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On the convergence of solutions of
functional differential equations

T. KRISZTIN

1. Introduction

The application of Ljapunov functions and functionals has proved to be useful
in the study of the stability of solutions of functional differential equations. Such
investigations were initiated by N. N. Krasovski [9] and B. S. RAZUMIKHIN [10].
The Ljapunov functions and functionals are usable for studying other properties,
too. For instance, S. R. BERNFELD and J. R. Happock ([1], [2], [4]) examined the
existence of the limit of solutions as ¢—oo by the aid of Ljapunov functions. But
their method was not applicable when the right-hand side of the equation is the sum
of an ordinary and a functional part of the same order. But such equations have
occurred in the applications, for example in the investigation of biological popula-
tions [3]. In this case the problem was solved for certain autonomous and periodic
equations only [5], [6]. In this paper we give a sufficient condition for the existence
of the limit of solutions in case of non-periodic equations. Our main result guarantees
the existence of the limit of a Ljapunov function along the solutions as t—c. We
present several applications in which we show that the solutions or their norm tend
to a constant as f—c. Among these, we study a stability example of N. N. KRA-
sovskli proving that his assumptions imply the existence of the limit of solutions
in addition to the stability of the zero solution.

The main theorems are valid results for {unctional differential equations in
any Banach space X. But they also yield new results for the special case X=R
(Section 4).
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46 T. Kriszlin

2. Notations and defiuitions

Let R be the sct of real numbers and R the set of nonnegative real num bers.
Let X be a Banach space with norm |- | and let C=C([—r, 0], X) denote the space
of continuous functions which map the interval [—r, 0] into X, where r=0. For
@€C define o =_max ()], If x: [ty—r, fo+A)—>X is a continuous function
(to€R™", 0<A=c0), then for #€[ty, -+ A4) the function x,€C is defined by x,(s)=
=x(t+s), —r=s=0.

We consider the nonlinear, non-autonomous functional differential equation

2.1 x() = F(, xy),
where F: R'XCp—+~X, CrcC.

Let t,€R" and ¢@o€Cy be given. A function x(:)=x(ty, po)(+) is said 1o
be a solution of (2.1) (with the initial function ¢, at #,) if there exists a number 4
(0<A=oc) such that x(-) is defined and continuous on [¢,--r, £,+4), absolutely
continuous on the bounded intervals of [t,, to+4), X, =@, x,€Cy for t€[ty, t,-+4)
and x(¢t)=F(t, x,) almost everywhere on [f,, f{,+A). In this paper we suppose

=00, 1.¢. the solutions of (2.1) exist for t=1, (see, for example, [7], [8]).

By a Ljapunov function we mean a continuous function V: [—r, ) X X —R,
The upper right-hand derivative D,V of a Ljapunov function ¥ with respect to
system (2.1) is defined by

D&ayV (¢, ¢) = Tim % [V(E+h 9O +hFE 9)—V (5 0©)]  ((t, P)ERT X Cy).

If ¥ is a Ljapunov function and (¢, p)€R* X Cp, then let
V(t,p) = sup V(t+s, ¢(s), V(@)= inf 0V(t+s, ¢ (5)).
0 —r=s=

—r=s=
Finally, for a Ljapunov function ¥ and given numbers O<#n=¢ define
SW,n,e) = {(t, )ERT XCp: V(1,0 O) = &, V(1,0) = 26, V(t, 0)=V (1, 0(0)) <1},
SW,n,8) ={(t, p)ERTXCy: V(t,0(0)) = —¢,
Vt,9) =—2¢ V(t,0()-V( ¢) <n}.

t

3. The main result
The main result guarantees the existence of the limit of a Ljapunov function
along the solutions of (2.1) as #~oo.

Theorem 3.1. Suppose that for a nonnegative Ljapunov function V there exists
a functional W: R* X Cp—~R with the following property: for every &=0 there exist
n=n()=0 and E=E(e)=0 such that
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@) if @, @)eSWV,n,¢), then
G w(t, 9) = E[V (1, 0)-V (1, 0 (O)]s .

@) if x(+) is a solution of (2.1) and (t,x)ES(V,n,c) for every (€[t t,]
(te=t,=ty), then

(3.2) V(ta, x(t2) =V (t,, x(1)) = j' ZW(t, x,) dt.

Then for each solution x(+) of (2.1) lim V(t, x(1)) exists.
We first prove the following lemma.

Lemma, If the conditions of Theorem 3.1 are satisfied, then for each solution
x(+) of (2.1) the function V(-,x.) is non-increasing.

Proof. Assume that (2.1) has a solution x(.) such that V(.,x.) is not a
non-increasing function. Then there exists a #=f, and in any right-hand side
neighbourhood of #; there exists a ¢ such that V(¢, x)=V(t,, x,)= V(t1, x(t,))=0.
Let ¢ be chosen such that O<e=<W(t;, x(#,))<2¢ and choose n=n(e), E=¢(e)
according to assumptions of the lemma. Obviously there exist ¢,, #; such that ;>

>t=t, fs—fz<€1, V(ts, x(t)=V(tr, x(t)) <V(ts, X(t5)) =28,  V(ts, x(t5)) —

—V(ts, x(tx))<n and if t€[ty, 1], then V(ty, x(1))=V(t, x(¥)) and V(, x)=
=V(ts, x(ty)). For such t,, t; we have (1, x)€S(V,n,&) provided t€[t, ;). Also
3.3 V(t,x)=V (1 x(®) = V(ts, (1)) =V (ta, x(12))  (t€[ta, 85

It follows from (3.1), (3.2) and (3.3) that

V(ts, x (1)) =V (ta, X (1)) = j 3 W(t, x)dt =

= f i E[V@E, x)-V(t, x@®)] dt = f i E[V (13, x (1)) —V (15, X (1)) ] dt =
= (t3—15)¢ [V (f3, x(ts))_V(fza x(fz))]-

1 .. - .
Hence r3—t2§?. This is a contradiction. The lemma is proved.

Proof of Theorem 3.1. Suppose that (2.1) has a solution x(-) such that the
limit  lim V(t, x(t)) does not exist. Then Jim V(t,x)=a>0 (this limit exists
by Lemma). Let ¢ be chosen so that 0<e<a<2¢ and choose n=n(e) and £=¢E(e)
according to the assumptions of the theorem. Then we can find a constant f
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(O< /}<min{%’-, a;—a}) and numbers £, £, such that
(3.4) 0 tz = fl = fo, fg“"fl = r,
(3.5 V(fz, x(tz)) _V(tls x(tl)) =,
(3.6) V(ty, )~ < g o=V (12, (1) < =,
0=V(ty, x(@)—V ([, x@) =B (t€[ts, ta]),
(3.7 V(t, x(@) =6, VPlty,x,) =2
(3'8) V(tls xtl)_V(tm x(f2)) = P
where y=0 and
]
. 1 1
( ° ) . —ké; k+l =¥
From (3.8) and the monotonicity of V (-, x.) it follows that
(3.10) V(t, x)—V(ta, x(t)) =y (€[t 1:D.

Since /3<~317~, by (3.6) we have

B V(t,x)—V(,x@®) =V, x)—a+ |oc—V(t2, x(f2))|+V(f2, x(t)) =V (t, x(1)) <

< T dhad=n (€, b,

From (3.5), (3.6), (3.7) and (3.11) we obtain (¢, x)€S(V,n, &) for t€[t, t,]. Thus,
(3.1) and (3.2) hold for (¢, x,) as #€[ty, t,]. Let t,€[t, ;] be the greatest number
for which

(3.12) V(ts, x(t2)) —V (%, x(%)) = ky (k =1,2,.., [—g—])
From (3.10) and the choice of 7, it follows that

(3.13) V(t, x) =V (t, x(®) = (k+1)y (tE[Tk, Ll k=1,2,..., [%]J
By (3.1), (3.2), (3.12) and (3.13) we have

T

P =V (Tho1, X)) =V (1, x (%)) = f_lW(t, x)dt =

o
= ]‘ulé[V(t, x)—=V(t x(O)]dr= tfk_lz:(k+1)yclt=

= (ty_1—Tté(k+ 1)y [k =1,2, ,[%], To = t2J.
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Hence t4_q— = é k . Thus, by (3.9)

[5]
h—th = tz*’f[ﬁ] = (=) + (@~ +... +(z [p] I—T[p]) ! k: T—{_l~—1>r’

which contradicts (3.4). This completes the proof.

Remark 3.1, If the Ljapunov function ¥ in Theorem 3.1 is locally Lipschitzian
and W-—D(2 »V, then for each solution x(.) of (2.1) the assumption (3.2) is
satisfied and even

V(t2, %)~V (12, x(t) = f DV (tx)dt (b =1, = 1),
This can be shown as follows. If x(¢)=F(t, x,), then x(t+h)=x()+hF(, x)+
+o0(4) (h—~0+). From the Lipschitz condition for ¥ we obtain
V(t+h, x(t+h)—V(t, x(®) = V(t+h, x()) +hF(t, x))-+Llo(h)| -V (¢, x(2))
(h ~0+),

where L is the Lipschitz constant for ¥ on a neighbourhood of (z, x(¢)). Hence
D*V(t, x(t))=D} )V (t, x,), where D*V(t, x(t)) is the upper right-hand deriva-
tive of ¥ along the solution x(¢) of (2.1), that is

DtV (t, x(®) = hﬁﬁ % [V (¢+h, x(t+h) =V (2, x(©))].

Likewise we can prove D*V (¢, x(t))=D},V(t, x) and we obtain
(3.19) DV (t, x(1)) = DV (¢, X))

(3.14) was proved by T. Yosaizawa [11] for ordinary differential equations in the
case X=R™. Since V is locally Lipschitzian, ¥ (-, x(-)) is absolutely continuous
on every bounded interval of [f,, =) and thus

(3.15) V(ty, x(t)) =V (t1, x(tp) = j 2D+V(t, x(@)dt (ty =t = 1),

t

From (3.14) and (3.15) it follows that our statement holds.

Corollary 3.1. If for every e>0 there exists an n=n(e)>0 such that
(¢, 9)€S(l@(0)|, m, &) implies D 1)|@|=0, then for each solution x(+) of (2.1)
glg lx(®)| exists.

Proof. We apply Theorem 3.1. Let ¥(t, x)={x| and W(¢, p)=D¢lo|. Since
the condition of Corollary 3.1 is stronger than condition (i) of Theorem 3.1 and the

4
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function V is locally Lipschitzian, from Remark 3.1 it is obvious that the limit
exists.

Corollary 3.1 is due to J. R. HADDOCK [4].

In the next corollary of Theorem 3.1 we do not assume that the Ljapunov func-
tion is nonnegative.

Corollary 3.2. Suppose that for a Ljapunov function V there exist functionals
Wi, Wyt RY*XCp-~R with the following property: for every &=0 there exist
n=n(e)>0 and E=E(e)=>0 such that

D & )SW,n,8) implies Wyi(t,9) = [Vt 0)—V (2, 0 0))],
Gi) @, @)eS(V,n,8) implies Wy(t, ¢) = L[V (L 0(0)-V (1, 9)],
(ill) U“ (t9 xt)GS(V’ LB 8) (te[tla ta], t0 = tl = tz), then

V(ta, x(t2) =V (11, x(t)) = f AN
@) i Gx)eSW,n,8) (t€lty,t), to=t, =1,), then

V(ty, x(@))—V (t2, x(t5)) = j ’ Wy (t, x,) dt,

where x(+) is a solution of (2.1).
Then for each solution x(+) of (2.1) hm V(t, x(t)) exists.

Proof. Let Vy(t,x)=max {V(t,x), 0}, V,(t, x)=—min {V(t,x),0}. From
conditions (i), (ii), (iii), (iv) of Corollary 3.2 it follows that V,, W, and V,, W, sat-
isfy conditions (i), (ii) of Theorem 3.1. This implies that for every solution x(-)
of (2.1) the limits lim Vy(t, x(®)) and Jlim Va(t, x(2)) exist. Thus the corollary
is proved.

4. Applications and examples

1. Consider the equation
4.1) (O =f(tx@)+gtx),

where f: Rt*XX, X, X,CX, g: R*XC,~X, C,CC. (4.1) is the special case of
the equation (2.1), when

F(@t, ) =f(t, 9(0)+2(, 0).

Theorem 4,1, Suppose that for a nonnegative, locally Lipschitzign Ljapunov
Jfunction V there exist functions a,p: R*~—~R* with the following properties:
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(1) a(t) is bounded for t=t,,
(i) the function p is locally Lipschitzian on (0, ),
(i) V(t, x+y)=V({t, x)+V(t,y) for all (1,%), (t, Y)ER* XX,

() T 2 [V (b x0hf 6 9) =V (6 3)] = —aDp (¥ 0, %)

Jor all (t, x)ER* XX,, .
. (v) for every &=>0 there exists an n=n(e)>0 such that (i, P)ES(V,n, &)

implies h]i_r;iﬁr % V(t+h, hg(t, 9))=a@)p(V({, ¢)).

Then for each solution x(+) of (4.1) lim V(t, x(2)) exists.

Proof. We apply Theorem 3.1. Let W=D V. By Remark 3.1 it is sufficient
to prove that condition (i) of Theorem 3.1 is satisfied. Let ¢>0 be given and choose
n=n(e) according to assumption (v). If (¢, )€S(V,n, &), then from conditions
(i)—(v) we obtain -

1

DV (t9) = Fm —[V(t+h, 0O+hf(t o () +hg(t 9) =V (1, p ()] =
= Tim % [V (t+h, 9O +Rf( 0O)) -V (2 9O)]+ Jm %V(t+ h, hg(t, 9)) =

= a@)[p(V(t, 0))—p(¥ (& )] = KL[V(1, 9) =V (1, 9(0))] =
. =LV -V (1, 0(0)],
where L is the Lipschitz constant of p on [e, 2¢] and K is an upper bound for « on
[to, o). This completes the proof.

II. We now apply Theorem 4.1 to obtain a result for equation (4.1) in the
case X=R.

Theorem 4.2. Let X=R. If f(¢, 0)=0, xf(t, x) = — a(t)x* for all (t, x) € R* X X,
lgt, p)l=a(t)| |l fordl (t, p)cR*XC, and a(t) isbounded for t=t,, then for each
solution x(+) of (4.1) ,l_i}Z.} x(t) exists.

Proof. In Theorem 4.1, let V(¢, x)=|x|, a(®)=a(?), p(w)=1, n(e)=s. Thus,
¥V is a Lipschitzian function and conditions (i), (ii), (iii) and in the case x=0 con-

dition (iv) in Theorem 4.1 are obviously satisfied. We have
: 5

1 1 2
Jim - (e hf @ 911 = i b (1n LE2 1) = —ao o,

y

if x>0 and K {‘ \
1
Jm kgt o)l = 2t @)l = a@) llol,
4%
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that assures also conditions (iv), (v) in Theorem 4.1 to be satisfied. This completes
the proof.
Example 4.1. Let us consider the scalar equation
4.2) %) =—ax@)+b@x(t— (1),

where a=-0, b(t) and t(¢) are continuous for t=t,, |b(t)|=a, 0=t(¢)=r.

For equation (4.2) in this case N. N. Krasovskif [9] proved that the zero solu-
tion is uniformly stable. Applying Theorem 4.2 we obtain that x(¢) tendsto a con-
stant as f-o, where x(-) is a solution of (4.2).

III. Let us consider the following special form of equation (4.1):

n
“4.3) %) = —a@®x() +k§1’ b () x (t =7 (D),
where a, by, 7: RT—>R are continuous functions and 0=, (t)=r (k=1,2, ..., n):

Theorem 4.3. Let k: [—r,)—~(0,) be a continuous and locally Lipschitzian
Sunction. If there exists a K€R* such that

| b (@) DT k()
WX B 0N

then for each solution x(-) of (4.3) 11112 k@) x(®)| exists.

(4.4) () 2" =K (t€RY),

D+k()

k@) °
pW=1, n(g)=e. It is clear that conditions (i), (ii), (iii) in Theorem 4.1 are satisfied.
Using (4.4) we can check conditions (iv), (v) in Theorem 4.1 as follows

Proof. Apply Theorem 4.1 setting V(t, x)=|k()x], «a(t)=a(t)—————

Jim —(lk(t+h)(x ha(p9)] ~ k(@) = k()| T - "(’”‘)(‘k (i‘;’(f) k@ _

D k(t)

= ko (Ze

at) =—a ¥ (),

fim %|k(t+ Wh 3 bOx(t-50) = k0| 3 b0x(—a0)| =

=10) 3 ety Ve = (a0 -2 x) = a7 5,

This completes the proof.
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Remark 4.1. If for equation (4.3) the inequality 2"' b ()| =a(t)=K holds,
then k(#)=1 satisfies (4.4) and by Theorem 4.3 ,1_1,1},} |x(tk)=| 1exists. But Theorem 4.3
can be used even if this inequality does not hold, as the following example shows.

Example 4.2. Let us consider the equation
(4.5) %) =—a@®x@)+b@)x(t—(D),
where a(t), b(¢) and t(¢) are continuous for t=t,, 0=t(¢)=r and there exists a
KeR* such that a(t)=[b(t)|=K for t=t,. Let k(t)=exp (f (a(s) — |b(s)])ds).

We have 0
2D~ a-1b o),
oxp ( f (@)~ 1) ds)——rmryn = b = K.
0 exp(/ (a(s)—|b(s)[)ds)

Thus, from Theorem 4.3 it follows that for each solution x(-) of (4.5)

fim by oxp (f (a9~ b)) )

exists.
IV. Let us consider the equation

(4.6) %) =—h(x®)+h(x@¢—()),
where t(¢) is continuous for t=t,, 0=t(t)=r and h(s) is continuous for s€R.

Theorem 4.4. If the function h is increasing and locally Lipschitzian on (—e, 0)
and (0, ), then for each solution x(+) of (4.6) tl_i)rg x(t) exists.

Proof. Apply Corollary3.2 setling V(t, x)=x, Wy(t, p)=— Wy(t, 9)=
=D oVt ¢). Let e>0 be given, n(e)=¢ and &(e)=max {L,, L,}, where L,
L, are the Lipschilz constants of 4 on [e, 2¢], [—2e, —¢], respectively. Since
W, (t, x)=—W,(t, x)=x(t) it is obvious that conditions (iii), (iv) in Corollary 3.2
are satisfied. If (z, x,)€ S(x(?), n, &) then

%(t) = —h(x@))+h(x(—7@) = —h(x(D)+h(X) = E(X,—x(1)).
If (¢, x,)E.g(x(t), n, &), then
—%(1) = h(x(O)—h(x(t~(®) = h(x®)—h(x) = E(x@)--x).

Thus conditions (i), (i) in Corollary 3.2 are satisfied and the theorem is proved.
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54 T. Krisztin: On the convergence of soliitions of functional differential equations

Remark 4.2. Applying Theorem 4.4 1o case . h(u)=u*/% t(t)=r we get a new
proof for the following conjecture of S. R. BerNrELD and J. R. HADDOCK [1], which
was solved by C. Jetiu [5]: each solution of the ‘scalar equatlon x(t)= —xlla(t)—l-
<+ x18(t—r) tends to a constant as ¢-»co,

Acknowledgement. The author wishes to thank Professors L. Hatvani, L. Pin-
tér and Dr. J. Terjéki for many discussions. :
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