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Comparison theorems and convergence properties
for functional differential equations with infinite delay
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Dedicated to Lajos Pintér on his 60th birthday

1. Introduction

In the general area of stability theory for functional differential equations,
Lyapunov functions (Lyapunov-—Razumikhin or — Krasovskii functions) often are
employed instead of Lyapunov functionals [8, 12]. The derivative of such a function
with respect to the equation under investigation is estimated {rom above on some
appropriately chosen subset of the underlying solution (phase) space. The method
requires a comparison theorem (or theorems) since the Lyapunov function in ques-
tion usually is compared to a solution of a certain ordinary differential equation.

The techrnique of comparison theorems has been thoroughly investigated for
functional differential equations with finite delay. (See, for example, [2, 6, 9].) For
infinite delay cases Driver [1] obtained the first results, and his technique has been
generalized in several directions and applied to examine various notions of stability.
For instance, KATO [7] and Zn1cHENG [13] have obtained results for general ¢‘admis-
sible” phase spaces, while PARROTT [11] developed her work in terms of certain
(exponentially weighted) C, spaces. In a recent paper of the authors [3], this method
was applied for general C, spaces, but the comparison differential equation was only
a trivial one.

In the present paper we examine the technique of comparison results from several
points of view. In Section 2 we formulate general comparison theorems in terms of
arbitrary real functions and then apply the theorems (in Section 3) to obtain various
convergence results for these functions. Among thc consequences of Section 3 there
is a generalization of the main convergence result of [4] for semigroups on a special
function space.
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As may be surmised from the title, one of our primary motivations has been
to generate convergence theorems for solutions of functional differential cquations
with infinite delay. This is accomplished in Section 4 with the aid of the work in
Sections 2 and 3. The main thrust in Section 4 is to compare convergence prop-
erties of certain functionals W (=W (t, x,)) to corresponding properties of related
Lyapunov functions ¥ (=V (1, x(1))).

The paper is concluded with several examples given in Section 5.

2. Comparison theorems

Let w: R*XR*-~R* be a continuous function, f,, u,c¢ R* and let u(t) be
the maximal solution of

a {u’(t) = ot u(®) (=1)

u(ty) = 1y

on an interval [y, @) (fy<a=e). Let f: Rt—-R* g: R—~R*, and let g be conti-
nuous on [#,, o).

Theorem 1. If for all t€[ty, a) the inequalities

(A) g@) =f@),

(B f() = max {_max g(t+s), f(¢—7)} (r€l0, 1—4]),
are fulfilled and if for t¢[t,, a)

(&) 0<g(®= /10

implies

(Dy) D*g(?) = o(t, g()),

then f(to)=u, implies f(1)=u(t) (t€lty, a)).
Proof. First we remark that (A,), (B,) imply

@ timinf f(t—h) = ) (€ G, @),
® | timsup f(t+h) = f() (1€, ).

Let &é=0 and define the function

F(f) = max {, sup f(s), g} (tz=1).
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Comparison theorems and convergence properties 401

Clearly F is monotone nondecreasing, So, (2) and (3) imply F is continuous. Ob-
viously

@ g =fO=F@) (t=t)
and
) F(f) = max { _sup f6), Ft—r)} =
= max { Sup_ max {’_rrpsaéyféo gls+u), ft—n}, Ft—r)} =

= max {_13152?;0 glt+s), F—n)} (t =1y, r€[0, t—1)).

If g(#)<F(t), then by the continuity of g there is a =0 so that ax git+s)< |

<F(t). Hence by using (5) o
F(t+h) = max { [nax g(i+s), F(0} = F(1)

whenever 0<h=4. So, g(t)<F(t) implies D*F(t)=0.

Assume g(¢t)=F(t) and D*F(t)>0. Then there exists a sequence {J,} such
that §,>0, J,~0 as n—oo, F(t+4,)>F() and
F(t46,)—F(f)

Oy )

D*F(f) = lim

From (5) it follows that for any » there is a y,, 0<y,=4,, such that
g(t+y,) = F(t+4,).

D*F(f) = '}Lm

F(t+6,)—F(@) SIimsup g(t+7.)—g(?) =
— =Ing =

=D*g(t) = o(t, @) = o(t, f()) = o(t, FO)).

Since w is a nonnegative function, we obtain

D*F(1) = o(t, F(2)) (t€[t, a)).
By using this inequality, the continuity of F, F(fy)=max {u(%), ¢} and a well-known
differential inequality [9, vol. 1, pp. 15] we get

SO =F@®=u() on [4,a,),
where u,(¢) is the maximal solution of

{ug ) =0, u,®) (t=t)
u,(ty) = max {u,, &}

on [, a). If ¢~0-+, then a,~a and u,(#)—-u(¢) uniformly on every compact
interval of [t,, @). This completes the proof.
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Corollary 1. Let (A,), (B,) hold and suppose that (C,) implies
D2) D*g(®) = 0.
Then f(t) is a monotone non-increasing function on [t,, a).

Theorem 2. Suppose that a= <, (A,), (B,) are satisfied and (C,) implies (D),
moreover (i, u) is nondecreasing in u and the solutions of equation (1) are bounded on
[24, =) for every uy. Then }gl}o S(@) exists.

Proof. Since f is bounded below, it is enough to prove that V*f< e, where
V't f denotes the positive varialion of f'on [ty, ). Let fi(¢) be the maximal solution of
(1) on [t,, =) with #(f)=f(t,). Theorem 1 implies f(¢)=#() for ¢=t,. From
o(t, u)=0 and the boundedness of #(¢) it follows that &€ L([4,, =)). If 0<f(t)=
=g(t), then

D*g() = o(t, g(9) = ot f()) = o(t, 4(1)) = 4 (1) (1= 4).

That is Theorem 1 is applicable with w(t, u)=0'(¢).
Obviously the maximal solution of

{u'(t) =), t=4
u(ty) = f(t)

t
is u(f)=f(t)+ f &' (s) ds=f(t) +0(t)—8(t). Replace ¢, by ¢, and apply Theorem 1
4

to get
SO = f)+a@)—a@,) for all t{, =1 =1

Using that #(¢) is nondecreasing on [¢,, =), this inequality gives V*f<oo. This
completes the proof.

Remark 1. Theorem 1 is an extension of Driver’s result [1, Lemma 1]. He
examined the case f(f)= sup g(s), —e=a=¢, and g is continuous on [a, ).
a=s=t

Remark 2. Theorem 2 may be false if’ w(z, #) is decreasing in u. For example,
let
3—u if u=3
o, u)_{O if u=3,

and put f(¢)=g()=sin¢. Then all the assumptions of Theorem 2 are satisfied
except the monotonicity condition on @ (?, #) and lLI‘I}O f(¢) does not exist.

Further on, we need a sharper version of Theorem 1. Namely, inequality (D,)
will be required only on a subset of the set of the points of [#,, &) where (C,) is satis-
fied. In order to give this subset we introduce the following notation.
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Comparison theorems and convergence properties 403

Let us suppose a(t, r), p(t, ), h(z, ¥) are conlinuous functions on [z, =o)X R,
where =0 is a constant, p(Z, #) is nondecreasing in r, a(t,r)<r for all r=0,
t=0. Supposc that t=h(t,r), pt,r)=t for all r=0, t=t. Let ot r)=
=sup {s: p(s,r)=t}. It is not difficult {0 see that ¢(¢, r) is nonincreasing in r,
o(t,r)=t and if f is a locally bounded function on [z, =), ¢ (7, 7)< for all

"p>0, then therc is O<uy(=u(f; 7)) such that f(r)=u, on [1, o (z,uy)]. For
r=0, O0=z=s=¢ define the function

+ 3 -
(2,5, 1) = {D g(s) if a(t,‘ r) < g(), fl)=r forall v€[z s]
0 otherwise.

Theorem 3. Suppose g is continuously differentiable on [, =), (A,), (By) are
satisfied on [z, =) and that

t
(B f g%z s, t,r)ds <r—a(t,r)

for all ¥=0, t=o(t,r) t=z=h(t,r). Moreover, if the inequalities

(C) [0<g® =10, p(t fQ) =T,
2 la(t, f() < e@) = f0) = £() for all ve[h(Y, £(1)), 1]

imply (D)), then
f@) =uy for all ve[r, 6(t, u)]

) =u@® (¢loG, u), a),

where u(t) is the maximal solution of (1) on [t,, a) with ty=0 (t, u).

implies

Proof. Define #,=0(z, #,) and for r=t¢,

G(t) = max (g(¢), uy), F(r) = sup max (f(9), o).

NS
Then in the same way as in the proof of Theorem 1 we can see that
GH=F@) (t=t),
F() = max {_g&:éo G(@t+s), F(t—r)} (¢ =, re0, t—1,]),
G()<F(t) implies DTI'(t)=0, and if G(t)=F(t), D*F(t)>0 then D*F(t)=
=D+G(7). It is easy to see that in the case t=ty, G(t)=F(), D*F(t)=0 the
following relations are true: F(¢)=f(t)=G(t)=g()=u,, %g(t):D*‘G(t). We

want to show that in this case D*G(#)=w(t, G(?)) is fulfilled, too. This would be
sufficient to the completeness of the proof by using Theorem 1.
Since F(z)=f() implies f(v)=f() for all v€[h(t, (), t], by the conditions
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of Theorem 3 it is enough to prove that a(t,f(t))<g(v) for all ve[h(z, £(2)), t].
Suppose the contrary, that is there exists a z€[h(z, f(t)), £] such that a(z, f(2))<g(v)
for all v€(z, 1], a(t,f(t))==g(2). Then gX(z,s, 1 f(t))=D*g(s) for all s€(z,t).
Therefore, by inequality (E,) one gets

JO—a(t, ) = g()~2@ = [ g*(z s, 1, D) ds < f(D—a(t, £),

which is a contradiction, thereby completing the proof.

We can extend Theorem 2 in & similar way:

Theorem 4. Suppose that a=-oo, (A;), (By), (By) are satisfied and (C,) implies
(D,), moreover w(t, u) is nondecreasing in u and the solutions of equation (1) are
bounded on [ty, =) for every uy. Then lim f(¢) exists.

If we analyse the proof of Theorem 3 we can find that the differentiability pro-
t
perty of function g(z) is used only in relation g(¢)—g(z)= f g*(z, 5,1, f(2)) ds,

where z€[h(z, f(¢)), t]. So, if h(t, ¥)=t, then it is sufficient for g to be continuous.
Therefore, a J. KaTo and W. ZHICHENG type comparison theorem [7, 13] can be
deduced from Theorem 1. We shall formulate it in the next

Corollary 2. Assume t©=0, g: [t, )=>R* is a continuous function and

p(tg@®) =1, 0<g®)= g(s)

P6 oy Bt
imply
D*g (1) = w(t, g(®)).
If there is uy=0 such that o(z, up)<oo, g(t)=u, on [1, 0(t, uy)], then g(t)=u(t)
for all t€[o(z, uy), @), where u(t) is the maximal solution of (1) on [t,, @) with ty=
=0(1, Up)-

Proof. Define h(s,r)=t, and f(t)=maxg(s) for r=t. If p(s, f@)=r,
0<g(t)=f(t), then g(z)==max g(s), consequently g)= g(s),

T=s=t p(t, f(t))ss§t

therefore (D,) is fulfilled, and the assertion follows from Theorem 3.
Z. MikoLAJSKA [10] used a comparison result analogous with the special case
p(t, r)=t,. This caseis stated in the following corollary. The proof is omitted because

it is similar to that of Corollary 2.

Corollary 3. Suppose t=t,, g: [r, 2)~R™ is continuously differentiable,
(B)) is satisfied for all r=0, t=t,, t=z=h(t,r). If h(t,¥)=t for all r=0, t=t,,
and if t=t,,

a(t, g(1) < g =

K(t, g(t))SsSt h(t, g(t))ssst g( ) = g(t)
imply (D,), then nax g(8)=u, implies g(t)=u(t) for all t=t,.
=s=lo
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Comparison theorems and convergence properties 405

3. Convergence properties of real functions

In the previous chapter sufficient conditions on functions f and g were given to
guarantee the existence of the limit of fas ¢—e<, Now, we show that it is possible to
modify condition (B,) such that the existence of }im f(®) implies that of }in;lo g@).

Lemma 1. Suppose (A,) for t=t, and that there exists a function
h: R*XR*—->R* such that

) fim (=1, ) =0 (= 0),
(Bo) f)= _max g(t+s)+h(r, 1) (1= 1t,7€l0, t—1).
Then lirtr_l’ sup g = Iil}l sup J@.

Proof. (A,) implies lirp»selzp g(t)élil}l_’{ﬂlp f(@). On the other hand, if
c=1ir}1»s°1.1p g(t)<oo, then for all &=0 there is a T=T(g)=¢t, such that g(¢)=
=c+e¢ for t=T. By (B,) we have f(¢#)=c+e+h(t—T,t) for all r=T. Using
(F,), we obtain lirp»sclzp Sf({t)=c+e. Since ¢=0 is arbitrary, the theorem is proved.

Theorem 5. Suppose g is uniformly continuous on [t,, ), (Ay) is satisfied for
t=t, and there exist functions h, ki, ky: RTXR*—>R* such that (F,) is fulfilled,
ki (r, u), ky(r, ) are monotone nondecreasing and comtinuous in u for all ré R,

k0, u) = Egll k,(r,u)=u (u=0),
ko(ryu)<u forall r,u=>0, ky0,u)=u and
(By) (&) = max {ki(r, _max g(t+ ) ka(r, _max gt+9))}+h(, 0
(t = ty, ©€[0, t—1,], €0, 1]).
Then }1}; g(t)=c if and only if }ip;f(t):c.
Proof. If }1}& g(t)=c, then according to (A,), (By) with ¥=0 and Lemma 1

c= li?_‘l’ Lnf g = 111'1_1 ;I?f S = lirtll sup f(#) = lirtr}’ sup g() =c,

i.e. }Lrgo f(H=c

Now, assume }f.nl f(@®)=c. It is enough to prove that liltn °ic'nf g@)=c. Sup-
pose the contrary, i.e. lim jonf g(t)<c. Let cle(lign jonf g(?), ¢). From the uniform
continuity of g thereisa 6=0 such that #;, t,=#,, |f—t|<06 imply |g(t)—g(t)|<
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<(¢—cy/4. Decfine a sequence {#,} such that #,-»o0 as n-»e and g(s,)=sc, for
n=1,2,.... Then

max 0 8 (t wks) = ml‘}gls)éo (g (tu +95)-g (tn)) +8 (tn) =

~ 8T
=G c+3¢y .
-4 4
Let r€(0,0) be chosen such that k(r, (c+3c;)/4)=(c-+cy)/2. Choose &=0,

T=T(e)=t, such that ky(r,c+e)<c and g()=c+e for ¢=T. From (B, we
obtain

+c¢ =

f(t) = max {ky(r, max g(t,+9), ka(rs max _ g(t, +9))}+

SZ=-r

ct+e
2

for ¢,z=T. Using :13.12 h(t,—T, t,)=0 we get the contradiction

+h,=T, 1) = max{CEL ko)) +h (T, 1)

c= lirp*sup S(t,) = max {(c+c))/2, ky(r, c+8)} <c.

This completes the proof.

4. Applications for functional differential equations

Let X be a Banach space with the norm || . ||y and let B be a space of functions
mapping R~ into X with a semi-norm | . ||z. For a function x: (—<, a)»X and
for t€(— e, a) define x, as a function from R~ into X by x,($)=x(+s), s€R".
For t€R* define B, as the set of @€B such that ¢,€B for each t€[—, 0] and
¢ () is continuous on [—7, 0]. Let DcB andlet f: R*XD—X be a given function.
Consider the functional differential equation

6 x() = f(t, x).

A solution of equation (6) on [z, a), fp<a=< is a function x: (— <, a)=X such
that x,€D for t€[ty, a), x(¢) is continuous on [z, a), differentiable on (¢,, a)
and X(1)=f(t, x,) on (¢, a).

Let V: RXX—R* be a locally Lipschitzian function.

Suppose that there exists a function W: R*XD-R* such that

(AV) V(t,e0) =W (,¢) (1€R*, ¢ED)

and

(BVY) W(t, ¢) = max {_max V(t+s, (), W(t—1,0_,)}
(teR™, r€[0, £], 9EB,).
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If x(¢) is a solution of (6), then g(¢)=V (¢, x(t)) and f(t)=W(t, x,) satisfy
conditions (A,) and (B,). So, we may apply Theorem 1, when the derivative of
V(t, x(t)) has an appropriate estimate on the set ¥ (z, ¢ (0))=W (1, ¢).

If W@, @)= sup V(t+s, o(s)), T€R*, then we get a RAZUMIKHIN type com-

parison result [6, 12]. One may put

(N W (& ) = sup V(t+s, ¢ ()
or
® w(t, o) = sup I(s, V{45, 0 ()

where /: R™XR*—R* is a continuous function such that I(s;, v)<I(8s, v,)<0,
for all s;<s,<0, 0=v,<v, and supposing that the supremums on the right-hand
side of (7) and (8) exist for all p€D. If I(s, v)=e"v for a y=0, then we obtain the
case examined by M. PARrROTT [11].

Let k: R——R* be a measurable function such that k(s,)=0 implies k(s)=0
for all s=s,, for each r=0

0
(9 ess sup —lf%g{l+ fk(s)dsél

SER™~, k(s)>0

0
holds and f k(sV(t+s, ¢(s))ds exists for all =0, p€D. Then one can choose

(10) W(t, ¢) = max {V(t, »(0)), f k(s)V (t-+s, ¢(s)) ds.

We remark if k is continuous then (9) implies k(s)=Me” for all s€(— oo, (]
where M, y=0. On the other hand, (9) is true if k(s)=Me" such that y=M=0.

Our comparison results are useful to prove stability, uniqueness and continuous
dependence of the solutions (see e.g. [1]). In this paper we deal with the convergence
properties of solutions as #— o, From Theorems 2 and 4 we get the following results.
The derivative of V' with respect to (6) is defined by

V(t, @) = lim sup (V' (t+h, ¢ ©)+ (s 9))~V(t, p(0)) b
Corollary 4. Suppose (AV), (BV,) and

(DV) V(t, 0) = o(t, V{1, 0(0)
whenever
(CVY) 0 <V(t, 0(0) =W(t, ¢)

Jor t€R*, @€D, where w: R*XR*~>R* is continuous, nondecreasing in its se-
cond variable and the solutions of the equation 1 (t)=w(t, u(¢)) are defined and bounded

12
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on R*. Then for each solution x(t) of (6) defined on [0, =) the limit }312 w(t, x,)
exists.

Corollary 5. Let a(t, r), p(t, r), h(t, r) be the same functions as in Theorem 3
and for r=0, 0=z=s=t define

g (z s, t, ¥) = sup{V(s, 9): a(t, 1) <V (v, (v—5)),
W(v, p,—s) =7 for all v€[z, s]}.

Suppose V (¢, x) has continuous partial derivatives, (AV), BV)), (E,) are fulfilled
and (DV) is true whenever (CV4), p(t, V (¢, ¢(0)))=0 and for all zE[h(z, V (2, ¢(0))), {]
the inequality

a(t, V(5 p(O) <V(z, 0(z—0) SW (2 0,-) SW (1, 9)
is satisfied. Then for each solution x(t) of (6) that is defined on [0, <), the limit
}ilg W, x;) exists.

Generally, the existence of the limit tl}!l:lo W(t, x,) gives little information about

the asymptotic behavior of solutions. For example, if W(z, ¢)=sup V(¢+s, (),
SER™
then the existence of 111»12 W(t, %) means the boundedness of ¥ (z, x(¢)) on [£, =)

only. Using Theorem 5 we may obtain conditions for W(¢, ¢) to guarantee the
existence of }ilg V(t, x(¢)), which gives much more information about x(¢).

Corollary 6. Suppose that all conditions of Corollary 4 (or 5) are satisfied
and there exist functions ky, ky: RTXR*—Rt* and h: R*XR*XD-—R* such that
ky(r, u), ky(r,u) are monotone nondecreasing and continuous in u for all reRt,
rtu‘g_ ki(r,w)=u for all u=0, ky(r,u)<u for all r,u=0, ky(0,uw)=u for all
u=0, h(t—r,t, 9)~0 as t—o for all r=0, @€ED, moreover

(BV,) W(t, ¢) = max{ky(r, max ¥(r+s, ¢(s))),
ke(r, _max V(t+s, o@))}+h(s, 1, ¢-)

for all teR*, <€[0, t], r€[0, 1], @€B_.ND. Then ,llnol V(t, x(t)) exists for every
solution x(t) of (T) which is defined on [0, =) and for which V(t, x(t)) is uniformly
continuous on [0, o).

If W(, ¢) is defined by (8), where I(s, v)-~-0 as s——o for every v=0,
V(t+s, 9(s)) is bounded on R~, then (BV,) is true with k,(r, w)=u, ky(r, ¥)=
=I(—r,u) and h(r, t, p)=sup I(s,V(+s, (). If W(, ¢) is defined by (10),

0
f k()V(t+s, ¢(s)) ds<oo for all €D and t€R*, k(s) is nondecreasing,
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0
f k(s)ds=1, then (BVy) is true with
0 0
ey (ry ) = u (14 [ k@yds)'— [ ks)ds)™,
0
ky(r, u) = u (1 -}—( f k(s)ds]z]_l,

h(z, t, ) = fo k(s—)V(t+s—1, ¢(s)) ds.

We get an important special case if
(11) D=B, V(x)= "x“Xs W (, ®) = "(PHB

Then (AV), (BV,) and (BV,) are axioms for these norms as it is used generally in
functional differential cquations with infinite delay.
These axioms resemble axioms of admissible phase spaces in which the estima-

tion
(1) ploOle = lols = K@) swp_ oL+ M@Olo-ds

is true with y=>0 and some continuous functions K, M: R*—R* [7]. If y=1 and
K@)+M()=1 then (12) implies (AV) and (BV,) in the case (11). So (AV) and
(BV,) are true in special admissible phase spaces. In case (11) property (BV,) cannot
be compared to (12).

In case of several phase spaces used in theory of functional differential equations
with infinite delay we may define a norm such that (AV), (BV,) and (BV,) are ful-
filled. So, in the special case (11), if

a) B=BC is the space of bounded continuous functions on (—eo, 0] into X

with norm
lelsc = Sé‘i{P_ lo()lx

then (AV) and (BV,) are fulfilled but (BV,) is not statisfied. If we put
Ielac = sup p()lelx,

where p: R=—R*, p(s)<p(sy)<1 for all s;<s,<0, p(0)=1 and s]jglmp(s):o,

then (AV), (BV,) and (BVy) are fulfilled.
b) B=C, (y€R") is the space of continuous functions ¢ on (—eo, 0] such that

slil_nm e*llo(s)llx exists and

"‘P"c., = sup e”[@(s)]x,
SER-
12+
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then for y=0 (AV), (BV,) and (BV,) are fulfilled. For y=0 (AV), (BV, hold, but
(BV,) does not.
¢) B=I%, p=1 is the space of measurable functions on R~ such that

0
' [ K@lp@|? ds <<,

0 0
where k: R™—R* is measurable, [ k(s)ds=1 and [ k(s)ds=0 for all r=>0
A -

then (AV) and (BVy) are true with the norm
0
[lzp = max (Ie@lx, ( [ k() lo )1k ds)").
If (9) is valid for all #=0, then (BV,) is fulfilled, too.

5. Examples

1. Consider the equation
0
(13) i) =H(t,xO)— [ k@Ex@+s)ds).

Here H: R*XR-R is continuous, H(,uw)u=0 for all t€R*, ucR;

sup |H(t, u)|<oo for every compact set KCR; k: R™+R™* is nondecreas-
teER+,u€K

ing, measurable, f k(s)ds=1. So, for each constant ¢, x(t)=c is a solution of

equation (13). Let us choose L; as a phase space for (13). Then the existence and
continuity of a solution through every @€L; is insured, further, if a solution x(z)
is bounded, then it can be continued as - oo.

Assertion. If (9) is fulfilled then_every noncontinuable solution of (13) has a
finite limit as t— oo,

In order to prove this assertion, we define the following functions for 7€ R*,
peL;. V(t, ¢(0)=le0),

w(t, ¢) = max (lo@l, [ k©)lo(s)|ds).

If x(¢) is a noncontinuable solution of (13) on [¢,, @) through @, then g(r)=V(z, x(z))
and W(, x,) satisfy the assumptions of Corollary 1 with w(?, #)=0. So, we have

%] = max (¥, [ k@)x(t+5)] ds)
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for t€[t,, a). Consequently, x(¢), X(¢) are bounded, and a=-oo, therefore we may
apply Corollaries 4 and 6 with V(z, ¢(0)), W(#, ¢), which implies the assertion.

Assertion. If k(s) is differentiable and k'(s)=k(0)k(s) for s€R~, then
every bounded solution of equation (13) has a finite limit as t- e,

Indeed, let x(¢) be a bounded solution of (13) on [1,, <) and put g() =V (2, x(2)),
S =W(, x,) where V and W are defined above.
We want to estimate the derivative D*f(¢). We have three cases:

0
a) @ = [ k(s)x(t+s)|ds.
Then f(t)=g(t) and (13) implies %|x(t)|§0.

b) @ < [ k(s)|x(+s)| ds.

In this case
0 t
= [k@@+s)lds= [ k(s=DIx(s)ds,

so using the inequality

(14) -j—t / k(@)L (t-+5)lds = kO 1x(O)] - [ K @—Dlx(s)ds =
skOIx@Ol— [ K()lx@+s)] ds =

= k(O (Ix@I= [ k@Ix@+3)| ds)
we get %f(t)éo.
©) @ = [ k()lx(t+s)| ds.

Then using the case a) and inequality (14) we have

D f(&) =D+ x| +D* [ k(s)|x(t+s)| ds =

= DHx()+k©) (X~ [ k@)|x(t+5)| ds) = 0.
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Therefore D'f(¢)=0 for all t€[ty, ), so 'l_ip; f(#) exists, Consequently,
Theorem 5 implies our assertion.

2. These results may be extended to the equation

(15) %(2) = H(t, x(2), h(t, %)),
where
H: R* XR"XR" -~ R, h: R* XL}~ R",

0
lnt ol = [ ki)l ds, SUD 1=, u, v)] <<

mvek,
for every compact set K< R" and

sup (H(, u, v), u) = p(D)|ul?
ol

where (.,.) means the inner product in R, and p: R*—R*, fw p(8)ds< oo,
We may put V(z x)=| x| =(x, x)/* and . ’
w(t, ¢) = max{lo@l, [ k@leI ds},
and wc assert that }Ln.l lx (¢)] exists for every solution of (15), if k satisfies the same
properties as in Example 1.
3. Let us examine the equation
(16) x() = —p@OxO)+q)) x(t— ().

Let p, g, ¢: R*—R be continuous, bounded functions, ¢(¢#)=0 for t€ R*. Choose
BC as a phase space for (15).

Put V (¢, x)=x, W(t, )= sup e*|p(s)|2, where y=>0 is a constant. Then
SER-

V(t, ) = —20 (1) 9*(0)+2¢() @ )9 (—2()),
therefore, if W(, @)=V(t, ¢(0)), ie.
e~ O p(—o())|* = ¢*(0), and |g()|e"® = p*(d),

V(t, 9) = —2p (1) 92(0)+2]4 (1) €*® 92(0) = 2p~(OV (1, 9(0)),

then

where and in the sequel, for any a€R, a*,a~ are defined by a*=max {0, a},
a~=max {0, —a)}, respectively. Similarly to Example 1, the existence of solutions
for all large ¢ and their boundedness together with the derivative can be proved.
Therefore, Corollary 6 gives:
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Assertion. If p~€L' and there exists y=0 such that |q(t)| e"®=p=*(¢)
for all t€R™*, then x(t)—constant as t—o for every solution of (16).

4. Consider the equation
(17) x(0) = q()x(t—e(),

where ¢, 9: R*¥—R are continuous, ¢ is bounded, ¢(¢#)=0 for t€R*, and there
exists a T=0 such that t—g()=0 for all ¢t=T. Choose BC as a phase space.

Assertion. Suppose that there exists a strictly increasing continuous function
g(s) on R~ such that slir_n@g(s):O,

' [ la@lg(=e)ds <1
for all t=T and e

[ a*®lg(=e@)dt <o,
T
Then for every solution x(t) of equation (17) the limit lim x(t) exists.

Put V(6 x)=lxl. Wt 9)=sup g@le@l pG1=0 h@n=(=e®)*

2= [ laolg(-e)ds).

t—o(t)

a(t,r) =

Then ‘
V (s, 0) = q(s)p(—0a(s)) sgn ¢ (0)
for all @€BC, so we have
q*(z, 5,1, 1) = 7|q(2|/g(~e(2)),
therefore (E,) is fulfilled for ¢=T. If ¢=T, 0<|p(0)|=sup g(s)|e(s)| and
a(t, lp @) < lo @I = sup gb+2)lo(+2)| = sup g()le G|

for all z€[—(t—q(#))*, 0], then sgn ¢(0)=sgn@(—g(t)) and therefore
V(t, ¢) = ¢t O (4 9(0)/g(—e(®).

The boundedness of solutions and their derivatives can be proved similarly to Example
1. So, we can apply Corollary 6.
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