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Abstract. The differential equation ẋ(t) = −µx(t) + f(x(t − 1)) with
µ > 0 and a C1-smooth real function f satisfying f(0) = 0 and f ′ > 0
models a system with instantaneous friction and delayed feedback. For
a set of parameters µ and nonlinearities f , which include examples from
neural network theory, we show that there is a global attractor A, A

contains exactly 3 stationary points and N periodic orbits, and A is the
union of 2 stable stationary points and the strong unstable sets of the
unstable stationary point 0 and of the N periodic orbits.

1 Introduction

We study the class of delay differential equations

ẋ(t) = −µx(t) + f(x(t− 1)) (1.1)

with parameter µ > 0 and C1-smooth nonlinearities f : R→ R satisfying

f(0) = 0 and f ′(ξ) > 0 for all ξ ∈ R.

Eq. (1.1) models a system governed by delayed monotone positive feedback and
instantaneous damping. Specific applications occur e.g. in neural network theory,
for

f(ξ) = α tanh(βξ)

with parameters α > 0 and β > 0 (see e.g. Herz [13], Pakdaman, Malta, Grotta-
Ragazzo and Vibert [23], Wu [30] and references therein).

Every element φ of the Banach space C of continuous real functions on the
initial interval [−1, 0] determines a solution xφ : [−1,∞) → R of Eq. (1.1), i.e., a
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continuous function which is differentiable on (0,∞) and satisfies Eq. (1.1) for all
t > 0. The relations

F (t, φ) = xt, x = xφ, xt(s) = x(t+ s), s ∈ [−1, 0]

define a continuous semiflow F : R+ × C → C such that all maps F (t, ·), t ≥ 0,
are injective and continuously differentiable, and F is monotone with respect to
the pointwise ordering on C. The derivatives D2F (t, 0), t ≥ 0, form a strongly
continuous semigroup, and the spectrum of the generator of the semigroup consists
of simple eigenvalues which coincide with the zeros of the characteristic function

C ∋ λ 7→ λ+ µ− f ′(0)e−λ ∈ C.

There is one real eigenvalue λ0, and the others form a sequence of complex conjugate
pairs (λj , λj) with

Reλj+1 < Reλj < λ0 and (2j − 1)π < Imλj < 2jπ

for all integers j ≥ 1, and Reλj → −∞ as j → ∞. The number of eigenvalues in
the open right halfplane depends on µ and f ′(0).

The forward extension of a local unstable manifold of the stationary point 0
associated with the eigenvalues of the generator of the semigroup (D2F (t, 0))t≥0

with positive real part is called the strong unstable set Wu
str(0) of 0. The unstable

set Wu(0) of 0 is the set of φ ∈ C such that there is a solution x : R → R of
Eq. (1.1) so that x is bounded on (−∞, 0], x0 = φ and α(x) = {0}. In general,
Wu
str(0) ⊂Wu(0) holds. If 0 is a hyperbolic stationary point thenWu

str(0) = Wu(0).
For a nontrivial periodic orbit O of Eq. (1.1), the Floquet multipliers of O

outside the unit circle determine a local unstable manifold of O. The forward
extension of such a local unstable manifold is called the strong unstable set Wu

str(O)
of O. The unstable set Wu(O) of the periodic orbit O contains those elements φ
in C for which a solution x : R → R of Eq. (1.1) exists such that x is bounded
on (−∞, 0], x0 = φ and α(x) = O. The inclusion Wu

str(O) ⊂ Wu(O) is always
satisfied. If the periodic orbit O is hyperbolic then equality holds.

In the description of the long term behaviour of the solutions of Eq. (1.1) a
natural object to study is the global attractor of the semiflow, i.e., a compact set
A ⊂ C which is invariant and attracts every bounded subset of C (see Hale [10]).

In Krisztin, Walther and Wu [16] we described the closure W of the forward
extension of a 3-dimensional local unstable manifold of the stationary point 0 as-
sociated with the 3 leading eigenvalues λ0, λ1, λ1 with positive real part. The set
W consisted of 3 stationary points, a periodic orbit O, and some orbits connecting
the stationary point 0 to the nonzero stationary points, 0 to the periodic orbit O,
and O to the nonzero stationary points. In Krisztin and Walther [15], for a set of
parameters µ > 0 and nonlinearities f , we proved that the set W coincides with
the global attractor A. In particular, Reλ2 < 0 < Reλ1 was assumed in [15]. The
main steps toward the equality A = W were a uniqueness result on periodic orbits
and that the unstable set Wu(O) of the periodic orbit O is equal to the strong
unstable set Wu

str(O) of the periodic orbit O. The result of [15] can also be stated
as

A = {ξ−, ξ+} ∪W
u
str(0) ∪Wu

str(O).

The purpose of this paper is to show a result of the above type on the structure
of the global attractor of the semiflow F in more general situations. We suppose

ReλN+1 < 0 < ReλN
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for some integer N > 0, which can be guaranteed by an explicit condition on
f ′(0) and µ. In addition, assuming oddness and a convexity condition on f , and

that f(ξ)
ξ < µ outside a bounded neighbourhood of 0, we find that the semiflow

F has exactly 3 stationary points 0, ξ−, ξ+; 0 is unstable, ξ− and ξ+ are locally
asymptotically stable; moreover, results of [15] and [17] give that F has exactly N
periodic orbits O1,O2, . . . ,ON . The main result of this paper is that

A = {ξ−, ξ+} ∪W
u
str(0) ∪

(

N
⋃

k=1

Wu
str(Ok)

)

. (1.2)

We emphasize that the above equality is valid without assuming hyperbolicity of
the periodic orbits O1,O2, . . . ,ON . It is shown in Krisztin and Wu [17] that
Wu
str(0) is a (2N + 1)-dimensional C1 submanifold of the phase space C. As

F (t, ·), D2F (t, ·), t ≥ 0, are injective maps, it follows that the strong unstable
sets Wu

str(O1),W
u
str(O2),. . . , W

u
str(ON ) are C1 immersed submanifolds of C. In a

subsequent paper we shall prove that these strong unstable sets are also C1 sub-
manifolds of C.

The sets

S0 = {ξ−, ξ+}, S2N+1 = {0}, S2k = Ok for all k ∈ {1, 2, . . . , N}

define a Morse decomposition of the global attractor A (see Conley [6]), which
means that S0, S2, . . . , S2N , S2N+1 are disjoint, compact invariant subsets of A,
and on A \ (S0 ∪ S2 ∪ . . . ∪ S2N ∪ S2N+1) the semiflow F is gradient-like, i.e., for
every φ ∈ A \ (S0 ∪S2 ∪ . . .∪S2N ∪S2N+1) and for the unique solution xφ : R→ R
there exist k, l ∈ {0, 2, 4, . . . , 2N, 2N + 1} so that k > l and α(xφ) ∈ Sk and
ω(φ) ∈ Sl. Equality (1.2) with the proof that the strong unstable sets Wu

str(Ok)
are also C1 submanifolds of C will show that A \ (S0 ∪ S2 ∪ . . . ∪ S2N ∪ S2N+1) is
a finite disjoint union of C1 submanifolds of C.

Let us mention that a Morse decomposition is known to exist under weaker
conditions than ours both for the negative and the positive feedback cases (see
Mallet-Paret [18] and Polner [24]). In addition, there are some results on the
connecting sets for the negative feedback case in Fiedler and Mallet-Paret [9] and
in McCord and Mischaikow [22]. Our hypotheses are more restrictive, but we get
a finer and more detailed description of the global attractor.

The main tool, which was introduced by Mallet-Paret, is a discrete Lyapunov
functional counting sign changes of elements φ ∈ C \ {0} (see [18] and [19]). We
apply a Poincaré–Bendixson theorem of Mallet-Paret and Sell [20]. Results about
the Floquet multipliers of periodic orbits are also important [16], [17], [19]. The
basic idea of the proof of the equality

Wu(O) = Wu
str(O)

for a periodic orbit O is very simple. Let p : R → R be a periodic solution of Eq.
(1.1) with minimal period ω > 0 so that O = {pt : t ∈ [0, ω]}. We construct two
solutions x : [−1,∞) → R and y : [−1,∞) → R of Eq. (1.1) such that in the plane
R2 the curve

X : [0,∞) ∋ t 7→

(

x(t)
x(t − 1)

)

∈ R2

spirals toward the trace |P | of the simple closed curve

P : [0, ω] ∋ t 7→

(

p(t)
p(t− 1)

)

∈ R2
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in the interior of P as t→ ∞, while the curve

Y : [0,∞) ∋ t 7→

(

y(t)
y(t− 1)

)

∈ R2

spirals toward |P | in the exterior of P as t → ∞. If Wu(O) 6= Wu
str(O) then there

is a solution z : R→ R of Eq. (1.1) such that the curve

Z : (−∞, 0] ∋ t 7→

(

z(t)
z(t− 1)

)

∈ R2

does not intersect the curves P,X, Y , and Z(t) spirals toward |P | as t → −∞. A
planar argument applying the Jordan curve theorem leads to a contradiction. A
solution x with the above property is given in Krisztin and Wu [17]. The existence
of the solution y is shown by using homotopy methods and the Brouwer degree.
The construction of z requires some information about the Floquet multipliers of
the periodic orbit O. We remark that, in [15] for the proof of Wu(O) = Wu

str(O)
in a particular case, we used a different proof.

We mention that results on attractors of delay differential equations related to
ours can be found in the works of Walther [27], [28], Walther and Yebdri [29],
Mallet-Paret and Walther [21], Chen and Wu [5], Chen, Krisztin and Wu [4],
Krisztin and Arino [14].

The organization of the paper is as follows: Section 2 contains some preliminary
results on a discrete Lyapunov functional, periodic orbits, Floquet multipliers, and
unstable manifolds. We prove the existence of a solution y with the above properties
in Section 3. The equality Wu(O) = Wu

str(O) for periodic orbits O is shown in
Section 4. In the last section we conclude the paper by proving equality (1.2) for
the global attractor.

Notation. N and R+ stand for the nonnegative integers and reals, respectively.
S1
C

is the unit circle in C. An upper index tr denotes the transpose of a row vector.
Simple closed curves are continuous maps c from a compact interval [a, b] ⊂ R,

a < b, into Rn so that c|[a,b) is injective and c(a) = c(b). The set of values of a simple
closed curve c, or trace, is denoted by |c|. The Jordan curve theorem guarantees
that the complement of the trace of a simple closed curve c in R2 consists of two
nonempty connected open sets, one bounded and the other unbounded, and |c| is
the boundary of each of these components. We denote the bounded one by int(c)
and the unbounded one by ext(c).

A trajectory of a map g : M → N is a finite or infinite sequence (xj)j∈I∩Z,
I ⊂ R an interval, in M with xj+1 = g(xj) for all j ∈ I ∩ Z with j + 1 ∈ I ∩ Z.

For a Banach space E and r > 0 we set

Er = {x ∈ E : ||x|| < r}.

Spectra of continuous linear maps T : E → E are defined as spectra of their
complexifications.

For a given continuous g : R× R2 → R, solutions x : R→ R of the equation

ẋ(t) = g(t, x(t), x(t − 1)) (1.3)

are differentiable functions which satisfy Eq. (1.3) everywhere. If I ⊂ R is an
interval and if t0 ∈ I is given with t0 − 1 = min I and t0 < sup I ≤ ∞, and if a
continuous function g : (I ∩ [t0,∞))×R2 → R is given, then a continuous function
x : I → R is a solution of Eq. (1.3) if x is differentiable on I ∩ (t0,∞) and satisfies
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Eq. (1.3) for all t ∈ I ∩ (t0,∞). It is then clear how to define complex-valued
solutions of equations given by functions of the form

g(t, x, y) = a(t)x+ b(t)y.

For a map x : D → M , and t ∈ R so that [t − 1, t] ⊂ D, the segment xt :
[−1, 0] →M is defined by xt(s) = x(t+ s) for −1 ≤ s ≤ 0.

C denotes the Banach space of continuous functions φ : [−1, 0] → R, with the
norm given by

||φ|| = max
−1≤t≤0

|φ(t)|.

C1 is the Banach space of all C1-maps φ : [−1, 0] → R, with the norm given by

||φ||1 = ||φ|| + ||φ̇||.

C2 is defined analogously.

2 Preliminary results

Consider the delay differential equation

ẋ(t) = −µx(t) + f(x(t− 1)) (1.1)

where

(H0): µ > 0, f : R→ R is continuously differentiable, f ′(ξ) > 0 for all ξ ∈ R,
and f(0) = 0.

A growth bound on f is also required:

(H1): |f(ξ)| < µ|ξ| outside a bounded neighbourhood of 0.

Let ξ− denote the minimal zero of f−µ id, and let ξ+ denote the maximal zero
of f − µ id. Then ξ− ≤ 0 ≤ ξ+.

We recall some basic facts. Every φ ∈ C uniquely determines a solution xφ :

[−1,∞) → R with xφ0 = φ. Any two solutions on a common domain are equal
whenever they coincide on an interval of length one. The set of values of constant
solutions coincides with the zeroset of f −µ id. We have continuous dependence on
initial data in the sense that given φ ∈ C, t ≥ 0, ǫ > 0 there exists δ > 0 so that
|xψ(s) − xφ(s)| < ǫ for all s ∈ [−1, 0] and all ψ ∈ C with ||ψ − φ|| < δ.

The map

F : R+ × C ∋ (t, φ) 7→ xφt ∈ C

is a continuous semiflow. 0, ξ−, ξ+ are stationary points of F , where ξ−(s) = ξ−

and ξ+(s) = ξ+ for all s ∈ [−1, 0]. All maps F (t, ·) : C → C, t ≥ 0, are injective.
It follows that for every φ ∈ C there is at most one solution x : R → R of Eq.
(1.1) with x0 = φ. We denote also by xφ such a solution on R whenever it exists.
The maps F (t, ·), t ≥ 0, are monotone with respect to the pointwise ordering on C
given by the cone

K = {φ ∈ C : φ(s) ≥ 0 for all s ∈ [−1, 0]}.

All maps F (t, ·), t ≥ 1, are compact (i.e., send bounded sets into relative compact
sets), and all maps

C ∋ φ 7→ F (t, φ) ∈ C1, t ≥ 1,

are continuous.
For reals a, b with a < b set

Ca,b = {φ ∈ C : a < φ(s) < b for all s ∈ [−1, 0]}.
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Concerning boundedness properties, we have the following result.

Proposition 2.1 Assume that hypotheses (H0) and (H1) hold. For every
a, b ∈ R with a < ξ−, b > ξ+,

F (R+ × Ca,b) ⊂ Ca,b,

and for every φ ∈ C there exists t ≥ 0 so that

F (s, φ) ∈ Ca,b for all s ≥ t.

The proof is similar to that of Proposition 2.1 in [15], so it is omitted.
Using the Arzela–Ascoli theorem, Eq. (1.1) and boundedness of solutions on

[−1,∞), we obtain that for every φ ∈ C the ω-limit set

ω(φ) = {ψ ∈ C : There exists a sequence (tn)
∞
0 in R+ with

tn → ∞ and F (tn, φ) → ψ as n→ ∞}

is nonempty. ω-limit sets are compact, connected, and invariant in the sense that
for every ψ ∈ ω(φ) there is a solution x : R→ R with x0 = ψ and xt ∈ ω(φ) for all
t ∈ R. For bounded solutions x : R→ R, the α-limit set

α(x) = {ψ ∈ C : There exists a sequence (tn)
∞
0 in R with

tn → −∞ and xtn → ψ as n→ ∞}

is nonempty, compact, connected, and invariant.
Under hypotheses (H0) and (H1) Proposition 2.1 and arguments as in Chapter

17 of [16], or in [10], yield the existence of a global attractor of the semiflow F ,
i.e., of a nonempty compact set A ⊂ C which is invariant in the sense that

F (t, A) = A for all t ≥ 0,

and which attracts bounded sets in the sense that for every bounded set B ⊂ C
and for every open set U ⊃ A there exists t ≥ 0 with

F ([t,∞) × B) ⊂ U.

Global attractors are uniquely determined.
It is shown in [15] that

A = {φ ∈ C : There is a bounded solution x : R→ R

of Eq. (1.1) and t ∈ R so that φ = xt}.

It is easy to obtain from Proposition 2.1 that

A ⊂ {φ ∈ C : ξ− ≤ φ(s) ≤ ξ+, s ∈ [−1, 0]}.

The compactness of A, its invariance property and the injectivity of the maps
F (t, ·), t ≥ 0, combined permit to show that the map

[0,∞) ×A ∋ (t, φ) 7→ F (t, φ) ∈ A

extends to a continuous flow

FA : R×A→ A;

for every φ ∈ A and for all t ∈ R we have

FA(t, φ) = xt

with the uniquely determined solution x : R→ R of Eq. (1.1) satisfying x0 = φ.
Note that we have

A = F (1, A) ⊂ C1;
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A is a closed subset of C1. Using the flow FA and the continuity of the map

C ∋ φ 7→ F (1, φ) ∈ C1

one obtains that C and C1 define the same topology on A.
Now we linearize the semiflow F at its stationary point 0. The smoothness of

f implies that each map F (t, ·), t ≥ 0, is continuously differentiable. For all φ, ψ in
C and t ≥ 0 we have

D2F (t, φ)ψ = vt

with the solution v : [−1,∞) → R of the linear variational equation

v̇(s) = −µv(s) + f ′(xφ(s− 1))v(s− 1)

along xφ which is given by v0 = ψ. The operators D2F (t, 0), t ≥ 0, form a strongly
continuous semigroup; for φ = 0 the linear variational equation is

v̇(t) = −µv(t) + f ′(0)v(t− 1). (2.1)

The spectrum of the generator of the semigroup (D2F (t, 0))t≥0 consists of the
solutions λ ∈ C of the characteristic equation

λ+ µ− f ′(0)e−λ = 0. (2.2)

There is exactly one real λ0 in the spectrum, the remaining points in the spectrum
are given by a sequence of complex conjugate pairs (λj , λj)

∞
1 with

λ0 > Reλ1 > Reλ2 > . . . , 2jπ − π < Imλj < 2jπ

for 1 ≤ j ∈ N, and Reλj → −∞ as j → ∞. It is easy to see that λ0 > 0 if and
only if f ′(0) > µ.

Assume that there exists N ∈ N so that

ReλN+1 ≤ 0 < ReλN .

Let P denote the realified generalized eigenspace of the generator associated with
the spectral set {λ0, λ1, λ1, . . . , λN , λN}. Let Q denote the realified generalized
eigenspace given by the spectral set of all λk, λk with k ≥ N +1. Then C = P ⊕Q.
The spaces P and Q are also realified generalized eigenspaces of D2F (1, 0) given

by the spectral sets {eλ0 , eλ1 , eλ1 , . . . , eλN , eλN} and {eλk : k ≥ N +1}∪{eλk : k ≥
N + 1}, respectively.

Choose β > 1 with β < eReλN . According to Theorem I.3 in [16] there exist
convex open neighbourhoods NQ, NP of Q,P , respectively, and a C1-map wu :
NP → Q with Wu(NP ) ⊂ NQ, wu(0) = 0, Dwu(0) = 0 so that the strong unstable
manifold of the fixed point 0 of F (1, ·) in NQ +NP , namely

Wu(0, F (1, ·), NQ +NP ) = {φ ∈ NQ +NP : There is a trajectory (φn)0−∞

of F (1, ·) with φ0 = φ, φnβ
−n ∈ NQ +NP for all n ∈ −N,

and φnβ
−n → 0 as n→ −∞}

coincides with the graph {χ + wu(χ) : χ ∈ NP }. It is easy to show that every
φ ∈ Wu(0, F (1, ·), NQ + NP ) uniquely determines a solution xφ : R → R of Eq.
(1.1), and for this solution xφ(t) → 0 as t→ −∞ holds, moreover there exists t ∈ R
with xφs ∈Wu(0, F (1, ·), NQ +NP ) for all s ≤ t.

We call the forward extension

Wu
str(0) = F (R+ ×Wu(0, F (1, ·), NQ +NP ))
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the strong unstable set of 0. The unstable set of 0 is defined by

Wu(0) = {φ ∈ C :There is a solution x : R→ R of Eq. (1.1)

with x0 = φ and xt → 0 as t→ −∞}.

If ReλN+1 < 0 < ReλN holds, then 0 is hyperbolic and

Wu(0) = Wu
str(0).

The following explicit condition in terms of µ and f ′(0) for the location of the
solutions of (2.2) can be found e.g. in [8] or [15].

Proposition 2.2 Let µ > 0, N ∈ N \ {0}, and let θN and θN+1 denote the
unique solution of the equation θ = −µ tan θ in

(2Nπ − π/2, 2Nπ) and (2(N + 1)π − π/2, 2(N + 1)π) ,

respectively. If

µ

cos θN
< f ′(0) <

µ

cos θN+1

then

ReλN+1 < 0 < ReλN .

We recall the definition and some properties of a discrete Lyapunov functional

V : C \ {0} → 2N ∪ {∞}

which goes back to the work of Mallet-Paret [18]. The version which we use was
introduced in Mallet-Paret and Sell [19].

The definition is as follows. First, set

sc(φ) = sup
{

k ∈ N \ {0} : There is a strictly increasing finite sequence

(si)k0 in [−1, 0] with φ(si−1)φ(si) < 0 for all i ∈ {1, 2, . . . , k}
}

≤ ∞

for φ ∈ C \ (K ∪ (−K)), and sc(φ) = 0 for 0 6= φ ∈ K ∪ (−K). Then, define

V (φ) =

{

sc(φ) if sc(φ) ∈ 2N ∪ {∞},

sc(φ) + 1 if sc(φ) ∈ 2N+ 1.

Set

R = {φ ∈ C1 :φ(0) 6= 0 or φ̇(0)φ(−1) > 0,

φ(−1) 6= 0 or φ̇(−1)φ(0) < 0,

all zeros of φ in (−1, 0) are simple}.

The next lemma lists basic properties of V . For a proof see e.g. [19] or [16].

Lemma 2.3 (i) For every φ ∈ C \ {0} and for every sequence (φn)∞0 in
C \ {0} with φn → φ as n→ ∞,

V (φ) ≤ lim inf
n→∞

V (φn).

(ii) For every φ ∈ R and for every sequence (φn)∞0 in C1\{0} with ||φn−φ||1 → 0
as n→ ∞,

V (φ) = lim
n→∞

V (φn) <∞.
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(iii) Let an interval I ⊂ R, a real ν ≥ 0, and continuous functions b : I → (0,∞)
and z : I + [−1, 0] → R be given so that z|I is differentiable with

ż(t) = −νz(t) + b(t)z(t− 1) (2.3)

for inf I < t ∈ I, and z(t) 6= 0 for some t ∈ I + [−1, 0]. Then the map
I ∋ t 7→ V (zt) ∈ 2N ∪ {∞} is decreasing. If t ∈ I, t− 2 ∈ I and z(t) = 0 =
z(t− 1), then V (zt) = ∞ or V (zt−2) > V (zt). For all t ∈ I with t − 3 ∈ I
and V (zt−3) = V (zt) <∞, we have zt ∈ R.

(iv) If ν ≥ 0, b : R → (0,∞) is continuous and bounded, z : R → R is differ-
entiable and bounded, z satisfies (2.3) for all t ∈ R, and z(t) 6= 0 for some
t ∈ R, then V (zt) <∞ for all t ∈ R.

Observe that linear variational equations

v̇(t) = −µv(t) + f ′(x(t− 1))v(t− 1)

along solutions of Eq. (1.1) are of the form considered in statements (iii) and (iv),
as well as the equation satisfied by weighted differences y = (x − x̂)/c, c 6= 0, of
solutions x, x̂ of Eq. (1.1) on a common domain,

ẏ(t) = −µy(t) +

(
∫ 1

0

f ′((1 − s)x̂(t− 1) + sx(t− 1)) ds

)

y(t− 1).

The next a-priori estimate is a special case of a result which says that solutions
with finite oscillation frequency do not decay too fast as t increases. Estimates of
this type go back to Walther [25] and Mallet-Paret [18], see also Arino [2] and Cao
[3] and [16].

Lemma 2.4 For every ν > 0, l ∈ N, b0 > 0 and b1 ≥ b0 there are k > 0
and an integer L > 0 so that for every t0 ∈ R, and for every continuous function
b : [t0−L, t0] → R with range in [b0, b1], and for every solution z : [t0−L−1, t0] → R
of Eq. (2.3) with zt0−L 6= 0 and V (zt0−L) ≤ 2l, we have

||zt0−1|| ≤ k||zt0 ||.

For a k ∈ N \ {0} define the continuous mapping

Πk+1 : C ∋ φ 7→ (φ(−1), φ(−1 + 1/k), . . . , φ(−1/k), φ(0))
tr ∈ Rk+1.

In case k = 0 we set Π1φ = φ(0) for all φ ∈ C.
The following lemma is shown in [17].

Lemma 2.5 Let t0 ∈ R, k ∈ N, ν ≥ 0 and the continuous functions b :
[t0−3−3k, t0] → (0,∞), z : [t0−4−3k, t0] → R be given such that z is differentiable
on (t0 − 3 − 3k, t0], zt0 6= 0, z satisfies (2.3) for all t ∈ (t0 − 3 − 3k, t0], and

V (zt0−3−3k) ≤ 2k.

Then

Π2k+1zt0 6= 0.

We need the following corollary of a general Poincaré–Bendixson theorem for
monotone cyclic feedback systems due to Mallet-Paret and Sell [20].

Proposition 2.6 Assume that (H0) and (H1) hold.

(i) Let x : R → R be a bounded solution of Eq. (1.1). Then α(x) is either the
orbit of a nonconstant periodic solution of Eq. (1.1), or for every solution
y : R → R of Eq. (1.1) with y0 ∈ α(x) the sets α(y) and ω(y0) consist of
stationary points of F .
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(ii) For every φ ∈ C, ω(φ) is either the orbit of a nonconstant periodic solution
of Eq. (1.1), or for every solution y : R→ R of Eq. (1.1) with y0 ∈ ω(φ) the
sets α(y) and ω(y0) consist of stationary points of F .

We introduce an additional hypothesis on f :

(H2): f(ξ) = −f(−ξ) for all ξ ∈ R, and

the function (0,∞) ∋ ξ 7→ ξf ′(ξ)
f(ξ) ∈ R is strictly decreasing.

From Lemma 2.3(iii) and (iv) it follows that for any nonconstant periodic so-
lution x : R→ R of Eq. (1.1) there exists k ∈ N so that V (xt) = 2k and xt ∈ R for
all t ∈ R. In addition, for the derivative ẋ of the nonconstant periodic solution we
also find l ∈ N with V (ẋt) = 2l and ẋt ∈ R for all t ∈ R. For k ∈ N, we say that
Eq. (1.1) has a periodic orbit in V −1(2k) if it has a nonconstant periodic solution
x : R→ R with V (xt) = 2k for all t ∈ R. One of the main results of [15] is

Proposition 2.7 Assume that hypotheses (H0), (H1) and (H2) are satisfied.

(i) For every k ∈ N \ {0}, Eq. (1.1) has at most one periodic orbit in V −1(2k).
(ii) Eq. (1.1) has no periodic orbit in V −1(2k) if either k = 0 or k ∈ N \ {0}

and Reλk ≤ 0.

The next result of [17] guarantees the existence of periodic orbits and an orbit
connecting the stationary point 0 and the periodic orbit with a given oscillation
frequency.

Proposition 2.8 Assume that hypotheses (H0) and (H1) hold. If N ∈ N \ {0}
and ReλN > 0, then Eq. (1.1) has a periodic orbit ON in V −1(2N), and Eq. (1.1)
has a solution x : R → R with α(x) = {0}, ω(x0) = ON , and xt ∈ R, xt − ψ ∈ R,
V (xt) = V (xt − ψ) = 2N for all t ∈ R and ψ ∈ ON .

The following a-priori result on periodic solutions of Eq. (1.1) follows from
general results in Mallet-Paret and Sell [20] for certain systems of delay differential
equations.

Proposition 2.9 Assume that hypothesis (H0) holds. If p : R → R is a non-
constant periodic solution of Eq. (1.1) with minimal period ω > 0, then there are
t0 ∈ R and t1 ∈ (t0, t0 + ω) with p(t0) < 0 < p(t1), p(R) = [p(t0), p(t1)], 0 < ṗ(t)
for t0 < t < t1, and ṗ(t) < 0 for t1 < t < t0 + ω. In particular, it follows that
[0, ω] ∋ t 7→ Π2pt ∈ R2 is a simple closed curve, and if z denotes the unique zero of
p in (t0, t1), then

{(0, v)tr ∈ R2 : 0 ≤ v < p(z − 1)} ⊂ int(Π2{pt : t ∈ [0, ω]})

The next result on the sign changes of differences of elements of periodic orbits
is shown in [17].

Proposition 2.10 Assume that hypothesis (H0) holds. Let N ∈ N \ {0} and
nonconstant periodic solutions p : R → R and q : R → R be given with V (pt) =
V (qt) = 2N for all t ∈ R. Then

V (pt − qs) ≥ 2N for all t, s in R with pt 6= qs,

and

V (pt − ps) = 2N for all t, s in R with pt 6= ps.

For a given N ∈ N \ {0}, let p : R→ R denote the periodic solution guaranteed
by Proposition 2.8 and normalized so that p(0) = 0 and p(−1) > 0. Then ON =
{pt : t ∈ R}. By Proposition 2.9, three consecutive zeros of p determine the minimal
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period ω of p. All zeros of p are simple since pt ∈ R for all t ∈ R by Lemma 2.3(iii).
Then the definition of V and the fact V (pt) = 2N for all t ∈ R combined yield
Nω ≥ 1. Define the monodromy operator

M = D2F (ω, p0).

For every φ ∈ C, we have Mφ = vω, where v : [−1,∞) → R is the solution of the
variational equation

v̇(t) = −µv(t) + f ′(p(t− 1))v(t− 1) (2.4)

subject to the initial condition v0 = φ. The operatorMN is compact since ω ≥ 1/N .
We then have that the spectrum σ of M contains 0, and that every point λ ∈ σ\{0}
is an eigenvalue of M of finite multiplicity, and is isolated in σ. These eigenvalues
in σ \ {0} are called Floquet multipliers.

For 0 6= λ ∈ σ with Imλ ≥ 0, let GR(λ) stand for the realified generalized
eigenspace of the eigenvalue λ of M . If r > 0 and {λ ∈ σ : r < |λ|} 6= ∅, then we
use C≤r and Cr< to denote the realified generalized eigenspaces of M associated
with the nonempty disjoint spectral sets {λ ∈ σ : |λ| ≤ r} and {λ ∈ σ : r < |λ|},
respectively. Then

C = C≤r ⊕ Cr<, Cr< =
⊕

λ∈σ,r<|λ|,Imλ≥0

GR(λ).

Similarly, we can define C<r and Cr≤.
The following result on the Floquet multipliers of the periodic orbit ON can be

found in Krisztin and Wu [17].

Proposition 2.11 (i) There exists rM ∈ (0, 1) such that

C≤rM
∩ V −1({0, 2, . . . , 2N}) = ∅, CrM< ∩ C≤1 ⊂ V −1(2N) ∪ {0},

dimCrM< ∩ C≤1 = 2.

(ii) 1 ≤ dimC1< ≤ 2N − 1.
(iii) If v : R → R is a solution of Eq. (2.4) with v0 6= 0 and V (vt) ≤ 2N − 2 for

all t ∈ R, then v0 ∈ C1<.

Choose λ ∈ (0, 1) so that

λ > max

{

max
ζ∈σ,|ζ|>1

1

|ζ|
, max
ζ∈σ,|ζ|<1

|ζ|

}

.

Theorem I.3 in [16] guarantees the existence of a local strong unstable manifold
of the period-ω map F (ω, ·) at its fixed point p0; namely, there are convex open
neighbourhoods N1< of 0 in C1< and N≤1 of 0 in C≤1, a C1-map wu : N1< → C≤1

so that wu(0) = 0, Dwu(0) = 0, wu(N1<) ⊂ N≤1, and with Nu = N≤1 +N1< the
shifted graph

Wu(p0, F (ω, ·), Nu) = {p0 + χ+ wu(χ) : χ ∈ N1<}

is equal to the set

{χ ∈ p0 +Nu : There is a trajectory (χn)0−∞ of F (ω, ·) with χ0 = χ,

λn(χn − p0) ∈ Nu for all n ∈ −N, and λn(χn − p0) → 0 as n→ −∞}.

The C1-submanifold Wu(p0, F (ω, ·), Nu) of C is called a local strong unstable man-
ifold of F (ω, ·) at p0.
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The strong unstable set Wu
str(ON ) of the periodic orbit ON is defined by

Wu
str(ON ) = F (R+ ×Wu(p0, F (ω, ·), Nu)).

The unstable set Wu(ON ) of the periodic orbit ON is given by

Wu(ON ) = {φ ∈ C : There exists a solution x : R→ R

so that x0 = φ and dist(xt,ON ) → 0 as t→ −∞}.

It is not difficult to show that

Wu
str(ON ) ⊂Wu(ON ).

If ON is hyperbolic, i.e., σ∩S1
C

= {1} and the generalized eigenspace ofM associated
with 1 is 1-dimensional, then the equality Wu

str(ON ) = Wu(ON ) is satisfied. For a
nonhyperbolic ON , in general, we do not have equality. The main purpose of this
paper is to show that under hypotheses (H0), (H1) and (H2)

Wu
str(ON ) = Wu(ON ).

holds without assuming hyperbolicity of ON .
We need a result from Polner [24] which estimates the number of sign changes

for segments of solutions tending to 0 as t→ ∞ or t→ −∞.

Proposition 2.12 Assume that (H0) holds and N ∈ N with ReλN+1 ≤ 0 <
ReλN .

(i) If φ ∈ C \ {0} with ω(φ) = {0}, then V (φ) ≥ 2N + 2.
(ii) If x : R→ R is a solution of Eq. (1.1) so that x is bounded on (−∞, 0] and

α(x) = {0}, then V (x0) ≤ 2N + 2. If ReλN+1 < 0 then V (x0) ≤ 2N .

Finally we prove a result on the number of sign changes of elements of limit
sets.

Proposition 2.13 Assume that (H0) holds and N ∈ N.

(i) If x : [−1,∞) → R is a bounded solution of Eq. (1.1) with limt→∞ V (xt) =
2N , then ω(x0) ⊂ V −1(2N) ∪ {0}.

(ii) If x : R → R is a solution of Eq. (1.1) which is bounded on (−∞, 0] and
limt→−∞ V (xt) = 2N , then α(x) ⊂ V −1(2N) ∪ {0}.

Proof Let N ∈ N and let x : R → R be a bounded solution of Eq. (1.1) with
limt→∞ V (xt) = 2N . Let ψ ∈ ω(x0) \ {0}. There is a solution y : R → R of
Eq. (1.1) with y0 = ψ and yt ∈ ω(x0), t ∈ R. Lemma 2.3(i) and the definition of
ω(x0) yield V (yt) ≤ 2N for all t ∈ R. By Lemma 2.3(iii) there exist T ∈ R and
k ∈ {0, 1, . . . , N} such that yt ∈ R, V (yt) = 2k for all t ≥ T . There is a sequence
(tn)

∞
0 in R+ so that tn → ∞ and xtn → yT as n → ∞. Eq. (1.1) and continuous

dependence on initial data give that ||xtn+1−yT+1||1 → 0 as n→ ∞. Then Lemma
2.3(ii) implies limn→∞ V (xtn+1) = V (yT+1) = 2k. This fact and the monotonicity
of V show k = N . Then V (yt) = 2N for all t ∈ R, by the monotonicity of V .
Consequently, ω(x0) ⊂ V −1(2N)∪{0}. The proof of assertion (ii) is analogous.

3 Existence of a large orbit in V −1(2N)

In this section we show that, for every integer N > 0 and for every periodic
orbit O of Eq. (1.1) in V −1(2N), there exists a solution y : [−1,∞) → R of Eq.
(1.1) such that yt ∈ V −1(2N) and Π2yt ∈ ext(Π2O) for all t ≥ 0. The last property
is why we call {yt : t ≥ 0} a large orbit.
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For technical reasons we consider also the equation

ẋ(t) = −µx(t) + g(x(t− 1)) (3.1)

with g ∈ C1(R,R), g(0) = 0 and g′(ξ) > 0 for all ξ ∈ R. First we introduce a set of
integrable functions, and then associate solutions with these functions.

Let L1 = L1([−1, 0],R) denote the space of Lebesgue integrable functions φ :

[−1, 0] → R with norm |φ|1 =
∫ 0

−1 |φ(s)| ds. We do not make distinction between

elements of L1, i.e., equivalence classes of integrable functions φ : [−1, 0] → R, and
representatives of these classes. This should not cause confusion.

For each r > 0 and for all integers n > 0 introduce the sets

Xn
r = {φ ∈ L1 : There exist s0, s1, . . . , sn ∈ [−1, 0] with

− 1 = s0 ≤ s1 ≤ . . . ≤ sn = 0 such that for each i ∈ {1, 2, . . . , n}

either φ(s) = r for all s ∈ (si−1, si) or φ(s) = −r for all s ∈ (si−1, si)}.

Set
Sn = {(a0, a1, . . . , an)

tr ∈ Rn+1 : a2
0 + a2

1 + . . .+ a2
n = 1}.

For n ∈ N, let the function

κn : Sn → Xn+1
r

be defined by

κn((a0, a1, . . . , an)
tr) = φ

where

s0 = −1, si = −1 +

i−1
∑

j=0

a2
j for i ∈ {1, 2, . . . , n+ 1},

and, for every i ∈ {0, 1, . . . , n},

φ(s) = r sign ai for all s ∈ (si, si+1).

It is easy to see that κn is continuous. As Sn is compact, and κn(S
n) = Xn+1

r , we
conclude that Xn+1

r is also compact.
For every φ ∈ L1, there exists a unique continuous function x : [0,∞) → R so

that

x(t) = e−µt
∫ t

0

eµsg(φ(s− 1)) ds for all t ∈ [0, 1],

x is differentiable on (1,∞), and

ẋ(t) = −µx(t) + g(x(t− 1)) for all t > 1.

We use x(φ) to denote this unique function x. Observe that for φ ∈ C with φ(0) = 0
we have x(φ) = xφ|[0,∞), where xφ : [−1,∞) → R is the solution of Eq. (3.1) with

xφ0 = φ. It is easy to see that x1(φ) 6= 0 for all φ ∈ Xn
r with r > 0 and n ∈ N \ {0}.

Proposition 3.1 Assume that g ∈ C1(R,R), g(0) = 0, g′(ξ) > 0 for all ξ ∈ R,
and m = infξ∈R g

′(ξ) > 0. Let N ∈ N \ {0}. Then for every r > 0 there exists
φ ∈ X2N

r so that for the function x(φ) : [0,∞) → R we have

V (xt(φ)) = 2N for all t ≥ 1,

and

||x4(φ)|| ≥
m4e−µr

224N4
.
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Proof Let r > 0 be fixed.
1. We claim that, for every k ∈ N \ {0} and for every φ ∈ Xk

r ,

V (xt(φ)) ≤ 2

[

k

2

]

for all t ≥ 1.

Let k ∈ N \ {0}, φ ∈ Xk
r and t ≥ 1 be given. It is not difficult to show that

there exists a sequence (φn)∞0 in C \ {0} so that

φn(0) = 0 for all n ∈ N,

φn → φ as n→ ∞ almost everywhere in [−1, 0],

|φn(s)| ≤ r for all n ∈ N and s ∈ [−1, 0],

V (φn) ≤ 2

[

k

2

]

for all n ∈ N.

Then Lebesgue’s dominated convergence theorem yields
∫ 1

0

eµs|g(φn(s− 1)) − g(φ(s− 1))| ds→ 0 as n→ ∞.

Let xn = xφ
n

denote the solution of Eq. (3.1) with xφ
n

0 = φn. It follows that

||xn1 − x1(φ)|| → 0 as n→ ∞.

By the continuous dependence on initial data of solutions of Eq. (3.1) we find

||xnt − xt(φ)|| → 0 as n→ ∞.

The monotonicity of V gives V (xnt ) ≤ 2[k/2] for all n ∈ N. Using the lower
semicontinuity of V in Lemma 2.3(i), we obtain

V (xt(φ)) ≤ lim inf
n→∞

V (xnt ) ≤ 2

[

k

2

]

.

2. We show that there exists φ ∈ X2N
r with

V (xt(φ)) = 2N for all t ≥ 1.

Assume that this assertion fails, i.e., there is no φ ∈ X2N
r with V (xt(φ)) = 2N

for all t ≥ 1.
2.1. We claim that there exists T > 3N + 1 so that

Π2N−1xt(φ) 6= 0 for all t ≥ T and φ ∈ X2N
r .

If this claim is not true then there exist a sequence (φn)∞0 in X2N
r and a

sequence (tn)∞0 in (3N + 1,∞) such that tn → ∞ as n→ ∞, and

Π2N−1xtn(φn) = 0 for all n ∈ N.

The result of part 1 and Lemma 2.5 with k = N − 1 combined imply that

V (xtn−3N(φn)) = 2N for all n ∈ N.

By the compactness of X2N
r , without loss of generality we may assume

φn → φ ∈ X2N
r as n→ ∞

in the L1-norm. Part 1 shows

V (xt(φ)) ≤ 2N for all t ≥ 1.
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Lemma 2.3(iii) yields t∗ ≥ 4 so that

xt(φ) ∈ R for all t ≥ t∗.

As in part 1, we obtain

||xt(φ
n) − xt(φ)|| → 0 as n→ ∞

for all t ≥ 1. Using Eq. (3.1) we conclude that

||xt(φ
n) − xt(φ)||1 → 0 as n→ ∞

for all t ≥ 2. Then Lemma 2.3(ii) gives that

lim
n→∞

V (xt(φ
n)) = V (xt(φ))

for all t ≥ t∗. Fix t ≥ t∗. The monotonicity of V , V (xtn−3N (φn)) = 2N and
tn → ∞ combined imply

V (xt(φ
n)) = 2N

for all sufficiently large n. Therefore,

V (xt(φ)) = 2N.

As t ≥ t∗ was arbitrary and V is monotone,

V (xt(φ)) = 2N for all t ≥ 1

follows. This contradiction justifies the claim.
2.2. Part 2.1 shows that the map

Y : S2N−1 ∋ a 7→
Π2N−1xT (κ2N−1(a))

||Π2N−1xT (κ2N−1(a))||R2N−1

∈ S2N−2

is well defined. Clearly, Y is continuous.
2.3. For α ∈ [0, 1] and φ ∈ L1 we define a unique continuous function x =

x(α, φ) : [0,∞) → R such that

x(t) = e−µt
∫ t

0

eµs
(

(1 − α)g(φ(s − 1)) + αg′(0)φ(s − 1)
)

ds for all t ∈ [0, 1],

x is differentiable on (1,∞), and

ẋ(t) = −µx(t) + (1 − α)g(x(t− 1)) + αg′(0)x(t − 1) for all t > 1.

Clearly, x(0, φ) = x(φ). It is not difficult to show that, for every t ≥ 1 and
n ∈ N \ {0}, the map [0, 1] ×Xn

r ∋ (α, φ) 7→ xt(α, φ) ∈ C is continuous. Applying
the result of part 1 for the nonlinearity R ∋ ξ 7→ (1 − α)g(ξ) + g′(0)ξ ∈ R instead
of g we obtain

V (xt(α, φ)) ≤ 2N − 2 for all t ≥ 1, α ∈ [0, 1], φ ∈ X2N−1
r .

Then Lemma 2.5 yields

Π2N−1(xT (α, φ)) 6= 0 for all α ∈ [0, 1], φ ∈ X2N−1
r .

This fact and the continuity of κ2N−2 : S2N−2 → X2N−1
r imply that the map

Z : [0, 1] × S2N−2 ∋ (α, a) 7→
Π2N−1xT (α, κ2N−2(a))

||Π2N−1xT (α, κ2N−2(a))||R2N−1

∈ S2N−2

is well defined and continuous.
2.4. Setting

i : S2N−2 ∋ (a0, a1, . . . , a2N−2)
tr 7→ (a0, a1, . . . , a2N−2, 0)tr ∈ S2N−1,
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we have Y ◦ i = Z(0, ·). Considering the map

h : [0, 1] × S2N−2 ∋(β, (a0, a1, . . . , a2N−2)
tr)

7→ Y
(

βa0, βa1, . . . , βa2N−2,
√

1 − β2
)tr

∈ S2N−2,

we see that Y ◦ i = Z(0, ·) is homotopic to a constant map. Then Z(1, ·) is also

homotopic to a constant map. Now we extend Z(1, ·) from S2N−2 to R2N−1
1 (the

(2N − 1)-dimensional closed unit ball) by

Z1(τa) = τZ(1, a) for all τ ∈ [0, 1] and a ∈ S2N−2.

The fact that Z(1, ·) is homotopic to a constant map easily implies that the Brouwer
degree

deg(Z1,R
2N−1
1 , 0)

is zero. On the other hand, Z1 is odd, and thus, by Borsuk’s theorem [7],

deg(Z1,R
2N−1
1 , 0) 6= 0,

a contradiction. This completes the proof of the existence of a φ ∈ X2N
r with

V (xt(φ)) = 2N for all t ≥ 1.
3. Let φ ∈ X2N

r be given so that for the function x = x(φ), V (xt) = 2N , t ≥ 1,
holds. We show that

||x4|| ≥
m4e−µr

224N4
.

3.1. First we prove the following
CLAIM. Let the positive numbers α, β and an open interval I of length |I| = β

be given. If u : I → R is a continuously differentiable function with |u̇(t)| ≥ α for
all t ∈ I, then there exists a subinterval J of I such that |J | = β/4 and

|u(t)| ≥
αβ

4
for all t ∈ J.

Proof of the claim. Let I = (t0, t0 + β). Assume u̇(t) ≥ α for all t ∈ I. (The
case u̇(t) ≤ −α, t ∈ I, is analogous.) Then

u

(

t0 +
3β

4

)

− u

(

t0 +
β

4

)

=

∫ t0+3β/4

t0+β/4

u̇(t) dt ≥
αβ

2
.

Hence u(t0 +3β/4) ≥ αβ/4 or u(t0 +β/4) ≤ −αβ/4 follows. In case u(t0 +3β/4) ≥
αβ/4 setting J = (t0 +3β/4, t0+β), by the monotonicity of u, we have u(t) ≥ αβ/4
for all t ∈ J . Otherwise, choosing J = (t0, t0 + β/4), we obtain u(t) ≤ −αβ/4 for
all t ∈ J . This completes the proof of the claim.

3.2. Let (sj)
2N
0 be the sequence in the definition of φ ∈ X2N

r . There exists
i ∈ {1, 2, . . . , 2N} so that

si − si−1 ≥
1

2N
.

Then there is an open interval I0 ⊂ (si−1, si) ⊂ (−1, 0) such that |I0| = 1
2N , and

either φ(s) = r for all s ∈ I0 or φ(s) = −r for all s ∈ I0. In either case, x is
continuously differentiable on I1 = I0 + 1 ⊂ (0, 1), and

ẋ(t) = −µx(t) + g(φ(t− 1)) for all t ∈ I1.

Defining y(t) = eµtx(t), t ≥ 0, we have

ẏ(t) = eµtg(φ(t− 1)) for all t ∈ I1,
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and

ẏ(t) = eµtg(x(t− 1)) for all t > 1.

From |φ(s)| = r, s ∈ I0, it follows that

|g(φ(t− 1))| ≥ mr for all t ∈ I1.

Thus

|ẏ(t)| ≥ mr for all t ∈ I1,

and |I1| = 1
2N . Applying the claim of part 3.1 we get an open interval J1 ⊂ I1 ⊂

(0, 1) so that

|y(t)| ≥
mr

23N
for all t ∈ J1,

and |J1| = 1
23N .

For all t > 1,

|ẏ(t)| = eµt|g(x(t− 1))| ≥ eµtm|x(t− 1)| = meµ|y(t− 1)|

holds. Setting I2 = J1 + 1 ⊂ (1, 2), one obtains

|ẏ(t)| ≥
m2eµr

23N
for all t ∈ I2,

and

|I2| =
1

23N
.

The claim of part 3.1 gives an open interval J2 ⊂ I2 ⊂ (1, 2) so that

|y(t)| ≥
m2eµr

28N2
for all t ∈ J2,

and

|J2| =
1

25N
.

Repeating the above argument twice, we find an open interval J4 ⊂ (3, 4) such that
|J4| = 1

42 |J2| = 1
29N and

|y(t)| ≥
m4e3µr

224N4
for all t ∈ J4.

Using x(t) = e−µty(t), t ≥ 0, we conclude

|x(t)| ≥ e−4µ|y(t)| ≥
m4e−µr

224N4
for all t ∈ J4.

Consequently,

||x4|| ≥
m4e−µr

224N4
.

Theorem 3.2 Assume that hypotheses (H0) and (H1) hold, N ∈ N \ {0} and
Eq. (1.1) has a periodic orbit O in V −1(2N). Then Eq. (1.1) has a solution y :
[−1,∞) → R such that

yt ∈ R, yt − ψ ∈ R, V (yt) = V (yt − ψ) = 2N for all t ≥ 0 and ψ ∈ O,

and

Π2yt ∈ ext(Π2O) for all t ≥ 0.



18 Tibor Krisztin

Proof Let p : R → R be a periodic solution of Eq. (1.1) such that O = {pt :
t ∈ R}. From Proposition 2.1 it follows that

ξ− ≤ p(t) ≤ ξ+ for all t ∈ R.

The definition of ξ−, ξ+ yields f(ξ−) = µξ−, f(ξ+) = µξ+ and f(ξ) > µξ for
−∞ < ξ < ξ−, f(ξ) < µξ for ξ+ < ξ < ∞. Then it is easy to find η− ∈ (−∞, ξ−)
and η+ ∈ (ξ+,∞) such that

f ′(η−) < µ, f ′(η+) < µ.

Let the function g : R → R be defined so that g(ξ) = f(ξ) for η− ≤ ξ ≤ η+,
g(ξ) = f(η−)+f ′(η−)(ξ−η−) for −∞ < ξ < η−, and g(ξ) = f(η+)+f ′(η+)(ξ−η+)
for η+ < ξ <∞. Then g satisfies the conditions of Proposition 3.1. Clearly, O is a
periodic orbit of Eq. (3.1) as well.

Choose a > 0 so that

Π2O ⊂ R2
a.

Then, in particular, a > maxt∈R |p(t)| follows. Set

r =

(

224N4eµ

m4
+ 1

)

a.

By Proposition 3.1 we find φ ∈ X2N
r such that the function x = x(φ) : [0,∞) → R

satisfies

V (xt) = 2N for all t ≥ 1,

||x4|| ≥ a.

Let (sj)
2N
0 be the sequence associated with φ ∈ X2N

r by its definition. We can
select ǫ > 0 so that

ǫ <
1

2
min{si − si−1 : i ∈ {1, 2, . . . , N} and si − si−1 > 0}.

Choose n0 ∈ N with n0 > r/ǫ. For each integer n ≥ n0 define the function
φn : [−1, 0] → R as follows. Let φn(−1) = φ(s0 + ǫ). If si ∈ (−1, 0) and signφ(si −
ǫ) = signφ(si + ǫ), then let φn(si) = φ(si + ǫ). If si ∈ (−1, 0) and signφ(si − ǫ) 6=
signφ(si + ǫ), then let

φn(s) = n(s− si) signφ(si + ǫ) for all s ∈
(

si −
r

n
, si +

r

n

)

.

For −r/n < s ≤ 0, let φn(s) = −ns signφ(−ǫ). Otherwise, set φn(s) = φ(s). Then
φn ∈ C, φn → φ almost everywhere in [−1, 0] as n→ ∞, |φn−φ|L1 → 0 as n→ ∞.
It also follows that

xφ
n

|[0,∞) → x(φ) as n→ ∞

uniformly on compact subsets of [0,∞), where xφ
n

denotes the solution of Eq. (3.1)

with xφ
n

0 = φn. Using Eq. (3.1) we find that

ẋφ
n

|[1,∞) → ẋ(φ)|[1,∞) as n→ ∞

uniformly on compact subsets of [1,∞).
Let t ≥ 1 and s ∈ R be fixed. Select an integer n1 ≥ n0 with n1 > maxt∈R |ṗ(t)|.

Then r > a > maxt∈R |p(t)| and the choice of n1 combined yield

V (φn − pτ ) ≤ 2N for all n ≥ n1 and τ ∈ R.
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The monotonicity of V implies

V (xφ
n

t − pτ ) ≤ 2N for all n ≥ n1 and τ ∈ R.

Using ||xφ
n

t −xt(φ)|| → 0 as n→ ∞ and the lower semicontinuity of V , we conclude

V (xt(φ) − ps) ≤ 2N.

Lemma 2.3(iii) gives u0 ≥ 3 and k ∈ {0, 1, . . . , N} so that

V (xt+u(φ) − ps+u) = 2k for all u ≥ u0

and

xt+u(φ) − ps+u ∈ R for all u ≥ u0.

Using these facts, Lemma 2.3(ii) yields a δ0 > 0 such that

V (xt+u0
(φ) − ps+u0+δ) = 2k for all δ ∈ [0, δ0).

Hence

V (xt+u(φ) − ps+u+δ) ≤ 2k

follows for all δ ∈ [0, δ0) and u ≥ u0.
Consider the ω-limit set ω(x1(φ)) of the solution x(φ) : [0,∞) → R of Eq.

(3.1). Proposition 2.6 can be applied. Assume that ω(x1(φ)) is not a periodic orbit
of Eq. (3.1). As V (xt(φ)) = 2N for all t ≥ 1, ω(x1(φ)) cannot contain a nonzero
stationary point by Proposition 2.13. Therefore, 0 ∈ ω(x1(φ)). Then there is a
sequence (sn)∞0 in (0,∞) with sn → ∞ and xt+sn

(φ) → 0 as n→ ∞. Without loss
of generality we may assume ps+sn

→ pτ as n→ ∞ for some τ ∈ R. Lemma 2.3(i)
yields

2N = V (pτ ) ≤ lim inf
n→∞

V (xt+sn
(φ) − ps+sn

) = 2k.

Thus k = N and by the monotonicity of V , we conclude

V (xt(φ) − ps) = 2N.

Now assume that ω(x1(φ)) = {qt : t ∈ R}, where q : R → R is a nonconstant
periodic solution of Eq. (3.1). By Proposition 2.13, V (qt) = 2N for all t ∈ R. Then
there exist a sequence (un)

∞
0 in (0,∞) and reals τ1, τ2 such that un → ∞ and

xt+un
(φ) → qτ1 , ps+δ+un

→ pτ2+δ

for all δ ∈ [0, δ0) as n → ∞. Fix δ ∈ (0, δ0) with pτ2+δ 6= qτ1 . Hence the lower
semicontinuity of V yields

V (qτ1 − pτ2+δ) ≤ 2k.

Lemma 2.10 gives k ≥ N . Thus k = N and V (xt(φ) − ps) = 2N .
As t ≥ 1 and s ∈ R were arbitrary, we obtain

V (xt(φ) − ps) = 2N for all t ≥ 1 and s ∈ R.

Applying Lemma 2.3(iii) it follows that

xt(φ) ∈ R, xt(φ) − ps ∈ R for all t ≥ 4 and s ∈ R.

Set

z : [−1,∞) ∋ t 7→ x(φ)(t + 4) ∈ R.

Then

zt ∈ R, zt − ψ ∈ R, V (zt) = V (zt − ψ) = 2N for all t ≥ 0, ψ ∈ O.
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Consequently, Π2zt /∈ Π2O for all t ≥ 0. Using ||x4(φ)|| ≥ a, we find s ∈ [3, 4] with
|x(φ)(s)| ≥ a. Then

Π2zs−3 = Π2xs+1(φ) = (x(φ)(s + 1), x(φ)(s))tr /∈ R2
a.

By the choice of a, we have Π2O ⊂ R2
a. These facts yield Π2zs−3 ∈ ext(Π2O).

Consequently,

Π2zt ∈ ext (Π2O) for all t ≥ 0.

Proposition 2.1 can be applied to obtain a T ≥ 0 so that z(t) ∈ (η−, η+) for all
t ≥ T − 1. Then the function

y : [−1,∞) ∋ t 7→ z(t+ T ) ∈ R

is a solution of Eq. (1.1) with the desired properties.

4 Unstable sets of periodic orbits

In this section we give sufficient conditions for the equality Wu(O) = Wu
str(O)

for a periodic orbit O guaranteed by Proposition 2.8. The first result excludes the
existence of two solutions x : R → R and y : [−1,∞) → R with α(x) = ω(y0) = O
and with certain additional properties.

Proposition 4.1 Assume that hypotheses (H0) and (H1) hold. Let N ∈ N\{0}
and let O be a periodic orbit of Eq. (1.1) in V −1(2N). Then Eq. (1.1) does not
have two solutions x : R→ R and y : [−1,∞) → R so that

α(x) = ω(y0) = O,

V (xt) = V (ys) = V (xt − ψ) = V (ys − ψ) = 2N for all t ≤ 0, s ≥ 0, ψ ∈ O,

xt ∈ R, ys ∈ R, xt − ψ ∈ R, ys − ψ ∈ R for all t ≤ 0, s ≥ 0, ψ ∈ O,

and {Π2xt : t ≤ 0}, {Π2ys : s ≥ 0} belong to the same open connected component
of R2 \ Π2O.

Proof 1. Assume that Eq. (1.1) has two solutions x : R→ R and y : [−1,∞) →
R with the stated properties. We want to get a contradiction.

We claim that there are t1 ≤ 0 and s1 ≥ 0 with

V (xt − ys) = 2N for all t ≤ t1, s ≥ s1.

Let p : R → R be the periodic solution with minimal period ω > 0 such that
O = {pt : t ∈ R} and p(0) = 0, p(−1) > 0. Consider the closed curves

c : [0, ω] ∋ s 7→ ps − y0 ∈ C1,

d : [0, ω] ∋ s 7→ ps − x0 ∈ C1.

By assumption, |c| ⊂ R and |d| ⊂ R. The traces |c| and |d| are compact subsets of
C1. There exist ǫ > 0 and ǫ-neighbourhoods Nc,ǫ, Nd,ǫ of |c|, |d|, respectively, in
C1 such that

V (η) = 2N for all η ∈ Nc,ǫ ∪Nd,ǫ.

The sets Nc,ǫ + y0 and Nd,ǫ+ x0 are C1-neighbourhoods of O. Using Eq. (1.1) and
the assumptions dist(xt,O) → 0 as t→ −∞, dist(ys,O) → 0 as s→ ∞, we obtain
that

distC1(xt,O) → 0 as t→ −∞, distC1(ys,O) → 0 as s→ ∞.
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Then we find t1 ≤ 0 and s1 ≥ 0 so that

xt ∈ Nc,ǫ + y0 for all t ≤ t1,

ys ∈ Nd,ǫ + x0 for all s ≥ s1.

Let t ≤ t1 and s ≥ s1. Then ys−t − x0 ∈ Nd,ǫ and xt−s − y0 ∈ Nc,ǫ. Consequently,

2N = V (x0 − ys−t) ≤ V (xt − ys) ≤ V (xt−s − y0) = 2N.

2. Set t2 = t1 and s2 = s1 + 3. Then, for all t ≤ t2 and s ≥ s2, we have

V (xt − ys) = V (xt−3 − ys−3) = 2N.

It follows from Lemma 2.3(iii) that xt − ys ∈ R. A corollary of this fact is that the
curves

(−∞, t2] ∋ t 7→ Π2xt ∈ R
2

and

[s2,∞) ∋ s 7→ Π2ys ∈ R
2

do not intersect.
3. From dist(xt,O) → 0 as t→ −∞, by using Eq. (1.1), we get that

distC1(xt,O) → 0 as t→ −∞.

Differentiating Eq. (1.1) it also follows that xt ∈ C2, t ≤ 0, O ⊂ C2, moreover

distC2(xt,O) → 0 as t→ −∞.

Let t0 denote the maximal zero of x on (−∞, 0] with ẋ(t0) > 0. If tn is defined for
some n ∈ −N, then let tn−1 be the greatest zero of x on (−∞, tn). Then, applying
xt ∈ R for all t ≤ 0, for the sequence (tn)0−∞ in (−∞, 0] we obtain

x(tn) = 0 for all n ∈ −N,

ẋ(t2n) > 0, ẋ(t2n−1) < 0 for all n ∈ −N,

tn → −∞ as n→ −∞.

Recall from Section 2 that pt ∈ R and ṗt ∈ R for all t ∈ R, and thus all zeros of
p and ṗ are simple. These results, the fact distC2(xt,O) → 0 as t → −∞, and
Proposition 2.9 combined imply that xt2n → p0 as n→ −∞, and that there exists
n0 ∈ −N such that

ẋ has exactly one zero in (tn−1, tn) for all n0 ≥ n ∈ −N.

Then, for every integer n ≤ n0, the curve

[t2n−2, t2n) ∋ t 7→

(

x(t)
ẋ(t)

)

∈ R2

is injective. Set

X : (−∞, 0] ∋ t 7→ Π2xt ∈ R
2.

As x(t) and x(t − 1) uniquely determine ẋ(t), it follows that, for each integer
n ≤ n0, the restriction X |[t2n−2,t2n) is also injective. Observe that x(t2n − 1) > 0

and x(t2n−1 − 1) < 0 for all n ∈ −N since xt ∈ R, t ≤ 0. Then we have

X |[t2n−2,t2n) ∩ {(0, v)tr ∈ R2 : v ∈ R} = {(0, x(t2n−2 − 1))tr, (0, x(t2n−1 − 1))tr}.



22 Tibor Krisztin

4. Assume that {Π2xt : t ≤ 0} and {Π2ys : s ≥ 0} belong to ext(Π2O). The
unbounded set

U = {(0, v)tr ∈ R2 : v > p(−1)}

is a subset of ext(Π2O). By Proposition 2.9,

V = {(0, v)tr ∈ R2 : 0 ≤ v < p(−1)} ⊂ int(Π2O).

As V (ys) = 2N ≥ 2 and ys ∈ R for all s ≥ 0, there exists s∗ ≥ s2 such that
y(s∗) = 0 and ẏ(s∗) > 0. Then y(s∗−1) > 0. Using also Π2ys∗ ∈ ext(Π2O) we find
a real v1 > p(−1) so that

Π2ys∗ =

(

0
v1

)

∈ U.

From xt2n → p0 as n→ −∞ and x(t2n) = 0, x(t2n − 1) > 0, n ∈ −N, we obtain an
integer k ≤ n0, reals v2, v3 such that t2k < t2, p(−1) < v2 < v3 < v1 and

X(t2k−2) =

(

0
v2

)

, X(t2k) =

(

0
v3

)

.

The line segment connecting (0, v2)
tr, (0, v3)

tr, and the injective curve X |[t2k−2,t2k)

form a simple closed curve γ. It is easy to see that the sets {(0, v)tr ∈ R2 : 0 ≤
v < v2} and {(0, v)tr ∈ R2 : v3 < v} belong to different connected components of
R2 \ |γ|. As {(0, v)tr ∈ R2 : v3 < v} is unbounded, we conclude

0 ∈ int(γ), (0, v1)
tr ∈ ext(γ).

Using |γ| ⊂ ext(Π2O), we obtain

Π2O ⊂ int(γ).

We claim that

Π2ys ∈ ext(γ) for all s ≥ s∗.

If this is not true, then there exists s∗∗ > s∗ so that Π2ys ∈ ext(γ) for s∗ ≤ s < s∗∗

and Π2ys∗∗ ∈ |γ|. By the result of part 2, Π2ys∗∗ /∈ X |[t2k−2,t2k]. So, there is
v4 ∈ (v2, v3) so that

Π2ys∗∗ =

(

y(s∗∗)
y(s∗∗ − 1

)

=

(

0
v4

)

We can find a δ > 0 such that

{(u, v)tr ∈ R2 : −δ < u < 0, |v − v4| < δ} ⊂ int(γ)

and

{(u, v)tr ∈ R2 : 0 < u < δ, |v − v4| < δ} ⊂ ext(γ).

On the other hand, the equation for y yields ẏ(s∗∗) > 0. This implies Π2ys ∈ int(γ)
for some s < s∗∗ sufficiently close to s∗∗. This is a contradiction.

The above claim, the facts Π2O ⊂ int γ and dist(ys,O) → 0 as s→ ∞ combined
give a contradiction.

The assumption {Π2xt : t ≤ 0} ⊂ int(Π2O), {Π2ys : s ≥ 0} ⊂ int(Π2O)
analogously leads to a contradiction.

Now we prove that in caseWu(O) 6= Wu
str(O) there is a globally defined solution

x : R→ R of Eq. (1.1) with some of the properties assumed in Proposition 4.1.



Unstable Sets of Periodic Orbits and the Global Attractor for Delayed Feedback 23

Proposition 4.2 Assume that hypotheses (H0) and (H1) hold. Let N ∈ N \
{0} be given so that ReλN > 0. Let O = ON be the periodic orbit of Eq. (1.1)
in V −1(2N) given by Proposition 2.8. If Wu(O) 6= Wu

str(O) then there exists a
bounded solution x : R→ R of Eq. (1.1) so that

α(x) = O,

V (xt) = V (xt − ψ) = 2N for all t ≤ 0, ψ ∈ O,

xt ∈ R, xt − ψ ∈ R for all t ≤ 0, ψ ∈ O.

Proof Let p : R→ R be the periodic solution of Eq. (1.1) such that p(0) = 0,
p(−1) > 0 and O = {pt : t ∈ R}. Assume Wu(O) 6= Wu

str(O). Then there exist
φ ∈ Wu(O) \Wu

str(O) and a bounded solution x : R → R of Eq. (1.1) so that
x0 = φ, α(x) = O and xt /∈ Wu(p0, F (ω, ·), Nu) for all t ∈ R. Observe that the set
{xt : t ∈ R} ∪ O is a subset of the global attractor.

1. First we claim that

V (xt − ψ) ≤ 2N for all t ∈ R, ψ ∈ O.

Let t ∈ R and ψ = pτ be fixed. From α(x) = O it follows that there exist a sequence
(tn)

0
−∞ and reals r, s ∈ [0, ω) such that tn → −∞ and

xt+tn → pr, pτ+tn → ps as n→ −∞.

The above sequences converge in the C1-topology as well. If r 6= s, then pr−ps ∈ R
and V (pr − ps) = 2N by Proposition 2.10. Then Lemma 2.3(ii) yields

V (xt+tn − pτ+tn) = 2N for all sufficiently large negative n.

Hence the monotonicity of V gives V (xt−pτ ) ≤ 2N . If r = s then pr+ǫ 6= pr for all
ǫ ∈ (0, ǫ0) with ǫ0 = ω − r. Then the above proof shows also V (xt+ǫ − pτ ) ≤ 2N .
By the lower semicontinuity of V ,

V (xt − pτ ) ≤ lim inf
ǫ→0+

V (xt+ǫ − pτ ) ≤ 2N.

2. Assume that s ≤ 0 has the property that the sequence (φn)0−∞, defined by

φn = xφs+nω for all n ∈ −N, has a subsequence converging to p0 as n → −∞. We
claim that V (φn − p0) = 2N for all sufficiently large negative integers n.

Recall from Section 2 that λ ∈ (0, 1) is fixed so that

λ > max

{

max
ζ∈σ,|ζ|>1

1

|ζ|
, max
ζ∈σ,|ζ|<1

|ζ|

}

,

where σ denotes the spectrum of the monodromy operator M = D2F (ω, p0).
We first show that (λn(φn−p0))

0
−∞ does not converge to 0 as n→ −∞. Assume

λn(φn − p0) → 0 as n→ −∞. For every negative integer k, ηn = φk+n satisfies

λn(ηn − p0) = λn(φk+n − p0) = λ−kλk+n(φk+n − p0).

Therefore, if k is a sufficiently large negative integer, then λn(ηn − p0) ∈ Nu

for all n ∈ −N, and limn→−∞ λn(ηn − p0) = 0. Thus η0 = φk = xφs+kω ∈
Wu(p0, F (ω, ·), Nu), which is a contradiction to our assumption.

Choose λ∗ ∈ (0, λ) such that

λ∗ > max
ζ∈σ,|ζ|>1

1

|ζ|
.
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Let ν ∈
(

1/λ∗,minζ∈σ,|ζ|>1 |ζ|
)

. By Theorem I.1 in [16], there exists an equivalent
norm | · |e on C such that

|Mψ|e ≥ ν|ψ|e for all ψ ∈ C1<.

Choose δ > 0 so that {ψ ∈ C : |ψ|e < δ} ⊂ Nu.
We construct a subsequence (φnk

)0−∞ of (φn)0−∞ such that φnk
→ p0 as k →

−∞ and

|λ∗nk−1(φnk−1 − p0)|e
|λ∗nk(φnk

− p0)|e
≥ 1 (4.1)

holds for all k ∈ −N. In order to define n0, choose an integer m ∈ −N such that
|φm − p0|e < δ = δ

20 . If (4.1) holds with nk = m, then let n0 = m. Otherwise, we
note that if (4.1) does not hold with nk = m,m−1, . . . ,m− j for some j ∈ N, then

|φm−j−1 − p0|e < λ∗|φm−j − p0|e

< λ∗2|φm−j+1 − p0|e < . . . < λ∗j+1|φm − p0|e.
(4.2)

If this is the case for all j ∈ N, then with ηn = φm+n, n ∈ −N, it follows that

|λn(ηn − p0)|e = |λn(φm+n − p0)|e ≤

(

λ

λ∗

)n

|φm − p0|e < δ

for all n ∈ −N, and limn→−∞ λn(ηn − p0) = 0. Hence

φm = xφs+mω ∈Wu(p0, F (ω, ·), Nu)

follows, a contradiction. Therefore, there is a maximal j ∈ N such that (4.2)
holds. Now define n0 = m − j − 1. Then (4.1) holds with k = 0. Assume that
n0, n−1, . . . , nl are defined for some l ∈ −N. In order to define nl−1, we choose
m ∈ −N such that m < nl and

|φm − p0|e <
δ

2−l+1
.

If (4.1) holds with nk = m, then let nl−1 = m. If (4.1) does not hold with nk = m
then the same argument as above shows that there exists a maximal j ∈ N such
that (4.2) holds. In this case define nl−1 = m− j − 1. Then (φnk

)0−∞ is defined by
induction and has the desired properties.

For every k ∈ −N the function

zk =
1

|φnk
− p0|e

(

xφn
k − p

)

is a solution of the equation

ż(t) = −µz(t) +

∫ 1

0

f ′
(

uxφn
k (t− 1) + (1 − u)p(t− 1)

)

du z(t− 1)

with |zk0 |e = 1, and V (zkt ) ≤ 2N for all t ∈ R by part 1. As φnk
→ p0 and FA is a

continuous flow on A,

bk(t) =

∫ 1

0

f ′
(

uxφn
k (t− 1) + (1 − u)p(t− 1)

)

du→ f ′(p(t− 1)) as k → −∞

uniformly on compact subsets of R. As x is bounded, we can find positive constants
b0 and b1 such that b0 ≤ bk(t) ≤ b1 for all t ≤ 0 and k ∈ −N. Then, by Lemma 2.4,
there is c > 0 with ||zkt || ≤ cec|t| for all t ≤ 0 and k ∈ −N. Using the differential
equations for zk we can apply the Arzela–Ascoli theorem to get a subsequence
(zki)0−∞ of (zk)0−∞ and a C1-function z : (−∞, 0] → R such that zki |(−∞,0] → z
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and żki |(−∞,0] → ż as i → −∞ uniformly on compact subsets of (−∞, 0], and z
satisfies

ż(t) = −µz(t) + f ′(p(t− 1))z(t− 1) (4.3)

for all t ≤ 0. It also follows that |z0|e = 1. From

|zk−ω|e =
|x
φn

k

−ω − p−ω|e
|φnk

− p0|e
=

|λ∗nk−1(φnk−1 − p0)|e
|λ∗nk(φnk

− p0)|e
λ∗

and property (4.1) of (φnk
)0−∞, we infer |zk−ω|e ≥ λ∗, k ∈ −N. Hence

|z−ω|e ≥ λ∗.

Suppose the statement

V (φn − p0) = 2N for all sufficiently large negative integers n

is false. Then, from V (φn − p0) ≤ 2N for all n ∈ −N and from the monotonicity of
V , we get V (φn−p0) ≤ 2N−2 for all n ∈ −N. Extending z to a solution v : R→ R
of (4.3) and using the monotonicity of V , we find

V (vt) ≤ 2N − 2 for all t ∈ R.

Then, Proposition 2.11(iii) implies v−ω = z−ω ∈ C1<. Then

1 = |z0|e = |Mz−ω|e ≥ ν|z−ω|e ≥ νλ∗ > 1,

a contradiction. So, we have V (φn − p0) = 2N for all sufficiently large negative
integers n.

3. We prove that there exists T0 < 0 with V (xt − p0) = 2N for all t ≤ T0.
Assume that there exists a sequence (tn)0−∞ in (−∞, 0) with tn → −∞ as

n→ −∞ and

V (xtn − p0) ≤ 2N − 2 for all n ∈ −N.

We claim that xtn → p0 as n → −∞. If not, then there exist a subsequence
(tnk

)0−∞ of (tn)0−∞ and τ ∈ (0, ω) such that xtn
k
→ pτ as k → −∞ since α(x) =

O. As τ ∈ (0, ω), we have V (pτ − p0) = 2N by Proposition 2.10, and hence
V (xtn

k
− p0) = 2N for all sufficiently large negative integers k, a contradiction.

Each tn can be uniquely written as tn = mnω + τn for some mn ∈ −N and
τn ∈ [0, ω). We may assume (replacing (tn)

0
−∞ with a subsequence if necessary)

τn → τ∗ ∈ [0, ω] as n→ −∞.

We claim that

V (xτ∗+u − pu) ≤ 2N − 2 for all u ∈ R. (4.4)

If (4.4) is not satisfied then there exists û < 0 so that

V (xτ∗+û − pû) = 2N.

By continuity, there is ǫ ∈ (0, 1) so that

V (xτ+û − pû) = 2N for all τ ∈ R with |τ − τ∗| < ǫ.

Choose n ∈ −N such that |τn − τ∗| < ǫ and tn = mnω + τn < û. Using

xτn+û = F (û−mnω, xτn+mnω), pû = F (û −mnω, p0)

and the monotonicity of V , we get

2N = V (xτn+û − pû) ≤ V (xτn+mnω − p0) = V (xtn − p0) ≤ 2N − 2,

a contradiction. Therefore, (4.4) holds.
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We also notice that

xτ∗+mnω → p0 as n→ −∞,

since xτ∗+mnω = FA(τ∗ − τn, FA(mnω + τn, φ)) and τn → τ∗, FA(mnω + τn, φ) =
xtn → p0 as n → −∞. Then the result of part 2 with s = τ∗ − ω implies that
V (xτ∗+nω− p0) = 2N for all sufficiently large negative integers n. This contradicts
(4.4) and proves the existence of T0.

4. We show that V (xt − ψ) = 2N for all ψ ∈ O and for all t ≤ T0 − ω.
Let u ∈ [−ω, 0]. Then, from part 3 and the monotonicity of V it follows that

2N = V (xt − p0) ≤ V (xt+u − pu) for all t ≤ T0.

On the other hand, V (xt+u − pu) ≤ 2N by the result of part 1. This proves the
assertion.

5. The facts α(x) = O, O ⊂ R∩V −1(2N) and that the C and C1 topologies on
A are equivalent give T1 ∈ R such that V (xt) = 2N for all t ≤ T1. Then the results
of part 4, Lemma 2.3(iii) and a time shift easily show the existence of a globally
defined solution with the required properties.

Now we can prove the main result of this section.

Theorem 4.3 Assume that hypotheses (H0), (H1) and (H2) hold, N > 0 is
an integer so that

f ′(0) >
µ

cos θN

where θN ∈ (2Nπ − π/2, 2Nπ) is the unique solution of θ = −µ tan θ. Then Eq.
(1.1) has a unique periodic orbit ON in V −1(2N), and

Wu(ON ) = Wu
str(ON ).

Proof Propositions 2.2, 2.7 and 2.8 give that there is a unique periodic orbit
ON in V −1(2N). By Proposition 2.8 there exists a solution z : R→ R of Eq. (1.1)
so that

zt ∈ R, zt − ψ ∈ R, V (zt) = V (zt − ψ) = 2N for all t ∈ R and ψ ∈ ON

and

α(z) = {0}, ω(z0) = ON .

Then the curves R ∋ t 7→ Π2z2 ∈ R2 and Π2ON do not intersect. By Proposition
2.9 we have 0 ∈ int(Π2ON ). From α(z) = {0} it follows that Π2zt ∈ int(Π2ON ) for
all sufficiently large negative t. Consequently,

Π2zt ∈ int(Π2ON ) for all t ∈ R.

Using limξ→0
ξf ′(ξ)
f(ξ) = 1, (H2) yields ξf ′(ξ)

f(ξ) < 1 for all ξ > 0. Hence it follows

that (0,∞) ∋ ξ 7→ f(ξ)
ξ ∈ R is strictly decreasing. By assumption we have f ′(0) > µ.

These facts and the oddness of f combined give that 0, ξ−, ξ+ are the only stationary
points of F .

Theorem 3.2 shows the existence of a solution y : [−1,∞) → R of Eq. (1.1)
such that

yt ∈ R, yt − ψ ∈ R, V (yt) = V (yt − ψ) = 2N for all t ≥ 0, ψ ∈ ON

and

Π2yt ∈ ext(Π2ON ) for all t ≥ 0.
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Then 0 /∈ ω(y0) since 0 ∈ int(Π2ON ) by Proposition 2.9. By Proposition 2.13(i),
we have ω(y0) ⊂ V −1(2N)∪{0}. Thus, ω(y0)∩{0, ξ−, ξ+} = ∅ follows. As 0, ξ−, ξ+
are the only stationary points of F , and ON is the only periodic orbit in V −1(2N),
Proposition 2.6 implies ω(y0) = ON .

Assume Wu(ON ) 6= Wu
str(ON ). Then Proposition 4.2 guarantees the existence

of a solution x : R→ R so that

xt ∈ R, xt − ψ ∈ R, V (xt) = V (xt − ψ) = 2N for all t ≤ 0, ψ ∈ ON ,

and α(x) = ON . Then {Π2xt : t ≤ 0} ∩ Π2ON = ∅.
In case {Π2xt : t ≤ 0} ⊂ ext(Π2ON ), by Proposition 4.1 we have a contradic-

tion. In case {Π2xt : t ≤ 0} ⊂ int(Π2ON ), Proposition 4.1 with y = z leads again
to a contradiction.

5 The structure of the global attractor

The equality Wu(O) = Wu
str(O) of Theorem 4.3 implies a result on the struc-

ture of the global attractor A. This is formulated in the next theorem.

Theorem 5.1 Assume that hypotheses (H0), (H1) and (H2) hold, and let N >
0 be an integer such that

µ

cos θN
< f ′(0) <

µ

cosN+1
(5.1)

is satisfied where θN , θN+1 denote the unique solution of θ = −µ tan θ in (2Nπ −
π/2, 2Nπ), (2(N + 1)π − π/2, 2(N + 1)π), respectively. Then the semiflow F has
exactly 3 stationary points 0, ξ−, ξ+ and N periodic orbits O1,O2, . . . ,ON , and, for
the global attractor A of F , we have

A = {ξ−, ξ+} ∪W
u
str(0) ∪

(

N
⋃

k=1

Wu
str(Ok)

)

. (5.2)

Proof Proposition 2.1 and the remarks following it show that the semiflow has
a global attractor A. As in the proof of Theorem 4.3 we obtain that 0, ξ−, ξ+ are

the only stationary points of F . We also saw that ξf ′(ξ)
f(ξ) < 1 for all ξ > 0. Hence

1 > ξ+f ′(ξ+)
f(ξ+) = f ′(ξ+)

µ , that is f ′(ξ+) < µ. From the oddness of f it also follows

that f ′(ξ−) < µ. Therefore, ξ− and ξ+ are locally asymptotically stable stationary
points. By Proposition 2.2 and assumption (5.1), 0 is a hyperbolic and unstable
stationary point. In particular, Wu(0) = Wu

str(0).
Propositions 2.2, 2.7 and 2.8 imply that F has exactly N periodic orbits

O1,O2, . . . ,ON , and Ok ⊂ V −1(2k), k ∈ {1, 2, . . . , N}. Theorem 4.3 shows
Wu(Ok) = Wu

str(Ok), k ∈ {1, 2, . . . , N}.
Let φ ∈ A \ {ξ−, ξ+}. By the invariance of A, there exists a solution x : R→ R

so that x0 = φ and xt ∈ A for all t ∈ R. Proposition 2.6 and the above facts give
that either α(x) = Ok for some k ∈ {1, 2, . . . , N} or, for every solution y : R → R
of Eq. (1.1) with y0 ∈ α(x), the sets α(y) and ω(y0) consist of stationary points of
F . In order to show (5.2) it suffices to verify that in case α(x) is not a periodic
orbit we have α(x) = {0}. Suppose

α(x) 6= Ok for all k ∈ {1, 2, . . . , N}.

Then α(x) ∩ {0, ξ−, ξ+} 6= ∅. As ξ− and ξ+ are locally asymptotically stable sta-
tionary points, we conclude α(x) ∩ {ξ−, ξ+} = ∅. So, 0 is the only stationary point
in α(x). Assume α(x) 6= {0}. Then there exist ψ ∈ α(x) \ {0} and a solution
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y : R → R with y0 = ψ and α(y) ∪ ω(y0) ⊂ α(x) ∩ {0, ξ−, ξ+} = {0}. Thus,
α(y) = ω(y0) = {0}. Proposition 2.12 gives the contradiction

2N + 2 ≤ V (ψ) ≤ 2N.

Consequently, α(x) = {0} and (5.2) holds.

Remarks. 1. We emphasize that no hyperbolicity condition on the periodic
orbits is assumed in Theorem 5.1. The stationary points 0, ξ−, ξ+ are supposed to
be hyperbolic, which can be checked by Proposition 2.2. We believe that Theorem
5.1 remains true if (5.1) is replaced by

µ

cos θN
< f ′(0) ≤

µ

cos θN+1
,

that is the hyperbolicity of the stationary point 0 can be omitted.
2. As the maps F (t, ·) and D2F (t, ·) are injective for all t ≥ 0, Theorem 6.1.9

in Henry [12] can be used to show that the strong unstable sets

Wu
str(O1), . . . ,W

u
str(ON )

in formula (5.2) are C1 immersed submanifolds of C. In a subsequent paper we
show that these strong unstable sets are also C1-submanifolds of C.

3. We mentioned in Section 1 that Theorem 5.1 implies a Morse decomposition
of the global attractor A with Morse sets

S0 = {ξ−, ξ+}, S2k = Ok for all k ∈ {1, 2, . . . , N}, S2N+1 = {0}.

Introducing the connecting sets

Ckl = {φ ∈ A :There is a solution x : R→ R of Eq. (1.1)

with x0 = φ, α(x) ∈ Sk, ω(φ) ∈ Sl}

for integers k > l in {0, 2, . . . , 2N, 2N + 1}, one has

A =

(

⋃

k∈{0,2,... ,2N,2N+1}

Sk

)

∪

(

⋃

k>l, k,l∈{0,2,... ,2N,2N+1}

Ckl

)

.

Clearly,

Wu
str(0) \ {0} =

⋃

k∈{0,2,... ,2N}

C2N+1
k

and

Wu
str(Ok) \ Ok =

⋃

l∈{0,2,... ,2k−2}

Ckl for k ∈ {1, 2, . . . , N}.

A description of the connecting sets Ckl would give a finer structure of the global
attractor A than formula (5.2). We refer to Fiedler and Mallet-Paret [9], McCord
and Mischaikow [22], Krisztin, Walther and Wu [16], Krisztin and Wu [17] for
some results on connecting sets.

4. In the particular case

f(ξ) = α tanh(βξ)

with parameters α > 0 and β > 0, which is used in neural network theory, the
conditions of Theorem 5.1 are satisfied if

αβ > µ
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and

2Nπ − arccos
µ

αβ
<
√

α2β2 − µ2 < 2(N + 1)π − arccos
µ

αβ
;

or equivalently,

αβ

µ
∈

(

1

cos θN
,

1

cos θN+1

)

with θN , θN+1 defined in Theorem 5.1.
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[20] Mallet-Paret, J. and Sell, G. The Poincaré–Bendixson theorem for monotone cyclic feedback

systems with delay, J. Differential Equations 125 1996, 441–489.
[21] Mallet-Paret, J. and Walther, H.-O. Rapid oscillations are rare in scalar systems governed by

monotone negative feedback with a time delay, Preprint, Math. Inst., University of Giessen,
1994.

[22] McCord, C. and Mischaikow, K. On the global dynamics of attractors for scalar delay equa-

tions, J. Amer. Math. Soc. 9 (1996), 1095–1133.



30 Tibor Krisztin

[23] Pakdaman, K., Malta, C.P., Grotta-Ragazzo, C. and Vibert, J.-F. Effect of delay on the

boundary of the basin of attraction in a self-excited single neuron, Neural Computation 9

(1997), 319–336.
[24] Polner, M. Morse decomposition for delay-differential equations with positive feedback,

preprint.
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