (4.1) implies that then v also has at least two sign changes on

[η(η(s1) − δ), η(η(s2) + δ)]. From the Lipschitz continuity of τ it follows that

|η(s2) + δ − (η(s1) − δ)| ≤ |η(t∗ + δ) + δ − (η(t∗ − δ) − δ)| ≤ 2δ(2 + Lτ ) ≤ τ0, (4.5)

|η(η(s2) + δ) − η(η(s1) − δ)| ≤ 2δ(1 + Lτ )(2 + Lτ ) ≤ τ0. (4.6)

From (4.5) η(s1) − δ ≥ η4(t) follows, since η(t∗) ≥ η3(t) and η(t∗) ∈ (η(s1) − δ, η(s2) + δ).

In addition, η(η(s1)− δ) ≥ η5(t) is also obtained. Then (4.6), sc(v, [η(η(s1)− δ), η(η(s2) +

δ)]) ≥ 2 and Lemma 4.2(i) combined imply

V (v, [η5(t), η4(t)]) > 1,

a contradiction.

The next result gives a connection between the distances of consecutive zeros of solu-

tions of (4.1) and the values of V .

Lemma 4.4. Assume that α, τ, v : R → R are continuous functions such that α(R) ⊂

(−∞, 0), τ(R) ⊂ (0,∞), the function R ∋ t 7→ t− τ(t) ∈ R is strictly increasing, τ(t) = 1
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for all t ∈ R with v(t) = 0, v is continuously differentiable on R and satisfies (4.1) for all

s ∈ R.

Then the following statements are equivalent.

(i) |z1 − z2| > 1 holds for every pair of zeros z1 6= z2 of v.

(ii) v|[t−τ(t),t] 6≡ 0 and V (v, [t− τ(t), t]) = 1 for all t ∈ R.

Proof. 1. Assume (i). If v has no zero then (ii) holds. Suppose v has at least one zero. For

a given zero z of v, define z+ = ∞ if v has no zero on (z,∞), otherwise z+ = min{t > z :

v(t) = 0}. For every t ∈ R either there exists a zero z of v with t ∈ [z, z+) or v(s) 6= 0 for

all s ≤ t. In the latter case clearly v|[t−τ(t),t] 6≡ 0 and V (v, [t− τ(t), t]) = 1. Assume that

t ∈ [z, z+) for some zero z of v. Then z is the only zero of v on [z − 1, z+). We also have

z − 1 = z − τ(z) ≤ t− τ(t) < t < z+. Therefore v|[t−τ(t),t] 6≡ 0 and V (v, [t− τ(t), t]) = 1.

2. Assume (ii). Let z be a zero of v. Then τ(z) = 1. By Lemma 4.2(iii), all zeros of v

are simple on [η(z), z] = [z − 1, z] and v(z − 1)v̇(z) < 0. These facts and sc(v, [z− 1, z]) ≤

V (v, [z − 1, z]) = 1 combined yield z(t) 6= 0 for all t ∈ [z − 1, z).

Remark 4.5 Let x, y be solutions of Eq. (2.1) on (R,R) with x(R) ⊂ [−B,A] and y(R) ⊂

[−B,A]. Lemma 2.2(ii) and Lemma 2.5 combined imply that the function R ∋ t 7→ t −

r(x(t)) ∈ R is strictly increasing. Defining v, α as in Lemma 2.6 and τ by τ(t) = t−r(x(t))

we find that (4.1) holds for all s ∈ R. Using the properties of α, v stated in Lemma 2.6,

we see that Lemmas 4.2, 4.3 and 4.4 can be applied.

5. Slowly oscillating solutions

A solution x of Eq. (2.1) is called slowly oscillating if for every pair of zeros z′ > z of

x,

z′ − z > 1

holds. Our aim is to describe the set of globally defined slowly oscillating solutions with

values in [−B,A]. Recall from r(0) = 1 and Proposition 2.3 that R ≥ 1. Set

S = {φ ∈ LK : sc(φ, [t− 1, t]) ≤ 1 for all t ∈ [−R + 1, 0]},

S0 = {φ ∈ S : φ(s) = 0 for all s ∈ [−1, 0]}.

S is a closed subset of LK , therefore it is compact. For each t ∈ [−1, 1] and φ ∈ S, clearly

tφ ∈ S. S is not convex. It is clear that, if x : J → [−B,A] is a slowly oscillating solution

of Eq. (2.1) on (I, J), then its segments xt belong to the set S \ S0.

Define

U = {φ ∈ LK : φ(s) ≥ 0 for all s ∈ [−1, 0], φ(0) = 0},
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U0 = {φ ∈ LK : φ(s) = 0 for all s ∈ [−1, 0]}.

If x : R→ [−B,A] is a slowly oscillating solution of Eq. (2.1) and z is a zero with ẋ(z) < 0,

then xz ∈ U \U0. The set U is a compact convex subset of LK . The next result of Mallet-

Paret and Nussbaum [41] shows that, for any φ ∈ U \ U0, there is a sufficiently large t0
such that xφ is slowly oscillating on [t0,∞).

Proposition 5.1. [41] (i) If φ ∈ U0 then xφ(t) = 0 for all t ≥ 0.

(ii) If φ ∈ U \ U0 then define

q0 = sup{t : xφ(s) = 0 for 0 ≤ s ≤ t}.

Define

q1 = inf{t > q0 : xφ(t) = 0}

and q1 = ∞ if xφ(t) < 0 for all t > q0. If qk is finite, define

qk+1 = inf{t > qk : xφ(t) = 0}

and qk+1 = ∞ if x(t) 6= 0 for all t > qk. If qk = ∞ then define qk+1 = ∞. Then

q0 < 1, q1 − q0 > 1 and qk+1 − qk > 1 for all k such that qk <∞. If qk = ∞ for some

k, then limt→∞ xφ(t) = 0.

Remark 5.2. Setting

Ũ = {φ ∈ LK : φ(s) ≤ 0 for all s ∈ [−1, 0], φ(0) = 0},

for each φ ∈ Ũ \ U0, an analogous statement to Proposition 5.1(ii) holds.

We shall make use of a return map on the compact convex set U . For every k ∈ N\{0}

Proposition 5.1 permits to define a map Pk : U → U by

Pk(φ) = F (q2k, φ) if φ ∈ U \ U0 and q2k <∞,

Pk(φ) = 0 if φ ∈ U0 or φ ∈ U \ U0 and q2k = ∞.

Pk(φ) is the k-th intersection of the trajectory xφt with U provided q2k(φ) <∞.

If R is large then Pk is not, in general, continuous at nonzero elements of U0. Let us

choose l ∈ N such that 2l ≥ R. Then we have the following result.
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Proposition 5.3. Pl is continuous.

Proof. First we prove the following claim.

CLAIM. For every ǫ > 0, there exists T = T (ǫ) > 0 such that if φ ∈ U \ U0 and

q2l ≥ 2lT , then ||Pl(φ)|| < ǫ.

Proof of the Claim. If q2l = ∞ then Pl(φ) = 0 and thus ||Pl(φ)|| = 0. So, it suffices

to deal with those φ ∈ U \ U0 for which q2l < ∞. Let T > 2R. If q2l ≥ 2lT , then there

exists a k ∈ {1, 2, . . . , 2l} such that qk − qk−1 ≥ T . Then from Eq. (2.1), |x| is decreasing

on [qk−1 +R, qk], and for all t ∈ [qk−1 +R, qk] we have

|ẋ(t)| ≤ −µ|x(t)|,

|x(t)| ≤ |x(qk−1 +R)|eµ(qk−1+R−t) ≤ max{A,B}eµ(qk−1+R−t).

It follows that

||xqk
|| ≤ max{A,B}eµ(2R−T ).

Since x ≡ 0 is a solution of Eq. (2.1), by Lemma 2.4, for each γ > 0 there exists

δ = δ(γ) > 0 such that ||φ|| < δ and φ ∈ LK imply ||xφt || < γ for all t ∈ [0, R].

We assert that for every γ > 0, ||xqj
|| < δ(γ) implies ||xqj+1

|| < γ. Assume ||xqj
|| <

δ(γ). The case qj+1 − qj ≤ R is obvious. If qj+1 − qj > R, then |x| is decreasing on

[qj +R, qj+1]. By the definition of δ(γ), ||xqj+R|| < γ. Consequently,

||xqj+1
|| ≤ ||xqj+R|| < γ.

Therefore, it can be shown by induction that there exists η = η(ǫ) > 0 such that

||xqk
|| < η implies ||xq2l

|| < ǫ.

If

T >
1

µ
log

max{A,B}

η(ǫ)
+ 2R,

then ||xqk
|| < η. This completes the proof of the claim.

We will now prove the proposition. Let a sequence (φn)∞0 in U and φ ∈ U be given with

φn → φ as n→ ∞. Write xn = xφ
n

, x = xφ and qnk = qk(φ
n), qk = qk(φ) if φn, φ ∈ U \U0,

respectively. We divide the proof into three cases.

Case 1: φ ∈ U \ U0 and q2l <∞. We have φn ∈ U \ U0 for all sufficiently large n ∈ N,

say for n ≥ n0. Proposition 5.1 implies q0 < 1, qn0 < 1, q1 − q0 > 1 and qn1 − qn0 > 1 for all

n ≥ n0. It follows that qn1 > 1 and q1 > 1 for all n ≥ n0 and x(1) < 0. Lemma 2.4 implies
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that for any positive number ǫ > 0 and any number T with q2l < T < q2l+1 there exists

n1(ǫ, T ) with

sup{|xn(t) − x(t)| : 1 ≤ t ≤ T} < ǫ for all integers n ≥ n1(ǫ, T ).

For a given positive number δ < min{ 1
2
, T − q2l} we can assume (by taking ǫ as small as

needed) that |x(t)| ≥ ǫ for all t ∈ [1, T ] ∩2l
j=1 {t ∈ R : |t − qj | ≥ δ}. For n ≥ n1(ǫ, T ), it

follows that xn(t) 6= 0 for all t ∈ [1, T ] ∩2l
j=1 {t ∈ R : |t − qj | ≥ δ} and that xn(t) has a

zero on the intervals [qj − δ, qj + δ], j = 1, 2, . . . , 2l. By Proposition 5.1, it follows that

|qnj − qj | < δ for all integers n ≥ n1(ǫ, T ). Since δ > 0 can be arbitrarily small, it follows

that qnj → qj as n → ∞, j = 1, 2, . . . , 2l. Then Lemma 2.4 implies Pl(φ
n) → Pl(φ) as

n→ ∞.

Case 2: φ ∈ U \U0 and q2l = ∞. Then Pl(φ) = 0. For each real T > 0 one can prove as

in Case 1, by using Lemma 2.4 and Proposition 5.1, that qn2l ≥ T for all sufficiently large

n. Then the Claim implies that, for any given ǫ > 0, ||Pl(φ
n)|| < ǫ for all sufficiently large

integers n.

Case 3: φ ∈ U0. Then Pl(φ) = 0. We may assume that φn ∈ U \ U0 for all n, since

Pl(ψ) = 0 for ψ ∈ U0. Take ǫ > 0 and applying the claim above select T such that

||Pl(φ
n)|| < ǫ for all n such that qn2l ≥ T . By Lemma 2.4, there exists n2(ǫ, T ) such

that if n ≥ n2(ǫ, T ) then sup{|xφ
n

(t)| : 0 ≤ t ≤ T} < ǫ. In the case qn2l ≤ T , from

qnk − qnk−1 > 1, k = 1, 2, . . . , 2l, and 2l ≥ R, it follows that qn2l > R, and, consequently

||Pl(φ
n)|| = ||F (qn2l, φ

n)|| < ǫ for all integers n ≥ n2(ǫ, T ). Therefore, ||Pl(φ
n)|| < ǫ for

both cases qn2l ≥ T and qn2l < T provided n ≥ n2(ǫ, T ).

The next result shows that the set S is positively invariant under the semiflow F .

Proposition 5.4. F (R+ × S) ⊂ S.

Proof. Let φ ∈ S and write x = xφ.

Case 1: sc(φ, [−1, 0]) = 0. If φ ∈ (U ∪ Ũ) ∩ S, then Proposition 5.1 and Remark 5.2

can be used to conclude that xt ∈ S for all t ≥ 0. If φ /∈ U ∪ Ũ then φ(0) 6= 0 and either

x(t) 6= 0 for all t ≥ 0 or there exists a smallest zero z > 0 of x. If x(t) 6= 0 for all t ≥ 0,

then xt ∈ S clearly holds for all t ≥ 0. Otherwise, xz ∈ (U ∪ Ũ)∩S and, by applying again

Proposition 5.1 and Remark 5.2, we easily obtain that xt ∈ S for all t ≥ 0.

Case 2: sc(φ, [−1, 0]) = 1. There exists s0, s1 ∈ (−1, 0) with s0 < s1 such that either

φ(s0) < 0 and φ(s1) > 0 or φ(s0) > 0 and φ(s1) < 0. We consider only the first possibility

since the second one is analogous. Set

z0 = inf{t : φ(s) ≥ 0 for t ≤ s ≤ 0},

z1 = sup{t : x(s) ≥ 0 for 0 ≤ s ≤ t}.
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Clearly, −1 < z0 < 0, z1 ∈ [0,∞], φ(z0) = 0 and if z1 <∞ then x(z1) = 0. Moreover,

φ(s) ≤ 0 for − 1 ≤ s ≤ z0,

φ(s) ≥ 0 for z0 ≤ s ≤ 0.

If z1 = ∞ then xt ∈ S follows for all t ≥ 0. Assume z1 <∞. We have

φ(s) ≤ 0 for all s ∈ [max{−R, s1 − 1}, z0],

since φ ∈ S and thus φ cannot have two sign changes on the interval [max{−R, s1−1}, s1].

We assert that z1 − z0 ≥ 1. If z1 − z0 < 1, then there exists ǫ > 0 such that

max{−R, s1 − 1} ≤ t− r(x(t)) < z0 for all t ∈ (z1, z1 + ǫ),

since z1 − r(x(z1)) = z1 − 1 ∈ [−1, z0) and t − r(x(t)) ≥ −R for all t ≥ 0. Hence, for

t ∈ (z1, z1 + ǫ), from Eq. (2.1) we obtain

eµx(t) =

∫ t

z1

eµsf(x(s− r(x(s)))) ds ≥ 0.

This contradicts the definition of z1. Therefore z1 − z0 ≥ 1. Thus xz1 ∈ U follows. Then

Proposition 5.1 and the definition of z1 combined imply that the distance of consecutive

zeros of x in [z1,∞) is greater than 1. Hence we conclude xt ∈ S for all t ≥ 0.

Consider a complete metric space M , a semiflow G : R+ ×M → M , and a subset

N ⊂ M . The set N is called invariant if G(t, N) = N for all t ≥ 0. The set N is said

to attract a set N ′ ⊂ M if for every open set O ⊂ M with N ⊂ O there exists t ≥ 0

such that {G(s, u) : u ∈ N ′} ⊂ O for all s ≥ t. A global attractor is a compact invariant

set which attracts every bounded subset of M . The bounded complete orbits, i.e. the sets

{u(t) : t ∈ R} with u : R → M satisfying u(t) = G(t − s, u(s)) for all reals t ≥ s, with

compact closures are contained in the global attractor.

Since LK is a compact metric space, [25, Theorem 3.4.2] implies that the semiflow F

has a global attractor A(F ). By Proposition 5.4, the restriction of F to R+ × S defines a

semiflow FS on the compact metric space S. Define

A = A(FS) = ∩t≥0F (t, S).

Proposition 5.5.

(i) A is the global attractor of the semiflow FS.

(ii) The map FA : R×A ∋ (t, φ) 7→ xφt ∈ A is a continuous flow.

(iii) A is connected.
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(iv) The following statements are equivalent.

(a) φ ∈ A \ {0}.

(b) There is a solution x : R→ [−B,A] with x0 = φ and xt ∈ S \ S0 for all t ∈ R.

(c) There is a slowly oscillating solution x : R→ [−B,A] with x0 = φ.

(d) There is a nonzero solution x : R → [−B,A] such that x0 = φ, xt|[−r(x(t)),0] 6= 0

and V (x, [t− r(x(t)), t]) = 1 for all t ∈ R.

Proof. 1. By Proposition 5.4, the compact set S attracts all subsets of S. Therefore, [25,

Theorem 3.4.2] implies that A is the global attractor of FS.

2. It also follows from [25, Theorem 3.4.2] that FA is a continuous flow provided F (t, ·)

is injective on A for all t ≥ 0. Let φ, ψ ∈ A and assume that F (t, φ) = F (t, ψ) for some

t ≥ 0. Since A is invariant, there exist solutions x, y : R → [−B,A] with x0 = φ and

y0 = ψ. Then Lemma 2.7 yields φ = ψ. Thus, F (t, ·) : A → A is injective.

3. Suppose that A is not connected. Then there are open disjoint subsets V1, V2 of S

such that A ⊂ V1 ∪ V2, A ∩ V1 6= ∅, A ∩ V2 6= ∅. We have F (t, S) ⊃ F (t,A) = A for all

t ≥ 0 since A is invariant. As A attracts S, there exists t ≥ 0 such that

{F (t, φ) : φ ∈ S} ⊂ V1 ∪ V2.

Then

F (t, S) ∩ V1 ⊃ A ∩ V1 6= ∅ 6= A ∩ V2 ⊂ F (t, S) ∩ V2,

and hence it follows that F (t, S) cannot be arcwise connected.

On the other hand, S is arcwise connected since [−1, 1]S ⊂ S. Then F (t, S) is also

arcwise connected as it is the continuous image of S. This is a contradiction.

4. Let φ ∈ A \ {0}. The facts that A is invariant, FA is a flow on A, and FA(t, 0) = 0

for all t ∈ R combined yield the existence of a unique solution x : R → [−B,A] such that

x0 = φ and xt ∈ A \ {0} for all t ∈ R. The definition of A implies A ⊂ S. Hence xt ∈ S

follows for all t ∈ R. If xs ∈ S0 for some s ∈ R, then, by Proposition 5.1, xt = 0 for all

sufficiently large t, a contradiction. Therefore, (a)⇒(b).

Assume that (b) holds. We have to show that x is a slowly oscillating solution. Let

z′ > z be two zeros of x. In order to show z′ − z > 1, it suffices to find a t0 ≤ z − 1

such that xt0 ∈ U \ U0, since Proposition 5.1 applied to φ = xt0 ∈ U \ U0 implies that

z′ = qj(xt0) and z = qk(xt0) for some integers k > j ≥ 1, which gives z′ − z > 1. From

Lemma 2.2 it follows that x has arbitrarily large negative zeros. For every real T , x takes

both positive and negative values in (−∞, T ]. Indeed, assuming the contrary, Eq. (2.1)

implies that |x| is decreasing on (−∞, T ]. This together with the existence of arbitrary

large negative zeros implies that x(s) = 0 for all s ≤ T , a contradiction. Select s1 and s2
such that s1 < s2 < z − 1 and x(s1) > 0, x(s2) < 0. Define

t0 = sup{t : x(s) ≥ 0 for all s1 ≤ s ≤ t}.
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We claim that xt0 ∈ U \ U0. Since xt0 ∈ S \ S0 and x(t0) = 0 follows from the definition

of t0, it is enough to prove that x(s) ≥ 0 for all s ∈ [t0 − 1, t0]. This is the case if

t0 ≥ s1 + 1. If t0 < s1 + 1 and x(s) ≥ 0 for all s ∈ [t0 − 1, t0] does not hold, then there

exists t1 ∈ (t0 − 1, s1) such that x(t1) < 0. Consider the sign changes of x on the interval

[t1, t1 + 1]. The definition of t0 implies that there is a positive sequence (δn)
∞
0 such that

δn → 0 as n→ ∞ and x(t0 + δn) < 0 for all n ∈ N. Hence and from t1 + 1 > t0, x(t1) < 0

and x(s1) > 0 it follows that sc(x, [t1, t1 + 1]) ≥ 2, a contradiction to xt1+1 ∈ S. Thus,

(b)⇒(c).

Assume that x : R → [−B,A] is a slowly oscillating solution. Consider the interval

[t−r(x(t)), t]. We claim that x cannot have more than one zero in [t−r(x(t)), t]. If z1 < z2

were two zeros in [t − r(x(t)), t], then z2 − z1 > 1 and r(x(z2)) = r(0) = 1 would imply

z2 − r(x(z2)) = z2 − 1 > z1. Using that R ∋ t 7→ t− r(x(t)) ∈ R is increasing by Lemmas

2.2 and 2.5, we obtain from t ≥ z2 that t − r(x(t)) ≥ z2 − r(x(z2)) > z1, a contradiction

to z1 ≥ t− r(x(t)). Therefore, (c)⇒(d).

Let x : R → [−B,A] be a nonzero solution such that V (x, [t − r(x(t)), t]) = 1 for all

t ∈ R. Lemmas 2.2 and 2.5 yield that the function R ∋ t 7→ t − r(x(t)) ∈ R is strictly

increasing. We assert first that the set N ′ = {xt : t ∈ R} is a subset of S. We have to show

that, for any t ∈ R, x cannot have more than one sign change in [t− 1, t]. The case when

x has no zero in [t− 1, t] is obvious. Let s denote the largest zero of x in [t− 1, t]. Then

r(x(s)) = 1. The case s = t is again obvious since sc(x, [t − 1, t]) ≤ V (x, [t − 1, t]) = 1.

If s < t, then by the monotonicity of t − r(x(t)) and s − 1 = s − r(x(s)) < t − 1, we

find t′ ∈ (s, t) such that [t − 1, s] ⊂ [t′ − r(x(t′)), t′]. By the definition of s, x has the

same sign on (s, t]. Therefore, sc(x, [t − 1, t])= sc(x, [t − 1, t′])≤ sc(x, [t′ − r(x(t′)), t′]) ≤

V (x, [t′ − r(x(t′)), t′]) = 1. Thus, N ′ is a subset of S. The set N ′ satisfies F (t, N ′) = N ′

for all t ≥ 0. As A attracts N ′, it follows that N ′ ⊂ A, and in particular x0 = φ ∈ A.

x0 = φ = 0 is impossible since x is a nonzero solution. So (d)⇒(a), and the proof is

complete.

Corollary 5.6.

(i) If (φn)∞0 is a sequence in A and φ ∈ A such that φn → φ as n → ∞, then xφ
n

(t) →

xφ(t) as n→ ∞ uniformly on each compact subinterval of R.

(ii) The topologies induced on A from C([−R, 0],R) and C1([−R, 0],R) are equivalent.

Proof. 1. Let I be a compact interval. Choose k ∈ N such that I ⊂ [−kR, kR]. The

continuity of FA(jR, ·) by Proposition 5.5(ii) implies that for every given ǫ > 0 there

exist δj > 0 such that from ||φn − φ|| < δj it follows that ||F (jR, φn) − F (jR, φ)|| < ǫ.

Taking δ = min{δj : j ∈ {−k,−k + 1, . . . , k}}, it follows from ||φn − φ|| < δ that

sup{|xφ
n

(t) − xφ(t)| : t ∈ I} < ǫ.
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2. It suffices to show that if φn, φ ∈ A and ||φn−φ|| → 0 as n→ ∞, then ||φ̇n−φ̇|| → 0.

By statement (i), ||xφ
n

−R − xφ−R|| → 0 follows. Then Lemma 2.2 implies ||φ̇n − φ̇|| → 0 as

n→ ∞.

We turn to the map Pl. Since U is compact, it follows from [25, Theorem 2.4.2] that

the set

A(Pl) = ∩∞
n=0P

n
l (U)

is the global attractor of Pl, that is, it is a compact invariant subset of U attracting all

bounded subsets (which in our case means all subsets) of U . Since U is compact and

convex, the closed convex hull of A(Pl) is a subset of U . Then the arguments from the

proof of [25, Lemma 2.4.1] show that A(Pl) is connected.

Proposition 5.7. A ∩ U = A(Pl).

Proof. It is clear that 0 is an element of A ∩ U and A(P ).

Let φ ∈ (A∩U)\{0}. Proposition 5.5 implies that there is a slowly oscillating solution

x : R → [−B,A] such that x0 = φ. Using Eq. (2.1) and r(0) = 1 we obtain that all zeros

of x are simple. From Lemma 2.2 it follows that x has arbitrary large negative zeros.

If 0 = z0 > z1 > . . . are the zeros of x in (−∞, 0], then from x0 ∈ U \ U0 it follows

that xz2ln ∈ U \ U0 and, by Proposition 5.1, Pl(xz2l(n−1)) = xz2ln for all n ∈ −N. Then

φ = x0 = Pnl (xz−2ln) for all n ∈ −N, and thus φ ∈ A(Pl).

Let φ ∈ A(Pl) \ {0}. Clearly, φ ∈ U \ U0. There is a trajectory (φn)0−∞ of the map Pl

in U with φ0 = φ. Clearly φn ∈ U \ U0 for all n ∈ −N. Let (qnj )∞j=0 denote the sequence

associated with φn by Proposition 5.1(ii). The fact φn 6= 0 for all n ∈ −N yields qn2l < ∞

for all n ∈ −N. Then by the definition of Pl it is not difficult to see that x : R→ R defined

by

x(t) = F



t+

0
∑

j=n

qj2l, φ
n



 for t ∈ [−
0
∑

j=n

qj2l,∞)

gives a solution of Eq. (2.1) with x(R) ⊂ [−B,A], and x−
∑0

j=n
qj

2l
= φn. Propositions

5.1(ii) and 5.5(iv) combined yield φ ∈ A \ {0}. The proof is complete.

Corollary 5.8. A∩ U is compact and connected.

Using Proposition 5.1, the definition of P1 and the fact that A is invariant under F ,

we obtain

P1(A ∩ U) ⊂ A∩ U.

Set

B = {φ ∈ A ∩ U : P1(φ) 6= 0}.
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Define the map

P : B ∋ φ 7→ P1(φ) ∈ LK .

Proposition 5.9. P1|A∩U is continuous. P is a homeomorphism from B onto A∩U \{0}.

Proof. The proof of the continuity of P1|A∩U is essentially the same as that of Pl. We

used only in Case 3 of the proof of Proposition 5.3 that 2l ≥ R. If φ ∈ U0 ∩ (A∩U), then

φ = 0 by Proposition 5.5. Let a sequence (φn)∞0 in A ∩ (U \ U0) be given so that φn → 0

as n → ∞. Let xn = xφ
n

, qn2 = q2(φ
n). Let ǫ > 0 be fixed. Analogously to the claim

in the proof of Proposition 5.3, we find T > 0 such that ||P1(φ
n)|| < ǫ for all n ∈ N with

qn2 ≥ T . By Lemma 2.4 there exists n0 such that sup{|xφ
n

(t)| : −R ≤ t ≤ T} < ǫ follows

for all n ≥ n0. So, ||P1(φ
n)|| < ǫ follows for all n ≥ n0. Therefore, P1|A∩U is continuous.

The injectivity of P on B follows from the backward uniqueness of solutions on A. If

φ ∈ A ∩ U \ {0}, then Proposition 5.5 implies that there is a unique slowly oscillating

solution x : R → [−B,A] with x0 = φ. Lemma 2.2 implies that x has arbitrary large

negative zeros. We have x(0) = 0 since x0 = φ ∈ U . Let z−3 < z−2 < z−1 < 0 be defined

such that z−3, z−2, z−1, 0 are consecutive zeros of x. Then z−2 − z−3 > 1, z−1 − z−2 > 1

and z−1 < −1. From x0 = φ ∈ U , it follows that x(s) > 0 for all s ∈ (z−1, 0), and

hence ẋ(z−1) ≥ 0. We also have x(s) 6= 0 for all s ∈ (z−2, z−1) ∪ (z−3, z−2). Since

x(z−1) = 0, r(x(z−1)) = 1 and z−1 − z−2 > 1, we obtain ẋ(z−1) 6= 0 from Eq. (2.1).

Therefore ẋ(z−1) > 0 and x(s) < 0 for all s ∈ (z−2, z−1). Continuing the same argument,

we obtain that ẋ(z−2) < 0 and x(s) > 0 for all s ∈ (z−3, z−2). Clearly xz−2
∈ A ∩ U and

P1(xz−2
) = φ. Therefore P (B) = A ∩ U \ {0}. As the inverse of P is given by

A∩ U \ {0} ∋ φ 7→ xz−2
∈ B,

the continuity of the inverse of P follows from Corollary 5.6.

Let P−1 : A ∩ U \ {0} → B denote the inverse of P .

Let φ ∈ A \ {0} and x = xφ. Proposition 5.5 implies that x is slowly oscillating and

V (x, [t− r(x(t)), t]) = 1 for all t ∈ R. All zeros of x are simple since x is slowly oscillating.

Let z−2(φ) denote the largest negative zero of xφ with ẋφ(z−2(φ)) < 0. Using also Lemma

2.2 and Proposition 5.1 the next proposition easily follows and thus the proof is omitted.

Proposition 5.10.

(i) If φ ∈ A \ {0} and x = xφ, then the zeroset of x is given by a sequence (zj(φ))
J(φ)
−∞ ,

where J(φ) = ∞ if the zeroset is unbounded from above, J(φ) ∈ Z if the zeroset is

bounded from above. Moreover, zj−1(φ) < zj(φ)−1 and ẋ(zj(φ)) 6= 0 for all j ∈ Z with

j ≤ J(φ).
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(ii) If φ ∈ A ∩ U \ {0} and x = xφ, then J(φ) ≥ 0 and

t /∈ {zj(φ) : j ∈ Z, j ≤ J(φ)} =⇒ xt /∈ U,

j ∈ Z, 2j ≤ J(φ) =⇒ xz2j(φ) ∈ A ∩ U \ {0},

j ∈ Z, 2j ≤ J(φ) =⇒ P (xz2j−2(φ)) = xz2j(φ),

j ∈ Z, 2j ≤ J(φ) =⇒ P−1(xz2j(φ)) = xz2j−2(φ).

The next proposition contains information about slowly oscillating periodic solutions

of (2.1).

Proposition 5.11. Assume that φ ∈ A \ {0} and x = xφ is a periodic solution of Eq.

(2.1) with minimal period p > 0. Then

(i) p = z2(φ) − z0(φ) and ẋ has exactly one zero between two consecutive zeros of x,

(ii)

V (xt − xt−τ , [−r(x(t)), 0]) = 1 for all τ ∈ (0, p) and t ∈ R.

Proof. 1. (i) is contained in [41, Theorem 2.6].

2. The periodicity of x and Proposition 4.2 (i) imply that, for every fixed τ ∈ (0, p),

V (xt − xt−τ , [−r(x(t)), 0])

is independent of t. Thus, it suffices to show that

V (xz2(φ) − xz2(φ)−τ , [−1, 0]) = 1 for all τ ∈ (0, p).

This holds if we prove that, for every τ ∈ (0, p), xz2(φ) − xz2(φ)−τ has at most one zero in

[−1, 0]. By way of contradiction, let t1, t2 ∈ [z2(φ) − 1, z2(φ)] be such that t1 < t2 and

x(t1) = x(t1 − τ), x(t2) = x(t2 − τ).

From (i) it follows that there is a unique s ∈ (z1(φ), z2(φ)) so that ẋ(s) = 0 and x is

strictly monotone on the intervals (z1(φ), s) and (s, z2(φ)). Using also the facts that the

signs of x on (z0(φ), z1(φ)) and on (z1(φ), z2(φ)) are different and that x is p-periodic and

τ ∈ (0, p), we conclude that

s ≤ t1 < t2 =⇒ z1(φ) ≤ t2 − τ < t1 − τ ≤ s,

t1 < t2 ≤ s =⇒ s− p ≤ t2 − τ < t1 − τ ≤ z0(φ),

t1 < s < t2 =⇒ s− p < t1 − τ ≤ z0(φ), z1(φ) ≤ t2 − τ < s.
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In the first two cases we get t2 < t1. In the third case t2 − t1 ≥ z1(φ) − z0(φ) > 1 follows.

This is a contradiction and the proof is complete.

6. Asymptotic expansion for slowly oscillating solutions

In this section we prove an asymptotic expansion for slowly oscillating solutions con-

verging to zero as t → −∞. In the constant delay case, Cao [10] proved asymptotic

expansions in more general situations than slowly oscillating solutions converging to zero.

Our proof can be extended to get the same type of results for solutions of Eq. (2.1).

Recall that u0 = maxRe(Σ) where Σ denotes the spectrum of the generator of the solu-

tion semiflow (T (t))t≥0 of Eq. (3.1). If u0 > 0 then Σ consists of a complex conjugate pair

{u0 ± iv0} with v0 ∈ (π
2
, π). Recall that Q and L are the realified generalized eigenspaces

associated with the spectral sets ∪∞
k=1(Σ ∩ Sk) and Σ ∩ S0, respectively.

Observe that Q and L are also the realified generalized eigenspaces of T (1) associated

with the spectral sets {eλ : λ ∈
∑∞
k=1(Σ ∩ Sk)} ∪ {0} and {eλ : λ ∈ Σ ∩ S0}, respectively.

Define TL(1) : L ∋ φ 7→ TL(1)φ ∈ L.

We want to apply the variation-of-constants formula from [17]. Let us recall a few basic

facts about dual semigroups. It is convenient to denote dual spaces and adjoint operators

by an asterisk in the sequel. The elements φ⊙ ∈ C∗ for which the curve

R
+ ∋ t 7→ T (t)∗φ⊙ ∈ C∗

is continuous form a closed subspace C⊙ which is positively invariant under the adjoints

T (t)∗, t ≥ 0. The operators

T⊙(t) : C⊙ ∋ φ⊙ 7→ T (t)∗φ⊙ ∈ C⊙, t ≥ 0,

constitute a strongly continuous semigroup on C⊙. Repeating this process we obtain a

subspace C⊙⊙ ⊂ C⊙∗. The original state space C is sun-reflexive in the sense that there

exists a norm-preserving linear map j : C → C⊙∗ with jC = C⊙⊙.

For every continuous map g̃ : R→ C⊙∗ and reals c ≤ d the weak-star integral

∫ d

c

T⊙(d− t)∗g̃(t) dt ∈ C⊙∗

is defined by

(

∫ d

c

T⊙(d− t)∗g̃(t) dt

)

(φ⊙) =

∫ d

c

(

T⊙(d− t)∗g̃(t)
)

(φ⊙) dt
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for all φ⊙ ∈ C⊙. One finds that all such weak-star integrals are elements of the subspace

C⊙⊙ = jC.

There is an isomorphism k : C⊙∗ → R× L∞(−1, 0;R). Set r⊙∗ = k−1(1, 0).

If g : R → R is continuous and if x : R → R is a solution of the linear inhomogeneous

equation

ẋ(t) = −µx(t) + f ′(0)x(t− 1) + g(t)

then the curve u : R ∋ t 7→ xt,C ∈ C satisfies

ju(t) = jT (t− σ)u(σ) +

∫ t

σ

T⊙(t− s)∗
(

g(s)r⊙∗
)

ds

for all reals t, σ with t ≥ σ.

The spectra of the generators of the semigroups (T (t))t≥0 and (T⊙(t))t≥0 coincide. Let

PrL and Pr⊙L denote the spectral projection operators in L(C,C) and L(C⊙, C⊙) which

are associated with the spectral set {u0 ± iv0}. We have PrL C = L. The adjoint operator

Pr⊙∗
L ∈ L(C⊙∗, C⊙∗) satisfies

Pr⊙∗
L C⊙∗ = jL, Pr⊙∗

L ◦j = j ◦ PrL,

and for g, x, u as before

Pr⊙∗
L ju(t) = Pr⊙∗

L jT (t− σ)u(σ) +

∫ t

σ

T⊙(t− s)∗ Pr⊙∗
L

(

g(s)r⊙∗
)

ds (6.1)

and

(id−Pr⊙∗
L )ju(t) = (id−Pr⊙∗

L )jT (t− σ)u(σ) +

∫ t

σ

T⊙(t− s)∗(id−Pr⊙∗
L )

(

g(s)r⊙∗
)

ds

(6.2)

for all reals t ≥ σ. T⊙(t)∗ can be extended to a one-parameter group on Pr⊙∗
L C⊙∗ and

(6.1) is valid for all t, σ in R.

There exists K0 > 0 such that

||T⊙(t)∗ Pr⊙∗
L || ≤ K0e

(u0+δ)t, t ≥ 0, (6.3)

||T⊙(t)∗ Pr⊙∗
L || ≤ K0e

(u0−δ)t, t ≤ 0, (6.4)

||T⊙(t)∗(id−Pr⊙∗
L )|| ≤ K0e

(u0−δ)t, t ≥ 0. (6.5)

Proposition 6.1. Assume that u0 > 0 and x : R→ [−B,A] is a slowly oscillating solution

of Eq. (2.1) with limt→−∞ x(t) = 0. Then there exist real numbers ǫ > 0 and a, b such that

x(t) = eu0t(a cos(v0t) + b sin(v0t)) +O(e(u0+ǫ)t) as t→ −∞.



42

Proof. Select real numbers β and δ such that

β ∈ (max{eu1 , eu0−δ/2}, eu0), 2δ < u0, δ < u0 − u1,

where u1 = maxRe(∪∞
k=1(Σ ∩ Sk)). There is a norm | · | on C which is equivalent to the

supremum-norm || · ||C on C and

|(TL(1))−1| <
1

β
.

First we claim that there exists K1 > 0 such that

||xt,C ||C ≤ K1e
(log β)t for all t ≤ 0. (6.6)

It is easy to see that (6.6) follows from

lim sup
t→−∞

|xt−1,C |

|xt,C |
<

1

β
. (6.7)

If (6.7) does not hold, then there exists γ ≥ 1
β and a sequence (tn)∞0 in (−∞, 0] with

tn → −∞ and |xtn−1,C |/|xtn,C | → γ as n→ ∞. Define

zn : R ∋ t 7→
x(tn + t)

|xtn,C |
∈ R.

The function zn satisfies

żn(t) = −µzn(t) +

∫ 1

0

f ′(sx(tn + t− r(x(tn + t)))) ds zn(t− r(x(tn + t))), t ∈ R,

and |zn0,C | = 1. Let vn : R ∋ t 7→ eµtzn(t) ∈ R. Then

v̇n(t) =

∫ 1

0

f ′(sx(tn + t− r(x(tn + t)))) ds eµr(x(t
n+t))vn(t− r(x(tn + t))) (6.8)

for all t ∈ R. From the fact that x is slowly oscillating, it follows that V (x, [tn+t−r(x(tn+

t)), tn + t])=V (zn, [t− r(x(tn + t)), t])= V (vn, [t− r(x(tn + t)), t]) = 1. We also have

|r(x(s1)) − r(x(s2))| ≤ max{r′(u) : u ∈ [−B,A]}K|s1 − s2|.

Using also min{r(u) : u ∈ [−B,A]} > 0 and f ′ < 0, it is not difficult to see that Proposition

4.3 can be applied to get K ′
1 > 0 and α′

1 > 0 such that

|vn(t)| ≤ K ′
1e
α′

1|t| for all t ≤ 0 and n ∈ N. (6.9)
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Using the facts x(t) ∈ [−B,A] for all t ∈ R, 0 < inft∈R r(x(t)) ≤ supt∈R r(x(t)) ≤ R, (6.8),

(6.9) and the method of steps, we find K1 > 0 and α1 > 0 such that

|vn(t)| ≤ K1e
α1|t| for all t ∈ R and n ∈ N.

Hence we obtain an exponential bound also for zn on R independently of n. The right

hand sides of the differential equations for zn are bounded on each compact subinterval

of R. Therefore (zn)∞0 is a uniformly bounded and equicontinuous sequence of functions

on each compact subinterval of R. By the Arzèla–Ascoli theorem and the diagonalization

process, there is subsequence (znk )∞k=0 and a continuous function z : R→ R such that

znk (t) → z(t) as k → ∞ uniformly on compact subsets of R.

Using the differential equation for znk we obtain that (żnk)∞k=0 also converges uniformly

on compact subsets of R. Moreover, from x(t) → 0 as t→ −∞ it follows that

∫ 1

0

f ′(sx(tn + t− r(x(tn + t)))) ds→ f ′(0), r(x(tn + t)) → 1 as n→ ∞

uniformly on compact subsets of R. Consequently, z is differentiable on R and satisfies

ż(t) = −µz(t) + f ′(0)z(t− 1) for all t ∈ R, moreover |z0,C | = 1, |z−1,C | = γ ≥ 1
β . The fact

that x is a slowly oscillating solution and Lemmas 2.6, 4.4 combined yield

V (x, [tn + t− r(x(tn + t)), tn + t]) = 1 for all t ∈ R, n ∈ N.

Then

V (zn, [t− r(x(tn + t)), t]) = 1 for all t ∈ R, n ∈ N.

Applying also Lemma 4.1(i) and the facts that zt,C 6= 0 for all t ∈ R, r(x(tn + t)) → 1

as n → ∞ for all t ∈ R, and znk → z as k → ∞ uniformly on compact subsets of R, we

obtain

V (z, [t− 1, t]) = 1 for all t ∈ R.

Hence, by Lemmas 3.1(v) and 4.4, zt,C ∈ L for all t ≤ 0. Then from |(TL(1))−1| < 1
β it

follows that

|z−1,C | <
1

β
|z0,C | =

1

β
,

a contradiction. Therefore (6.7) and consequently (6.6) hold.

We want to apply the variation of constants formula from [17]. We may write

ẋ(t) = −µx(t) + f ′(0)x(t− 1) + h(t)
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for all t ∈ R, where

h : R ∋ t 7→ f(x(t− r(x(t))))− f ′(0)x(t− 1) ∈ R

is a continuous function. Using assumption (H1), the Taylor formula and the mean value

theorem, for every t ∈ R, we find reals ξ, η, θ between 0, x(t− r(x(t))) and 1, r(x(t)) and

0, x(t), respectively, so that

h(t) = f(x(t− r(x(t))))− f ′(0)x(t− r(x(t))) + f ′(0)[x(t− r(x(t))) − x(t− 1)]

=
f ′′(ξ)

2
x2(t− r(x(t))) + f ′(0)ẋ(t− η)[1 − r(x(t))]

=
f ′′(ξ)

2
x2(t− r(x(t)))− f ′(0)ẋ(t− η)r′(θ)x(t).

From (H1), (6.6) and Eq. (2.1) it follows that there exists K ′
2 > 0 such that

|ẋ(t)| ≤ K ′
2e

(log β)t for all t ≤ 0.

Therefore, there exists K2 > 0 such that

|h(t)| ≤ K2e
2(log β)t for all t ≤ 0. (6.10)

Applying (6.3) and (6.10), for all φ⊙ ∈ C⊙ with ||φ⊙|| ≤ 1 and reals s ≤ t ≤ 0, we

obtain

∣

∣

[

T⊙(t− s)∗ Pr⊙∗
L (h(s)r⊙∗)

]

(φ⊙)
∣

∣ ≤ ||T⊙(t− s)∗ Pr⊙∗
L || |h(s)| ||r⊙∗||

≤ K0K2||r
⊙∗||e(u0+δ)te(u0−2δ)s.

(6.11)

Analogously, from (6.5) and (6.10), for all φ⊙ ∈ C⊙ with ||φ⊙|| ≤ 1 and reals s ≤ t ≤ 0,

we get
∣

∣

[

T⊙(t− s)∗ Pr⊙∗
L (h(s)r⊙∗)

]

(φ⊙)
∣

∣ ≤ K0K2||r
⊙∗||e(u0−δ)teu0s. (6.12)

The last two inequalities, (6.4) and u0 > 2δ > 0 combined yield that, for every t ≤ 0 and

σ ≤ 0, the weak-star integrals

∫ t

−∞

T⊙(t− s)∗(id−Pr⊙∗
L )(h(s)r⊙∗) ds,

∫ t

−∞

T⊙(t− s)∗ Pr⊙∗
L (h(s)r⊙∗) ds,

∫ σ

−∞

T⊙(t− s)∗ Pr⊙∗
L (h(s)r⊙∗) ds

exist. Moreover these integrals are elements of C⊙⊙.
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From (6.5), (6.6) and the choice of β, δ it follows that, for all σ ≤ t ≤ 0,

||(id−Pr⊙∗
L )jT (t− σ)u(σ)|| = ||T⊙(t− σ)∗(id−Pr⊙∗

L )ju(σ)||

≤ K0K1e
(u0−δ)(t−σ)e(log β)δ

≤ K0K1e
(u0−δ)(t−σ)e(u0−δ/2)σ

≤ K0K1e
(u0−δ)te(δ/2)σ.

Consequently, letting σ → −∞ in (6.2) with g = h, we conclude

(id−Pr⊙∗
L )ju(t) =

∫ t

−∞

T⊙(t− s)∗(id−Pr⊙∗
L )(h(s)r⊙∗) ds, t ≤ 0.

Using the above equality, (6.11) and the definition of weak-star integrals, we find

||(id−Pr⊙∗
L )ju(t)|| ≤

K0K2||r
⊙∗||

u0
e(2u0−δ)t, t ≤ 0.

For all t ≤ 0 we have

∫ t

0

T⊙(t− s)∗ Pr⊙∗
L (h(s)r⊙∗) ds

=

∫ t

−∞

T⊙(t− s)∗ Pr⊙∗
L (h(s)r⊙∗) ds−

∫ 0

−∞

T⊙(t− s)∗ Pr⊙∗
L (h(s)r⊙∗) ds

=

∫ t

−∞

T⊙(t− s)∗ Pr⊙∗
L (h(s)r⊙∗) ds− T⊙(t)∗

∫ 0

−∞

T⊙(−s)∗ Pr⊙∗
L (h(s)r⊙∗) ds.

The integral
∫ 0

−∞
T⊙(−s)∗ Pr⊙∗

L (h(s)r⊙∗) ds is an element of Pr⊙∗
L C⊙∗ = jL. Set

ψ⊙⊙ =

∫ 0

−∞

T⊙(−s)∗ Pr⊙∗
L (h(s)r⊙∗) ds.

Inequality (6.12) and the definition of weak-star integrals yield

||

∫ t

−∞

T⊙(t− s)∗ Pr⊙∗
L (h(s)r⊙∗) ds|| ≤

K0K2||r
⊙∗||

u0 − 2δ
e(2u0−δ)t, t ≤ 0.

Therefore

ju(t) = Pr⊙∗
L jT (t)u(0)− T⊙(t)∗ψ⊙⊙ +O(e(2u0−δ)t) as t→ −∞.

Using the relations Pr⊙∗
L jT (t) = jT (t) PrL, j−1T⊙(t)∗ = T (t)j−1, the fact that the term

O(e(2u0−δ)t) above is an element of C⊙⊙ and applying j−1 we conclude

xt,C = T (t)(PrL x0,C − j−1ψ⊙⊙) +O(e(2u0−δ)t) as t→ −∞.
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Since PrL x0,C − j−1ψ⊙⊙ ∈ L, there exist reals a, b with

T (t)(PrL x0,C − j−1ψ⊙⊙)(0) = eu0t[a cos(v0t) + b sin(v0t)]

for all t ∈ R. Consequently, the assertion holds with ǫ = u0 − δ.

7. Sign changes for differences in A

In this section we show that for two different elements φ and ψ of A and the corre-

sponding solutions x = xφ : R→ [−B,A] and y = yψ : R→ [−B,A] we have

V (x− y, [t− r(x(t)), t]) = 1 for all t ∈ R. (7.1)

This fact is important in the proof of the injectivity of a map from A into R2 in Section 8.

We first remark that (7.1) implies

V (x− y, [t− r(y(t)), t]) = 1 for all t ∈ R. (7.2)

Indeed, if x(t)−y(t) 6= 0 for all large negative t, then V (x−y, [t−r(y(t)), t]) = 1 for all large

negative t because of the definition of V . Then, by Lemma 2.5, the monotonicity property

of V in Lemma 4.2(i) can be applied to get (7.2). If x(tn) − y(tn) = 0 for a sequence {tn}

with tn → −∞ as n → ∞, then r(x(tn)) = r(y(tn)) and V (x− y, [tn − r(y(tn)), tn]) = 1.

Hence the monotonicity of V implies (7.2).

Proposition 7.1. V (φ− ψ, [−r(φ(0)), 0]) = 1 for all φ, ψ in A with φ 6= ψ.

Proof. Let φ, ψ ∈ A with φ 6= ψ. Set x = xφ, y = yψ and define η : R ∋ t 7→ t−r(x(t)) ∈ R.

Recall, from Proposition 5.5, that: xt 6= yt for all t ∈ R, and x and y are either slowly

oscillating or zero. It is also true that

(x− y)|[t−r(x(t)),t] 6≡ 0, (x− y)|[t−r(y(t)),t] 6≡ 0 for all t ∈ R.

Indeed, assume (x − y)|[t−r(x(t)),t] ≡ 0 for some t ∈ R. Let t0 = inf{s : x(u) =

y(u) for all s ≤ u ≤ t}. We have t−R < t0 ≤ t−r(x(t)). Then ẋ(s)+µx(s) = ẏ(s)+µy(s)

and r(x(s)) = r(y(s)) for all s ∈ [t0, t]. The equations for x, y and the injectivity of f

imply

x(s− r(x(s))) = f−1(ẋ(s) + µx(s)) = f−1(ẏ(s) + µy(s)) = y(s− r(y(s))) = y(s− r(x(s)))

for all s ∈ [t0, t]. Hence x(u) = y(u) follows for all u ∈ [min{s − r(x(s)) : t0 ≤ s ≤ t}, t].

This contradicts the definition of t0 since min{r(u) : −R ≤ u ≤ 0} > 0.
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In the remaining part of the proof we distinguish several cases and subcases.

Case 1: α(φ) = α(ψ) = {0}. Either φ 6= 0 or ψ 6= 0. We may assume φ 6= 0 since, by

the remark preceding the proposition, there is a symmetry in the role of φ and ψ. Then

x(t) → 0 as t→ −∞. So, there exists a sequence (tn)∞0 in (−∞, 0] such that tn → −∞ as

n→ ∞ and

|x(tn)| = sup{|x(tn + t)| : t ≤ 0}.

Define

zn : (−∞, 0] ∋ t 7→
x(tn + t)

|x(tn)|
∈ R.

The functions zn satisfy

żn(t) = −µzn(t) +

(
∫ 1

0

f ′(sx(η(tn + t))) ds

)

x(η(tn + t))

|x(tn)|
for all t ≤ 0,

and |zn(t)| ≤ 1 for all t ≤ 0. There is a uniform bound for the right hand side of

the differential equations for zn, n ∈ N, on (−∞, 0]. Therefore (zn)∞0 is a uniformly

bounded and equicontinuous sequence of functions on (−∞, 0]. By the Arzèla–Ascoli

theorem and the diagonalization process, there is subsequence (znk )∞k=0 and a continuous

function z : (−∞, 0] → [−1, 1] such that

znk(t) → z(t) as k → ∞ uniformly on compact subsets of (−∞, 0].

Using the differential equations for znk we obtain that (żnk)∞k=0 also converges to ż uni-

formly on compact subsets of (−∞, 0]. Moreover, from the fact x(t) → 0 as t → −∞ it

follows that

∫ 1

0

f ′(sx(η(tn + t))) ds→ f ′(0), r(x(tn + t)) → 1 as n→ ∞

uniformly in (−∞, 0]. Consequently, z satisfies

ż(t) = −µz(t) + f ′(0)z(t− 1) for all t ≤ 0,

and |z(0)| = 1, ||zt|| ≤ 1 for all t ≤ 0. Then Lemma 3.1(ii) implies u0 ≥ 0, where u0

denotes the maximum of the real parts of the points in the spectrum of the generator of

the solution semiflow of Eq. (3.1).

Case 1.1: u0 = 0. From x(t) − y(t) → 0 as t → −∞, it follows that there exists a

sequence (tn)∞0 in (−∞, 0] with tn → −∞ as n→ ∞ and

|x(tn) − y(tn)| = sup{|x(tn + t) − y(tn + t)| : t ≤ 0}.
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Define

zn : (−∞, 0] ∋ t 7→
x(tn + t) − y(tn + t)

|x(tn) − y(tn)|
∈ R.

Then the functions zn satisfy

żn(t) = an(t)zn(t) + bn(t)zn(t− r(x(tn + t))), t ≤ 0,

with

an :(−∞, 0] ∋ t 7→

− µ−

∫ 1

0

f ′ {[1 − s]y(tn + t− r(y(tn + t))) + sy(tn + t− r(x(tn + t)))} ds

×

∫ 1

0

ẏ {[1 − s](tn + t− r(y(tn + t))) + s(tn + t− r(x(tn + t)))} ds

×

∫ 1

0

r′ { [1 − s]x(tn + t) + sy(tn + t)} ds ∈ R,

bn :(−∞, 0] ∋ t 7→
∫ 1

0

f ′ {[1 − s]y(tn + t− r(x(tn + t))) + sx(tn + t− r(x(tn + t)))} ds ∈ R.

From x(t) → 0, y(t) → 0 as t→ −∞, it follows that

an(t) → −µ, bn(t) → f ′(0), r(x(tn + t)) → 1 as n→ ∞

uniformly in (−∞, 0]. Then, in the same way as in Case 1, the Arzèla–Ascoli theorem

can be applied to find a subsequence (znk)∞k=0 of (zn)∞0 converging uniformly on compact

subsets of (−∞, 0] to a continuously differentiable function z : (−∞, 0] → R satisfying

ż(t) = −µz(t) + f ′(0)z(t− 1), t ≤ 0,

||zt|| ≤ |z(0)| = 1, t ≤ 0.

Moreover, (żnk)∞k=0 converges uniformly on compact subsets of (−∞, 0] to ż. Then Lemma

3.1(iii) implies

V (z, [t− 1, t]) = 1 for all t ≤ 0.

Defining

w : (−∞, 0] ∋ t 7→ eµtz(t) ∈ R,

we have

ẇ(t) = eµf ′(0)w(t− 1) for all t ≤ 0,
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and

V (w, [t− 1, t]) = 1 for all t ≤ 0.

Hence Lemma 4.2(iii) implies w|[t−1,t] ∈ H|[t−1,t] for all t ≤ 0. Then it follows easily that

also z|[t−1,t] ∈ H|[t−1,t] for all t ≤ 0. Thus Lemma 4.1(iii) can be used to get, for all

sufficiently large k ∈ N, that

V (znk , [−r(x(tnk)), 0]) = V (z, [−1, 0]) = 1.

By Lemma 2.6, the differential equation for x− y can be transformed to the form of Eq.

(4.1), where x(t) − y(t) and v(t) have the same signs for all t ≤ 0. Hence, Lemma 4.2(i)

yields

1 ≤ V (φ− ψ, [−r(φ(0)), 0]) ≤ V (x(tnk + ·) − y(tnk + ·), [−r(x(tnk)), 0])

= V (znk , [−r(x(tnk)), 0]) = V (z, [−1, 0]) = 1

for all sufficiently large k ∈ N. Thus, V (φ− ψ, [−r(φ(0)), 0]) = 1.

Case 1.2: u0 > 0. In the case ψ 6= 0, also Propositions 5.5 and 6.1 imply that there

exist real numbers ǫx > 0, ǫy > 0, a, b, c, d such that with ǫ = min{ǫx, ǫy} we have

x(t) = eu0t (a cos(v0t) + b sin(v0t)) +O(e(u0+ǫ)t),

y(t) = eu0t (c cos(v0t) + d sin(v0t)) +O(e(u0+ǫ)t)

as t → −∞. In the case ψ = 0, y ≡ 0 and the above asymptotic expansions hold with

ǫ = ǫx, c = d = 0, and a, b, ǫx given as above. If (a, b) 6= (c, d), then

x(t) − y(t) = eu0t
(

√

(a− c)2 + (b− d)2 sin(v0t+ γ) +O(eǫt)
)

for some γ ∈ [−π, π] as t→ −∞. For every integer k, defining

tk =
(k + 1

2)π − γ

v0
+

1

2
,

we obtain

(k +
1

2
)π −

v0
2

≤ v0t+ γ ≤ (k +
1

2
)π +

v0
2

for tk − 1 ≤ t ≤ tk.

Using v0 ∈ (π
2
, π), we find δ > 0 such that, for every integer k,

√

(a− c)2 + (b− d)2| sin(v0t+ γ)| ≥ δ, tk − 1 − δ ≤ t ≤ tk.
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If t → −∞, then r(x(t)) → 1. So, for all sufficiently large negative integers k, r(x(tk)) <

1 + δ and

|x(t) − y(t)| > 0 for tk − r(x(tk)) ≤ t ≤ tk.

Hence, the monotone property of V implies V (φ− ψ, [−r(φ(0)), 0]) = 1.

Now we show that the case (a, b) = (c, d) is impossible. Assume (a, b) = (c, d). Then

there exists K0 > 0 such that

|x(t) − y(t)| ≤ K0e
(u0+ǫ)t, t ≤ 0. (7.3)

Then it is easy to see that there exists a sequence (tn)∞0 in (−∞, 0] such that tn → −∞

as n→ ∞ and

|x(tn + t) − y(tn + t)| ≤ |x(tn) − y(tn)|e(u0+ǫ/2)t for all t ≤ 0. (7.4)

Define

zn : (−∞, 0] ∋ t 7→
x(tn + t) − y(tn + t)

|x(tn) − y(tn)|
∈ R.

(7.4) implies that

|zn(t)| ≤ e(u0+ǫ/2)t for all t ≤ 0 and n ∈ N

and |zn(0)| = 1. Similarly to Case 1.1, by the application of the Arzèla–Ascoli theorem,

we find a subsequence of (zn)∞0 converging uniformly on compact subintervals of (−∞, 0]

to a solution z of ż(t) = −µz(t) + f ′(0)z(t− 1) with

|z(0)| = 1, |z(t)| ≤ e(u0+ǫ/2)t for all t ≤ 0.

This contradicts Lemma 3.1(iv), and the proof of Case 1.2 is completed.

Case 2: α(φ) 6= {0}. The compactness of A implies the existence of χ, ρ in A and a

sequence (tn)∞0 in (−∞, 0] such that χ 6= 0, xtn → χ, ytn → ρ and tn → −∞ as n → ∞.

Let w, z denote the solutions of Eq. (2.1) with w0 = χ, z0 = ρ.

If χ 6= ρ, then it suffices to show that

V (w − z, [t− r(w(t)), t]) = 1

holds for some t ≤ −4R. Indeed, V (w− z, [s− r(w(s)), s]) = 1 for all s ≥ −4R implies, by

Remark 4.5 and Lemma 4.2(i) and (iii), that

(w − z)|[−r(w(0)),0] ∈ H[−r(w(0)),0].
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Since the C and C1 topologies in A are equivalent by Corollary 5.6(ii), it follows that

xtn − ytn → w0 − z0 = χ− ρ as n→ ∞

in the C1-topology. Then Lemma 4.1(iii) implies

V (x− y, [tn − r(x(tn)), tn]) = 1

for all sufficiently large n ∈ N. Hence, by Lemma 4.2(i), V (x − y, [t− r(x(t)), t]) = 1 for

all t ∈ R, and in particular, V (φ− ψ, [−r(φ(0)), 0]) = 1.

Now we consider different subcases.

Case 2.1: χ 6= 0, ρ = 0. Then z ≡ 0. From χ 6= 0 it follows that χ ∈ A \ {0}, and thus

Proposition 5.5 implies

V (w − z, [t− r(w(t)), t]) = V (w, [t− r(w(t)), t]) = 1, t ∈ R.

Case 2.2: χ 6= 0, ρ 6= 0, χ 6= ρ. By Lemma 2.2, w has arbitrarily large negative

zeros. Lemma 4.2(iii), Remark 4.5 and Proposition 5.5 combined imply that w is slowly

oscillating with simple zeros. If t′ < t′′ ≤ −4R are consecutive zeros of w and w > 0

in (t′, t′′), then t′′ − t′ > 1 and r(w(t′′)) = 1. Then w > 0 on [t − r(w(t)), t] for all

t < t′′ sufficiently close to t′′. The function z is also slowly oscillating with arbitrarily

large negative zeros. Consequently, there is s < t′ such that z(u) < 0 for all [s − 1, s]. In

the case z has arbitrarily large zeros we find σ > t′′ so that z(u) < 0 for all [σ − 1, σ].

Continuity of r, w, z allow to choose t < t′′ sufficiently close to t′′ so that the reals s, t, σ

satisfy s < t < −4R, t < σ,

w(t+ u) − z(s + u) > 0 for all u ∈ [−r(w(t)), 0], (7.5)

and

w(t+ u) − z(σ + u) > 0 for all u ∈ [−r(w(t)), 0]. (7.6)

If z(u) 6= 0 for all large u, then z(u) → 0 as u → ∞ by Lemma 2.2. In this case fixing

t ∈ (t′, t′′) so that (7.5) and wt|[−r(w(t)),0] > 0 are satisfied, and choosing σ > t with

max
u∈[−r(w(t)),0]

|z(σ + u)| < min
u∈[−r(w(t)),0]

w(t+ u),

(7.6) holds.

Our aim is to show

V (wt − zt, [−r(w(t)), 0]) = 1.
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Assume the contrary, that is

V (wt − zt, [−r(w(t)), 0]) > 1. (7.7)

(7.5) and (7.6) imply

V (wt − zs, [−r(w(t)), 0]) = V (wt − zσ, [−r(w(t)), 0]) = 1.

Define
ǫs = sup{ǫ ≥ 0 :wt|[−r(w(t)),0] 6= zs+u|[−r(w(t)),0],

V (wt − zs+u, [−r(w(t)), 0]) = 1 for all 0 ≤ u < ǫ}

and
ǫσ = sup{ǫ ≥ 0 :wt|[−r(w(t)),0] 6= zσ−u|[−r(w(t)),0],

V (wt − zσ−u, [−r(w(t)), 0]) = 1 for all 0 ≤ u < ǫ}.

(7.5) and (7.6) imply ǫs > 0 and ǫσ > 0. We also have ǫs < t− s and ǫσ < σ− t, since the

set

{u ∈ R : wt|[−r(w(t)),0] 6= zu|[−r(w(t)),0], V (wt − zu, [−r(w(t)), 0]) > 1}

is open by Lemma 4.1(i), and t belongs to this set by (7.7).

Case 2.2.1: wt|[−r(w(t)),0] 6= zs+ǫs |[−r(w(t)),0]. Lemma 4.1(i) implies

V (wt − zs+ǫs , [−r(w(t)), 0]) = 1.

Then, by Lemma 4.2(i),

V (wt+τ − zs+ǫs+τ , [−r(w(t+ τ)), 0]) = 1 for all τ ≥ 0.

Fix τ ≥ 4R. Lemma 4.2(iii) yields

wt+τ − zs+ǫs+τ ∈ H[−r(w(t+τ)),0].

Using Lemma 4.2(iii), we find γ > 0 such that

c < 0, | − r(w(t+ τ)) − c| < γ, κ ∈ C1([c, 0],R),

max
u∈[c,0]

|w(t+τ+u)−z(s+ǫs+τ+u)−κ(u)|+ max
u∈[c,0

|ẇ(t+τ+u)−ż(s+ǫs+τ+u)−κ̇(u)| < γ

imply

V (κ, [c, 0]) = 1.



53

We claim that there exist β1 > 0 and n1 ∈ N such that

V (xt+τ+tn − ys+ǫs+τ+β+tn , [−r(x(t+ τ + tn)), 0]) = 1 (7.8)

for all integers n ≥ n1 and β ∈ [0, β1].

Since z : R → [−B,A] is a solution of Eq. (2.1), we obtain that ż and z̈ are bounded

functions on R. Hence it follows that

sup
u∈R

|z(u) − z(u+ β)| → 0, sup
u∈R

|ż(u) − ż(u+ β)| → 0

as β → 0. Choose β1 > 0 such that

sup
u∈R

|z(u) − z(u+ β)| + sup
u∈R

|ż(u) − ż(u+ β)| <
γ

3

and wt 6= zs+ǫs+β for all β ∈ [0, β1].

We have
x(tn + u) → w(u), ẋ(tn + u) → ẇ(u) as n→ ∞,

y(tn + u) → z(u), ẏ(tn + u) → ż(u) as n→ ∞

uniformly on compact subsets of R. Hence there exists n0 ∈ N such that

||wt+τ − xt+τ+tn ||C1 <
γ

3
,

||zs+ǫs+τ+β − ys+ǫs+τ+β+tn ||C1 <
γ

3

for all integers n ≥ n0 and all β ∈ [0, β1]. Let us choose n1 ∈ N such that n1 ≥ n0 and

|r(x(t+ τ + tn)) − r(w(t+ τ))| < γ for all integers n ≥ n1.

Fixing n ≥ n1, β ∈ [0, β1], and choosing c = −r(x(t+ τ + tn)) and κ(u) = x(t+ τ + tn +

u)− y(s+ ǫs + τ + β + tn + u), we obtain V (κ, [c, 0]) = 1. Consequently, (7.8) holds for all

integers n ≥ n1 and all β ∈ [0, β1].

Now, for any n ≥ n1, pick k ∈ N such that k ≥ n1 and tn− tk − τ ≥ 0. There is such a

k since tk → −∞ as k → ∞. Then t+ τ + tk ≤ t+ tn. Therefore, using (7.8) and Lemma

4.2(i),
1 = V (xt+τ+tk − ys+ǫs+τ+β+tk , [−r(x(t+ τ + tk)), 0])

≥ V (xt+tn − ys+ǫs+β+tn , [−r(x(t+ tn)), 0]),

for all integers n ≥ n1 and all β ∈ [0, β1]. Hence Lemma 4.1(i) implies

V (wt − zs+ǫs+β , [−r(w(t)), 0]) = 1
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for all 0 ≤ β ≤ β1. This contradicts the definition of ǫs.

Case 2.2.2: wt|[−r(w(t)),0] 6= zσ−ǫσ |[−r(w(t)),0]. We get a contradiction analogously to

Case 2.2.1. We have

V (wt − zσ−ǫσ , [−r(w(t)), 0]) = 1

and for fixed τ ≥ 4R

wt+τ − zσ−ǫσ+τ ∈ H[−r(w(t+τ)),0]).

The application of Lemma 4.1(iii) gives β2 > 0 and n2 ∈ N such that

V (xt+τ+tn − yσ−ǫσ+τ+tn−β , [−r(x(t+ τ + tn)), 0]) = 1

for all n ≥ n2 and all β ∈ [0, β2]. Hence, in the same way as in Case 2.2.1, the monotonicity

of V implies

V (xt+tn − yσ−ǫσ+tn−β , [−r(x(t+ tn)), 0]) = 1

for all n ≥ n2 and all β ∈ [0, β2]. The lower semicontinuity of V gives

V (wt − zσ−ǫσ−β , [−r(w(t)), 0]) = 1

for all β ∈ [0, β2], contradicting the definition of ǫσ.

Case 2.2.3: wt|[−r(w(t)),0] = zs+ǫs |[−r(w(t)),0] = zσ−ǫσ |[−r(w(t)),0]. In this case z is

periodic since z is determined by zs+ǫs |[−r(z(s+ǫs)),0] = zs+ǫs |[−r(w(t)),0] and s + ǫs < t <

σ − ǫσ. w is also periodic since it is a translate of z. Using also wt 6= zt, it follows that

zt = wt−τ for some τ ∈ (0, p), where p is the minimal period of w. Proposition 5.11(ii)

yields

V (wt − zt, [−r(w(t)), 0]) = 1 for all t ∈ R.

Case 2.3: χ 6= 0, χ = ρ. Then w 6≡ 0 is a slowly oscillating solution. Either w is not

periodic or w is periodic with minimal period p > 0. Let ǫ0 > 0 be arbitrary if w is not

periodic, otherwise choose ǫ0 ∈ (0, p). Then

wǫ 6= w0 for 0 < ǫ < ǫ0.

For 0 < ǫ < ǫ0, define xǫ : R ∋ t 7→ x(ǫ+ t) ∈ R. Then

xǫtn → wǫ, ytn → z0

as n→ ∞. We have

wǫ 6= 0, z0 6= 0, wǫ 6= z0 for 0 < ǫ < ǫ0.
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Therefore, replacing x and χ with xǫ and wǫ, respectively, Case 2.2 can be applied to

obtain

V (xǫ − y, [t− r(xǫ(t)), t]) = 1 for all t ∈ R.

We have supu∈R |x
ǫ(u) − x(u)| → 0 as ǫ → 0. Thus, the lower semicontinuity of V in

Lemma 4.1(i) implies

V (x− y, [t− r(x(t)), t]) = 1 for all t ∈ R,

and in particular

V (φ− ψ, [−r(φ(0)), 0]) = 1.

8. The Poincaré–Bendixson theorem on A

Recall from Proposition 5.5 that for every φ ∈ A there is a unique phase curve R ∋

t 7→ xφt ∈ LK in A and ω(φ), α(φ) are nonempty compact connected and invariant subsets

of A.

Theorem 8.1. For every φ ∈ A, either ω(φ) = {0}, or 0 6∈ ω(φ) and ω(φ) is a slowly

oscillating periodic orbit; either α(φ) = {0}, or 0 6∈ α(φ) and α(φ) is a slowly oscillating

periodic orbit. If φ ∈ A and xφ is neither identically zero nor periodic, then α(φ)∩ω(φ) = ∅.

Proof. Define

h : A ∋ φ 7→

(

φ(0)

φ(−r(φ(0)))

)

∈ R2.

Clearly, h is continuous. Let φ, ψ be in A with φ 6= ψ, and set x = xφ, y = yψ. Then xt, yt
are in A and xt 6= yt for all t ∈ R. Proposition 7.1 implies

V (x− y, [t− r(x(t)), t]) = 1 for all t ∈ R.

Then it can be easily shown, by applying Lemma 4.2(ii), that

(x(t) − y(t), x(t− r(x(t)))− y(t− r(x(t)))) 6= (0, 0) for all t ∈ R.

In particular

h(φ) 6=

(

ψ(0)

ψ(−r(φ(0))

)

.

If φ(0) 6= ψ(0), then h(φ) 6= h(ψ). If φ(0) = ψ(0), then ψ(−r(φ(0))) = ψ(−r(ψ(0))).

Therefore,

h(φ) 6= h(ψ).
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So, h is injective. Since A is compact, it follows that h(A) is also compact and h is a

homeomorphism.

For each ξ0 ∈ h(A), there is a unique φ ∈ A with h(φ) = ξ0. The unique solution xφ

of Eq. (2.1) gives the continuous curve ξ : R ∋ t 7→ h(xφt ) ∈ h(A) ⊂ R2. We call ξ the

canonical curve through ξ0. The canonical curves are C1-curves since the mapping

R ∋ t 7→
d

dt
h(xφt ) =

(

ẋφ(t)

ẋφ(t− r(xφ(t)))[1− r′(xφ(t))ẋφ(t)]

)

∈ R2

is continuous.

Define

v+ = {(u, v)tr ∈ R2 : u = 0, v > 0}.

Let φ ∈ A, x = xφ and assume that, for some t ∈ R, h(xt) ∈ v+, that is, x(t) = 0 and

x(t− r(x(t))) = x(t− 1) > 0. Then φ 6= 0 and Proposition 5.5 implies that x is a slowly

oscillating solution. This fact, x(t− 1) > 0 and x(t) = 0 combined imply xt ∈ A∩U \ {0}.

It also follows that ẋ(t) < 0. Hence we obtain that v+ is transversal to the canonically

determined curves in the following sense:

〈(1, 0),
d

dt
h(xt)〉 = ẋ(t) < 0.

This implies that if h(xφt ) ∈ v+ for some φ ∈ A \ {0} and t ∈ R, then there exists ǫ > 0

such that h(xφs ) belongs to the first quadrant of R2 for all s ∈ (t− ǫ, t) and to the second

quadrant of R2 for all s ∈ (t, t+ ǫ).

If φ = 0 then α(φ) = ω(φ) = {0}. Let φ ∈ A \ {0}. Proposition 5.10 implies that there

are t ∈ R and ψ ∈ A ∩ U \ {0} such that ψ = xφt . Clearly, α(φ) = α(ψ) and ω(φ) = ω(ψ).

Thus, it is enough to prove the statement of the theorem for φ ∈ A ∩ U \ {0}.

Let φ ∈ A ∩ U \ {0} and ξ0 = h(φ). Let ξ denote the canonical curve through ξ0. As

xφ is a slowly oscillating solution by Proposition 5.5, we find

h(A ∩ U \ {0}) = v+ ∩ h(A). (8.1)

Hence it follows that ξ(t) ∈ v+ if and only if h−1(ξ(t)) = xφt ∈ A ∩ U \ {0}. Proposition

5.10 yields that, for each t ∈ R,

ξ(t) ∈ v+ if and only if t ∈ {z2j(φ) : j ∈ Z, 2j ≤ J(φ)},

where (zj(φ))
J(φ)
−∞ is the zeroset of xφ. Let

ξj = ξ(z2j(φ)) = h(xφz2j(φ)) for j ∈ Z, 2j ≤ J(φ),
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and define sj so that xφ
sj = h−1(ξj), or equivalently ξ(sj) = ξj. (ξj)J

∗

−∞ is a sequence in

h(A ∩ U \ {0}) ⊂ v+, where J∗ = ∞ if J(φ) = ∞, and J∗ ∈ Z if J(φ) ∈ Z. Clearly, the

sequence (sj)J
∗

−∞ is increasing.

The sequence (ξj)J
∗

−∞ is monotone with respect to the natural ordering <v of {(u, v)tr ∈

R
2 : u = 0}. Indeed this follows from the Jordan curve theorem and the facts that FA is

a flow on A and h is a homeomorphism of A onto h(A).

Define
ξ−∞ = lim

j→−∞
ξj,

ξ∞ =

{

limj→∞ ξj if J∗ = ∞,

(0, 0)tr if J∗ ∈ Z.

ξ−∞, ξ∞ ∈ h(A ∩ U) ⊂ v+ ∪ {(0, 0)tr} since h(A ∩ U) is a compact subset of R2. Now we

need the following two claims.

CLAIM 1. (i) If ξj → ξ̄ as j → −∞ and ξ̄ ∈ v+, then ξ̄ ∈ h(A ∩ U) \ {0}, xh
−1(ξ̄) is a

slowly oscillating periodic solution of (2.1) and α(φ) = {x
h−1(ξ̄)
t : t ∈ R}.

(ii) If J∗ = ∞ and ξj → ξ̂ as j → ∞ and ξ̂ ∈ v+, then ξ̂ ∈ h(A ∩ U) \ {0}, xh
−1(ξ̂) is a

slowly oscillating periodic solution of (2.1) and ω(φ) = {x
h−1(ξ̂)
t : t ∈ R}.

Proof of Claim 1. Suppose ξj → ξ̄ as j → −∞ and ξ̄ ∈ v+. We have ξj, ξ̄ ∈ h(A∩U\{0})

for all integers j ≤ J∗. Proposition 5.10 implies that

P−1(h−1(ξj)) = h−1(ξj−1) for all integers j ≤ J∗.

Using that h−1(ξj), h−1(ξ̄) ∈ A ∩ U \ {0} and that h−1 is continuous on h(A) and P−1 is

continuous on A∩ U \ {0}, by letting j → −∞, we obtain

P−1(h−1(ξ̄)) = h−1(ξ̄).

Therefore, h−1(ξ̄) = P (h−1(ξ̄)) = F (q2(h
−1(ξ̄)), h−1(ξ̄)) and thus xh

−1(ξ̄) is q2(h
−1(ξ̄))-

periodic. Proposition 5.1 implies that q2 = q2(h
−1(ξ̄)) is the minimal period and xh

−1(ξ̄) is

slowly oscillating. Let O = {x
h−1(ξ̄)
t : 0 ≤ t ≤ q2}. We have to show that dist(xφt , O) → 0

as t→ −∞. Let ǫ > 0 be given. From Lemma 2.4 and Proposition 5.1 it follows that there

exists δ = δ(ǫ) > 0 so that for every ψ ∈ A ∩ U \ {0} with ||ψ − h−1(ξ̄)|| < δ we have

dist(xψs , O) < ǫ for all s ∈ [0, q2 + 1]

and

|q2(ψ) − q2| < 1.
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There is j0 ∈ Z such that

||h−1(ξj) − h−1(ξ̄)|| < δ for all integers j ≤ j0.

Let t < sj0 . Choose j1 ∈ Z so that j1 < j0 and sj1 ≤ t < sj1+1 ≤ sj0 . By the choice of j0,

||h−1(ξj1) − h−1(ξ̄)|| < δ. Hence, using also h−1(ξj1) ∈ A ∩ U \ {0}, it follows that

q2(h
−1ξj1)) < q2 + 1

and

dist(xh
−1(ξj1 )
s , O) < ǫ for all s ∈ [0, q2 + 1].

From xφ
sj1+1 = F (q2(h

−1(ξj1)), xφ
sj1

), we obtain t − sj1 < q2(h
−1(ξj1)) < q2 + 1. Conse-

quently,

dist(xφt , O) < ǫ.

As ǫ > 0 was arbitrary, α(φ) = O follows, and the proof of assertion (i) in Claim 1 is

complete. The proof of assertion (ii) is analogous.

CLAIM 2. (i) If ξj → (0, 0)tr as j → −∞, then α(φ) = {0}.

(ii) If J∗ = ∞ and ξj → (0, 0)tr as j → ∞, then ω(φ) = {0}.

Proof of Claim 2. Assume ξj → (0, 0)tr as j → −∞. By Lemma 2.4, for each ǫ > 0,

there exists δ = δ(ǫ) > 0 so that ψ ∈ LK and ||ψ|| < δ imply ||xψs || < ǫ for all s ∈ [0, R].

Let ǫ > 0 be fixed. Choose j0 ∈ Z such that ||h−1(ξj)|| < δ(δ(ǫ)) for all integers j ≤ j0.

Let t < sj0 . Choose j1 ∈ Z so that j1 < j0 and sj1 ≤ t < sj1+1 ≤ sj0 . We have

||h−1(ξj1)|| < δ(δ(ǫ)). It follows that ||x
h−1(ξj1 )
s || < δ(ǫ) for 0 ≤ s ≤ R. We state

||F (s, h−1(ξj1))|| < δ(ǫ) for 0 ≤ s ≤ q1(h
−1(ξj1)). (8.2)

The case q1(h
−1(ξj1)) ≤ R is obvious. Assume q1(h

−1(ξj1)) > R. Propositions 5.1 and

5.10 imply F (s, h−1(ξj1))(0) < 0 for all s ∈ (0, q1(h
−1(ξj1))). Using Eq. (2.1) and (H1), it

follows that the function [0,∞) ∋ s 7→ F (s, h−1(ξj1))(0) ∈ R is increasing on the interval

[R, q1(h
−1(ξj1))]. Therefore (8.2) holds. (8.2) implies

||F (s, h−1(ξj1))|| < ǫ for 0 ≤ s ≤ q1(h
−1(ξj1)) +R.

Hence, similarly to the proof of (8.2), we obtain

||F (s, h−1(ξj1))|| < ǫ for q1(h
−1(ξj1)) ≤ s ≤ q2(h

−1(ξj1)). (8.3)
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Since δ(ǫ) ≤ ǫ, (8.2) and (8.3) yield

||F (s, h−1(ξj1))|| < ǫ for 0 ≤ s ≤ q2(h
−1(ξj1)).

Observing that t− sj1 < q2(h
−1(ξj1)) follows from sj1 ≤ t < sj1+1, we conclude

||xφt || = ||F (t− sj1 , h−1(ξj1))|| < ǫ.

Since ǫ > 0 was arbitrary, xφt → 0 as t→ −∞, and thus α(φ) = {0}. The proof of assertion

(ii) is analogous.

According to the relation between ξ−∞ and ξ∞, we consider 6 cases.

Case 1: ξ−∞ = ξ∞ = (0, 0)tr. We show that this case cannot occur. Assume J∗ < ∞.

Lemma 2.2 implies xφ(t) → 0 as t → ∞. Hence ξ(t) → (0, 0)tr as t → ∞. From this fact

and the Jordan curve theorem it follows that (ξj)J
∗

−∞ is strictly decreasing. Consequently,

(0, 0)tr <v ξ−∞, a contradiction. So, J∗ = ∞. As (ξj)∞−∞ is a monotone sequence in v+,

ξ−∞ = ξ∞ = (0, 0)tr is impossible. Therefore this case cannot occur.

Case 2: (0, 0)tr = ξ∞ 6= ξ−∞. There are two subcases.

Case 2.1: (0, 0)tr = ξ∞ 6= ξ−∞ and J∗ < ∞. Claim 1 gives that α(φ) is a slowly

oscillating periodic orbit. ω(φ) = {0} follows from Lemma 2.2.

Case 2.2: (0, 0)tr = ξ∞ 6= ξ−∞ and J∗ = ∞. Claims 1 and 2 imply that α(φ) is a

slowly oscillating periodic orbit and ω(φ) = {0}.

In the remaining cases (0, 0)tr <v ξ∞ which implies J∗ = ∞.

Case 3: (0, 0)tr = ξ−∞ <v ξ∞. Applying Claims 1 and 2, we get α(φ) = {0} and that

ω(φ) is a slowly oscillating periodic orbit.

Case 4: (0, 0)tr <v ξ∞ <v ξ−∞. In this case both α(φ) and ω(φ) are slowly oscillating

periodic orbits by Claim 1. Proposition 5.11 implies that the intersection of a slowly

oscillating periodic orbit with A ∩ U is a single point. As h−1(ξ∞) and h−1(ξ−∞) are

different points of A∩ U , it follows that α(φ) ∩ ω(φ) = ∅.

Case 5: (0, 0)tr <v ξ−∞ <v ξ∞. Analogously to Case 4, α(φ) and ω(φ) are slowly

oscillating periodic orbits with α(φ) ∩ ω(φ) = ∅.

Case 6: (0, 0)tr <v ξ−∞ = ξ∞. In this case ξj = ξ−∞ = ξ∞ for all j ∈ Z. Claim 1

implies that xφ is a slowly oscillating periodic solution.

Observe that, by the uniqueness of the zero solution in A, a slowly oscillating periodic

orbit does not contain 0. The proof is complete.

9. A is homeomorphic to the closed unit disk

Finally, we prove a topological property of A provided A is different from {0}.
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A sufficient (and by Theorem 8.1 also necessary) condition for A 6= {0} is the existence

of a slowly oscillating periodic solution. From [41] it can be obtained that if

f ′(0) <
µ

cos(v(µ))
,

where v(µ) ∈ (π
2
, π) is the solution of v = −µ tan v, then Eq. (2.1) has a slowly oscillating

periodic solution, and consequently, A 6= {0}.

Theorem 9.1. Assume that A 6= {0}. Then there exists a slowly oscillating periodic

solution y with minimal period τ > 0 such that the simple closed curve η : [0, τ ] → yt ∈ LK
with trace in A satisfies

h(A) = int(h ◦ η).

Consequently, A is homeomorphic to the 2-dimensional closed unit disk so that the unit

circle corresponds to a slowly oscillating periodic orbit.

Proof. 1. From (8.1) and h(0) = (0, 0)tr, it follows that

h(A ∩ U) = (v+ ∪ {(0, 0)tr}) ∩ h(A). (9.1)

Recall that A ∩ U is a connected set by Corollary 5.8. From these facts and A 6= {0} we

obtain the existence of v∗ ∈ v+ with

h(A ∩ U) = {sv∗ : 0 ≤ s ≤ 1}. (9.2)

Set y = xh
−1(v∗).

We claim that y is periodic. Let (ξj)J
∗

−∞ be the monotone sequence of intersections

with v+ of the canonical curve ξ through v∗ as defined in the proof of Theorem 8.1.

We have ξ0 = v∗. The sequence (ξj)J
∗

−∞ is either constant or strictly increasing since

(1,∞)v∗ ∩ h(A) = ∅ by (9.1) and (9.2). Define ξ−∞ and ξ∞ as in the proof of Theorem

8.1. If (ξj)J
∗

−∞ is strictly increasing, then necessarily J∗ <∞ and thus ξ∞ = (0, 0)tr since

ξ0 = v∗ and (1,∞)v∗∩h(A) = ∅. On the other hand, by the increasing property of (ξj)J
∗

−∞,

we have (0, 0)tr = ξ∞ >v ξ−∞ ≥v (0, 0)tr, a contradiction. Therefore, (ξj)J
∗

−∞ is a constant

sequence and J∗ = ∞. Analogously to Case 6 of the proof of Theorem 8.1, we conclude

that y is a slowly oscillating periodic solution.

2. Let τ > 0 denote the minimal period of y, and set η : [0, τ ] ∋ t 7→ yt ∈ LK .

Propositions 5.10, 5.11 and the fact that h is a homeomorphism combined imply that the

curve h ◦ η is simple closed and has values in h(A) \ {(0, 0)tr}. Let ext(h ◦ η) and int(h ◦ η)

denote the unbounded and bounded components of R2 \ |h ◦ η|, respectively. Using that

the only intersection of h◦η with v+∪{(0, 0)tr} is v∗ and (1,∞)v∗ is unbounded, it follows
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that (1,∞)v∗ ⊂ ext(h ◦ η). Moreover, since the intersection of h ◦ η with v+ ∪ {(0, 0)} is

transversal at v∗, it also follows that

[0, 1)v∗ ⊂ int(h ◦ η).

In particular, (0, 0)tr ∈ int(h ◦ η).

3. We claim that ext(h ◦ η) ∩ h(A) = ∅ Suppose that there exists a point χ ∈ h(A) ∩

ext(h◦η). Then χ 6= (0, 0)tr and h−1(χ) 6= 0. Proposition 5.10 implies that the phase curve

R ∋ t 7→ x
h−1(χ)
t intersects A ∩ U . Then the canonical curve ξ : R ∋ t 7→ h(x

h−1(χ)
t ) ∈ R2

through χ intersects h(A ∩ U) = {sv∗ : 0 ≤ s ≤ 1} ⊂ int(h ◦ η) ∪ |h ◦ η|. On the other

hand, χ ∈ ext(h ◦ η) implies that ξ(t) ∈ ext(h ◦ η) for all t ∈ R. This is a contradiction.

4. We remark that h(A) ∩ (int(h ◦ η) \ {(0, 0)tr}) is closed in int(h ◦ η) \ {(0, 0)tr} in

the relative topology of this set.

We claim that h(A) ∩ (int(h ◦ η) \ {(0, 0)tr}) is also open in int(h ◦ η) \ {(0, 0)tr} in

the relative topology. Let χ ∈ h(A) ∩ (int(h ◦ η) \ {(0, 0)tr}). We have to show that there

is an open disk D in R2 containing χ so that D ⊂ h(A) ∩ (int(h ◦ η) \ {(0, 0)tr}). As

h−1(χ) ∈ A\{0}, Proposition 5.10 implies that there is ψ ∈ A∩U \{0} and T > 0 so that

h−1(χ) = F (T, ψ). Then h(ψ) ∈ h(A ∩ U \ {0}) = (0, 1]v∗. From χ ∈ int(h ◦ η) it follows

that h(ψ) 6= v∗. So, h(ψ) = s0v
∗ for some s0 ∈ (0, 1). Let ǫ ∈ (0,min{s0, 1 − s0, T}).

Consider the map

g : (−ǫ, ǫ) × (−ǫ, ǫ) ∋ (t, s) 7→ h(FA(T + t, h−1((s0 + s)v∗))) ∈ R2.

g is continuous since h is a homeomorphism, FA is a flow on A and (s0−ǫ, s0+ǫ)v∗ ⊂ h(A).

We want to show that g is also injective. Let (t1, s1), (t2, s2) ∈ (−ǫ, ǫ)× (−ǫ, ǫ) and assume

that g(t1, s1) = g(t2, s2). Without loss of generality we may assume t2 ≥ t1. Since h is

injective, it follows that

FA(T + t1, h−1((s0 + s1)v∗)) = FA(T + t2, h−1((s0 + s2)v∗)).

As FA is a flow on A, we obtain

h−1((s0 + s2)v∗) = FA(t2 − t1, h−1((s0 + s1)v∗)). (9.3)

Assume that t1 6= t2. (9.3) implies that x = xh
−1((s0+s

1)v∗) is a t2 − t1-periodic solution.

By Proposition 5.5, x is slowly oscillating. So, t2 − t1 > 2 follows. On the other hand, the

choice of ǫ implies t2 − t1 < 2ǫ < 2, a contradiction. Therefore t1 = t2. Then (9.3) implies

h−1((s0 + s2)v∗) = h−1((s0 + s1)v∗). Hence s1 = s2. Consequently, g is injective.

It follows that g is an open mapping. As g(0, 0) = χ, we obtain that g((−ǫ, ǫ)× (−ǫ, ǫ))

is an open neighborhood of χ in R2. From (s0 − ǫ, s0 + ǫ)v∗ ⊂ h(A) it follows that
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g((−ǫ, ǫ)×(−ǫ, ǫ)) ⊂ h(A). So, if we choose an open diskD in R2 with center at χ such that

D ⊂ g((−ǫ, ǫ)×(−ǫ, ǫ)) andD ⊂ int(h◦η)\{(0, 0)tr}, thenD ⊂ h(A)∩(int(h◦η)\{(0, 0)tr}).

5. int(h◦η)\{(0, 0)tr} is an open connected subset of R2. Therefore, the only nonempty

subset of int(h ◦ η) \ {(0, 0)tr}, which is both closed and open in int(h ◦ η) \ {(0, 0)tr} in

the relative topology, is int(h ◦ η) \ {(0, 0)tr} itself. Observe that (0, 1)v∗ ⊂ h(A)∩ (int(h ◦

η) \ {(0, 0)tr}). This fact and the results of part 4 yield

h(A) ∩ (int(h ◦ η) \ {(0, 0)tr}) = int(h ◦ η) \ {(0, 0)tr}.

Using (0, 0)tr ∈ h(A), |h ◦ η| ⊂ h(A) and the result of part 3, we conclude

h(A) = int(h ◦ η) ∪ |h ◦ η| = int(h ◦ η).

The Scheonfliess theorem [48] gives that int(h ◦ η) is homeomorphic to the 2-dimensional

closed unit disk so that |h ◦ η| corresponds to the unit circle. This completes the proof.
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