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László Hatvani and Tibor Krisztin
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Abstract. The nonlinear scalar equation

x
′(t) = b(t)f(x(t − T )) − c(t)g(x(t)) (c(t) ≥ 0)

is considered under the assumption |f(x)| ≤ κ|g(x)| (|x| ≤ ǫ0) with appropriate

constants κ, ǫ0 > 0. Sufficient conditions are given for the asymptotic stability

of the zero solution by Lyapunov’s direct method with Lyapunov functionals.

The effect of the dominating conditions

c(t) − κ|b(t + T )| ≥ µ ≥ 0, c(t) − κ|b(t)| ≥ ν ≥ 0

for all t ≥ 0 with constant µ, ν is discussed by examples.

1. Introduction

Consider the equation

(1.1) x′(t) = b(t)f(x(t − T )) − c(t)g(x(t)),
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372 L. HATVANI and T. KRISZTIN

where b, c, f, g: R → R are continuous functions; c(t) ≥ 0 for all t; g satisfies the

usual sign condition xg(x) > 0, (x 6= 0); f(0) = 0, and the positive constant T

denotes the time lag.

Let C denote the space of the continuous functions ϕ: [−T, 0] → R with the

norm ‖ϕ‖ := max−T≤s≤0 |ϕ(s)|. If x: [t0 − T, t∗) → R (−∞ < t0 < t∗ ≤ ∞) is a

continuous function and t ∈ [t0, t∗) then xt denotes the element of C defined by

xt(s) := x(t+s) (−T ≤ s ≤ 0). It is well-known [9] that for any pair (t0, ϕ) ∈ R×C

there exists a solution x(·) = x(·; t0, ϕ): [t0−T, t∗) → R of (1.1) satisfying the initial

condition xt0 = ϕ. The zero solution is said to be stable if for every ε > 0 and

t0 ∈ R there is a δ = δ(ε, t0) > 0 such that ‖ϕ‖ < δ implies |x(t; t0, ϕ)| < ε for all

t ≥ t0. If δ does not depend on t0, then the stability is called uniform. The zero

solution is said to be asymptotically stable if it is stable and, in addition, for every

t0 ∈ R there is a σ = σ(t0) > 0 such that ‖ϕ‖ < σ implies

(1.2) lim
t→∞

x(t; t0, ϕ) = 0.

The asymptotic stability is called uniform if the stability is uniform, σ can be

independent of t0, and limit (1.2) is uniform with respect to t0 and ϕ (t0 ≥ 0,

‖ϕ‖ < σ) [9], [23].

In this paper we are dealing with the asymptotic stability and uniform asymp-

totic stability of the zero solution of (1.1), which have been studied in numerous

papers and books (see, e.g., [1–24] and the references therein). The first results in

this direction concerned the corresponding linear equation

(1.3) x′(t) = b(t)x(t − T ) − c(t)x(t).

If b(t) and c(t) are constant (autonomous case), then the exact region of asymptotic

stability independent of the size of the delay T is described on the parameter plane

(b, c) by the inequality |b| < c. This can be interpreted by saying that the undelayed

part dominates the delayed one. As it can be expected, the theorems for the

case of varying coefficients b(t), c(t) (nonautonomous case) also contain conditions

demanding that function c dominates function |b| in some sense. However, the first

results used also the boundedness of b and c. It was needed only by the techniques

of the proofs and seemed to be unnatural since, e.g., the larger c(t) the better

from the point of view of asymptotic stability. Therefore, it is an old problem

to guarantee asymptotic stability for the nonautonomous equation (1.3) allowing

also unbounded coefficients b, c and so that the consequences of the nonautonomous

results for the autonomous case approximate the region |b| < c as much as possible.

Very recently, applying their general Lyapunov type theorem to equation

(1.3), T. A. Burton and G. Makay [6] proved the following
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Asymptotic stability for a differential-difference equation 373

Theorem A. Suppose there are constants c1, c2, c3 > 0 with

(a) c(t) − |b(t + T )| ≥ c1;

(b) there is a sequence {tn} ↑ ∞ and K > 0 with tn+1 − tn ≤ K and

∫ tn

tn−T

|b(s + T )| ds ≤ c2;

(c) c(t) + |b(t)| ≤ c3(t + 1)ln(t + 2).

Then the zero solution of (1.3) is asymptotically stable.

This paper is devoted to the study of the consequences of the dominating

conditions of type (a) for (1.1). In order to obtain a better approximation of the

region c > |b|, we start with the condition

(a0) c(t) − |b(t + T )| ≥ 0 for t ≥ 0.

To approach asymptotic stability, at first we study the conditions of the existence

of finite limits of the solutions as t → ∞. We will prove by an example that (a0)

is not sufficient for this property even if we suppose also that b is bounded on R+.

However, if, in addition to (a0), either
∫ ∞

0
|b| < ∞ or c − |b| dominates |b| in a

certain integral sense, then the solutions tend to finite limits (see Theorem 2.1). If

we assume also condition (b) then this dominating condition can be weakened (see

Theorem 2.2). As a consequence, we get a stronger version of Theorem A; namely,

we can replace condition (c) in Theorem A by

(c′) |b(t)| ≤ c3(t + 1) ln(t + 2).

It means that our method does not require any growth condition on function c.

As we mentioned, we will show that (a0) and the boundedness of b do not

imply even the existence of finite limits of the solutions of (1.3). Theorem 2.5 says

that (a) and the boundedness of b are sufficient for this property. However, another

example will show that (a) and (b) are not sufficient for the asymptotic stability;

in other words, condition (c) cannot be dropped from Theorem A. We conjecture

but are not able to prove that (a) and the boundedness of
∫ t

t−T
|b(s)| ds are not

sufficient either.

Finally, we discuss the consequences of the dominating conditions

c(t) − |b(t)| ≥ 0,(A0)

c(t) − |b(t)| ≥ ε for some ε > 0(Aε)
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374 L. HATVANI and T. KRISZTIN

for the existence of the limits of the solutions of (1.3).

2. Sufficient conditions for the existence of limits and asymptotic

stability

The method of the proofs of our theorems is based upon Lyapunov’s direct

method [9], [15] by the Lyapunov–Krasovskii functional

(2.1) V (t, ϕ) := |ϕ(0)| +

∫ 0

−T

|b(t + s + T )| |f(ϕ(s))| ds.

The derivative V ′(t, ϕ) of V with respect to (1.1) satisfies the inequality

(2.2) V ′(t, ϕ) ≤ |b(t + T )||f(ϕ(0))| − c(t)|g(ϕ(0))|.

Now we formulate our basic hypotheses expressing that the undelayed term domi-

nates the delayed one in the nonlinear equation (1.1):

(H1) there are numbers ε0 > 0, κ > 0 such that |x| ≤ ε0 implies |f(x)| ≤ κ|g(x)|;

(H2) c(t) − κ|b(t + T )| ≥ 0 for all t ∈ R+.

In the sequel we suppose that these two conditions are automatically satisfied.

Theorem 2.1. Suppose that either
∫ ∞

0
|b| < ∞ or there is a continuous, strictly

increasing function W : R+ → R+ with W (0) = 0, and such that

(2.3)

∫ t

s

[c(u) − κ|b(u + T )|] du ≥ W

(
∫ t

s

|b(u)| du

)

for all s ≤ t.

Then each solution of (1.1) starting from a small neighborhood of the origin

has a finite limit as t → ∞.

If, in addition, the condition

(2.4)

∫ ∞

0

[c(t) − κ|b(t + T )|] dt = ∞

holds, then the zero solution of (1.1) is asymptotically stable.
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Proof. By hypotheses (H1), (H2) and estimate (2.2) the derivative of functional

(2.1) with respect to equation (1.1) satisfies the inequality

(2.5) V ′(t, ϕ) ≤ −[c(t) − κ|b(t + T )|] | g(ϕ(0)) |≤ 0

whenever |ϕ(0)| ≤ ε0. By the basic theorem on the stability for FDE’s (see, e.g., [3,

Th. 8.1.6]) the zero solution of (1.1) is stable. Take δ(ε, t0) from the definition of

stability and introduce the notation σ(t0) := δ(ε0, t0) > 0. Consider an arbitrary

(t0, ϕ) ∈ R × C. First we show that condition (2.3) implies the existence of the

finite limit limt→∞ x(t; t0, ϕ).

For the sake of brevity let us use the notation x(t) := x(t; t0, ϕ). If the limit

does not exist, then there are λ1, λ2 (0 < λ1 < λ2 < ε0) and sequences {t′k}, {t
′′

k}

such that

(2.6)

t′k < t
′′

k < t′k+1, |x(t′k)| = λ1, |x(t
′′

k)| = λ2, λ1 ≤ |x(t)| ≤ λ2 (t′k ≤ t ≤ t
′′

k)

for all k = 1, 2, . . .. Let [a]+ denote the positive part of the real number a; i.e.,

[a]+ := max{a, 0}. Then by equation (1.1) there is a constant α > 0 such that

(2.7) [|x(t)|′]+ ≤ |b(t)f(x(t − T ))| ≤ α|b(t)|,

provided that x(t) 6= 0.

If
∫ ∞

0
|b| < ∞, then (2.7) contradicts (2.6). Supposing

∫ ∞

0
|b| = ∞ and

introducing the notation

(2.8) ∆(t, ε) := inf{τ > 0 :

∫ t

t−τ

|b(r)| dr ≥ ε} (t ∈ R, ε > 0),

we define the sequence t∗k := t′′k−∆
(

t′′k ; (λ2−λ1)/2α
)

. Condition (2.3) and formulae

(2.5)–(2.7) imply the existence of a constant β > 0 such that

V (t′′K , xt′′

K
) − V (t0, ϕ) ≤

K
∑

k=1

∫ t′′

k

t′

k

V ′(t, xt) dt ≤ −β

K
∑

k=1

∫ t′′k

t∗

k

[c(t) − κ|b(t + T )|] dt

≤ −β

K
∑

k=1

W
(

∫ t′′

k

t∗

k

|b(t)| dt
)

≤ −βKW
(λ2 − λ1

2α

)

→ −∞

as K → ∞, which is a contradiction. Therefore, x has a finite limit.

If condition (2.4) is also satisfied, then estimate (2.5) implies that limt→∞ x(t)

has to be equal to zero; i.e., the zero solution is asymptotically stable.
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The theorem is proved.

Theorem 2.1 does not contain any boundedness or growth condition on func-

tion |b|. This was made possible by condition (2.3) controlling the behaviour of this

function. If we have some growth information of coefficient b (see (b) in Theorem A)

then condition (2.3) can be weakened.

Theorem 2.2. Suppose that the following conditions are satisfied:

(i) there are an increasing sequence {ti} and a number B such that

lim
t→∞

ti = ∞,

∫ ti

ti−T

|b(s)| ds ≤ B (i = 1, 2, . . .);

(ii) for any ε > 0 and t̃i ∈ [ti − T, ti] we have

∞
∑

i=1

∫ t̃i

max{ti−1; t̃i−∆(t̃i,ε)}

[c(t) − κ|b(t + T )|] dt = ∞,

where ∆(t, ε) is defined by (2.8).

Then the zero solution of (1.1) is asymptotically stable.

Proof. As was shown in the proof of Theorem 2.1, the zero solution is stable. Define

σ(t0) > 0 in the same way and consider an arbitrary solution x(t) = x(t; t0, ϕ) with

‖ϕ‖ < σ(t0). It is enough to prove that V (t, xt) → 0 as t → ∞.

Suppose that the limit of V is greater than zero. Then there is a µ > 0 such

that V (t, xt) ≥ µ for all t ≥ 0. From condition (i) it follows that

µ ≤ V (ti, xti
) ≤ ‖xti

‖ + B max
ti−T≤s≤ti

|f(x(s))|,

which implies the existence of a ν > 0 with ‖xti
‖ ≥ ν (i = 1, 2, . . .). This means

that for every i there is a t̃i ∈ [ti − T, ti] with |x(t̃i)| = ν. Similarly to the proof of

Theorem 2.1 we obtain

(2.9) V (tk, xtk
)−V (t0, ϕ) ≤ −β

k
∑

i=1

∫ t̃i

max{ti−1; t̃i−∆(t̃i,ν/2α)}

[c(t)−κ|b(t+T )|] dt,

whence, by condition (ii), we have V (t, xt) → −∞ as t → ∞, which is a contradic-

tion.

Theorem 2.2 is proved.

If |b(t)| ≤ λ(t) for all t and λ is nondecreasing then
∫ t

t−τ

|b(r)| dr ≤

∫ t

t−τ

λ(r) dr ≤ λ(t)τ, (τ > 0);

therefore, ∆(t, ε) ≥ ε/λ(t) and we obtain the following
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Asymptotic stability for a differential-difference equation 377

Corollary 2.3. Suppose that there is a continuous nondecreasing λ: R+ → R+ such

that |b(t)| ≤ λ(t) for all t ∈ R+. If condition (i) in Theorem 2.2 is satisfied, and

(ii) for any ε > 0 and t̃i ∈ [ti − T, ti] we have

∞
∑

i=1

∫ t̃i

max{ti−1; t̃i−ε/λ(t̃i)}

[c(t) − κ|b(t + T )|] dt = ∞,

then the zero solution of (1.1) is asymptotically stable.

For example, if c(t) − κ|b(t + T )| ≥ c1 > 0 and ti+1 − ti ≤ K hold for all

t ≥ 0, i = 1, 2, . . . with appropriate constants c1, K, then
∫ ∞

0
1/λ = ∞ is sufficient

for (ii). This means that Theorem A of Burton and Makay is a consequence of

Corollary 2.3. What is more, function c can be omitted from condition (c) in

Theorem A.

Corollary 2.4. Suppose that the following conditions are satisfied:

(i) there are a sequence {ti} and a constant Γ > T such that ti+1 ≥ ti + Γ for all

i = 1, 2, . . ., and
∫ t

0
|b(s)| ds is uniformly continuous on the set

∞
∪

i=1
[ti − Γ, ti];

(ii) for any δ > 0 and t̃i ∈ [ti − T, ti] we have

∞
∑

i=1

t̃i
∫

t̃i−δ

[c(t) − κ|b(t + T )|] dt = ∞.

Then the zero solution of (1.1) is asymptotically stable.

Proof. Obviously, (i) implies condition (i) in Theorem 2.2. Moreover, for every

ξ > 0 there is a ρ = ρ(ξ) > 0 such that ti − Γ ≤ s ≤ t ≤ ti, t − s < ρ imply
∫ t

s
|b(r)| dr < ξ. This means that ∆(t, ξ) ≥ ρ(ξ) for all t ∈ [ti −T, ti], and condition

(ii) implies condition (ii) in Theorem 2.2 Corollary 2.4 is proved.

Theorem 2.5. Suppose that the following conditions are satisfied:

(i) there are a sequence {ti} and positive constants Γ > T , K such that ti + Γ ≤

ti+1 ≤ ti + K for all i = 1, 2, ..., and
∫ t

0
|b(s)| ds is uniformly continuous on

the set ∪∞
i=1[ti − Γ, ti];

(ii) for every β > 0 there is a γ = γ(β) > 0 such that
∫ t

t−β
[c(s)−κ|b(s+T )|] ds ≥ γ

for all t ∈ ∪∞
i=1[ti − T, ti];

(iii)
∫ t

t−T
|b(s)| ds is bounded on R+.

Then the zero solution of (1.1) is uniformly asymptotically stable.
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Proof. By condition (iii), for the Lyapunov functional (2.1) we have V (t, ϕ) ≤

W (‖ϕ‖) with an appropriate continuous increasing function W vanishing at zero.

As is proved in [9, Theorem 5.2.1], the zero solution of (1.1) is uniformly stable;

namely, for every ε > 0 there is a δ(ε) > 0 such that ‖ϕ‖ < β implies |x(t; t0, ϕ| < ε

for all t0, t (t0 ≤ t). Denote σ := δ(εo).

For the uniform asymptotic stability it is enough to show that for every η > 0

there is a S(η) such that ‖xt0+S(η)(·; t0, ϕ)‖ < δ(η) for all t0, ϕ (t0 ≥ 0, ‖ϕ‖ < σ).

Let j denote the smallest i ≥ 1 with ti ≥ t0. Suppose that ‖xti
‖ ≥ δ(η) for

i = j, j + 1, ..., J . By the uniform continuity of
∫ t

0
|b| (see the proof of Corollary

2.4), the inequality analogous to (2.9) reads as follows:

(2.10)

V (tJ , xtJ
) − V (t0, ϕ) ≤ −β

J
∑

i=j

∫ t̃i

t̃i−∆(t̃i,δ(η)/2α)

[c(t) − κ|b(t + T )|] dt

≤ −β

J
∑

i=j

∫ t̃i

t̃i−ρ(δ(η)/2α)

[c(t) − κ|b(t + T )|] dt

≤ −β(J − j)γ(ρ(δ(η)/2α)).

On the other hand, we have

V (t, xt) − V (t0, ϕ) ≥ −|ϕ(0)| −

∫ t0

t0−T

|b(s + T )| ds max
|x|≤ε0

|f(x)|.

By condition (iii) the right-hand side has a lower bound independent of t0 and ϕ.

Therefore, from estimate (2.10) it follows that J −j has an upper bound depending

only on η, which proves the existence of S(η).

The theorem is proved.

3. Remarks, examples, open problems

1. In our first example we show that condition

(a0) c(t) − |b(t + T )| ≥ 0 (t ≥ 0)

and the boundedness of b do not guarantee the asymptotic constancy of the solu-

tions of (1.3). The example is of the form

(3.1) x′(t) = −a(t)x(t) + a(t − 1)x(t − 1)
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Asymptotic stability for a differential-difference equation 379

where a is nonnegative, continuous, ω-periodic with ω 6= 1 and not 1-periodic.

Thus, (3.1) is a particular case of (1.3) with c(t) = a(t), b(t) = a(t − 1), T = 1.

Clearly, (a0) and the boundedness of b are satisfied.

From the results [1, Theorem 2 and Proposition 8] it follows that each solution

x(·; t0, φ) of (3.1) tends to the unique ω-periodic solution y of (3.1) for which

y(t) +

∫ t

t−1

a(s)y(s) ds ≡ x(t0) +

∫ t0

t0−1

a(s)x(s) ds

holds. Since a is not 1-periodic, y cannot be a constant function. Therefore,

limt→∞ x(t; t0, φ) does not exist.

A more direct example can be given as follows. Let a be a 2-periodic function

defined by

a(t) =

{

4 − π
2 t, if −1 ≤ t ≤ 0;

−π cos πt+(2−sin πt)(4+π/2−πt/2)
2+sin πt , if 0 ≤ t ≤ 1.

Then a straightforward calculation gives that x(t) = 2+sinπt is a solution of (3.1).

2. The next example shows that conditions (a) and (b) in Theorem A are not

sufficient to guarantee the asymptotic constancy of all solutions of (1.3). The

functions b and c of this example will be piecewise constants and equation (1.3)

will hold only almost everywhere. By using the discontinuous example, it can be

easily modified to get an example with continuous b and c.

In the example we will have b(t) ≥ 0, t ≥ 0, and φ(s) ≥ 0, −1 ≤ s ≤ 0.

These imply x(t; 0, φ) ≥ 0, t ≥ 0. Let ε := c1 > 0 be given. Assume that T = 1.

First choose a strictly decreasing sequence {αn}∞
n=0 such that limn→∞ αn > 0. We

can find another sequence {δn}∞
n=1 with 0 < δn < 1

2 and αn−1 > (1 + εδn)αn,

n = 1, 2, . . ..

Let φ ∈ C([−1, 0], R+) such that φ(0) > α0. Then x(t) := x(t;φ, 0) ≥ 0 for

t ≥ 0 whenever b(t) ≥ 0. Define τ0 = 0 and c(0) = ε, b(0) = 0. Let k ≥ 0 and

suppose that τ0, τ1, . . . , τk and c(t), b(t) on [0, τk] are given such that x(τk) > αk.

Let

c(t) = dk, b(t) = 0 (t ∈ (τk, τk + 1]),

where dk > 0 is so large that

(dk − ε)

∫ τk+δk+1

τk

x(s) ds > αk.
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There is such a dk because x(t) = x(τk)e−dk(t−τk) for t ∈ [τk, τk + 1] and thus

(dk − ε)

∫ τk+δk+1

τk

x(s) ds =
dk − ε

dk
x(τk)(1 − e−dkδk+1) → x(τk) > αk

as dk → ∞.

Choose τk+1 ∈ (τk + 1, τk + 1 + δk+1] such that if

b(t) = dk − ε, c(t) = ε (t ∈ (τk + 1, τk+1])

then x(τk+1) > αk+1. If there were not a τk+1 with this property, then from

b(t) = dk − ε, c(t) = ε on (τk + 1, τk + 1 + δk+1] it would follow that

x(τk + 1 + δk+1) = x(τk + 1) + (dk − ε)

∫ τk+δk+1

τk

x(s) ds

− ε

∫ τk+1+δk+1

τk+1

x(s) ds > αk − εδk+1αk+1 > αk+1,

a contradiction.

Therefore, by induction, b(t), c(t) can be defined on [0,∞) such that

(3.2) c(t) − |b(t + 1)| ≥ ε (t ≥ 0)

and lim supt→∞ x(t) ≥ limn→∞ αn > 0. Then limt→∞ x(t) cannot exist since from

(2.5) and condition (3.2) we have
∫ ∞

0
|x(t)| dt < ∞.

Conditions (a) and (b) are satisfied for this example with c1 = ε, T = 1,

tk = τk, K = 2.

3. Let us remark that if (a0) is replaced by

(A0) c(t) − |b(t)| ≥ 0 (t ≥ 0)

and
∫ t+T

t
|b(s)|ds is bounded, then it follows from [17, Theorem 3] that all solutions

of (1.3) have a finite limit (not necessarily zero) as t → ∞. Several papers used

conditions of the type (A0) to study the asymptotic behavior of solutions of (1.1)

instead of (a0) or (a), that is the functions b and c were compared at the same

times (see e.g. [7], [9], [11], [16], [17], [19] and references therein).
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Asymptotic stability for a differential-difference equation 381

4. Now we present an example to show that if

(Aε) c(t) − |b(t)| ≥ ε for some ε > 0

then the limit limt→∞ x(t) does not always exist for the solutions of (1.3). Using

methods of [17] it can be proved that if
∫ t+T

t
|b(s)| ds is bounded, then asymptotic

stability follows from condition (Aε).

Let ε > 0 be fixed. Let us choose a sequence {dn}∞
n=1 such that

dn ≥ ε, (1 −
ε

dn
)(1 − e−dn2−n−1

)(1 +
1

2n−1
) > 1 +

1

2n
, n = 1, 2, . . . .

Define the continuous functions b and c on [0,∞) such that

b(t) =







dn − ε, if t ∈ [n − 1
2n , n] (n = 1, 2, . . .);

0, if t ∈ [n − 1 + 1
8 , n − 1 + 3

8 ] (n = 1, 2, . . .);

arbitrary ≥ 0 otherwise,

c(t) =







dn, if t ∈ [n − 1
2n , n] (n = 1, 2, . . .);

max{8, ε}, if t ∈ [n − 1 + 1
8 , n − 1 + 3

8 ] (n = 1, 2, . . .);

arbitrary ≥ b(t) + ε otherwise.

Let φ(s) = 2 for s ∈ [−1, 0] and consider the solution x(t) := x(t; 0, φ) of

x′(t) = −c(t)x(t) + b(t)x(t − 1).

Then it is not difficult to see that 0 < x(t) ≤ 2 on [0,∞).

If t ∈ [n − 1 + 1/8, n − 1 + 3/8] then

x′(t) = −c(t)x(t) = −max{8, ε}x(t)

and thus

x(t) ≤ e−8(t−(n−1+1/8))x(n − 1 + 1/8) ≤ 2e−8(t−(n−1+1/8)),

from which x(n−1+3/8) ≤ 2e−2 < 1/2, n = 1, 2, . . . follows. So, lim inft→∞ x(t) ≤

1/2.

Now assume that n ≥ 1 and x(t) ≥ 1 + 1
2n−1 if n − 1 − 1

2n ≤ t ≤ n − 1. This

holds for n = 1 because x(t) = 2 for t ∈ [−1, 0]. Then from the definition of b and

c we obtain

x′(t) ≥ −dnx(t) + (dn − ε)(1 +
1

2n−1
) (n −

1

2n
≤ t ≤ n).
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Hence

x(t) ≥ e−dn(t−(n−1/2n))x(n −
1

2n
)

+ e−dn(t−(n−1/2n))

∫ t

n−1/2n

edn(s−(n−1/2n))(dn − ε)(1 +
1

2n−1
) ds

≥
1 − e−dn(t−(n−1/2n))

dn
(dn − ε)(1 +

1

2n−1
).

If n − 1/2n+1 ≤ t ≤ n, then

x(t) ≥ (1 −
ε

dn
)(1 − e−dn2−n−1

)(1 +
1

2n−1
) > 1 +

1

2n
.

Therefore, by induction, lim supt→∞ x(t) ≥ 1 follows and this means that

limt→∞ x(t) does not exist.

5. Finally, after analysing consequences of the different combinations of (A0) or

(Aε) with the boundedness type conditions on b, the following problems have re-

mained open:

(i) Does (A0) (or only (Aε)) imply the existence of the limits of the solutions

of (1.3) provided that
∫ ti

ti−T
|b(s)| ds is bounded for a sequence {ti} ↑ ∞ (i → ∞)?

(ii) Does (A0) (or only (Aε)) imply the existence of the limits of the solutions

of (1.3) provided (b) in Theorem A holds?

References

[1] O. ARINO and P. SEGUIER, About the behaviour at infinity of solutions of x′(t) =

f(t − 1, x(t − 1)) − f(t.x(t)), J. Math. Anal. Appl., 96 (1983), 420–436.

[2] L. C. BECKER and T. A. BURTON, Asymptotic stability criteria for delay - differential

equations, Proc. Roy. Soc. Edinburgh, 110A (1988), 31–44.

[3] T. A. BURTON, Volterra Integral and Differential Equations, Academic Press,

New York, 1983.

[4] T. A. BURTON and L. HATVANI, Stability theorems for nonautonomous functional

differential equations by Lyapunov functionals, Tôhoku Math. J., 41 (1989), 65–
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Hungary; e-mail: hatvani@math.u-szeged.hu

T. KRISZTIN, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged,
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