Unstable Sets of Periodic Orbits and the Global Attractor for Delayed Feedback

Tibor Krisztin

Bolyai Institute
University of Szeged
Aradi vértanúk tere 1.
H-6720 Szeged
Hungary
krisztin@math.u-szeged.hu

Abstract

The differential equation $\dot{x}(t)=-\mu x(t)+f(x(t-1))$ with $\mu>0$ and a C^{1}-smooth real function f satisfying $f(0)=0$ and $f^{\prime}>0$ models a system with instantaneous friction and delayed feedback. For a set of parameters μ and nonlinearities f, which include examples from neural network theory, we show that there is a global attractor A, A contains exactly 3 stationary points and N periodic orbits, and A is the union of 2 stable stationary points and the strong unstable sets of the unstable stationary point 0 and of the N periodic orbits.

1 Introduction

We study the class of delay differential equations

$$
\begin{equation*}
\dot{x}(t)=-\mu x(t)+f(x(t-1)) \tag{1.1}
\end{equation*}
$$

with parameter $\mu>0$ and C^{1}-smooth nonlinearities $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(0)=0 \quad \text { and } \quad f^{\prime}(\xi)>0 \quad \text { for all } \xi \in \mathbb{R}
$$

Eq. (1.1) models a system governed by delayed monotone positive feedback and instantaneous damping. Specific applications occur e.g. in neural network theory, for

$$
f(\xi)=\alpha \tanh (\beta \xi)
$$

with parameters $\alpha>0$ and $\beta>0$ (see e.g. Herz [13], Pakdaman, Malta, GrottaRagazzo and Vibert [23], Wu [30] and references therein).

Every element ϕ of the Banach space C of continuous real functions on the initial interval $[-1,0]$ determines a solution $x^{\phi}:[-1, \infty) \rightarrow \mathbb{R}$ of Eq. (1.1), i.e., a

[^0]continuous function which is differentiable on $(0, \infty)$ and satisfies Eq. (1.1) for all $t>0$. The relations
$$
F(t, \phi)=x_{t}, x=x^{\phi}, x_{t}(s)=x(t+s), s \in[-1,0]
$$
define a continuous semiflow $F: \mathbb{R}^{+} \times C \rightarrow C$ such that all maps $F(t, \cdot), t \geq 0$, are injective and continuously differentiable, and F is monotone with respect to the pointwise ordering on C. The derivatives $D_{2} F(t, 0), t \geq 0$, form a strongly continuous semigroup, and the spectrum of the generator of the semigroup consists of simple eigenvalues which coincide with the zeros of the characteristic function
$$
\mathbb{C} \ni \lambda \mapsto \lambda+\mu-f^{\prime}(0) e^{-\lambda} \in \mathbb{C} .
$$

There is one real eigenvalue λ_{0}, and the others form a sequence of complex conjugate pairs $\left(\lambda_{j}, \overline{\lambda_{j}}\right)$ with

$$
\operatorname{Re} \lambda_{j+1}<\operatorname{Re} \lambda_{j}<\lambda_{0} \quad \text { and } \quad(2 j-1) \pi<\operatorname{Im} \lambda_{j}<2 j \pi
$$

for all integers $j \geq 1$, and $\operatorname{Re} \lambda_{j} \rightarrow-\infty$ as $j \rightarrow \infty$. The number of eigenvalues in the open right halfplane depends on μ and $f^{\prime}(0)$.

The forward extension of a local unstable manifold of the stationary point 0 associated with the eigenvalues of the generator of the semigroup $\left(D_{2} F(t, 0)\right)_{t \geq 0}$ with positive real part is called the strong unstable set $W_{s t r}^{u}(0)$ of 0 . The unstable set $W^{u}(0)$ of 0 is the set of $\phi \in C$ such that there is a solution $x: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) so that x is bounded on $(-\infty, 0], x_{0}=\phi$ and $\alpha(x)=\{0\}$. In general, $W_{s t r}^{u}(0) \subset W^{u}(0)$ holds. If 0 is a hyperbolic stationary point then $W_{s t r}^{u}(0)=W^{u}(0)$.

For a nontrivial periodic orbit \mathcal{O} of Eq. (1.1), the Floquet multipliers of \mathcal{O} outside the unit circle determine a local unstable manifold of \mathcal{O}. The forward extension of such a local unstable manifold is called the strong unstable set $W_{s t r}^{u}(\mathcal{O})$ of \mathcal{O}. The unstable set $W^{u}(\mathcal{O})$ of the periodic orbit \mathcal{O} contains those elements ϕ in C for which a solution $x: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) exists such that x is bounded on $(-\infty, 0], x_{0}=\phi$ and $\alpha(x)=\mathcal{O}$. The inclusion $W_{s t r}^{u}(\mathcal{O}) \subset W^{u}(\mathcal{O})$ is always satisfied. If the periodic orbit \mathcal{O} is hyperbolic then equality holds.

In the description of the long term behaviour of the solutions of Eq. (1.1) a natural object to study is the global attractor of the semiflow, i.e., a compact set $A \subset C$ which is invariant and attracts every bounded subset of C (see Hale [10]).

In Krisztin, Walther and Wu [16] we described the closure \bar{W} of the forward extension of a 3 -dimensional local unstable manifold of the stationary point 0 associated with the 3 leading eigenvalues $\lambda_{0}, \lambda_{1}, \overline{\lambda_{1}}$ with positive real part. The set \bar{W} consisted of 3 stationary points, a periodic orbit \mathcal{O}, and some orbits connecting the stationary point 0 to the nonzero stationary points, 0 to the periodic orbit \mathcal{O}, and \mathcal{O} to the nonzero stationary points. In Krisztin and Walther [15], for a set of parameters $\mu>0$ and nonlinearities f, we proved that the set \bar{W} coincides with the global attractor A. In particular, $\operatorname{Re} \lambda_{2}<0<\operatorname{Re} \lambda_{1}$ was assumed in [15]. The main steps toward the equality $A=\bar{W}$ were a uniqueness result on periodic orbits and that the unstable set $W^{u}(\mathcal{O})$ of the periodic orbit \mathcal{O} is equal to the strong unstable set $W_{\text {str }}^{u}(\mathcal{O})$ of the periodic orbit \mathcal{O}. The result of [15] can also be stated as

$$
A=\left\{\xi_{-}, \xi_{+}\right\} \cup W_{s t r}^{u}(0) \cup W_{s t r}^{u}(\mathcal{O})
$$

The purpose of this paper is to show a result of the above type on the structure of the global attractor of the semiflow F in more general situations. We suppose

$$
\operatorname{Re} \lambda_{N+1}<0<\operatorname{Re} \lambda_{N}
$$

for some integer $N>0$, which can be guaranteed by an explicit condition on $f^{\prime}(0)$ and μ. In addition, assuming oddness and a convexity condition on f, and that $\frac{f(\xi)}{\xi}<\mu$ outside a bounded neighbourhood of 0 , we find that the semiflow F has exactly 3 stationary points $0, \xi_{-}, \xi_{+} ; 0$ is unstable, ξ_{-}and ξ_{+}are locally asymptotically stable; moreover, results of $[\mathbf{1 5}]$ and $[\mathbf{1 7}]$ give that F has exactly N periodic orbits $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{N}$. The main result of this paper is that

$$
\begin{equation*}
A=\left\{\xi_{-}, \xi_{+}\right\} \cup W_{s t r}^{u}(0) \cup\left(\bigcup_{k=1}^{N} W_{s t r}^{u}\left(\mathcal{O}_{k}\right)\right) \tag{1.2}
\end{equation*}
$$

We emphasize that the above equality is valid without assuming hyperbolicity of the periodic orbits $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{N}$. It is shown in Krisztin and $\mathrm{Wu}[\mathbf{1 7}]$ that $W_{s t r}^{u}(0)$ is a $(2 N+1)$-dimensional C^{1} submanifold of the phase space C. As $F(t, \cdot), D_{2} F(t, \cdot), t \geq 0$, are injective maps, it follows that the strong unstable sets $W_{s t r}^{u}\left(\mathcal{O}_{1}\right), W_{s t r}^{u}\left(\mathcal{O}_{2}\right), \ldots, W_{s t r}^{u}\left(\mathcal{O}_{N}\right)$ are C^{1} immersed submanifolds of C. In a subsequent paper we shall prove that these strong unstable sets are also C^{1} submanifolds of C.

The sets

$$
S_{0}=\left\{\xi_{-}, \xi_{+}\right\}, S_{2 N+1}=\{0\}, S_{2 k}=\mathcal{O}_{k} \quad \text { for all } k \in\{1,2, \ldots, N\}
$$

define a Morse decomposition of the global attractor A (see Conley [6]), which means that $S_{0}, S_{2}, \ldots, S_{2 N}, S_{2 N+1}$ are disjoint, compact invariant subsets of A, and on $A \backslash\left(S_{0} \cup S_{2} \cup \ldots \cup S_{2 N} \cup S_{2 N+1}\right)$ the semiflow F is gradient-like, i.e., for every $\phi \in A \backslash\left(S_{0} \cup S_{2} \cup \ldots \cup S_{2 N} \cup S_{2 N+1}\right)$ and for the unique solution $x^{\phi}: \mathbb{R} \rightarrow \mathbb{R}$ there exist $k, l \in\{0,2,4, \ldots, 2 N, 2 N+1\}$ so that $k>l$ and $\alpha\left(x^{\phi}\right) \in S_{k}$ and $\omega(\phi) \in S_{l}$. Equality (1.2) with the proof that the strong unstable sets $W_{s t r}^{u}\left(\mathcal{O}_{k}\right)$ are also C^{1} submanifolds of C will show that $A \backslash\left(S_{0} \cup S_{2} \cup \ldots \cup S_{2 N} \cup S_{2 N+1}\right)$ is a finite disjoint union of C^{1} submanifolds of C.

Let us mention that a Morse decomposition is known to exist under weaker conditions than ours both for the negative and the positive feedback cases (see Mallet-Paret $[\mathbf{1 8}]$ and Polner [24]). In addition, there are some results on the connecting sets for the negative feedback case in Fiedler and Mallet-Paret [9] and in McCord and Mischaikow [22]. Our hypotheses are more restrictive, but we get a finer and more detailed description of the global attractor.

The main tool, which was introduced by Mallet-Paret, is a discrete Lyapunov functional counting sign changes of elements $\phi \in C \backslash\{0\}$ (see [18] and [19]). We apply a Poincaré-Bendixson theorem of Mallet-Paret and Sell [20]. Results about the Floquet multipliers of periodic orbits are also important [16], $[\mathbf{1 7}],[\mathbf{1 9}]$. The basic idea of the proof of the equality

$$
W^{u}(\mathcal{O})=W_{s t r}^{u}(\mathcal{O})
$$

for a periodic orbit \mathcal{O} is very simple. Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be a periodic solution of Eq. (1.1) with minimal period $\omega>0$ so that $\mathcal{O}=\left\{p_{t}: t \in[0, \omega]\right\}$. We construct two solutions $x:[-1, \infty) \rightarrow \mathbb{R}$ and $y:[-1, \infty) \rightarrow \mathbb{R}$ of Eq. (1.1) such that in the plane \mathbb{R}^{2} the curve

$$
X:[0, \infty) \ni t \mapsto\binom{x(t)}{x(t-1)} \in \mathbb{R}^{2}
$$

spirals toward the trace $|P|$ of the simple closed curve

$$
P:[0, \omega] \ni t \mapsto\binom{p(t)}{p(t-1)} \in \mathbb{R}^{2}
$$

in the interior of P as $t \rightarrow \infty$, while the curve

$$
Y:[0, \infty) \ni t \mapsto\binom{y(t)}{y(t-1)} \in \mathbb{R}^{2}
$$

spirals toward $|P|$ in the exterior of P as $t \rightarrow \infty$. If $W^{u}(\mathcal{O}) \neq W_{\text {str }}^{u}(\mathcal{O})$ then there is a solution $z: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) such that the curve

$$
Z:(-\infty, 0] \ni t \mapsto\binom{z(t)}{z(t-1)} \in \mathbb{R}^{2}
$$

does not intersect the curves P, X, Y, and $Z(t)$ spirals toward $|P|$ as $t \rightarrow-\infty$. A planar argument applying the Jordan curve theorem leads to a contradiction. A solution x with the above property is given in Krisztin and $\mathrm{Wu}[\mathbf{1 7}]$. The existence of the solution y is shown by using homotopy methods and the Brouwer degree. The construction of z requires some information about the Floquet multipliers of the periodic orbit \mathcal{O}. We remark that, in [15] for the proof of $W^{u}(\mathcal{O})=W_{s t r}^{u}(\mathcal{O})$ in a particular case, we used a different proof.

We mention that results on attractors of delay differential equations related to ours can be found in the works of Walther [27], [28], Walther and Yebdri [29], Mallet-Paret and Walther [21], Chen and Wu [5], Chen, Krisztin and Wu [4], Krisztin and Arino [14].

The organization of the paper is as follows: Section 2 contains some preliminary results on a discrete Lyapunov functional, periodic orbits, Floquet multipliers, and unstable manifolds. We prove the existence of a solution y with the above properties in Section 3. The equality $W^{u}(\mathcal{O})=W_{s t r}^{u}(\mathcal{O})$ for periodic orbits \mathcal{O} is shown in Section 4. In the last section we conclude the paper by proving equality (1.2) for the global attractor.

Notation. \mathbb{N} and \mathbb{R}^{+}stand for the nonnegative integers and reals, respectively. $S_{\mathbb{C}}^{1}$ is the unit circle in \mathbb{C}. An upper index $t r$ denotes the transpose of a row vector.

Simple closed curves are continuous maps c from a compact interval $[a, b] \subset \mathbb{R}$, $a<b$, into \mathbb{R}^{n} so that $\left.c\right|_{[a, b)}$ is injective and $c(a)=c(b)$. The set of values of a simple closed curve c, or trace, is denoted by $|c|$. The Jordan curve theorem guarantees that the complement of the trace of a simple closed curve c in \mathbb{R}^{2} consists of two nonempty connected open sets, one bounded and the other unbounded, and $|c|$ is the boundary of each of these components. We denote the bounded one by int (c) and the unbounded one by ext (c).

A trajectory of a map $g: M \rightarrow N$ is a finite or infinite sequence $\left(x_{j}\right)_{j \in I \cap \mathbb{Z}}$, $I \subset \mathbb{R}$ an interval, in M with $x_{j+1}=g\left(x_{j}\right)$ for all $j \in I \cap \mathbb{Z}$ with $j+1 \in I \cap \mathbb{Z}$.

For a Banach space E and $r>0$ we set

$$
E_{r}=\{x \in E:\|x\|<r\} .
$$

Spectra of continuous linear maps $T: E \rightarrow E$ are defined as spectra of their complexifications.

For a given continuous $g: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$, solutions $x: \mathbb{R} \rightarrow \mathbb{R}$ of the equation

$$
\begin{equation*}
\dot{x}(t)=g(t, x(t), x(t-1)) \tag{1.3}
\end{equation*}
$$

are differentiable functions which satisfy Eq. (1.3) everywhere. If $I \subset \mathbb{R}$ is an interval and if $t_{0} \in I$ is given with $t_{0}-1=\min I$ and $t_{0}<\sup I \leq \infty$, and if a continuous function $g:\left(I \cap\left[t_{0}, \infty\right)\right) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given, then a continuous function $x: I \rightarrow \mathbb{R}$ is a solution of Eq. (1.3) if x is differentiable on $I \cap\left(t_{0}, \infty\right)$ and satisfies

Eq. (1.3) for all $t \in I \cap\left(t_{0}, \infty\right)$. It is then clear how to define complex-valued solutions of equations given by functions of the form

$$
g(t, x, y)=a(t) x+b(t) y
$$

For a map $x: D \rightarrow M$, and $t \in \mathbb{R}$ so that $[t-1, t] \subset D$, the segment x_{t} : $[-1,0] \rightarrow M$ is defined by $x_{t}(s)=x(t+s)$ for $-1 \leq s \leq 0$.
C denotes the Banach space of continuous functions $\phi:[-1,0] \rightarrow \mathbb{R}$, with the norm given by

$$
\|\phi\|=\max _{-1 \leq t \leq 0}|\phi(t)| .
$$

C^{1} is the Banach space of all C^{1}-maps $\phi:[-1,0] \rightarrow \mathbb{R}$, with the norm given by

$$
\|\phi\|_{1}=\|\phi\|+\|\dot{\phi}\| .
$$

C^{2} is defined analogously.

2 Preliminary results

Consider the delay differential equation

$$
\begin{equation*}
\dot{x}(t)=-\mu x(t)+f(x(t-1)) \tag{1.1}
\end{equation*}
$$

where
(H0): $\mu>0, f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable, $f^{\prime}(\xi)>0$ for all $\xi \in \mathbb{R}$, and $f(0)=0$.
A growth bound on f is also required:
(H1): $|f(\xi)|<\mu|\xi|$ outside a bounded neighbourhood of 0 .
Let ξ^{-}denote the minimal zero of $f-\mu \mathrm{id}$, and let ξ^{+}denote the maximal zero of $f-\mu \mathrm{id}$. Then $\xi^{-} \leq 0 \leq \xi^{+}$.

We recall some basic facts. Every $\phi \in C$ uniquely determines a solution x^{ϕ} : $[-1, \infty) \rightarrow \mathbb{R}$ with $x_{0}^{\phi}=\phi$. Any two solutions on a common domain are equal whenever they coincide on an interval of length one. The set of values of constant solutions coincides with the zeroset of $f-\mu \mathrm{id}$. We have continuous dependence on initial data in the sense that given $\phi \in C, t \geq 0, \epsilon>0$ there exists $\delta>0$ so that $\left|x^{\psi}(s)-x^{\phi}(s)\right|<\epsilon$ for all $s \in[-1,0]$ and all $\psi \in C$ with $\|\psi-\phi\|<\delta$.

The map

$$
F: \mathbb{R}^{+} \times C \ni(t, \phi) \mapsto x_{t}^{\phi} \in C
$$

is a continuous semiflow. $0, \xi_{-}, \xi_{+}$are stationary points of F, where $\xi_{-}(s)=\xi^{-}$ and $\xi_{+}(s)=\xi^{+}$for all $s \in[-1,0]$. All maps $F(t, \cdot): C \rightarrow C, t \geq 0$, are injective. It follows that for every $\phi \in C$ there is at most one solution $x: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) with $x_{0}=\phi$. We denote also by x^{ϕ} such a solution on \mathbb{R} whenever it exists. The maps $F(t, \cdot), t \geq 0$, are monotone with respect to the pointwise ordering on C given by the cone

$$
K=\{\phi \in C: \phi(s) \geq 0 \text { for all } s \in[-1,0]\}
$$

All maps $F(t, \cdot), t \geq 1$, are compact (i.e., send bounded sets into relative compact sets), and all maps

$$
C \ni \phi \mapsto F(t, \phi) \in C^{1}, \quad t \geq 1
$$

are continuous.
For reals a, b with $a<b$ set

$$
C_{a, b}=\{\phi \in C: a<\phi(s)<b \text { for all } s \in[-1,0]\} .
$$

Concerning boundedness properties, we have the following result.
Proposition 2.1 Assume that hypotheses (H0) and (H1) hold. For every $a, b \in \mathbb{R}$ with $a<\xi^{-}, b>\xi^{+}$,

$$
F\left(\mathbb{R}^{+} \times C_{a, b}\right) \subset C_{a, b}
$$

and for every $\phi \in C$ there exists $t \geq 0$ so that

$$
F(s, \phi) \in C_{a, b} \quad \text { for all } s \geq t
$$

The proof is similar to that of Proposition 2.1 in [15], so it is omitted.
Using the Arzela-Ascoli theorem, Eq. (1.1) and boundedness of solutions on $[-1, \infty)$, we obtain that for every $\phi \in C$ the ω-limit set

$$
\omega(\phi)=\left\{\psi \in C: \text { There exists a sequence }\left(t_{n}\right)_{0}^{\infty} \text { in } \mathbb{R}^{+}\right. \text {with }
$$

$$
\left.t_{n} \rightarrow \infty \text { and } F\left(t_{n}, \phi\right) \rightarrow \psi \text { as } n \rightarrow \infty\right\}
$$

is nonempty. ω-limit sets are compact, connected, and invariant in the sense that for every $\psi \in \omega(\phi)$ there is a solution $x: \mathbb{R} \rightarrow \mathbb{R}$ with $x_{0}=\psi$ and $x_{t} \in \omega(\phi)$ for all $t \in \mathbb{R}$. For bounded solutions $x: \mathbb{R} \rightarrow \mathbb{R}$, the α-limit set

$$
\begin{aligned}
& \alpha(x)=\left\{\psi \in C: \text { There exists a sequence }\left(t_{n}\right)_{0}^{\infty} \text { in } \mathbb{R}\right. \text { with } \\
& \left.\qquad t_{n} \rightarrow-\infty \text { and } x_{t_{n}} \rightarrow \psi \text { as } n \rightarrow \infty\right\}
\end{aligned}
$$

is nonempty, compact, connected, and invariant.
Under hypotheses (H0) and (H1) Proposition 2.1 and arguments as in Chapter 17 of $[\mathbf{1 6}]$, or in $[\mathbf{1 0}]$, yield the existence of a global attractor of the semiflow F, i.e., of a nonempty compact set $A \subset C$ which is invariant in the sense that

$$
F(t, A)=A \quad \text { for all } t \geq 0
$$

and which attracts bounded sets in the sense that for every bounded set $B \subset C$ and for every open set $U \supset A$ there exists $t \geq 0$ with

$$
F([t, \infty) \times B) \subset U
$$

Global attractors are uniquely determined.
It is shown in [15] that

$$
\begin{array}{r}
A=\{\phi \in C: \text { There is a bounded solution } x: \mathbb{R} \rightarrow \mathbb{R} \\
\text { of Eq. (1.1) and } \left.t \in \mathbb{R} \text { so that } \phi=x_{t}\right\} .
\end{array}
$$

It is easy to obtain from Proposition 2.1 that

$$
A \subset\left\{\phi \in C: \xi^{-} \leq \phi(s) \leq \xi^{+}, s \in[-1,0]\right\}
$$

The compactness of A, its invariance property and the injectivity of the maps $F(t, \cdot), t \geq 0$, combined permit to show that the map

$$
[0, \infty) \times A \ni(t, \phi) \mapsto F(t, \phi) \in A
$$

extends to a continuous flow

$$
F_{A}: \mathbb{R} \times A \rightarrow A
$$

for every $\phi \in A$ and for all $t \in \mathbb{R}$ we have

$$
F_{A}(t, \phi)=x_{t}
$$

with the uniquely determined solution $x: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) satisfying $x_{0}=\phi$.
Note that we have

$$
A=F(1, A) \subset C^{1}
$$

A is a closed subset of C^{1}. Using the flow F_{A} and the continuity of the map

$$
C \ni \phi \mapsto F(1, \phi) \in C^{1}
$$

one obtains that C and C^{1} define the same topology on A.
Now we linearize the semiflow F at its stationary point 0 . The smoothness of f implies that each map $F(t, \cdot), t \geq 0$, is continuously differentiable. For all ϕ, ψ in C and $t \geq 0$ we have

$$
D_{2} F(t, \phi) \psi=v_{t}
$$

with the solution $v:[-1, \infty) \rightarrow \mathbb{R}$ of the linear variational equation

$$
\dot{v}(s)=-\mu v(s)+f^{\prime}\left(x^{\phi}(s-1)\right) v(s-1)
$$

along x^{ϕ} which is given by $v_{0}=\psi$. The operators $D_{2} F(t, 0), t \geq 0$, form a strongly continuous semigroup; for $\phi=0$ the linear variational equation is

$$
\begin{equation*}
\dot{v}(t)=-\mu v(t)+f^{\prime}(0) v(t-1) \tag{2.1}
\end{equation*}
$$

The spectrum of the generator of the semigroup $\left(D_{2} F(t, 0)\right)_{t \geq 0}$ consists of the solutions $\lambda \in \mathbb{C}$ of the characteristic equation

$$
\begin{equation*}
\lambda+\mu-f^{\prime}(0) e^{-\lambda}=0 \tag{2.2}
\end{equation*}
$$

There is exactly one real λ_{0} in the spectrum, the remaining points in the spectrum are given by a sequence of complex conjugate pairs $\left(\lambda_{j}, \overline{\lambda_{j}}\right)_{1}^{\infty}$ with

$$
\lambda_{0}>\operatorname{Re} \lambda_{1}>\operatorname{Re} \lambda_{2}>\ldots, \quad 2 j \pi-\pi<\operatorname{Im} \lambda_{j}<2 j \pi
$$

for $1 \leq j \in \mathbb{N}$, and $\operatorname{Re} \lambda_{j} \rightarrow-\infty$ as $j \rightarrow \infty$. It is easy to see that $\lambda_{0}>0$ if and only if $f^{\prime}(0)>\mu$.

Assume that there exists $N \in \mathbb{N}$ so that

$$
\operatorname{Re} \lambda_{N+1} \leq 0<\operatorname{Re} \lambda_{N}
$$

Let P denote the realified generalized eigenspace of the generator associated with the spectral set $\left\{\lambda_{0}, \lambda_{1}, \overline{\lambda_{1}}, \ldots, \lambda_{N}, \overline{\lambda_{N}}\right\}$. Let Q denote the realified generalized eigenspace given by the spectral set of all $\lambda_{k}, \overline{\lambda_{k}}$ with $k \geq N+1$. Then $C=P \oplus Q$. The spaces P and Q are also realified generalized eigenspaces of $D_{2} F(1,0)$ given by the spectral sets $\left\{e^{\lambda_{0}}, e^{\lambda_{1}}, e^{\overline{\lambda_{1}}}, \ldots, e^{\lambda_{N}}, e^{\overline{\lambda_{N}}}\right\}$ and $\left\{e^{\lambda_{k}}: k \geq N+1\right\} \cup\left\{e^{\overline{\lambda_{k}}}: k \geq\right.$ $N+1\}$, respectively.

Choose $\beta>1$ with $\beta<e^{\operatorname{Re} \lambda_{N}}$. According to Theorem I. 3 in [16] there exist convex open neighbourhoods N_{Q}, N_{P} of Q, P, respectively, and a C^{1}-map w_{u} : $N_{P} \rightarrow Q$ with $W_{u}\left(N_{P}\right) \subset N_{Q}, w_{u}(0)=0, D w_{u}(0)=0$ so that the strong unstable manifold of the fixed point 0 of $F(1, \cdot)$ in $N_{Q}+N_{P}$, namely

$$
\begin{aligned}
& W^{u}\left(0, F(1, \cdot), N_{Q}+N_{P}\right)=\left\{\phi \in N_{Q}+N_{P}: \text { There is a trajectory }\left(\phi_{n}\right)_{-\infty}^{0}\right. \\
& \quad \text { of } F(1, \cdot) \text { with } \phi_{0}=\phi, \phi_{n} \beta^{-n} \in N_{Q}+N_{P} \text { for all } n \in-\mathbb{N}, \\
& \left.\quad \text { and } \phi_{n} \beta^{-n} \rightarrow 0 \text { as } n \rightarrow-\infty\right\}
\end{aligned}
$$

coincides with the graph $\left\{\chi+w_{u}(\chi): \chi \in N_{P}\right\}$. It is easy to show that every $\phi \in W^{u}\left(0, F(1, \cdot), N_{Q}+N_{P}\right)$ uniquely determines a solution $x^{\phi}: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1), and for this solution $x^{\phi}(t) \rightarrow 0$ as $t \rightarrow-\infty$ holds, moreover there exists $t \in \mathbb{R}$ with $x_{s}^{\phi} \in W^{u}\left(0, F(1, \cdot), N_{Q}+N_{P}\right)$ for all $s \leq t$.

We call the forward extension

$$
W_{s t r}^{u}(0)=F\left(\mathbb{R}^{+} \times W^{u}\left(0, F(1, \cdot), N_{Q}+N_{P}\right)\right)
$$

the strong unstable set of 0 . The unstable set of 0 is defined by

$$
\begin{gathered}
W^{u}(0)=\{\phi \in C: \text { There is a solution } x: \mathbb{R} \rightarrow \mathbb{R} \text { of Eq. (1.1) } \\
\left.\quad \text { with } x_{0}=\phi \text { and } x_{t} \rightarrow 0 \text { as } t \rightarrow-\infty\right\} .
\end{gathered}
$$

If $\operatorname{Re} \lambda_{N+1}<0<\operatorname{Re} \lambda_{N}$ holds, then 0 is hyperbolic and

$$
W^{u}(0)=W_{s t r}^{u}(0)
$$

The following explicit condition in terms of μ and $f^{\prime}(0)$ for the location of the solutions of (2.2) can be found e.g. in [8] or [15].

Proposition 2.2 Let $\mu>0, N \in \mathbb{N} \backslash\{0\}$, and let θ_{N} and θ_{N+1} denote the unique solution of the equation $\theta=-\mu \tan \theta$ in

$$
(2 N \pi-\pi / 2,2 N \pi) \quad \text { and } \quad(2(N+1) \pi-\pi / 2,2(N+1) \pi),
$$

respectively. If

$$
\frac{\mu}{\cos \theta_{N}}<f^{\prime}(0)<\frac{\mu}{\cos \theta_{N+1}}
$$

then

$$
\operatorname{Re} \lambda_{N+1}<0<\operatorname{Re} \lambda_{N}
$$

We recall the definition and some properties of a discrete Lyapunov functional

$$
V: C \backslash\{0\} \rightarrow 2 \mathbb{N} \cup\{\infty\}
$$

which goes back to the work of Mallet-Paret [18]. The version which we use was introduced in Mallet-Paret and Sell [19].

The definition is as follows. First, set

$$
\operatorname{sc}(\phi)=\sup \{k \in \mathbb{N} \backslash\{0\}: \text { There is a strictly increasing finite sequence }
$$

$\left(s^{i}\right)_{0}^{k}$ in $[-1,0]$ with $\phi\left(s^{i-1}\right) \phi\left(s^{i}\right)<0$ for all $\left.i \in\{1,2, \ldots, k\}\right\} \leq \infty$
for $\phi \in C \backslash(K \cup(-K))$, and $\operatorname{sc}(\phi)=0$ for $0 \neq \phi \in K \cup(-K)$. Then, define

$$
V(\phi)= \begin{cases}\operatorname{sc}(\phi) & \text { if } \operatorname{sc}(\phi) \in 2 \mathbb{N} \cup\{\infty\} \\ \operatorname{sc}(\phi)+1 & \text { if } \operatorname{sc}(\phi) \in 2 \mathbb{N}+1\end{cases}
$$

Set

$$
\begin{aligned}
R=\left\{\phi \in C^{1}:\right. & \phi(0) \neq 0 \text { or } \dot{\phi}(0) \phi(-1)>0 \\
& \phi(-1) \neq 0 \text { or } \dot{\phi}(-1) \phi(0)<0 \\
& \text { all zeros of } \phi \text { in }(-1,0) \text { are simple }\} .
\end{aligned}
$$

The next lemma lists basic properties of V. For a proof see e.g. [19] or [16].
Lemma 2.3 (i) For every $\phi \in C \backslash\{0\}$ and for every sequence $\left(\phi_{n}\right)_{0}^{\infty}$ in $C \backslash\{0\}$ with $\phi_{n} \rightarrow \phi$ as $n \rightarrow \infty$,

$$
V(\phi) \leq \liminf _{n \rightarrow \infty} V\left(\phi_{n}\right)
$$

(ii) For every $\phi \in R$ and for every sequence $\left(\phi_{n}\right)_{0}^{\infty}$ in $C^{1} \backslash\{0\}$ with $\left\|\phi_{n}-\phi\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$,

$$
V(\phi)=\lim _{n \rightarrow \infty} V\left(\phi_{n}\right)<\infty
$$

(iii) Let an interval $I \subset \mathbb{R}$, a real $\nu \geq 0$, and continuous functions $b: I \rightarrow(0, \infty)$ and $z: I+[-1,0] \rightarrow \mathbb{R}$ be given so that $\left.z\right|_{I}$ is differentiable with

$$
\begin{equation*}
\dot{z}(t)=-\nu z(t)+b(t) z(t-1) \tag{2.3}
\end{equation*}
$$

for $\inf I<t \in I$, and $z(t) \neq 0$ for some $t \in I+[-1,0]$. Then the map $I \ni t \mapsto V\left(z_{t}\right) \in 2 \mathbb{N} \cup\{\infty\}$ is decreasing. If $t \in I, t-2 \in I$ and $z(t)=0=$ $z(t-1)$, then $V\left(z_{t}\right)=\infty$ or $V\left(z_{t-2}\right)>V\left(z_{t}\right)$. For all $t \in I$ with $t-3 \in I$ and $V\left(z_{t-3}\right)=V\left(z_{t}\right)<\infty$, we have $z_{t} \in R$.
(iv) If $\nu \geq 0, b: \mathbb{R} \rightarrow(0, \infty)$ is continuous and bounded, $z: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and bounded, z satisfies (2.3) for all $t \in \mathbb{R}$, and $z(t) \neq 0$ for some $t \in \mathbb{R}$, then $V\left(z_{t}\right)<\infty$ for all $t \in \mathbb{R}$.
Observe that linear variational equations

$$
\dot{v}(t)=-\mu v(t)+f^{\prime}(x(t-1)) v(t-1)
$$

along solutions of Eq. (1.1) are of the form considered in statements (iii) and (iv), as well as the equation satisfied by weighted differences $y=(x-\hat{x}) / c, c \neq 0$, of solutions x, \hat{x} of Eq. (1.1) on a common domain,

$$
\dot{y}(t)=-\mu y(t)+\left(\int_{0}^{1} f^{\prime}((1-s) \hat{x}(t-1)+s x(t-1)) d s\right) y(t-1)
$$

The next a-priori estimate is a special case of a result which says that solutions with finite oscillation frequency do not decay too fast as t increases. Estimates of this type go back to Walther [25] and Mallet-Paret [18], see also Arino [2] and Cao $[3]$ and $[16]$.

Lemma 2.4 For every $\nu>0, l \in \mathbb{N}, b_{0}>0$ and $b_{1} \geq b_{0}$ there are $k>0$ and an integer $L>0$ so that for every $t_{0} \in \mathbb{R}$, and for every continuous function $b:\left[t_{0}-L, t_{0}\right] \rightarrow \mathbb{R}$ with range in $\left[b_{0}, b_{1}\right]$, and for every solution $z:\left[t_{0}-L-1, t_{0}\right] \rightarrow \mathbb{R}$ of Eq. (2.3) with $z_{t_{0}-L} \neq 0$ and $V\left(z_{t_{0}-L}\right) \leq 2 l$, we have

$$
\left\|z_{t_{0}-1}\right\| \leq k\left\|z_{t_{0}}\right\| .
$$

For a $k \in \mathbb{N} \backslash\{0\}$ define the continuous mapping

$$
\Pi_{k+1}: C \ni \phi \mapsto(\phi(-1), \phi(-1+1 / k), \ldots, \phi(-1 / k), \phi(0))^{t r} \in \mathbb{R}^{k+1}
$$

In case $k=0$ we set $\Pi_{1} \phi=\phi(0)$ for all $\phi \in C$.
The following lemma is shown in $[\mathbf{1 7}]$.
Lemma 2.5 Let $t_{0} \in \mathbb{R}, k \in \mathbb{N}, \nu \geq 0$ and the continuous functions b : $\left[t_{0}-3-3 k, t_{0}\right] \rightarrow(0, \infty), z:\left[t_{0}-4-3 k, t_{0}\right] \rightarrow \mathbb{R}$ be given such that z is differentiable on $\left(t_{0}-3-3 k, t_{0}\right], z_{t_{0}} \neq 0$, z satisfies (2.3) for all $t \in\left(t_{0}-3-3 k, t_{0}\right]$, and

$$
V\left(z_{t_{0}-3-3 k}\right) \leq 2 k
$$

Then

$$
\Pi_{2 k+1} z_{t_{0}} \neq 0
$$

We need the following corollary of a general Poincaré-Bendixson theorem for monotone cyclic feedback systems due to Mallet-Paret and Sell [20].

Proposition 2.6 Assume that (H0) and (H1) hold.
(i) Let $x: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded solution of Eq. (1.1). Then $\alpha(x)$ is either the orbit of a nonconstant periodic solution of Eq. (1.1), or for every solution $y: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) with $y_{0} \in \alpha(x)$ the sets $\alpha(y)$ and $\omega\left(y_{0}\right)$ consist of stationary points of F.
(ii) For every $\phi \in C, \omega(\phi)$ is either the orbit of a nonconstant periodic solution of Eq. (1.1), or for every solution $y: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) with $y_{0} \in \omega(\phi)$ the sets $\alpha(y)$ and $\omega\left(y_{0}\right)$ consist of stationary points of F.
We introduce an additional hypothesis on f :
(H2): $f(\xi)=-f(-\xi)$ for all $\xi \in \mathbb{R}$, and
the function $(0, \infty) \ni \xi \mapsto \frac{\xi f^{\prime}(\xi)}{f(\xi)} \in \mathbb{R}$ is strictly decreasing.
From Lemma 2.3(iii) and (iv) it follows that for any nonconstant periodic solution $x: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) there exists $k \in \mathbb{N}$ so that $V\left(x_{t}\right)=2 k$ and $x_{t} \in R$ for all $t \in \mathbb{R}$. In addition, for the derivative \dot{x} of the nonconstant periodic solution we also find $l \in \mathbb{N}$ with $V\left(\dot{x}_{t}\right)=2 l$ and $\dot{x}_{t} \in R$ for all $t \in \mathbb{R}$. For $k \in \mathbb{N}$, we say that Eq. (1.1) has a periodic orbit in $V^{-1}(2 k)$ if it has a nonconstant periodic solution $x: \mathbb{R} \rightarrow \mathbb{R}$ with $V\left(x_{t}\right)=2 k$ for all $t \in \mathbb{R}$. One of the main results of $[\mathbf{1 5}]$ is

Proposition 2.7 Assume that hypotheses (H0), (H1) and (H2) are satisfied.
(i) For every $k \in \mathbb{N} \backslash\{0\}$, Eq. (1.1) has at most one periodic orbit in $V^{-1}(2 k)$.
(ii) Eq. (1.1) has no periodic orbit in $V^{-1}(2 k)$ if either $k=0$ or $k \in \mathbb{N} \backslash\{0\}$ and $\operatorname{Re} \lambda_{k} \leq 0$.
The next result of $[\mathbf{1 7}]$ guarantees the existence of periodic orbits and an orbit connecting the stationary point 0 and the periodic orbit with a given oscillation frequency.

Proposition 2.8 Assume that hypotheses (H0) and (H1) hold. If $N \in \mathbb{N} \backslash\{0\}$ and $\operatorname{Re} \lambda_{N}>0$, then Eq. (1.1) has a periodic orbit \mathcal{O}_{N} in $V^{-1}(2 N)$, and Eq. (1.1) has a solution $x: \mathbb{R} \rightarrow \mathbb{R}$ with $\alpha(x)=\{0\}, \omega\left(x_{0}\right)=\mathcal{O}_{N}$, and $x_{t} \in R, x_{t}-\psi \in R$, $V\left(x_{t}\right)=V\left(x_{t}-\psi\right)=2 N$ for all $t \in \mathbb{R}$ and $\psi \in \mathcal{O}_{N}$.

The following a-priori result on periodic solutions of Eq. (1.1) follows from general results in Mallet-Paret and Sell [20] for certain systems of delay differential equations.

Proposition 2.9 Assume that hypothesis (H0) holds. If $p: \mathbb{R} \rightarrow \mathbb{R}$ is a nonconstant periodic solution of Eq. (1.1) with minimal period $\omega>0$, then there are $t^{0} \in \mathbb{R}$ and $t^{1} \in\left(t^{0}, t^{0}+\omega\right)$ with $p\left(t^{0}\right)<0<p\left(t^{1}\right), p(\mathbb{R})=\left[p\left(t^{0}\right), p\left(t^{1}\right)\right], 0<\dot{p}(t)$ for $t^{0}<t<t^{1}$, and $\dot{p}(t)<0$ for $t^{1}<t<t^{0}+\omega$. In particular, it follows that $[0, \omega] \ni t \mapsto \Pi_{2} p_{t} \in \mathbb{R}^{2}$ is a simple closed curve, and if z denotes the unique zero of p in $\left(t^{0}, t^{1}\right)$, then

$$
\left\{(0, v)^{t r} \in \mathbb{R}^{2}: 0 \leq v<p(z-1)\right\} \subset \operatorname{int}\left(\Pi_{2}\left\{p_{t}: t \in[0, \omega]\right\}\right)
$$

The next result on the sign changes of differences of elements of periodic orbits is shown in [17].

Proposition 2.10 Assume that hypothesis (H0) holds. Let $N \in \mathbb{N} \backslash\{0\}$ and nonconstant periodic solutions $p: \mathbb{R} \rightarrow \mathbb{R}$ and $q: \mathbb{R} \rightarrow \mathbb{R}$ be given with $V\left(p_{t}\right)=$ $V\left(q_{t}\right)=2 N$ for all $t \in \mathbb{R}$. Then

$$
V\left(p_{t}-q_{s}\right) \geq 2 N \quad \text { for all } t, s \text { in } \mathbb{R} \text { with } p_{t} \neq q_{s}
$$

and

$$
V\left(p_{t}-p_{s}\right)=2 N \quad \text { for all } t, s \text { in } \mathbb{R} \text { with } p_{t} \neq p_{s}
$$

For a given $N \in \mathbb{N} \backslash\{0\}$, let $p: \mathbb{R} \rightarrow \mathbb{R}$ denote the periodic solution guaranteed by Proposition 2.8 and normalized so that $p(0)=0$ and $p(-1)>0$. Then $\mathcal{O}_{N}=$ $\left\{p_{t}: t \in \mathbb{R}\right\}$. By Proposition 2.9, three consecutive zeros of p determine the minimal
period ω of p. All zeros of p are simple since $p_{t} \in R$ for all $t \in \mathbb{R}$ by Lemma 2.3(iii). Then the definition of V and the fact $V\left(p_{t}\right)=2 N$ for all $t \in \mathbb{R}$ combined yield $N \omega \geq 1$. Define the monodromy operator

$$
M=D_{2} F\left(\omega, p_{0}\right)
$$

For every $\phi \in C$, we have $M \phi=v_{\omega}$, where $v:[-1, \infty) \rightarrow \mathbb{R}$ is the solution of the variational equation

$$
\begin{equation*}
\dot{v}(t)=-\mu v(t)+f^{\prime}(p(t-1)) v(t-1) \tag{2.4}
\end{equation*}
$$

subject to the initial condition $v_{0}=\phi$. The operator M^{N} is compact since $\omega \geq 1 / N$. We then have that the spectrum σ of M contains 0 , and that every point $\lambda \in \sigma \backslash\{0\}$ is an eigenvalue of M of finite multiplicity, and is isolated in σ. These eigenvalues in $\sigma \backslash\{0\}$ are called Floquet multipliers.

For $0 \neq \lambda \in \sigma$ with $\operatorname{Im} \lambda \geq 0$, let $G_{\mathbb{R}}(\lambda)$ stand for the realified generalized eigenspace of the eigenvalue λ of M. If $r>0$ and $\{\lambda \in \sigma: r<|\lambda|\} \neq \emptyset$, then we use $C_{\leq r}$ and $C_{r<}$ to denote the realified generalized eigenspaces of M associated with the nonempty disjoint spectral sets $\{\lambda \in \sigma:|\lambda| \leq r\}$ and $\{\lambda \in \sigma: r<|\lambda|\}$, respectively. Then

$$
C=C_{\leq r} \oplus C_{r<}, \quad C_{r<}=\bigoplus_{\lambda \in \sigma, r<|\lambda|, \operatorname{Im} \lambda \geq 0} G_{\mathbb{R}}(\lambda)
$$

Similarly, we can define $C_{<r}$ and $C_{r \leq}$.
The following result on the Floquet multipliers of the periodic orbit \mathcal{O}_{N} can be found in Krisztin and $\mathrm{Wu}[\mathbf{1 7}]$.

Proposition 2.11 (i) There exists $r_{M} \in(0,1)$ such that

$$
\begin{gathered}
C_{\leq r_{M}} \cap V^{-1}(\{0,2, \ldots, 2 N\})=\emptyset, \quad C_{r_{M}<} \cap C_{\leq 1} \subset V^{-1}(2 N) \cup\{0\}, \\
\operatorname{dim} C_{r_{M}<} \cap C_{\leq 1}=2 .
\end{gathered}
$$

(ii) $1 \leq \operatorname{dim} C_{1<} \leq 2 N-1$.
(iii) If $v: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of Eq. (2.4) with $v_{0} \neq 0$ and $V\left(v_{t}\right) \leq 2 N-2$ for all $t \in \mathbb{R}$, then $v_{0} \in C_{1<}$.
Choose $\lambda \in(0,1)$ so that

$$
\lambda>\max \left\{\max _{\zeta \in \sigma,|\zeta|>1} \frac{1}{|\zeta|}, \max _{\zeta \in \sigma,|\zeta|<1}|\zeta|\right\} .
$$

Theorem I. 3 in [16] guarantees the existence of a local strong unstable manifold of the period- $\omega \operatorname{map} F(\omega, \cdot)$ at its fixed point p_{0}; namely, there are convex open neighbourhoods $N_{1<}$ of 0 in $C_{1<}$ and $N_{\leq 1}$ of 0 in $C_{\leq 1}$, a C^{1}-map $w^{u}: N_{1<} \rightarrow C_{\leq 1}$ so that $w^{u}(0)=0, D w^{u}(0)=0, w^{u}\left(N_{1<}\right) \subset N_{\leq 1}$, and with $N^{u}=N_{\leq 1}+N_{1<}$ the shifted graph

$$
W^{u}\left(p_{0}, F(\omega, \cdot), N^{u}\right)=\left\{p_{0}+\chi+w^{u}(\chi): \chi \in N_{1<}\right\}
$$

is equal to the set
$\left\{\chi \in p_{0}+N^{u}\right.$: There is a trajectory $\left(\chi^{n}\right)_{-\infty}^{0}$ of $F(\omega, \cdot)$ with $\chi^{0}=\chi$,

$$
\left.\lambda^{n}\left(\chi^{n}-p_{0}\right) \in N^{u} \text { for all } n \in-\mathbb{N}, \text { and } \lambda^{n}\left(\chi^{n}-p_{0}\right) \rightarrow 0 \text { as } n \rightarrow-\infty\right\}
$$

The C^{1}-submanifold $W^{u}\left(p_{0}, F(\omega, \cdot), N^{u}\right)$ of C is called a local strong unstable manifold of $F(\omega, \cdot)$ at p_{0}.

The strong unstable set $W_{s t r}^{u}\left(\mathcal{O}_{N}\right)$ of the periodic orbit \mathcal{O}_{N} is defined by

$$
W_{s t r}^{u}\left(\mathcal{O}_{N}\right)=F\left(\mathbb{R}^{+} \times W^{u}\left(p_{0}, F(\omega, \cdot), N^{u}\right)\right)
$$

The unstable set $W^{u}\left(\mathcal{O}_{N}\right)$ of the periodic orbit \mathcal{O}_{N} is given by

$$
\begin{aligned}
W^{u}\left(\mathcal{O}_{N}\right)= & \{\phi \in C: \text { There exists a solution } x: \mathbb{R} \rightarrow \mathbb{R} \\
& \text { so that } \left.x_{0}=\phi \text { and } \operatorname{dist}\left(x_{t}, \mathcal{O}_{N}\right) \rightarrow 0 \text { as } t \rightarrow-\infty\right\} .
\end{aligned}
$$

It is not difficult to show that

$$
W_{s t r}^{u}\left(\mathcal{O}_{N}\right) \subset W^{u}\left(\mathcal{O}_{N}\right)
$$

If \mathcal{O}_{N} is hyperbolic, i.e., $\sigma \cap S_{\mathbb{C}}^{1}=\{1\}$ and the generalized eigenspace of M associated with 1 is 1-dimensional, then the equality $W_{s t r}^{u}\left(\mathcal{O}_{N}\right)=W^{u}\left(\mathcal{O}_{N}\right)$ is satisfied. For a nonhyperbolic \mathcal{O}_{N}, in general, we do not have equality. The main purpose of this paper is to show that under hypotheses (H0), (H1) and (H2)

$$
W_{s t r}^{u}\left(\mathcal{O}_{N}\right)=W^{u}\left(\mathcal{O}_{N}\right)
$$

holds without assuming hyperbolicity of \mathcal{O}_{N}.
We need a result from Polner [24] which estimates the number of sign changes for segments of solutions tending to 0 as $t \rightarrow \infty$ or $t \rightarrow-\infty$.

Proposition 2.12 Assume that (H0) holds and $N \in \mathbb{N}$ with $\operatorname{Re} \lambda_{N+1} \leq 0<$ $\operatorname{Re} \lambda_{N}$.
(i) If $\phi \in C \backslash\{0\}$ with $\omega(\phi)=\{0\}$, then $V(\phi) \geq 2 N+2$.
(ii) If $x: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of $E q$. (1.1) so that x is bounded on $(-\infty, 0]$ and $\alpha(x)=\{0\}$, then $V\left(x_{0}\right) \leq 2 N+2$. If $\operatorname{Re} \lambda_{N+1}<0$ then $V\left(x_{0}\right) \leq 2 N$.

Finally we prove a result on the number of sign changes of elements of limit sets.

Proposition 2.13 Assume that (HO) holds and $N \in \mathbb{N}$.
(i) If $x:[-1, \infty) \rightarrow \mathbb{R}$ is a bounded solution of $E q$. (1.1) with $\lim _{t \rightarrow \infty} V\left(x_{t}\right)=$ $2 N$, then $\omega\left(x_{0}\right) \subset V^{-1}(2 N) \cup\{0\}$.
(ii) If $x: \mathbb{R} \rightarrow \mathbb{R}$ is a solution of Eq. (1.1) which is bounded on $(-\infty, 0]$ and $\lim _{t \rightarrow-\infty} V\left(x_{t}\right)=2 N$, then $\alpha(x) \subset V^{-1}(2 N) \cup\{0\}$.

Proof Let $N \in \mathbb{N}$ and let $x: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded solution of Eq. (1.1) with $\lim _{t \rightarrow \infty} V\left(x_{t}\right)=2 N$. Let $\psi \in \omega\left(x_{0}\right) \backslash\{0\}$. There is a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) with $y_{0}=\psi$ and $y_{t} \in \omega\left(x_{0}\right), t \in \mathbb{R}$. Lemma 2.3(i) and the definition of $\omega\left(x_{0}\right)$ yield $V\left(y_{t}\right) \leq 2 N$ for all $t \in \mathbb{R}$. By Lemma 2.3(iii) there exist $T \in \mathbb{R}$ and $k \in\{0,1, \ldots, N\}$ such that $y_{t} \in R, V\left(y_{t}\right)=2 k$ for all $t \geq T$. There is a sequence $\left(t_{n}\right)_{0}^{\infty}$ in \mathbb{R}^{+}so that $t_{n} \rightarrow \infty$ and $x_{t_{n}} \rightarrow y_{T}$ as $n \rightarrow \infty$. Eq. (1.1) and continuous dependence on initial data give that $\left\|x_{t_{n}+1}-y_{T+1}\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$. Then Lemma 2.3(ii) implies $\lim _{n \rightarrow \infty} V\left(x_{t_{n}+1}\right)=V\left(y_{T+1}\right)=2 k$. This fact and the monotonicity of V show $k=N$. Then $V\left(y_{t}\right)=2 N$ for all $t \in \mathbb{R}$, by the monotonicity of V. Consequently, $\omega\left(x_{0}\right) \subset V^{-1}(2 N) \cup\{0\}$. The proof of assertion (ii) is analogous.

3 Existence of a large orbit in $V^{-1}(2 N)$

In this section we show that, for every integer $N>0$ and for every periodic orbit \mathcal{O} of Eq. (1.1) in $V^{-1}(2 N)$, there exists a solution $y:[-1, \infty) \rightarrow \mathbb{R}$ of Eq. (1.1) such that $y_{t} \in V^{-1}(2 N)$ and $\Pi_{2} y_{t} \in \operatorname{ext}\left(\Pi_{2} \mathcal{O}\right)$ for all $t \geq 0$. The last property is why we call $\left\{y_{t}: t \geq 0\right\}$ a large orbit.

For technical reasons we consider also the equation

$$
\begin{equation*}
\dot{x}(t)=-\mu x(t)+g(x(t-1)) \tag{3.1}
\end{equation*}
$$

with $g \in C^{1}(\mathbb{R}, \mathbb{R}), g(0)=0$ and $g^{\prime}(\xi)>0$ for all $\xi \in \mathbb{R}$. First we introduce a set of integrable functions, and then associate solutions with these functions.

Let $L^{1}=L^{1}([-1,0], \mathbb{R})$ denote the space of Lebesgue integrable functions ϕ : $[-1,0] \rightarrow \mathbb{R}$ with norm $|\phi|_{1}=\int_{-1}^{0}|\phi(s)| d s$. We do not make distinction between elements of L^{1}, i.e., equivalence classes of integrable functions $\phi:[-1,0] \rightarrow \mathbb{R}$, and representatives of these classes. This should not cause confusion.

For each $r>0$ and for all integers $n>0$ introduce the sets

$$
X_{r}^{n}=\left\{\phi \in L^{1}: \text { There exist } s_{0}, s_{1}, \ldots, s_{n} \in[-1,0]\right. \text { with }
$$

$-1=s_{0} \leq s_{1} \leq \ldots \leq s_{n}=0$ such that for each $i \in\{1,2, \ldots, n\}$
either $\phi(s)=r$ for all $s \in\left(s_{i-1}, s_{i}\right)$ or $\phi(s)=-r$ for all $\left.s \in\left(s_{i-1}, s_{i}\right)\right\}$.
Set

$$
S^{n}=\left\{\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{t r} \in \mathbb{R}^{n+1}: a_{0}^{2}+a_{1}^{2}+\ldots+a_{n}^{2}=1\right\}
$$

For $n \in \mathbb{N}$, let the function

$$
\kappa_{n}: S^{n} \rightarrow X_{r}^{n+1}
$$

be defined by

$$
\kappa_{n}\left(\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{t r}\right)=\phi
$$

where

$$
s_{0}=-1, s_{i}=-1+\sum_{j=0}^{i-1} a_{j}^{2} \quad \text { for } i \in\{1,2, \ldots, n+1\}
$$

and, for every $i \in\{0,1, \ldots, n\}$,

$$
\phi(s)=r \operatorname{sign} a_{i} \quad \text { for all } s \in\left(s_{i}, s_{i+1}\right)
$$

It is easy to see that κ_{n} is continuous. As S^{n} is compact, and $\kappa_{n}\left(S^{n}\right)=X_{r}^{n+1}$, we conclude that X_{r}^{n+1} is also compact.

For every $\phi \in L^{1}$, there exists a unique continuous function $x:[0, \infty) \rightarrow \mathbb{R}$ so that

$$
x(t)=e^{-\mu t} \int_{0}^{t} e^{\mu s} g(\phi(s-1)) d s \quad \text { for all } t \in[0,1]
$$

x is differentiable on $(1, \infty)$, and

$$
\dot{x}(t)=-\mu x(t)+g(x(t-1)) \quad \text { for all } t>1
$$

We use $x(\phi)$ to denote this unique function x. Observe that for $\phi \in C$ with $\phi(0)=0$ we have $x(\phi)=\left.x^{\phi}\right|_{[0, \infty)}$, where $x^{\phi}:[-1, \infty) \rightarrow \mathbb{R}$ is the solution of Eq. (3.1) with $x_{0}^{\phi}=\phi$. It is easy to see that $x_{1}(\phi) \neq 0$ for all $\phi \in X_{r}^{n}$ with $r>0$ and $n \in \mathbb{N} \backslash\{0\}$.

Proposition 3.1 Assume that $g \in C^{1}(\mathbb{R}, \mathbb{R}), g(0)=0, g^{\prime}(\xi)>0$ for all $\xi \in \mathbb{R}$, and $m=\inf _{\xi \in \mathbb{R}} g^{\prime}(\xi)>0$. Let $N \in \mathbb{N} \backslash\{0\}$. Then for every $r>0$ there exists $\phi \in X_{r}^{2 N}$ so that for the function $x(\phi):[0, \infty) \rightarrow \mathbb{R}$ we have

$$
V\left(x_{t}(\phi)\right)=2 N \quad \text { for all } t \geq 1
$$

and

$$
\left\|x_{4}(\phi)\right\| \geq \frac{m^{4} e^{-\mu} r}{2^{24} N^{4}}
$$

Proof Let $r>0$ be fixed.

1. We claim that, for every $k \in \mathbb{N} \backslash\{0\}$ and for every $\phi \in X_{r}^{k}$,

$$
V\left(x_{t}(\phi)\right) \leq 2\left[\frac{k}{2}\right] \quad \text { for all } t \geq 1
$$

Let $k \in \mathbb{N} \backslash\{0\}, \phi \in X_{r}^{k}$ and $t \geq 1$ be given. It is not difficult to show that there exists a sequence $\left(\phi^{n}\right)_{0}^{\infty}$ in $C \backslash\{0\}$ so that

$$
\phi^{n}(0)=0 \quad \text { for all } n \in \mathbb{N},
$$

$$
\begin{gathered}
\phi^{n} \rightarrow \phi \quad \text { as } n \rightarrow \infty \text { almost everywhere in }[-1,0], \\
\left|\phi^{n}(s)\right| \leq r \quad \text { for all } n \in \mathbb{N} \text { and } s \in[-1,0], \\
V\left(\phi^{n}\right) \leq 2\left[\frac{k}{2}\right] \quad \text { for all } n \in \mathbb{N} .
\end{gathered}
$$

Then Lebesgue's dominated convergence theorem yields

$$
\int_{0}^{1} e^{\mu s}\left|g\left(\phi^{n}(s-1)\right)-g(\phi(s-1))\right| d s \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Let $x^{n}=x^{\phi^{n}}$ denote the solution of Eq. (3.1) with $x_{0}^{\phi^{n}}=\phi^{n}$. It follows that

$$
\left\|x_{1}^{n}-x_{1}(\phi)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

By the continuous dependence on initial data of solutions of Eq. (3.1) we find

$$
\left\|x_{t}^{n}-x_{t}(\phi)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

The monotonicity of V gives $V\left(x_{t}^{n}\right) \leq 2[k / 2]$ for all $n \in \mathbb{N}$. Using the lower semicontinuity of V in Lemma 2.3(i), we obtain

$$
V\left(x_{t}(\phi)\right) \leq \liminf _{n \rightarrow \infty} V\left(x_{t}^{n}\right) \leq 2\left[\frac{k}{2}\right]
$$

2. We show that there exists $\phi \in X_{r}^{2 N}$ with

$$
V\left(x_{t}(\phi)\right)=2 N \quad \text { for all } t \geq 1
$$

Assume that this assertion fails, i.e., there is no $\phi \in X_{r}^{2 N}$ with $V\left(x_{t}(\phi)\right)=2 N$ for all $t \geq 1$.
2.1. We claim that there exists $T>3 N+1$ so that

$$
\Pi_{2 N-1} x_{t}(\phi) \neq 0 \quad \text { for all } t \geq T \text { and } \phi \in X_{r}^{2 N} .
$$

If this claim is not true then there exist a sequence $\left(\phi^{n}\right)_{0}^{\infty}$ in $X_{r}^{2 N}$ and a sequence $\left(t_{n}\right)_{0}^{\infty}$ in $(3 N+1, \infty)$ such that $t_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and

$$
\Pi_{2 N-1} x_{t_{n}}\left(\phi^{n}\right)=0 \quad \text { for all } n \in \mathbb{N}
$$

The result of part 1 and Lemma 2.5 with $k=N-1$ combined imply that

$$
V\left(x_{t_{n}-3 N}\left(\phi^{n}\right)\right)=2 N \quad \text { for all } n \in \mathbb{N}
$$

By the compactness of $X_{r}^{2 N}$, without loss of generality we may assume

$$
\phi^{n} \rightarrow \phi \in X_{r}^{2 N} \quad \text { as } n \rightarrow \infty
$$

in the L^{1}-norm. Part 1 shows

$$
V\left(x_{t}(\phi)\right) \leq 2 N \quad \text { for all } t \geq 1
$$

Lemma 2.3(iii) yields $t^{*} \geq 4$ so that

$$
x_{t}(\phi) \in R \quad \text { for all } t \geq t^{*}
$$

As in part 1 , we obtain

$$
\left\|x_{t}\left(\phi^{n}\right)-x_{t}(\phi)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for all $t \geq 1$. Using Eq. (3.1) we conclude that

$$
\left\|x_{t}\left(\phi^{n}\right)-x_{t}(\phi)\right\|_{1} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for all $t \geq 2$. Then Lemma 2.3(ii) gives that

$$
\lim _{n \rightarrow \infty} V\left(x_{t}\left(\phi^{n}\right)\right)=V\left(x_{t}(\phi)\right)
$$

for all $t \geq t^{*}$. Fix $t \geq t^{*}$. The monotonicity of $V, V\left(x_{t_{n}-3 N}\left(\phi^{n}\right)\right)=2 N$ and $t_{n} \rightarrow \infty$ combined imply

$$
V\left(x_{t}\left(\phi^{n}\right)\right)=2 N
$$

for all sufficiently large n. Therefore,

$$
V\left(x_{t}(\phi)\right)=2 N
$$

As $t \geq t^{*}$ was arbitrary and V is monotone,

$$
V\left(x_{t}(\phi)\right)=2 N \quad \text { for all } t \geq 1
$$

follows. This contradiction justifies the claim.
2.2. Part 2.1 shows that the map

$$
Y: S^{2 N-1} \ni a \mapsto \frac{\Pi_{2 N-1} x_{T}\left(\kappa_{2 N-1}(a)\right)}{\left\|\Pi_{2 N-1} x_{T}\left(\kappa_{2 N-1}(a)\right)\right\|_{\mathbb{R}^{2 N-1}}} \in S^{2 N-2}
$$

is well defined. Clearly, Y is continuous.
2.3. For $\alpha \in[0,1]$ and $\phi \in L^{1}$ we define a unique continuous function $x=$ $x(\alpha, \phi):[0, \infty) \rightarrow \mathbb{R}$ such that

$$
x(t)=e^{-\mu t} \int_{0}^{t} e^{\mu s}\left((1-\alpha) g(\phi(s-1))+\alpha g^{\prime}(0) \phi(s-1)\right) d s \quad \text { for all } t \in[0,1]
$$

x is differentiable on $(1, \infty)$, and

$$
\dot{x}(t)=-\mu x(t)+(1-\alpha) g(x(t-1))+\alpha g^{\prime}(0) x(t-1) \quad \text { for all } t>1 .
$$

Clearly, $x(0, \phi)=x(\phi)$. It is not difficult to show that, for every $t \geq 1$ and $n \in \mathbb{N} \backslash\{0\}$, the map $[0,1] \times X_{r}^{n} \ni(\alpha, \phi) \mapsto x_{t}(\alpha, \phi) \in C$ is continuous. Applying the result of part 1 for the nonlinearity $\mathbb{R} \ni \xi \mapsto(1-\alpha) g(\xi)+g^{\prime}(0) \xi \in \mathbb{R}$ instead of g we obtain

$$
V\left(x_{t}(\alpha, \phi)\right) \leq 2 N-2 \quad \text { for all } t \geq 1, \alpha \in[0,1], \phi \in X_{r}^{2 N-1}
$$

Then Lemma 2.5 yields

$$
\Pi_{2 N-1}\left(x_{T}(\alpha, \phi)\right) \neq 0 \quad \text { for all } \alpha \in[0,1], \phi \in X_{r}^{2 N-1}
$$

This fact and the continuity of $\kappa_{2 N-2}: S^{2 N-2} \rightarrow X_{r}^{2 N-1}$ imply that the map

$$
Z:[0,1] \times S^{2 N-2} \ni(\alpha, a) \mapsto \frac{\Pi_{2 N-1} x_{T}\left(\alpha, \kappa_{2 N-2}(a)\right)}{\left\|\Pi_{2 N-1} x_{T}\left(\alpha, \kappa_{2 N-2}(a)\right)\right\|_{\mathbb{R}^{2 N-1}}} \in S^{2 N-2}
$$

is well defined and continuous.
2.4. Setting

$$
i: S^{2 N-2} \ni\left(a_{0}, a_{1}, \ldots, a_{2 N-2}\right)^{t r} \mapsto\left(a_{0}, a_{1}, \ldots, a_{2 N-2}, 0\right)^{t r} \in S^{2 N-1}
$$

we have $Y \circ i=Z(0, \cdot)$. Considering the map

$$
\begin{aligned}
h:[0,1] \times S^{2 N-2} & \ni\left(\beta,\left(a_{0}, a_{1}, \ldots, a_{2 N-2}\right)^{t r}\right) \\
& \mapsto Y\left(\beta a_{0}, \beta a_{1}, \ldots, \beta a_{2 N-2}, \sqrt{1-\beta^{2}}\right)^{t r} \in S^{2 N-2}
\end{aligned}
$$

we see that $Y \circ i=Z(0, \cdot)$ is homotopic to a constant map. Then $Z(1, \cdot)$ is also homotopic to a constant map. Now we extend $Z(1, \cdot)$ from $S^{2 N-2}$ to $\overline{\mathbb{R}_{1}^{2 N-1}}$ (the ($2 N-1$)-dimensional closed unit ball) by

$$
Z_{1}(\tau a)=\tau Z(1, a) \quad \text { for all } \tau \in[0,1] \text { and } a \in S^{2 N-2}
$$

The fact that $Z(1, \cdot)$ is homotopic to a constant map easily implies that the Brouwer degree

$$
\operatorname{deg}\left(Z_{1}, \mathbb{R}_{1}^{2 N-1}, 0\right)
$$

is zero. On the other hand, Z_{1} is odd, and thus, by Borsuk's theorem [7],

$$
\operatorname{deg}\left(Z_{1}, \mathbb{R}_{1}^{2 N-1}, 0\right) \neq 0
$$

a contradiction. This completes the proof of the existence of a $\phi \in X_{r}^{2 N}$ with $V\left(x_{t}(\phi)\right)=2 N$ for all $t \geq 1$.
3. Let $\phi \in X_{r}^{2 N}$ be given so that for the function $x=x(\phi), V\left(x_{t}\right)=2 N, t \geq 1$, holds. We show that

$$
\left\|x_{4}\right\| \geq \frac{m^{4} e^{-\mu} r}{2^{24} N^{4}}
$$

3.1. First we prove the following

CLAIM. Let the positive numbers α, β and an open interval I of length $|I|=\beta$ be given. If $u: I \rightarrow \mathbb{R}$ is a continuously differentiable function with $|\dot{u}(t)| \geq \alpha$ for all $t \in I$, then there exists a subinterval J of I such that $|J|=\beta / 4$ and

$$
|u(t)| \geq \frac{\alpha \beta}{4} \quad \text { for all } t \in J
$$

Proof of the claim. Let $I=\left(t_{0}, t_{0}+\beta\right)$. Assume $\dot{u}(t) \geq \alpha$ for all $t \in I$. (The case $\dot{u}(t) \leq-\alpha, t \in I$, is analogous.) Then

$$
u\left(t_{0}+\frac{3 \beta}{4}\right)-u\left(t_{0}+\frac{\beta}{4}\right)=\int_{t_{0}+\beta / 4}^{t_{0}+3 \beta / 4} \dot{u}(t) d t \geq \frac{\alpha \beta}{2}
$$

Hence $u\left(t_{0}+3 \beta / 4\right) \geq \alpha \beta / 4$ or $u\left(t_{0}+\beta / 4\right) \leq-\alpha \beta / 4$ follows. In case $u\left(t_{0}+3 \beta / 4\right) \geq$ $\alpha \beta / 4$ setting $J=\left(t_{0}+3 \beta / 4, t_{0}+\beta\right)$, by the monotonicity of u, we have $u(t) \geq \alpha \beta / 4$ for all $t \in J$. Otherwise, choosing $J=\left(t_{0}, t_{0}+\beta / 4\right)$, we obtain $u(t) \leq-\alpha \beta / 4$ for all $t \in J$. This completes the proof of the claim.
3.2. Let $\left(s_{j}\right)_{0}^{2 N}$ be the sequence in the definition of $\phi \in X_{r}^{2 N}$. There exists $i \in\{1,2, \ldots, 2 N\}$ so that

$$
s_{i}-s_{i-1} \geq \frac{1}{2 N}
$$

Then there is an open interval $I_{0} \subset\left(s_{i-1}, s_{i}\right) \subset(-1,0)$ such that $\left|I_{0}\right|=\frac{1}{2 N}$, and either $\phi(s)=r$ for all $s \in I_{0}$ or $\phi(s)=-r$ for all $s \in I_{0}$. In either case, x is continuously differentiable on $I_{1}=I_{0}+1 \subset(0,1)$, and

$$
\dot{x}(t)=-\mu x(t)+g(\phi(t-1)) \quad \text { for all } t \in I_{1}
$$

Defining $y(t)=e^{\mu t} x(t), t \geq 0$, we have

$$
\dot{y}(t)=e^{\mu t} g(\phi(t-1)) \quad \text { for all } t \in I_{1},
$$

and

$$
\dot{y}(t)=e^{\mu t} g(x(t-1)) \quad \text { for all } t>1
$$

From $|\phi(s)|=r, s \in I_{0}$, it follows that

$$
|g(\phi(t-1))| \geq m r \quad \text { for all } t \in I_{1}
$$

Thus

$$
|\dot{y}(t)| \geq m r \quad \text { for all } t \in I_{1}
$$

and $\left|I_{1}\right|=\frac{1}{2 N}$. Applying the claim of part 3.1 we get an open interval $J_{1} \subset I_{1} \subset$ $(0,1)$ so that

$$
|y(t)| \geq \frac{m r}{2^{3} N} \quad \text { for all } t \in J_{1}
$$

and $\left|J_{1}\right|=\frac{1}{2^{3} N}$.
For all $t>1$,

$$
|\dot{y}(t)|=e^{\mu t}|g(x(t-1))| \geq e^{\mu t} m|x(t-1)|=m e^{\mu}|y(t-1)|
$$

holds. Setting $I_{2}=J_{1}+1 \subset(1,2)$, one obtains

$$
|\dot{y}(t)| \geq \frac{m^{2} e^{\mu} r}{2^{3} N} \quad \text { for all } t \in I_{2}
$$

and

$$
\left|I_{2}\right|=\frac{1}{2^{3} N}
$$

The claim of part 3.1 gives an open interval $J_{2} \subset I_{2} \subset(1,2)$ so that

$$
|y(t)| \geq \frac{m^{2} e^{\mu} r}{2^{8} N^{2}} \quad \text { for all } t \in J_{2}
$$

and

$$
\left|J_{2}\right|=\frac{1}{2^{5} N}
$$

Repeating the above argument twice, we find an open interval $J_{4} \subset(3,4)$ such that $\left|J_{4}\right|=\frac{1}{4^{2}}\left|J_{2}\right|=\frac{1}{2^{9} N}$ and

$$
|y(t)| \geq \frac{m^{4} e^{3 \mu} r}{2^{24} N^{4}} \quad \text { for all } t \in J_{4}
$$

Using $x(t)=e^{-\mu t} y(t), t \geq 0$, we conclude

$$
|x(t)| \geq e^{-4 \mu}|y(t)| \geq \frac{m^{4} e^{-\mu} r}{2^{24} N^{4}} \quad \text { for all } t \in J_{4}
$$

Consequently,

$$
\left\|x_{4}\right\| \geq \frac{m^{4} e^{-\mu} r}{2^{24} N^{4}}
$$

Theorem 3.2 Assume that hypotheses (H0) and (H1) hold, $N \in \mathbb{N} \backslash\{0\}$ and Eq. (1.1) has a periodic orbit \mathcal{O} in $V^{-1}(2 N)$. Then Eq. (1.1) has a solution y : $[-1, \infty) \rightarrow \mathbb{R}$ such that

$$
y_{t} \in R, y_{t}-\psi \in R, V\left(y_{t}\right)=V\left(y_{t}-\psi\right)=2 N \quad \text { for all } t \geq 0 \text { and } \psi \in \mathcal{O}
$$

and

$$
\Pi_{2} y_{t} \in \operatorname{ext}\left(\Pi_{2} \mathcal{O}\right) \quad \text { for all } t \geq 0
$$

Proof Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be a periodic solution of Eq. (1.1) such that $\mathcal{O}=\left\{p_{t}\right.$: $t \in \mathbb{R}\}$. From Proposition 2.1 it follows that

$$
\xi^{-} \leq p(t) \leq \xi^{+} \quad \text { for all } t \in \mathbb{R}
$$

The definition of ξ^{-}, ξ^{+}yields $f\left(\xi^{-}\right)=\mu \xi^{-}, f\left(\xi^{+}\right)=\mu \xi^{+}$and $f(\xi)>\mu \xi$ for $-\infty<\xi<\xi^{-}, f(\xi)<\mu \xi$ for $\xi^{+}<\xi<\infty$. Then it is easy to find $\eta^{-} \in\left(-\infty, \xi^{-}\right)$ and $\eta^{+} \in\left(\xi^{+}, \infty\right)$ such that

$$
f^{\prime}\left(\eta^{-}\right)<\mu, \quad f^{\prime}\left(\eta^{+}\right)<\mu
$$

Let the function $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined so that $g(\xi)=f(\xi)$ for $\eta^{-} \leq \xi \leq \eta^{+}$, $g(\xi)=f\left(\eta^{-}\right)+f^{\prime}\left(\eta^{-}\right)\left(\xi-\eta^{-}\right)$for $-\infty<\xi<\eta^{-}$, and $g(\xi)=f\left(\eta^{+}\right)+f^{\prime}\left(\eta^{+}\right)\left(\xi-\eta^{+}\right)$ for $\eta^{+}<\xi<\infty$. Then g satisfies the conditions of Proposition 3.1. Clearly, \mathcal{O} is a periodic orbit of Eq. (3.1) as well.

Choose $a>0$ so that

$$
\Pi_{2} \mathcal{O} \subset \mathbb{R}_{a}^{2}
$$

Then, in particular, $a>\max _{t \in \mathbb{R}}|p(t)|$ follows. Set

$$
r=\left(\frac{2^{24} N^{4} e^{\mu}}{m^{4}}+1\right) a
$$

By Proposition 3.1 we find $\phi \in X_{r}^{2 N}$ such that the function $x=x(\phi):[0, \infty) \rightarrow \mathbb{R}$ satisfies

$$
\begin{gathered}
V\left(x_{t}\right)=2 N \quad \text { for all } t \geq 1 \\
\left\|x_{4}\right\| \geq a
\end{gathered}
$$

Let $\left(s_{j}\right)_{0}^{2 N}$ be the sequence associated with $\phi \in X_{r}^{2 N}$ by its definition. We can select $\epsilon>0$ so that

$$
\epsilon<\frac{1}{2} \min \left\{s_{i}-s_{i-1}: i \in\{1,2, \ldots, N\} \text { and } s_{i}-s_{i-1}>0\right\}
$$

Choose $n_{0} \in \mathbb{N}$ with $n_{0}>r / \epsilon$. For each integer $n \geq n_{0}$ define the function $\phi^{n}:[-1,0] \rightarrow \mathbb{R}$ as follows. Let $\phi^{n}(-1)=\phi\left(s_{0}+\epsilon\right)$. If $s_{i} \in(-1,0)$ and $\operatorname{sign} \phi\left(s_{i}-\right.$ $\epsilon)=\operatorname{sign} \phi\left(s_{i}+\epsilon\right)$, then let $\phi^{n}\left(s_{i}\right)=\phi\left(s_{i}+\epsilon\right)$. If $s_{i} \in(-1,0)$ and $\operatorname{sign} \phi\left(s_{i}-\epsilon\right) \neq$ $\operatorname{sign} \phi\left(s_{i}+\epsilon\right)$, then let

$$
\phi^{n}(s)=n\left(s-s_{i}\right) \operatorname{sign} \phi\left(s_{i}+\epsilon\right) \quad \text { for all } s \in\left(s_{i}-\frac{r}{n}, s_{i}+\frac{r}{n}\right) .
$$

For $-r / n<s \leq 0$, let $\phi^{n}(s)=-n s \operatorname{sign} \phi(-\epsilon)$. Otherwise, set $\phi^{n}(s)=\phi(s)$. Then $\phi^{n} \in C, \phi^{n} \rightarrow \phi$ almost everywhere in $[-1,0]$ as $n \rightarrow \infty,\left|\phi^{n}-\phi\right|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$. It also follows that

$$
\left.x^{\phi^{n}}\right|_{[0, \infty)} \rightarrow x(\phi) \quad \text { as } n \rightarrow \infty
$$

uniformly on compact subsets of $[0, \infty)$, where $x^{\phi^{n}}$ denotes the solution of Eq. (3.1) with $x_{0}^{\phi^{n}}=\phi^{n}$. Using Eq. (3.1) we find that

$$
\left.\left.\dot{x}^{\phi^{n}}\right|_{[1, \infty)} \rightarrow \dot{x}(\phi)\right|_{[1, \infty)} \quad \text { as } n \rightarrow \infty
$$

uniformly on compact subsets of $[1, \infty)$.
Let $t \geq 1$ and $s \in \mathbb{R}$ be fixed. Select an integer $n_{1} \geq n_{0}$ with $n_{1}>\max _{t \in \mathbb{R}}|\dot{p}(t)|$. Then $r>a>\max _{t \in \mathbb{R}}|p(t)|$ and the choice of n_{1} combined yield

$$
V\left(\phi^{n}-p_{\tau}\right) \leq 2 N \quad \text { for all } n \geq n_{1} \text { and } \tau \in \mathbb{R}
$$

The monotonicity of V implies

$$
V\left(x_{t}^{\phi^{n}}-p_{\tau}\right) \leq 2 N \quad \text { for all } n \geq n_{1} \text { and } \tau \in \mathbb{R}
$$

Using $\left\|x_{t}^{\phi^{n}}-x_{t}(\phi)\right\| \rightarrow 0$ as $n \rightarrow \infty$ and the lower semicontinuity of V, we conclude

$$
V\left(x_{t}(\phi)-p_{s}\right) \leq 2 N
$$

Lemma 2.3(iii) gives $u_{0} \geq 3$ and $k \in\{0,1, \ldots, N\}$ so that

$$
V\left(x_{t+u}(\phi)-p_{s+u}\right)=2 k \quad \text { for all } u \geq u_{0}
$$

and

$$
x_{t+u}(\phi)-p_{s+u} \in R \quad \text { for all } u \geq u_{0}
$$

Using these facts, Lemma 2.3(ii) yields a $\delta_{0}>0$ such that

$$
V\left(x_{t+u_{0}}(\phi)-p_{s+u_{0}+\delta}\right)=2 k \quad \text { for all } \delta \in\left[0, \delta_{0}\right)
$$

Hence

$$
V\left(x_{t+u}(\phi)-p_{s+u+\delta}\right) \leq 2 k
$$

follows for all $\delta \in\left[0, \delta_{0}\right)$ and $u \geq u_{0}$.
Consider the ω-limit set $\omega\left(x_{1}(\phi)\right)$ of the solution $x(\phi):[0, \infty) \rightarrow \mathbb{R}$ of Eq. (3.1). Proposition 2.6 can be applied. Assume that $\omega\left(x_{1}(\phi)\right)$ is not a periodic orbit of Eq. (3.1). As $V\left(x_{t}(\phi)\right)=2 N$ for all $t \geq 1, \omega\left(x_{1}(\phi)\right)$ cannot contain a nonzero stationary point by Proposition 2.13. Therefore, $0 \in \omega\left(x_{1}(\phi)\right)$. Then there is a sequence $\left(s_{n}\right)_{0}^{\infty}$ in $(0, \infty)$ with $s_{n} \rightarrow \infty$ and $x_{t+s_{n}}(\phi) \rightarrow 0$ as $n \rightarrow \infty$. Without loss of generality we may assume $p_{s+s_{n}} \rightarrow p_{\tau}$ as $n \rightarrow \infty$ for some $\tau \in \mathbb{R}$. Lemma 2.3(i) yields

$$
2 N=V\left(p_{\tau}\right) \leq \liminf _{n \rightarrow \infty} V\left(x_{t+s_{n}}(\phi)-p_{s+s_{n}}\right)=2 k
$$

Thus $k=N$ and by the monotonicity of V, we conclude

$$
V\left(x_{t}(\phi)-p_{s}\right)=2 N
$$

Now assume that $\omega\left(x_{1}(\phi)\right)=\left\{q_{t}: t \in \mathbb{R}\right\}$, where $q: \mathbb{R} \rightarrow \mathbb{R}$ is a nonconstant periodic solution of Eq. (3.1). By Proposition 2.13, $V\left(q_{t}\right)=2 N$ for all $t \in \mathbb{R}$. Then there exist a sequence $\left(u_{n}\right)_{0}^{\infty}$ in $(0, \infty)$ and reals τ_{1}, τ_{2} such that $u_{n} \rightarrow \infty$ and

$$
x_{t+u_{n}}(\phi) \rightarrow q_{\tau_{1}}, \quad p_{s+\delta+u_{n}} \rightarrow p_{\tau_{2}+\delta}
$$

for all $\delta \in\left[0, \delta_{0}\right)$ as $n \rightarrow \infty$. Fix $\delta \in\left(0, \delta_{0}\right)$ with $p_{\tau_{2}+\delta} \neq q_{\tau_{1}}$. Hence the lower semicontinuity of V yields

$$
V\left(q_{\tau_{1}}-p_{\tau_{2}+\delta}\right) \leq 2 k
$$

Lemma 2.10 gives $k \geq N$. Thus $k=N$ and $V\left(x_{t}(\phi)-p_{s}\right)=2 N$.
As $t \geq 1$ and $s \in \mathbb{R}$ were arbitrary, we obtain

$$
V\left(x_{t}(\phi)-p_{s}\right)=2 N \quad \text { for all } t \geq 1 \text { and } s \in \mathbb{R} .
$$

Applying Lemma 2.3(iii) it follows that

$$
x_{t}(\phi) \in R, x_{t}(\phi)-p_{s} \in R \quad \text { for all } t \geq 4 \text { and } s \in \mathbb{R} .
$$

Set

$$
z:[-1, \infty) \ni t \mapsto x(\phi)(t+4) \in \mathbb{R}
$$

Then

$$
z_{t} \in R, z_{t}-\psi \in R, V\left(z_{t}\right)=V\left(z_{t}-\psi\right)=2 N \quad \text { for all } t \geq 0, \psi \in \mathcal{O}
$$

Consequently, $\Pi_{2} z_{t} \notin \Pi_{2} \mathcal{O}$ for all $t \geq 0$. Using $\left\|x_{4}(\phi)\right\| \geq a$, we find $s \in[3,4]$ with $|x(\phi)(s)| \geq a$. Then

$$
\Pi_{2} z_{s-3}=\Pi_{2} x_{s+1}(\phi)=(x(\phi)(s+1), x(\phi)(s))^{t r} \notin \mathbb{R}_{a}^{2}
$$

By the choice of a, we have $\Pi_{2} \mathcal{O} \subset \mathbb{R}_{a}^{2}$. These facts yield $\Pi_{2} z_{s-3} \in \operatorname{ext}\left(\Pi_{2} \mathcal{O}\right)$. Consequently,

$$
\Pi_{2} z_{t} \in \operatorname{ext}\left(\Pi_{2} \mathcal{O}\right) \quad \text { for all } t \geq 0
$$

Proposition 2.1 can be applied to obtain a $T \geq 0$ so that $z(t) \in\left(\eta^{-}, \eta^{+}\right)$for all $t \geq T-1$. Then the function

$$
y:[-1, \infty) \ni t \mapsto z(t+T) \in \mathbb{R}
$$

is a solution of Eq. (1.1) with the desired properties.

4 Unstable sets of periodic orbits

In this section we give sufficient conditions for the equality $W^{u}(\mathcal{O})=W_{s t r}^{u}(\mathcal{O})$ for a periodic orbit \mathcal{O} guaranteed by Proposition 2.8. The first result excludes the existence of two solutions $x: \mathbb{R} \rightarrow \mathbb{R}$ and $y:[-1, \infty) \rightarrow \mathbb{R}$ with $\alpha(x)=\omega\left(y_{0}\right)=\mathcal{O}$ and with certain additional properties.

Proposition 4.1 Assume that hypotheses (H0) and (H1) hold. Let $N \in \mathbb{N} \backslash\{0\}$ and let \mathcal{O} be a periodic orbit of Eq. (1.1) in $V^{-1}(2 N)$. Then Eq. (1.1) does not have two solutions $x: \mathbb{R} \rightarrow \mathbb{R}$ and $y:[-1, \infty) \rightarrow \mathbb{R}$ so that

$$
\begin{gathered}
\alpha(x)=\omega\left(y_{0}\right)=\mathcal{O} \\
V\left(x_{t}\right)=V\left(y_{s}\right)=V\left(x_{t}-\psi\right)=V\left(y_{s}-\psi\right)=2 N \quad \text { for all } t \leq 0, s \geq 0, \psi \in \mathcal{O} \\
x_{t} \in R, y_{s} \in R, x_{t}-\psi \in R, y_{s}-\psi \in R \quad \text { for all } t \leq 0, s \geq 0, \psi \in \mathcal{O}
\end{gathered}
$$ and $\left\{\Pi_{2} x_{t}: t \leq 0\right\},\left\{\Pi_{2} y_{s}: s \geq 0\right\}$ belong to the same open connected component of $\mathbb{R}^{2} \backslash \Pi_{2} \mathcal{O}$.

Proof 1. Assume that Eq. (1.1) has two solutions $x: \mathbb{R} \rightarrow \mathbb{R}$ and $y:[-1, \infty) \rightarrow$ \mathbb{R} with the stated properties. We want to get a contradiction.

We claim that there are $t_{1} \leq 0$ and $s_{1} \geq 0$ with

$$
V\left(x_{t}-y_{s}\right)=2 N \quad \text { for all } t \leq t_{1}, s \geq s_{1} .
$$

Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be the periodic solution with minimal period $\omega>0$ such that $\mathcal{O}=\left\{p_{t}: t \in \mathbb{R}\right\}$ and $p(0)=0, p(-1)>0$. Consider the closed curves

$$
\begin{aligned}
& c:[0, \omega] \ni s \mapsto p_{s}-y_{0} \in C^{1}, \\
& d:[0, \omega] \ni s \mapsto p_{s}-x_{0} \in C^{1}
\end{aligned}
$$

By assumption, $|c| \subset R$ and $|d| \subset R$. The traces $|c|$ and $|d|$ are compact subsets of C^{1}. There exist $\epsilon>0$ and ϵ-neighbourhoods $N_{c, \epsilon}, N_{d, \epsilon}$ of $|c|,|d|$, respectively, in C^{1} such that

$$
V(\eta)=2 N \quad \text { for all } \eta \in N_{c, \epsilon} \cup N_{d, \epsilon} .
$$

The sets $N_{c, \epsilon}+y_{0}$ and $N_{d, \epsilon}+x_{0}$ are C^{1}-neighbourhoods of \mathcal{O}. Using Eq. (1.1) and the assumptions $\operatorname{dist}\left(x_{t}, \mathcal{O}\right) \rightarrow 0$ as $t \rightarrow-\infty, \operatorname{dist}\left(y_{s}, \mathcal{O}\right) \rightarrow 0$ as $s \rightarrow \infty$, we obtain that

$$
\operatorname{dist}_{C^{1}}\left(x_{t}, \mathcal{O}\right) \rightarrow 0 \quad \text { as } t \rightarrow-\infty, \quad \operatorname{dist}_{C^{1}}\left(y_{s}, \mathcal{O}\right) \rightarrow 0 \quad \text { as } s \rightarrow \infty
$$

Then we find $t_{1} \leq 0$ and $s_{1} \geq 0$ so that

$$
\begin{array}{ll}
x_{t} \in N_{c, \epsilon}+y_{0} & \text { for all } t \leq t_{1} \\
y_{s} \in N_{d, \epsilon}+x_{0} & \text { for all } s \geq s_{1}
\end{array}
$$

Let $t \leq t_{1}$ and $s \geq s_{1}$. Then $y_{s-t}-x_{0} \in N_{d, \epsilon}$ and $x_{t-s}-y_{0} \in N_{c, \epsilon}$. Consequently,

$$
2 N=V\left(x_{0}-y_{s-t}\right) \leq V\left(x_{t}-y_{s}\right) \leq V\left(x_{t-s}-y_{0}\right)=2 N
$$

2. Set $t_{2}=t_{1}$ and $s_{2}=s_{1}+3$. Then, for all $t \leq t_{2}$ and $s \geq s_{2}$, we have

$$
V\left(x_{t}-y_{s}\right)=V\left(x_{t-3}-y_{s-3}\right)=2 N .
$$

It follows from Lemma 2.3(iii) that $x_{t}-y_{s} \in R$. A corollary of this fact is that the curves

$$
\left(-\infty, t_{2}\right] \ni t \mapsto \Pi_{2} x_{t} \in \mathbb{R}^{2}
$$

and

$$
\left[s_{2}, \infty\right) \ni s \mapsto \Pi_{2} y_{s} \in \mathbb{R}^{2}
$$

do not intersect.
3. From $\operatorname{dist}\left(x_{t}, \mathcal{O}\right) \rightarrow 0$ as $t \rightarrow-\infty$, by using Eq. (1.1), we get that

$$
\operatorname{dist}_{C^{1}}\left(x_{t}, \mathcal{O}\right) \rightarrow 0 \quad \text { as } t \rightarrow-\infty
$$

Differentiating Eq. (1.1) it also follows that $x_{t} \in C^{2}, t \leq 0, \mathcal{O} \subset C^{2}$, moreover

$$
\operatorname{dist}_{C^{2}}\left(x_{t}, \mathcal{O}\right) \rightarrow 0 \quad \text { as } t \rightarrow-\infty
$$

Let t^{0} denote the maximal zero of x on $(-\infty, 0]$ with $\dot{x}\left(t^{0}\right)>0$. If t^{n} is defined for some $n \in-\mathbb{N}$, then let t^{n-1} be the greatest zero of x on $\left(-\infty, t^{n}\right)$. Then, applying $x_{t} \in R$ for all $t \leq 0$, for the sequence $\left(t^{n}\right)_{-\infty}^{0}$ in $(-\infty, 0]$ we obtain

$$
\begin{gathered}
x\left(t^{n}\right)=0 \quad \text { for all } n \in-\mathbb{N} \\
\dot{x}\left(t^{2 n}\right)>0, \dot{x}\left(t^{2 n-1}\right)<0 \quad \text { for all } n \in-\mathbb{N}, \\
t^{n} \rightarrow-\infty \quad \text { as } n \rightarrow-\infty
\end{gathered}
$$

Recall from Section 2 that $p_{t} \in R$ and $\dot{p}_{t} \in R$ for all $t \in \mathbb{R}$, and thus all zeros of p and \dot{p} are simple. These results, the fact $\operatorname{dist}_{C^{2}}\left(x_{t}, \mathcal{O}\right) \rightarrow 0 \quad$ as $t \rightarrow-\infty$, and Proposition 2.9 combined imply that $x_{t^{2 n}} \rightarrow p_{0}$ as $n \rightarrow-\infty$, and that there exists $n_{0} \in-\mathbb{N}$ such that
\dot{x} has exactly one zero in $\left(t^{n-1}, t^{n}\right)$ for all $n_{0} \geq n \in-\mathbb{N}$.
Then, for every integer $n \leq n_{0}$, the curve

$$
\left[t^{2 n-2}, t^{2 n}\right) \ni t \mapsto\binom{x(t)}{\dot{x}(t)} \in \mathbb{R}^{2}
$$

is injective. Set

$$
X:(-\infty, 0] \ni t \mapsto \Pi_{2} x_{t} \in \mathbb{R}^{2}
$$

As $x(t)$ and $x(t-1)$ uniquely determine $\dot{x}(t)$, it follows that, for each integer $n \leq n_{0}$, the restriction $\left.X\right|_{\left[t^{2 n-2}, t^{2 n}\right)}$ is also injective. Observe that $x\left(t^{2 n}-1\right)>0$ and $x\left(t^{2 n-1}-1\right)<0$ for all $n \in-\mathbb{N}$ since $x_{t} \in R, t \leq 0$. Then we have

$$
\left.X\right|_{\left[t^{2 n-2}, t^{2 n}\right)} \cap\left\{(0, v)^{t r} \in \mathbb{R}^{2}: v \in \mathbb{R}\right\}=\left\{\left(0, x\left(t^{2 n-2}-1\right)\right)^{t r},\left(0, x\left(t^{2 n-1}-1\right)\right)^{t r}\right\}
$$

4. Assume that $\left\{\Pi_{2} x_{t}: t \leq 0\right\}$ and $\left\{\Pi_{2} y_{s}: s \geq 0\right\}$ belong to $\operatorname{ext}\left(\Pi_{2} \mathcal{O}\right)$. The unbounded set

$$
U=\left\{(0, v)^{t r} \in \mathbb{R}^{2}: v>p(-1)\right\}
$$

is a subset of $\operatorname{ext}\left(\Pi_{2} \mathcal{O}\right)$. By Proposition 2.9,

$$
V=\left\{(0, v)^{t r} \in \mathbb{R}^{2}: 0 \leq v<p(-1)\right\} \subset \operatorname{int}\left(\Pi_{2} \mathcal{O}\right)
$$

As $V\left(y_{s}\right)=2 N \geq 2$ and $y_{s} \in R$ for all $s \geq 0$, there exists $s^{*} \geq s_{2}$ such that $y\left(s^{*}\right)=0$ and $\dot{y}\left(s^{*}\right)>0$. Then $y\left(s^{*}-1\right)>0$. Using also $\Pi_{2} y_{s^{*}} \in \operatorname{ext}\left(\Pi_{2} \mathcal{O}\right)$ we find a real $v_{1}>p(-1)$ so that

$$
\Pi_{2} y_{s^{*}}=\binom{0}{v_{1}} \in U
$$

From $x_{t^{2 n}} \rightarrow p_{0}$ as $n \rightarrow-\infty$ and $x\left(t^{2 n}\right)=0, x\left(t^{2 n}-1\right)>0, n \in-\mathbb{N}$, we obtain an integer $k \leq n_{0}$, reals v_{2}, v_{3} such that $t^{2 k}<t_{2}, p(-1)<v_{2}<v_{3}<v_{1}$ and

$$
X\left(t^{2 k-2}\right)=\binom{0}{v_{2}}, \quad X\left(t^{2 k}\right)=\binom{0}{v_{3}}
$$

The line segment connecting $\left(0, v_{2}\right)^{t r},\left(0, v_{3}\right)^{t r}$, and the injective curve $\left.\left.X\right|_{\left[t^{2 k-2}, t^{2 k}\right.}\right)$ form a simple closed curve γ. It is easy to see that the sets $\left\{(0, v)^{t r} \in \mathbb{R}^{2}: 0 \leq\right.$ $\left.v<v_{2}\right\}$ and $\left\{(0, v)^{t r} \in \mathbb{R}^{2}: v_{3}<v\right\}$ belong to different connected components of $\mathbb{R}^{2} \backslash|\gamma|$. As $\left\{(0, v)^{t r} \in \mathbb{R}^{2}: v_{3}<v\right\}$ is unbounded, we conclude

$$
0 \in \operatorname{int}(\gamma), \quad\left(0, v_{1}\right)^{t r} \in \operatorname{ext}(\gamma)
$$

Using $|\gamma| \subset \operatorname{ext}\left(\Pi_{2} \mathcal{O}\right)$, we obtain

$$
\Pi_{2} \mathcal{O} \subset \operatorname{int}(\gamma)
$$

We claim that

$$
\Pi_{2} y_{s} \in \operatorname{ext}(\gamma) \quad \text { for all } s \geq s^{*}
$$

If this is not true, then there exists $s^{* *}>s^{*}$ so that $\Pi_{2} y_{s} \in \operatorname{ext}(\gamma)$ for $s^{*} \leq s<s^{* *}$ and $\Pi_{2} y_{s^{* *}} \in|\gamma|$. By the result of part $2,\left.\Pi_{2} y_{s^{* *}} \notin X\right|_{\left[t^{2 k-2}, t^{2 k}\right]}$. So, there is $v_{4} \in\left(v_{2}, v_{3}\right)$ so that

$$
\Pi_{2} y_{s^{* *}}=\binom{y\left(s^{* *}\right)}{y\left(s^{* *}-1\right.}=\binom{0}{v_{4}}
$$

We can find a $\delta>0$ such that

$$
\left\{(u, v)^{t r} \in \mathbb{R}^{2}:-\delta<u<0,\left|v-v_{4}\right|<\delta\right\} \subset \operatorname{int}(\gamma)
$$

and

$$
\left\{(u, v)^{t r} \in \mathbb{R}^{2}: 0<u<\delta,\left|v-v_{4}\right|<\delta\right\} \subset \operatorname{ext}(\gamma)
$$

On the other hand, the equation for y yields $\dot{y}\left(s^{* *}\right)>0$. This implies $\Pi_{2} y_{s} \in \operatorname{int}(\gamma)$ for some $s<s^{* *}$ sufficiently close to $s^{* *}$. This is a contradiction.

The above claim, the facts $\Pi_{2} \mathcal{O} \subset$ int γ and $\operatorname{dist}\left(y_{s}, \mathcal{O}\right) \rightarrow 0$ as $s \rightarrow \infty$ combined give a contradiction.

The assumption $\left\{\Pi_{2} x_{t}: t \leq 0\right\} \subset \operatorname{int}\left(\Pi_{2} \mathcal{O}\right),\left\{\Pi_{2} y_{s}: s \geq 0\right\} \subset \operatorname{int}\left(\Pi_{2} \mathcal{O}\right)$ analogously leads to a contradiction.

Now we prove that in case $W^{u}(\mathcal{O}) \neq W_{\text {str }}^{u}(\mathcal{O})$ there is a globally defined solution $x: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) with some of the properties assumed in Proposition 4.1.

Proposition 4.2 Assume that hypotheses (H0) and (H1) hold. Let $N \in \mathbb{N} \backslash$ $\{0\}$ be given so that $\operatorname{Re} \lambda_{N}>0$. Let $\mathcal{O}=\mathcal{O}_{N}$ be the periodic orbit of Eq. (1.1) in $V^{-1}(2 N)$ given by Proposition 2.8. If $W^{u}(\mathcal{O}) \neq W_{s t r}^{u}(\mathcal{O})$ then there exists a bounded solution $x: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) so that

$$
\alpha(x)=\mathcal{O}
$$

$$
\begin{gathered}
V\left(x_{t}\right)=V\left(x_{t}-\psi\right)=2 N \quad \text { for all } t \leq 0, \psi \in \mathcal{O} \\
x_{t} \in R, x_{t}-\psi \in R \quad \text { for all } t \leq 0, \psi \in \mathcal{O}
\end{gathered}
$$

Proof Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be the periodic solution of Eq. (1.1) such that $p(0)=0$, $p(-1)>0$ and $\mathcal{O}=\left\{p_{t}: t \in \mathbb{R}\right\}$. Assume $W^{u}(\mathcal{O}) \neq W_{s t r}^{u}(\mathcal{O})$. Then there exist $\phi \in W^{u}(\mathcal{O}) \backslash W_{s t r}^{u}(\mathcal{O})$ and a bounded solution $x: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) so that $x_{0}=\phi, \alpha(x)=\mathcal{O}$ and $x_{t} \notin W^{u}\left(p_{0}, F(\omega, \cdot), N^{u}\right)$ for all $t \in \mathbb{R}$. Observe that the set $\left\{x_{t}: t \in \mathbb{R}\right\} \cup \mathcal{O}$ is a subset of the global attractor.

1. First we claim that

$$
V\left(x_{t}-\psi\right) \leq 2 N \quad \text { for all } t \in \mathbb{R}, \psi \in \mathcal{O} .
$$

Let $t \in \mathbb{R}$ and $\psi=p_{\tau}$ be fixed. From $\alpha(x)=\mathcal{O}$ it follows that there exist a sequence $\left(t_{n}\right)_{-\infty}^{0}$ and reals $r, s \in[0, \omega)$ such that $t_{n} \rightarrow-\infty$ and

$$
x_{t+t_{n}} \rightarrow p_{r}, \quad p_{\tau+t_{n}} \rightarrow p_{s} \quad \text { as } n \rightarrow-\infty .
$$

The above sequences converge in the C^{1}-topology as well. If $r \neq s$, then $p_{r}-p_{s} \in R$ and $V\left(p_{r}-p_{s}\right)=2 N$ by Proposition 2.10. Then Lemma 2.3(ii) yields

$$
V\left(x_{t+t_{n}}-p_{\tau+t_{n}}\right)=2 N \quad \text { for all sufficiently large negative } n .
$$

Hence the monotonicity of V gives $V\left(x_{t}-p_{\tau}\right) \leq 2 N$. If $r=s$ then $p_{r+\epsilon} \neq p_{r}$ for all $\epsilon \in\left(0, \epsilon_{0}\right)$ with $\epsilon_{0}=\omega-r$. Then the above proof shows also $V\left(x_{t+\epsilon}-p_{\tau}\right) \leq 2 N$. By the lower semicontinuity of V,

$$
V\left(x_{t}-p_{\tau}\right) \leq \liminf _{\epsilon \rightarrow 0+} V\left(x_{t+\epsilon}-p_{\tau}\right) \leq 2 N
$$

2. Assume that $s \leq 0$ has the property that the sequence $\left(\phi_{n}\right)_{-\infty}^{0}$, defined by $\phi_{n}=x_{s+n \omega}^{\phi}$ for all $n \in-\mathbb{N}$, has a subsequence converging to p_{0} as $n \rightarrow-\infty$. We claim that $V\left(\phi_{n}-p_{0}\right)=2 N$ for all sufficiently large negative integers n.

Recall from Section 2 that $\lambda \in(0,1)$ is fixed so that

$$
\lambda>\max \left\{\max _{\zeta \in \sigma,|\zeta|>1} \frac{1}{|\zeta|}, \max _{\zeta \in \sigma,|\zeta|<1}|\zeta|\right\}
$$

where σ denotes the spectrum of the monodromy operator $M=D_{2} F\left(\omega, p_{0}\right)$.
We first show that $\left(\lambda^{n}\left(\phi_{n}-p_{0}\right)\right)_{-\infty}^{0}$ does not converge to 0 as $n \rightarrow-\infty$. Assume $\lambda^{n}\left(\phi_{n}-p_{0}\right) \rightarrow 0$ as $n \rightarrow-\infty$. For every negative integer $k, \eta_{n}=\phi_{k+n}$ satisfies

$$
\lambda^{n}\left(\eta_{n}-p_{0}\right)=\lambda^{n}\left(\phi_{k+n}-p_{0}\right)=\lambda^{-k} \lambda^{k+n}\left(\phi_{k+n}-p_{0}\right)
$$

Therefore, if k is a sufficiently large negative integer, then $\lambda^{n}\left(\eta_{n}-p_{0}\right) \in N^{u}$ for all $n \in-\mathbb{N}$, and $\lim _{n \rightarrow-\infty} \lambda^{n}\left(\eta_{n}-p_{0}\right)=0$. Thus $\eta_{0}=\phi_{k}=x_{s+k \omega}^{\phi} \in$ $W^{u}\left(p_{0}, F(\omega, \cdot), N^{u}\right)$, which is a contradiction to our assumption.

Choose $\lambda^{*} \in(0, \lambda)$ such that

$$
\lambda^{*}>\max _{\zeta \in \sigma,|\zeta|>1} \frac{1}{|\zeta|}
$$

Let $\nu \in\left(1 / \lambda^{*}, \min _{\zeta \in \sigma,|\zeta|>1}|\zeta|\right)$. By Theorem I. 1 in $[\mathbf{1 6}]$, there exists an equivalent norm $|\cdot|_{e}$ on C such that

$$
|M \psi|_{e} \geq \nu|\psi|_{e} \quad \text { for all } \psi \in C_{1<}
$$

Choose $\delta>0$ so that $\left\{\psi \in C:|\psi|_{e}<\delta\right\} \subset N^{u}$.
We construct a subsequence $\left(\phi_{n_{k}}\right)_{-\infty}^{0}$ of $\left(\phi_{n}\right)_{-\infty}^{0}$ such that $\phi_{n_{k}} \rightarrow p_{0}$ as $k \rightarrow$ $-\infty$ and

$$
\begin{equation*}
\frac{\left|\lambda^{* n_{k}-1}\left(\phi_{n_{k}-1}-p_{0}\right)\right|_{e}}{\left|\lambda^{*^{n_{k}}}\left(\phi_{n_{k}}-p_{0}\right)\right|_{e}} \geq 1 \tag{4.1}
\end{equation*}
$$

holds for all $k \in-\mathbb{N}$. In order to define n_{0}, choose an integer $m \in-\mathbb{N}$ such that $\left|\phi_{m}-p_{0}\right|_{e}<\delta=\frac{\delta}{2^{0}}$. If (4.1) holds with $n_{k}=m$, then let $n_{0}=m$. Otherwise, we note that if (4.1) does not hold with $n_{k}=m, m-1, \ldots, m-j$ for some $j \in \mathbb{N}$, then

$$
\begin{align*}
& \left|\phi_{m-j-1}-p_{0}\right|_{e}<\lambda^{*}\left|\phi_{m-j}-p_{0}\right|_{e} \\
& \quad<\lambda^{* 2}\left|\phi_{m-j+1}-p_{0}\right|_{e}<\ldots<\lambda^{* j+1}\left|\phi_{m}-p_{0}\right|_{e} \tag{4.2}
\end{align*}
$$

If this is the case for all $j \in \mathbb{N}$, then with $\eta_{n}=\phi_{m+n}, n \in-\mathbb{N}$, it follows that

$$
\left|\lambda^{n}\left(\eta_{n}-p_{0}\right)\right|_{e}=\left|\lambda^{n}\left(\phi_{m+n}-p_{0}\right)\right|_{e} \leq\left(\frac{\lambda}{\lambda^{*}}\right)^{n}\left|\phi_{m}-p_{0}\right|_{e}<\delta
$$

for all $n \in-\mathbb{N}$, and $\lim _{n \rightarrow-\infty} \lambda^{n}\left(\eta_{n}-p_{0}\right)=0$. Hence

$$
\phi_{m}=x_{s+m \omega}^{\phi} \in W^{u}\left(p_{0}, F(\omega, \cdot), N^{u}\right)
$$

follows, a contradiction. Therefore, there is a maximal $j \in \mathbb{N}$ such that (4.2) holds. Now define $n_{0}=m-j-1$. Then (4.1) holds with $k=0$. Assume that $n_{0}, n_{-1}, \ldots, n_{l}$ are defined for some $l \in-\mathbb{N}$. In order to define n_{l-1}, we choose $m \in-\mathbb{N}$ such that $m<n_{l}$ and

$$
\left|\phi_{m}-p_{0}\right|_{e}<\frac{\delta}{2^{-l+1}}
$$

If (4.1) holds with $n_{k}=m$, then let $n_{l-1}=m$. If (4.1) does not hold with $n_{k}=m$ then the same argument as above shows that there exists a maximal $j \in \mathbb{N}$ such that (4.2) holds. In this case define $n_{l-1}=m-j-1$. Then $\left(\phi_{n_{k}}\right)_{-\infty}^{0}$ is defined by induction and has the desired properties.

For every $k \in-\mathbb{N}$ the function

$$
z^{k}=\frac{1}{\left|\phi_{n_{k}}-p_{0}\right|_{e}}\left(x^{\phi_{n_{k}}}-p\right)
$$

is a solution of the equation

$$
\dot{z}(t)=-\mu z(t)+\int_{0}^{1} f^{\prime}\left(u x^{\phi_{n_{k}}}(t-1)+(1-u) p(t-1)\right) d u z(t-1)
$$

with $\left|z_{0}^{k}\right|_{e}=1$, and $V\left(z_{t}^{k}\right) \leq 2 N$ for all $t \in \mathbb{R}$ by part 1 . As $\phi_{n_{k}} \rightarrow p_{0}$ and F_{A} is a continuous flow on A,

$$
b^{k}(t)=\int_{0}^{1} f^{\prime}\left(u x^{\phi_{n_{k}}}(t-1)+(1-u) p(t-1)\right) d u \rightarrow f^{\prime}(p(t-1)) \quad \text { as } k \rightarrow-\infty
$$

uniformly on compact subsets of \mathbb{R}. As x is bounded, we can find positive constants b_{0} and b_{1} such that $b_{0} \leq b^{k}(t) \leq b_{1}$ for all $t \leq 0$ and $k \in-\mathbb{N}$. Then, by Lemma 2.4, there is $c>0$ with $\left\|z_{t}^{\bar{k}}\right\| \leq c e^{\overline{c|t|} \mid}$ for all $t \leq 0$ and $k \in-\mathbb{N}$. Using the differential equations for z^{k} we can apply the Arzela-Ascoli theorem to get a subsequence $\left(z^{k_{i}}\right)_{-\infty}^{0}$ of $\left(z^{k}\right)_{-\infty}^{0}$ and a C^{1}-function $z:(-\infty, 0] \rightarrow \mathbb{R}$ such that $\left.z^{k_{i}}\right|_{(-\infty, 0]} \rightarrow z$
and $\left.\dot{z}^{k_{i}}\right|_{(-\infty, 0]} \rightarrow \dot{z}$ as $i \rightarrow-\infty$ uniformly on compact subsets of $(-\infty, 0]$, and z satisfies

$$
\begin{equation*}
\dot{z}(t)=-\mu z(t)+f^{\prime}(p(t-1)) z(t-1) \tag{4.3}
\end{equation*}
$$

for all $t \leq 0$. It also follows that $\left|z_{0}\right|_{e}=1$. From

$$
\left|z_{-\omega}^{k}\right|_{e}=\frac{\left|x_{-\omega}^{\phi_{n_{k}}}-p_{-\omega}\right|_{e}}{\left|\phi_{n_{k}}-p_{0}\right|_{e}}=\frac{\left|\lambda^{* n_{k}-1}\left(\phi_{n_{k}-1}-p_{0}\right)\right|_{e}}{\left|\lambda^{* n_{k}}\left(\phi_{n_{k}}-p_{0}\right)\right|_{e}} \lambda^{*}
$$

and property (4.1) of $\left(\phi_{n_{k}}\right)_{-\infty}^{0}$, we infer $\left|z_{-\omega}^{k}\right|_{e} \geq \lambda^{*}, k \in-\mathbb{N}$. Hence

$$
\left|z_{-\omega}\right|_{e} \geq \lambda^{*}
$$

Suppose the statement

$$
V\left(\phi_{n}-p_{0}\right)=2 N \quad \text { for all sufficiently large negative integers } n
$$

is false. Then, from $V\left(\phi_{n}-p_{0}\right) \leq 2 N$ for all $n \in-\mathbb{N}$ and from the monotonicity of V, we get $V\left(\phi_{n}-p_{0}\right) \leq 2 N-2$ for all $n \in-\mathbb{N}$. Extending z to a solution $v: \mathbb{R} \rightarrow \mathbb{R}$ of (4.3) and using the monotonicity of V, we find

$$
V\left(v_{t}\right) \leq 2 N-2 \quad \text { for all } t \in \mathbb{R}
$$

Then, Proposition 2.11(iii) implies $v_{-\omega}=z_{-\omega} \in C_{1<}$. Then

$$
1=\left|z_{0}\right|_{e}=\left|M z_{-\omega}\right|_{e} \geq \nu\left|z_{-\omega}\right|_{e} \geq \nu \lambda^{*}>1
$$

a contradiction. So, we have $V\left(\phi_{n}-p_{0}\right)=2 N$ for all sufficiently large negative integers n.
3. We prove that there exists $T_{0}<0$ with $V\left(x_{t}-p_{0}\right)=2 N$ for all $t \leq T_{0}$.

Assume that there exists a sequence $\left(t_{n}\right)_{-\infty}^{0}$ in $(-\infty, 0)$ with $t_{n} \rightarrow-\infty$ as $n \rightarrow-\infty$ and

$$
V\left(x_{t_{n}}-p_{0}\right) \leq 2 N-2 \quad \text { for all } n \in-\mathbb{N} .
$$

We claim that $x_{t_{n}} \rightarrow p_{0}$ as $n \rightarrow-\infty$. If not, then there exist a subsequence $\left(t_{n_{k}}\right)_{-\infty}^{0}$ of $\left(t_{n}\right)_{-\infty}^{0}$ and $\tau \in(0, \omega)$ such that $x_{t_{n_{k}}} \rightarrow p_{\tau}$ as $k \rightarrow-\infty$ since $\alpha(x)=$ \mathcal{O}. As $\tau \in(0, \omega)$, we have $V\left(p_{\tau}-p_{0}\right)=2 N$ by Proposition 2.10 , and hence $V\left(x_{t_{n_{k}}}-p_{0}\right)=2 N$ for all sufficiently large negative integers k, a contradiction.

Each t_{n} can be uniquely written as $t_{n}=m_{n} \omega+\tau_{n}$ for some $m_{n} \in-\mathbb{N}$ and $\tau_{n} \in[0, \omega)$. We may assume (replacing $\left(t_{n}\right)_{-\infty}^{0}$ with a subsequence if necessary)

$$
\tau_{n} \rightarrow \tau^{*} \in[0, \omega] \quad \text { as } n \rightarrow-\infty
$$

We claim that

$$
\begin{equation*}
V\left(x_{\tau^{*}+u}-p_{u}\right) \leq 2 N-2 \quad \text { for all } u \in \mathbb{R} \tag{4.4}
\end{equation*}
$$

If (4.4) is not satisfied then there exists $\hat{u}<0$ so that

$$
V\left(x_{\tau^{*}+\hat{u}}-p_{\hat{u}}\right)=2 N
$$

By continuity, there is $\epsilon \in(0,1)$ so that

$$
V\left(x_{\tau+\hat{u}}-p_{\hat{u}}\right)=2 N \quad \text { for all } \tau \in \mathbb{R} \quad \text { with }\left|\tau-\tau^{*}\right|<\epsilon
$$

Choose $n \in-\mathbb{N}$ such that $\left|\tau_{n}-\tau^{*}\right|<\epsilon$ and $t_{n}=m_{n} \omega+\tau_{n}<\hat{u}$. Using

$$
x_{\tau_{n}+\hat{u}}=F\left(\hat{u}-m_{n} \omega, x_{\tau_{n}+m_{n} \omega}\right), \quad p_{\hat{u}}=F\left(\hat{u}-m_{n} \omega, p_{0}\right)
$$

and the monotonicity of V, we get

$$
2 N=V\left(x_{\tau_{n}+\hat{u}}-p_{\hat{u}}\right) \leq V\left(x_{\tau_{n}+m_{n} \omega}-p_{0}\right)=V\left(x_{t_{n}}-p_{0}\right) \leq 2 N-2,
$$

a contradiction. Therefore, (4.4) holds.

We also notice that

$$
x_{\tau^{*}+m_{n} \omega} \rightarrow p_{0} \quad \text { as } \quad n \longrightarrow-\infty
$$

since $x_{\tau^{*}+m_{n} \omega}=F_{A}\left(\tau^{*}-\tau_{n}, F_{A}\left(m_{n} \omega+\tau_{n}, \phi\right)\right)$ and $\tau_{n} \rightarrow \tau^{*}, F_{A}\left(m_{n} \omega+\tau_{n}, \phi\right)=$ $x_{t_{n}} \rightarrow p_{0}$ as $n \rightarrow-\infty$. Then the result of part 2 with $s=\tau^{*}-\omega$ implies that $V\left(x_{\tau^{*}+n \omega}-p_{0}\right)=2 N$ for all sufficiently large negative integers n. This contradicts (4.4) and proves the existence of T_{0}.
4. We show that $V\left(x_{t}-\psi\right)=2 N$ for all $\psi \in \mathcal{O}$ and for all $t \leq T_{0}-\omega$.

Let $u \in[-\omega, 0]$. Then, from part 3 and the monotonicity of V it follows that

$$
2 N=V\left(x_{t}-p_{0}\right) \leq V\left(x_{t+u}-p_{u}\right) \quad \text { for all } t \leq T_{0}
$$

On the other hand, $V\left(x_{t+u}-p_{u}\right) \leq 2 N$ by the result of part 1 . This proves the assertion.
5. The facts $\alpha(x)=\mathcal{O}, \mathcal{O} \subset R \cap V^{-1}(2 N)$ and that the C and C^{1} topologies on A are equivalent give $T_{1} \in \mathbb{R}$ such that $V\left(x_{t}\right)=2 N$ for all $t \leq T_{1}$. Then the results of part 4, Lemma 2.3(iii) and a time shift easily show the existence of a globally defined solution with the required properties.

Now we can prove the main result of this section.
Theorem 4.3 Assume that hypotheses (H0), (H1) and (H2) hold, $N>0$ is an integer so that

$$
f^{\prime}(0)>\frac{\mu}{\cos \theta_{N}}
$$

where $\theta_{N} \in(2 N \pi-\pi / 2,2 N \pi)$ is the unique solution of $\theta=-\mu \tan \theta$. Then Eq. (1.1) has a unique periodic orbit \mathcal{O}_{N} in $V^{-1}(2 N)$, and

$$
W^{u}\left(\mathcal{O}_{N}\right)=W_{s t r}^{u}\left(\mathcal{O}_{N}\right)
$$

Proof Propositions 2.2, 2.7 and 2.8 give that there is a unique periodic orbit \mathcal{O}_{N} in $V^{-1}(2 N)$. By Proposition 2.8 there exists a solution $z: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) so that

$$
z_{t} \in R, z_{t}-\psi \in R, V\left(z_{t}\right)=V\left(z_{t}-\psi\right)=2 N \quad \text { for all } t \in \mathbb{R} \text { and } \psi \in \mathcal{O}_{N}
$$

and

$$
\alpha(z)=\{0\}, \quad \omega\left(z_{0}\right)=\mathcal{O}_{N} .
$$

Then the curves $\mathbb{R} \ni t \mapsto \Pi_{2} z_{2} \in \mathbb{R}^{2}$ and $\Pi_{2} \mathcal{O}_{N}$ do not intersect. By Proposition 2.9 we have $0 \in \operatorname{int}\left(\Pi_{2} \mathcal{O}_{N}\right)$. From $\alpha(z)=\{0\}$ it follows that $\Pi_{2} z_{t} \in \operatorname{int}\left(\Pi_{2} \mathcal{O}_{N}\right)$ for all sufficiently large negative t. Consequently,

$$
\Pi_{2} z_{t} \in \operatorname{int}\left(\Pi_{2} \mathcal{O}_{N}\right) \quad \text { for all } t \in \mathbb{R}
$$

Using $\lim _{\xi \rightarrow 0} \frac{\xi f^{\prime}(\xi)}{f(\xi)}=1$, (H2) yields $\frac{\xi f^{\prime}(\xi)}{f(\xi)}<1$ for all $\xi>0$. Hence it follows that $(0, \infty) \ni \xi \mapsto \frac{f(\xi)}{\xi} \in \mathbb{R}$ is strictly decreasing. By assumption we have $f^{\prime}(0)>\mu$. These facts and the oddness of f combined give that $0, \xi_{-}, \xi_{+}$are the only stationary points of F.

Theorem 3.2 shows the existence of a solution $y:[-1, \infty) \rightarrow \mathbb{R}$ of Eq. (1.1) such that

$$
y_{t} \in R, y_{t}-\psi \in R, V\left(y_{t}\right)=V\left(y_{t}-\psi\right)=2 N \quad \text { for all } t \geq 0, \psi \in \mathcal{O}_{N}
$$

and

$$
\Pi_{2} y_{t} \in \operatorname{ext}\left(\Pi_{2} \mathcal{O}_{N}\right) \quad \text { for all } t \geq 0
$$

Then $0 \notin \omega\left(y_{0}\right)$ since $0 \in \operatorname{int}\left(\Pi_{2} \mathcal{O}_{N}\right)$ by Proposition 2.9. By Proposition 2.13(i), we have $\omega\left(y_{0}\right) \subset V^{-1}(2 N) \cup\{0\}$. Thus, $\omega\left(y_{0}\right) \cap\left\{0, \xi_{-}, \xi_{+}\right\}=\emptyset$ follows. As $0, \xi_{-}, \xi_{+}$ are the only stationary points of F, and \mathcal{O}_{N} is the only periodic orbit in $V^{-1}(2 N)$, Proposition 2.6 implies $\omega\left(y_{0}\right)=\mathcal{O}_{N}$.

Assume $W^{u}\left(\mathcal{O}_{N}\right) \neq W_{s t r}^{u}\left(\mathcal{O}_{N}\right)$. Then Proposition 4.2 guarantees the existence of a solution $x: \mathbb{R} \rightarrow \mathbb{R}$ so that

$$
x_{t} \in R, x_{t}-\psi \in R, V\left(x_{t}\right)=V\left(x_{t}-\psi\right)=2 N \quad \text { for all } t \leq 0, \psi \in \mathcal{O}_{N}
$$

and $\alpha(x)=\mathcal{O}_{N}$. Then $\left\{\Pi_{2} x_{t}: t \leq 0\right\} \cap \Pi_{2} \mathcal{O}_{N}=\emptyset$.
In case $\left\{\Pi_{2} x_{t}: t \leq 0\right\} \subset \operatorname{ext}\left(\Pi_{2} \mathcal{O}_{N}\right)$, by Proposition 4.1 we have a contradiction. In case $\left\{\Pi_{2} x_{t}: t \leq 0\right\} \subset \operatorname{int}\left(\Pi_{2} \mathcal{O}_{N}\right)$, Proposition 4.1 with $y=z$ leads again to a contradiction.

5 The structure of the global attractor

The equality $W^{u}(\mathcal{O})=W_{s t r}^{u}(\mathcal{O})$ of Theorem 4.3 implies a result on the structure of the global attractor A. This is formulated in the next theorem.

Theorem 5.1 Assume that hypotheses (H0), (H1) and (H2) hold, and let $N>$ 0 be an integer such that

$$
\begin{equation*}
\frac{\mu}{\cos \theta_{N}}<f^{\prime}(0)<\frac{\mu}{\cos _{N+1}} \tag{5.1}
\end{equation*}
$$

is satisfied where θ_{N}, θ_{N+1} denote the unique solution of $\theta=-\mu \tan \theta$ in $(2 N \pi-$ $\pi / 2,2 N \pi),(2(N+1) \pi-\pi / 2,2(N+1) \pi)$, respectively. Then the semiflow F has exactly 3 stationary points $0, \xi_{-}, \xi_{+}$and N periodic orbits $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{N}$, and, for the global attractor A of F, we have

$$
\begin{equation*}
A=\left\{\xi_{-}, \xi_{+}\right\} \cup W_{s t r}^{u}(0) \cup\left(\bigcup_{k=1}^{N} W_{s t r}^{u}\left(\mathcal{O}_{k}\right)\right) \tag{5.2}
\end{equation*}
$$

Proof Proposition 2.1 and the remarks following it show that the semiflow has a global attractor A. As in the proof of Theorem 4.3 we obtain that $0, \xi_{-}, \xi_{+}$are the only stationary points of F. We also saw that $\frac{\xi f^{\prime}(\xi)}{f(\xi)}<1$ for all $\xi>0$. Hence $1>\frac{\xi^{+} f^{\prime}\left(\xi^{+}\right)}{f\left(\xi^{+}\right)}=\frac{f^{\prime}\left(\xi^{+}\right)}{\mu}$, that is $f^{\prime}\left(\xi^{+}\right)<\mu$. From the oddness of f it also follows that $f^{\prime}\left(\xi^{-}\right)<\mu$. Therefore, ξ_{-}and ξ_{+}are locally asymptotically stable stationary points. By Proposition 2.2 and assumption (5.1), 0 is a hyperbolic and unstable stationary point. In particular, $W^{u}(0)=W_{s t r}^{u}(0)$.

Propositions 2.2, 2.7 and 2.8 imply that F has exactly N periodic orbits $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{N}$, and $\mathcal{O}_{k} \subset V^{-1}(2 k), k \in\{1,2, \ldots, N\}$. Theorem 4.3 shows $W^{u}\left(\mathcal{O}_{k}\right)=W_{s t r}^{u}\left(\mathcal{O}_{k}\right), k \in\{1,2, \ldots, N\}$.

Let $\phi \in A \backslash\left\{\xi_{-}, \xi_{+}\right\}$. By the invariance of A, there exists a solution $x: \mathbb{R} \rightarrow \mathbb{R}$ so that $x_{0}=\phi$ and $x_{t} \in A$ for all $t \in \mathbb{R}$. Proposition 2.6 and the above facts give that either $\alpha(x)=\mathcal{O}_{k}$ for some $k \in\{1,2, \ldots, N\}$ or, for every solution $y: \mathbb{R} \rightarrow \mathbb{R}$ of Eq. (1.1) with $y_{0} \in \alpha(x)$, the sets $\alpha(y)$ and $\omega\left(y_{0}\right)$ consist of stationary points of F. In order to show (5.2) it suffices to verify that in case $\alpha(x)$ is not a periodic orbit we have $\alpha(x)=\{0\}$. Suppose

$$
\alpha(x) \neq \mathcal{O}_{k} \quad \text { for all } k \in\{1,2, \ldots, N\}
$$

Then $\alpha(x) \cap\left\{0, \xi_{-}, \xi_{+}\right\} \neq \emptyset$. As ξ_{-}and ξ_{+}are locally asymptotically stable stationary points, we conclude $\alpha(x) \cap\left\{\xi_{-}, \xi_{+}\right\}=\emptyset$. So, 0 is the only stationary point in $\alpha(x)$. Assume $\alpha(x) \neq\{0\}$. Then there exist $\psi \in \alpha(x) \backslash\{0\}$ and a solution
$y: \mathbb{R} \rightarrow \mathbb{R}$ with $y_{0}=\psi$ and $\alpha(y) \cup \omega\left(y_{0}\right) \subset \alpha(x) \cap\left\{0, \xi_{-}, \xi_{+}\right\}=\{0\}$. Thus, $\alpha(y)=\omega\left(y_{0}\right)=\{0\}$. Proposition 2.12 gives the contradiction

$$
2 N+2 \leq V(\psi) \leq 2 N
$$

Consequently, $\alpha(x)=\{0\}$ and (5.2) holds.
Remarks. 1. We emphasize that no hyperbolicity condition on the periodic orbits is assumed in Theorem 5.1. The stationary points $0, \xi_{-}, \xi_{+}$are supposed to be hyperbolic, which can be checked by Proposition 2.2. We believe that Theorem 5.1 remains true if (5.1) is replaced by

$$
\frac{\mu}{\cos \theta_{N}}<f^{\prime}(0) \leq \frac{\mu}{\cos \theta_{N+1}},
$$

that is the hyperbolicity of the stationary point 0 can be omitted.
2. As the maps $F(t, \cdot)$ and $D_{2} F(t, \cdot)$ are injective for all $t \geq 0$, Theorem 6.1.9 in Henry [12] can be used to show that the strong unstable sets

$$
W_{s t r}^{u}\left(\mathcal{O}_{1}\right), \ldots, W_{s t r}^{u}\left(\mathcal{O}_{N}\right)
$$

in formula (5.2) are C^{1} immersed submanifolds of C. In a subsequent paper we show that these strong unstable sets are also C^{1}-submanifolds of C.
3. We mentioned in Section 1 that Theorem 5.1 implies a Morse decomposition of the global attractor A with Morse sets

$$
S_{0}=\left\{\xi_{-}, \xi_{+}\right\}, S_{2 k}=\mathcal{O}_{k} \quad \text { for all } k \in\{1,2, \ldots, N\}, S_{2 N+1}=\{0\}
$$

Introducing the connecting sets

$$
\begin{gathered}
C_{l}^{k}=\{\phi \in A: \text { There is a solution } x: \mathbb{R} \rightarrow \mathbb{R} \text { of Eq. (1.1) } \\
\text { with } \left.x_{0}=\phi, \alpha(x) \in S_{k}, \omega(\phi) \in S_{l}\right\}
\end{gathered}
$$

for integers $k>l$ in $\{0,2, \ldots, 2 N, 2 N+1\}$, one has

$$
A=\left(\bigcup_{k \in\{0,2, \ldots, 2 N, 2 N+1\}} S_{k}\right) \cup\left(\bigcup_{k>l, k, l \in\{0,2, \ldots, 2 N, 2 N+1\}} C_{l}^{k}\right)
$$

Clearly,

$$
W_{s t r}^{u}(0) \backslash\{0\}=\bigcup_{k \in\{0,2, \ldots, 2 N\}} C_{k}^{2 N+1}
$$

and

$$
W_{s t r}^{u}\left(\mathcal{O}_{k}\right) \backslash \mathcal{O}_{k}=\bigcup_{l \in\{0,2, \ldots, 2 k-2\}} C_{l}^{k} \quad \text { for } k \in\{1,2, \ldots, N\}
$$

A description of the connecting sets C_{l}^{k} would give a finer structure of the global attractor A than formula (5.2). We refer to Fiedler and Mallet-Paret [9], McCord and Mischaikow [22], Krisztin, Walther and Wu [16], Krisztin and Wu [17] for some results on connecting sets.
4. In the particular case

$$
f(\xi)=\alpha \tanh (\beta \xi)
$$

with parameters $\alpha>0$ and $\beta>0$, which is used in neural network theory, the conditions of Theorem 5.1 are satisfied if

$$
\alpha \beta>\mu
$$

and

$$
2 N \pi-\arccos \frac{\mu}{\alpha \beta}<\sqrt{\alpha^{2} \beta^{2}-\mu^{2}}<2(N+1) \pi-\arccos \frac{\mu}{\alpha \beta}
$$

or equivalently,

$$
\frac{\alpha \beta}{\mu} \in\left(\frac{1}{\cos \theta_{N}}, \frac{1}{\cos \theta_{N+1}}\right)
$$

with θ_{N}, θ_{N+1} defined in Theorem 5.1.

References

[1] Abraham, R. and Robbin, J. Transversal Mappings and Flows, Benjamin, New York, 1977.
[2] Arino, O. A note on "The Discrete Lyapunov Function ...", J. Differential Equations 104 (1993), 169-181.
[3] Cao, Y. The discrete Lyapunov function for scalar delay differential equations, J. Differential Equations 87 (1990), 365-390.
[4] Chen, Y., Krisztin, T. and Wu, J. Connecting orbits from synchronous periodic solutions to phase-locked periodic solutions in a delay differential system, J. Differential Equations, to appear.
[5] Chen, Y. and Wu, J. On a network of two neurons with delay: existence and attraction of phase-locked oscillation, Advances in Differential Equations, to appear.
[6] Conley, C. Isolated Invariant Sets and the Morse Index, Amer. Math. Soc., Providence, R.I., 1978.
[7] Deimling, K. Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[8] Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M. and Walther, H.-O. Delay Equations, Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York, 1995.
[9] Fiedler, B. and Mallet-Paret, J. Connections between Morse sets for delay differential equations, J. reine angew. Math. 397 (1989), 23-41.
[10] Hale, J.K. Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.
[11] Hale, J.K. and Verduyn Lunel, S.M. Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
[12] Henry, D. Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, New York, 1981.
[13] Herz, A.V.M. Global Analysis of recurrent neural networks, in Models of Neural Networks, Vol. 3 (Domany, E., van Hemmen, J.L. and Schulten, K. eds.), Springer-Verlag, New York, 1994.
[14] Krisztin, T. and Arino, O. The 2-dimensional attractor of a differential equation with statedependent delay, preprint.
[15] Krisztin, T. and Walther, H.-O. Unique periodic orbits for delayed positive feedback and the global attractor, J. Dynamics and Differential Equations, to appear.
[16] Krisztin, T., Walther, H.-O. and Wu, J. Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Feedback, Fields Institute Monographs 11, Amer. Math. Soc., Providence, RI, 1999.
[17] Krisztin, T. and Wu, J. Smooth manifolds of connecting orbits for delayed monotone feeedback, in preparation.
[18] Mallet-Paret, J. Morse decompositions for differential delay equations, J. Differential Equations 72 (1988), 270-315.
[19] Mallet-Paret, J. and Sell, G. Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions, J. Differential Equations 125 1996, 385-440.
[20] Mallet-Paret, J. and Sell, G. The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differential Equations 125 1996, 441-489.
[21] Mallet-Paret, J. and Walther, H.-O. Rapid oscillations are rare in scalar systems governed by monotone negative feedback with a time delay, Preprint, Math. Inst., University of Giessen, 1994.
[22] McCord, C. and Mischaikow, K. On the global dynamics of attractors for scalar delay equations, J. Amer. Math. Soc. 9 (1996), 1095-1133.
[23] Pakdaman, K., Malta, C.P., Grotta-Ragazzo, C. and Vibert, J.-F. Effect of delay on the boundary of the basin of attraction in a self-excited single neuron, Neural Computation 9 (1997), 319-336.
[24] Polner, M. Morse decomposition for delay-differential equations with positive feedback, preprint.
[25] Walther, H.-O. Über Ejektivität und periodische Lösungen bei Funktionaldifferentialgleichungeng mit verteilter Verzögerung, Habilitationsschrift, Universität München, 1977.
[26] Walther, H.-O. On instability, ω-limit sets and periodic solutions of nonlinear autonomous differential delay equations, in Functional Differential Equations and Approximation of Fixed Points (Peitgen, H.-O. and Walther, H.-O. eds.), Lecture Notes in Math., Vol. 730, SpringerVerlag, New York, 1979, pp. 489-503.
[27] Walther, H.-O. A differential delay equation with a planar attractor, in Proc. of the Int. Conf. on Differential Equations, Université Cadi Ayyad, Marrakech, 1991.
[28] Walther, H.-O. The 2-dimensional attractor of $\dot{x}(t)=-\mu x(t)+f(x(t-1))$, Memoirs of the Amer. Math. Soc., Vol. 544, Amer. Math. Soc., Providence, RI, 1995.
[29] Walther, H.-O. and Yebdri, M. Smoothness of the attractor of almost all solutions of a delay differential equation, Dissertationes Mathematicae 368, 1997.
[30] Wu, J. Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998), 4799-4838.

[^0]: 1991 Mathematics Subject Classification. Primary 34K15; Secondary 58F12.
 Supported in part by the Hungarian Foundation for Scientific Research, Grant \#T/029188.

