
Global stability for price models with delay∗

István Balázs1 and Tibor Krisztin†2

1,2Bolyai Institute, University of Szeged,Aradi vértanúk tere 1, 6720 Szeged, Hungary
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Abstract

Consider the delay differential equation ẋ(t) = a
∫ r
0 x(t− s) dη(s)− g(x(t)) and the

neutral type differential equation ẏ(t) = a
∫ r
0 ẏ(t − s) dµ(s) − g(y(t)) where a > 0,

g : R → R is smooth, ug(u) > 0 for u ̸= 0,
∫ s
0 g(u) du → ∞ as |s| → ∞, r > 0,

η and µ are nonnegative functions of bounded variation on [0, r], η(0) = η(r) = 0,∫ r
0 η(s) ds = 1, µ is nondecreasing, µ does not have a singular part,

∫ r
0 dµ = 1.

Both equations can be interpreted as price models. Global asymptotic stability of
y = 0 is obtained, in case a ∈ (0, 1), for the neutral equation by using a Lyapunov
functional. Then this result is applied to get global asymptotic stability of x = 0
for the (non-neutral) delay differential equation provided a ∈ (0, 1). As particular
cases, two related global stability conjectures are solved, with an affirmative answer.

Keywords: neutral differential equation, delay differential equation, price model, global
asymptotic stability

1 Introduction

Our primary aim is to prove the global stability conjecture for the price model of Erdélyi,
Brunovský and Walther [1, 2, 9]

ẋ(t) = a[x(t)− x(t− 1)]− β|x(t)|x(t), (1.1)

where a > 0, β > 0. For 0 < a < 1, the local asymptotic stability of x = 0 was shown
by Erdélyi, Brunovský, and Walther, and they conjectured global asymptotic stability.
Numerical simulations provided by Erdélyi [3] suggested the existence of a stable (slowly
oscillating) periodic solution of Eq. (1.1) for a > 1, which was established in [1, 2]. This
result has recently been generalized by Stumpf [8] for a state-dependent delay version of
Eq. (1.1). Walther analyzed further the slowly oscillating periodic solution of Eq. (1.1)
and showed that it converges to a square-wave solution as a tends to infinity [9], and that
the period tends to infinity as a→ 1+ [10].
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available at Springer as ’Online First’ via http://link.springer.com/article/10.1007/s10884-017-9583-5

†This research was supported by the Hungarian Scientific Research Fund (NKFIH-OTKA), Grant No.
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Recently, Garab, Kovács and Krisztin [4] obtained global asymptotic stability of x = 0
for Eq. (1.1) provided a ∈ (0, 0.61). The key idea of [4] to prove global asymptotic stability
of x = 0 was to rewrite the equation as a neutral type functional differential equation.
Then an equivalent equation with infinite delay was obtained for which a stability result
of [7] was applied. The technique of [4] worked for the more general price model

ẋ(t) = a

n∑
i=1

bi[x(t− si)− x(t− ri)]− g(x(t)), (1.2)

as well, where a > 0, bi > 0, 0 ≤ si < ri ≤ 1, i ∈ {1, . . . , n},
∑n

i=1 bi(ri − si) = 1
holds, and g is a smooth increasing real function with ug(u) > 0 for u ̸= 0. [4] proved
global asymptotic stability for Eq. (1.2) when a ∈ (0, 1) and an additional condition was
assumed, see the details in Sect. 3. In [4] it remained open to prove global asymptotic
stability without the additional condition, i.e., for a ∈ (0, 1).

In the sequel, we always assume r > 0, a > 0, and

(Hg)

{
g : R → R is C1−smooth, ug(u) > 0 for u ̸= 0,∫ s
0
g(u) du→ ∞ as |s| → ∞.

By using Stieltjes integrals, Eqs. (1.1) and (1.2) can be written as

ẋ(t) = a

∫ r

0

x(t− s)dη(s)− g(x(t)) (1.3)

with η satisfying

(Hη)

{
η : [0, r] → [0,∞) is of bounded variation,

η(0) = η(r) = 0,
∫ r
0
η(s) ds = 1.

Following [1], x(t) in Eq. (1.3) can represent the price of an asset at time t. Indeed, if
x : I → R is continuously differentiable on an interval containing [t−r, t], then integrating
the Stieltjes integral

∫ r
0
x(t− s) dη(s) by parts, and using η(0) = η(r) = 0, we find∫ r

0
x(t− s) dη(s) = [x(t− s)η(s)]s=rs=0 −

∫ r
0
η(s) dsx(t− s)

= −
∫ r
0
η(s) d

ds
x(t− s) ds

=
∫ r
0
ẋ(t− s) ds

(∫ s
0
η
)
.

(1.4)

As η is nonnegative, the function [0, r] ∋ s 7→
∫ s
0
η ∈ R is monotone nondecreasing.

Then (1.4) shows that the term
∫ r
0
x(t − s) dη(s) is zero if x is constant on [t − r, t],

and it is positive (negative) if ẋ(s) > 0 (< 0) for all s ∈ [t − r, t]. Therefore, the
term

∫ r
0
x(t − s) dη(s) can be used to describe the tendency of the price, and the term

a
∫ r
0
x(t− s) dη(s) with a > 0 can represent the positive response to the recent tendency

of the price. The term −g(x(t)) in Eq. (1.3) is responsible for the negative feedback to
the deviation of the price from the zero equilibrium.

Observe that if the function s 7→
∫ s
0
η(u)du in the integral term

∫ r
0
ẋ(t− s) ds

(∫ s
0
η
)
in

equality (1.4) is replaced by an arbitrary nondecreasing function µ : [0, r] → R of bounded
variation, then the obtained integral term

∫ r
0
ẋ(t− s) dµ(s) can be still interpreted as the

tendency of the price. This motivates to study the neutral type differential equation

ẏ(t) = a

∫ r

0

ẏ(t− s)dµ(s)− g(y(t)), (1.5)
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as well as a price model provided a > 0 and µ : [0, r] → R is of bounded variation and
nondecreasing with an additional technical assumption given in Sect. 2.

There is another reason to study the neutral type eqaution (1.5). It plays a crucial
role in the proof of the stability results for Eqs. (1.1), (1.2), (1.3). However, Eq. (1.3) and
Eq. (1.5) are not equivalent. A solution of Eq. (1.3) satisfies Eq. (1.5) with µ(s) =

∫ s
0
η

only for t > r. The phase spaces and the stability definitions are also different for Eqs.
(1.3) and (1.5).

The paper is organized as follows. In Sect. 2, we consider Eq. (1.5), formulate the
hypotheses on µ, and introduce a suitable phase space. First it is shown that all solutions
can be globally extended to [−r,∞). Then a sufficient condition is given for the global
asymptotic stability of the zero solution of Eq. (1.5). The proof is based on a Lyapunov
functional which has been inspired by the one employed for the equation

ẋ(t) = aẋ(t− 1)− g(x(t)) (1.6)

in the book of Kolmanovskii and Myshkis [6, Chapter 9, p. 374]. There, Eq. (1.6) describes
a shunted power transmission line.

In Sect. 3, we consider Eq. (1.3) under hypotheses (Hg) and (Hη). Combining the global
stability result of Sect. 2 for Eq. (1.5) and the continuous dependence on initial data for
Eq. (1.3), the main result is that the zero solution of Eq. (1.3) is globally asymptotically
stable provided a ∈ (0, 1). As a consequence, global asymptotic stability is obtained for
the zero solution of the Erdélyi–Brunovský–Walther equation (1.1) and also for Eq. (1.2)
for the full conjectured region a ∈ (0, 1).

Finally in Sect. 4 we show that the global stability result for Eq. (1.3) is optimal in
the sense that for a > 1 under the additional condition g′(0) = 0 the zero solution is
unstable. In addition, some open problems are mentioned.

2 Global stability in Eq. (1.5)

In this section we study Eq. (1.5) under condition a ∈ (0, 1), hypothesis (Hg), and the
assumption on µ descibed below.

First we define a step function with (possibly) infinite number of steps. Let (cn)
∞
n=0

be a sequence of nonnegative numbers with
∑∞

n=0 cn ≤ 1, and let (rn)
∞
n=0 be a sequence in

[0, r] such that r0 = 0, and rn > 0 for all n ∈ N. Let H : [0, r] → R be given by H(0) = 0,
H(s) = 1 for s ∈ (0, r]. Define σ : [0, r] → R by

σ(s) = c0H(s) +
∑

n: rn≤s

cn, s ∈ [−r, 0].

Let a nondecreasing and absolutely continuous ν : [0, r] → R be given with ν(r) −
ν(s) ≤ 1.

Our hypothesis on µ is that it is nondecreasing without a singular part, that is,

(Hµ)

{
µ : [0, r] → R is given by µ = ν + σ

such that
∫ r
0
dµ = 1, i.e., ν(r)− ν(0) +

∑∞
n=0 cn = 1

holds.
For a continuous function u : I → R on an interval I with t − r, t ∈ I define

ut ∈ C([−r, 0],R) by ut(s) = u(t + s), −r ≤ s ≤ 0. For φ ∈ C([−r, 0],R) set
||φ|| = max−r≤s≤0 |φ(s)|.
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Define the set

Y =

{
ψ ∈ C1([−r, 0],R) : ψ̇(0) = a

∫ r

0

ψ̇(−s) dµ(s)− g(ψ(0))

}
,

and let

||ψ||Y =

(
(ψ(0))2 +

∫ r

0

(ψ̇(−s))2 ds
)1/2

for ψ ∈ Y . Set Y will be the phase space for Eq. (1.5).
A solution of Eq. (1.5) with initial function ψ ∈ Y is a continuously differentiable

function y = yψ : [−r, tψ) → R such that y0 = ψ, and Eq. (1.5) holds for all t ∈ (0, tψ).
The solution yψ is called a maximal solution if any other solution with the same initial
function is a restriction of yψ.

From g(0) = 0 it is clear that y = 0 is a solution of (1.5), and by (Hg) it is the only
equilibrium solution. The solution y = 0 of Eq. (1.5) is called stable if for any ϵ > 0 there
exists δ(ϵ) > 0 such that, for each ψ ∈ Y with ||ψ||Y < δ(ϵ), the solution yψ exists on
[−r,∞) and ||yψt ||Y < ϵ for all t ≥ 0. The solution y = 0 is called globally asymptotically
stable if it is stable and for each ψ ∈ Y the solution yψ exists on [−r,∞) and ||yψt ||Y → 0
as t→ ∞.

Theorem 3.1 on page 107 of Kolmanovskii and Myshkis [6] states that for each ψ ∈ Y ,
Eq. (1.5) has a unique maximal solution yψ : [−r, tψ) → R, and in case tψ <∞ the finite
limit limt→tψ− ẏ

ψ(t) does not exist. We will use this result to show that for any ψ ∈ Y
there exists a unique solution on [−r,∞).

Proposition 2.1. Assume hypotheses (Hg), (Hµ) hold, and a ∈ (0, 1). Let ψ ∈ Y and
consider the unique maximal solution yψ : [−r, tψ) → R of Eq. (1.5). If yψ is bounded on
[−r, tψ) then tψ = ∞.

Proof. Let ψ ∈ Y , y = yψ : [−r, tψ) → R, and let y be bounded on [−r, tψ).
Assume tψ < ∞. Then, by [6, Theorem 3.1 on p. 107], the finite limit limt→tψ− ẏ(t)

does not exist.
First we show that ẏ is bounded on [−r, tψ). If ẏ is unbounded from above on [−r, tψ)

then we can choose a sequence (τn)
∞
n=1 in [0, tψ) such that τn → tψ, ẏ(τn) → ∞ as n→ ∞,

ẏ(t) < ẏ(τn) for all t ∈ [−r, τn), n ∈ N. For arbitrary n ∈ N, by using hypothesis (Hµ),
we have

ẏ(τn) = a

∫ r

0

ẏ(τn − s)dµ(s)− g(y(τn))

≤ a

∫ r

0

ẏ(τn)dµ(s)− g(y(τn)) = aẏ(τn)− g(y(τ(tn))).

Hence, from a ∈ (0, 1) and ẏ(τn) → ∞, it follows that

−g(y(τn)) ≥ (1− a)ẏ(τn) → ∞ as n→ ∞.

As y is bounded, this is a contradiction. The case when ẏ is unbounded from below leads
similarly to a contradiction. Thus, ẏ is bounded on [−r, tψ).

Define
α = lim inf

t→t−ψ

ẏ(t), β = lim sup
t→t−ψ

ẏ(t).
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We know that −∞ < α < β <∞. There are strictly increasing sequences (tn)
∞
n=1, (sn)

∞
n=1

in [0, tψ) such that tn → tψ, sn → tψ, and

lim
n→∞

ẏ(sn) = α, lim
n→∞

ẏ(tn) = β.

Choose α′ < α < β < β′ so that a(β′ − α′) < β − α. There exists a δ > 0 such that
ẏ(t) ∈ [α′, β′] for all t ∈ [tψ − 2δ, tψ). From (1.5) it follows that

ẏ(tn)− ẏ(sn) = a

∫ δ

0

(ẏ(tn − s)− ẏ(sn − s))dµ(s)

+a

∫ r

δ

(ẏ(tn − s)− ẏ(sn − s))dµ(s)− g(y(tn)) + g(y(sn)).

We have

lim
n→∞

a

∫ r

δ

(ẏ(tn − s)− ẏ(sn − s))dµ(s) = 0

because ẏ is uniformly continuous on [−r, tψ − δ]. In addition,

lim
n→∞

[g(y(tn))− g(y(sn))] = 0

since the boundedness of ẏ on [−r, tψ) implies the uniform continuity of y and g ◦ y, and
that g(y(t)) has a finite limit at tψ. Combining these facts with ẏ(tn)− ẏ(sn) → β −α as
n→ ∞, one obtains

β − α = lim
n→∞

(ẏ(tn)− ẏ(sn))

= lim
n→∞

a

∫ δ

0

(ẏ(tn − s)− ẏ(sn − s)) dµ(s)

≤ a

∫ δ

0

(β′ − α′) dµ(s)

≤ a(β′ − α′),

a contradiction. Therefore, tψ = ∞, and the proof is complete.

Next we show the global asymptotic stability of the zero solution of Eq. (1.5).

Theorem 2.2. Assume hypotheses (Hg), (Hµ) hold, and a ∈ (0, 1). Then for each ψ ∈ Y
the unique maximal solution yψ of Eq. (1.5) is defined on [−r,∞), and the zero solution
of (1.5) is globally asymptotically stable.

Proof. Define the function

K : [0, r] ∋ s 7→
∫ r

s

dµ ∈ [0, 1].

According to hypothesis (Hµ), let K1(s) =
∫ r
s
dν and K2(s) =

∫ r
s
dσ. Then K(s) =

K1(s) +K2(s), and

K1(s) = ν(r)− ν(s), K2(s) =

{ ∑∞
n=0 cn for s = 0,∑
rn>s

cn for s ∈ (0, r].
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Let ψ ∈ Y and consider the unique solution y = yψ : [−r, tψ) → R. For t ∈ [0, tψ),
define

w(t) =

∫ t

t−r
K(t− s)(ẏ(s))2 ds+

2

a2

∫ y(t)

0

g(u) du

=

∫ t

t−r
[K1(t− s) +K2(t− s)] (ẏ(s))2 ds+

2

a2

∫ y(t)

0

g(u) du.

As y and K1 are continuously differentiable functions, the map

[0, tψ) ∋ t 7→
∫ t

t−r
K1(t− s)(ẏ(s))2 ds ∈ R

is continuously differentiable, and

d
dt

∫ t

t−r
K1(t− s)(ẏ(s))2 ds

= K1(0)(ẏ(t))
2 −K1(r)(ẏ(t− r))2 +

∫ t

t−r

d

dt
K1(t− s)(ẏ(s))2 ds

= [ν(r)− ν(0)] (ẏ(t))2 +

∫ r

0

(ẏ(t− s))2K ′
1(s) ds

= [ν(r)− ν(0)] (ẏ(t))2 −
∫ r

0

(ẏ(t− s))2 dν(s).

Observe that ∫ t

t−r
K2(t− s)(ẏ(s))2 ds =

∞∑
n=0

cn

∫ t

t−rn
(ẏ(s))2 ds.

This series of functions is continuously differentiable, it can be differentiated term by
term, and

d

dt

∫ t

t−r
K2(t− s)(ẏ(s))2 ds =

∞∑
n=0

cn
[
(ẏ(t))2 − (ẏ(t− rn))

2
]

=

(
∞∑
n=0

cn

)
(ẏ(t))2 −

∫ r

0

(ẏ(t− s))2 dσ(s).

The last term in w(t) is clearly continuously differentiable with

d

dt

2

a2

∫ y(t)

0

g(u) du =
2

a2
g(y(t))ẏ(t).

Therefore, w is continuously differentiable on [0, tψ), and

w′(t) =

[
ν(r)− ν(0) +

∞∑
n=0

cn

]
(ẏ(t))2 −

∫ r

0

(ẏ(t− s))2 d(ν + σ)(s) +
2

a2
g(y(t))ẏ(t).

By hypothesis (Hµ), we have ν(r)−ν(0)+
∑∞

n=0 cn = 1, and µ = ν+σ. Jensen’s inequality
implies (∫ r

0

ẏ(t− s) dµ(s)

)2

≤
∫ r

0

(ẏ(t− s))2 dµ(s).
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Combining the above relations, it follows that

w′(t) ≤ (ẏ(t))2 −
(∫ r

0

ẏ(t− s) dµ(s)

)2

+
2

a2
g(y(t))ẏ(t). (2.1)

From Eq. (1.5), the term
∫ r
0
ẏ(t− s) dµ(s) is equal to (1/a)[ẏ(t) + g(y(t))]. Therefore, by

(2.1),

w′(t) ≤ −
(

1

a2
− 1

)
(ẏ(t))2 − 1

a2
(g(y(t)))2 (2.2)

holds for all t ∈ [0, tψ).
From inequality (2.2), by a ∈ (0, 1), it follows that w is a nonincreasing function on

[0, tψ), and w(t) ∈ [0, w(0)] for all t ∈ [0, tψ). This fact and the definition of w gives∫ y(t)

0

g(u) du ∈
[
0,
a2

2
w(0)

]
for all t ∈ [0, tψ). By hypothesis (Hg) we obtain that y is bounded on [0, tψ), and then on
[−r, tψ). Proposition 2.1 can be applied to conclude tψ = ∞.

Thus, inequality (2.2) holds for all t ∈ [0,∞). Then there exists w∗ ≥ 0 such that
w(t) → w∗ as t→ ∞, and, for each T ≥ 0,

w(0)− w∗ ≥ w(0)− w(T ) = −
∫ T

0

w′(t) dt

≥
(

1

a2
− 1

)∫ T

0

(ẏ(t))2 dt+
1

a2

∫ T

0

(g(y(t)))2 dt.

Hence it follows that ∫ ∞

0

(ẏ(t))2 dt ≤ a2

1− a2
w(0), (2.3)∫ ∞

0

(g(y(t)))2 dt ≤ a2w(0). (2.4)

In particular, (2.3) implies ∫ t

t−r
(ẏ(s))2 ds→ 0 as t→ ∞.

Then, using K(s) ∈ [0, 1], s ∈ [0, r], one finds that∫ r

0

K(s)(ẏ(t− s))2 ds ≤
∫ r

0

(ẏ(t− s))2 ds =

∫ t

t−r
(ẏ(s))2 ds,

and ∫ t

t−r
K(t− s)(ẏ(s))2 ds =

∫ r

0

K(s)(ẏ(t− s))2 ds→ 0 as t→ ∞.

Therefore,

w∗ = lim
t→∞

w(t) =
2

a2
lim
t→∞

∫ y(t)

0

g(u) du.
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From condition (Hg), the map [0,∞) ∋ s 7→
∫ s
0
g(u) du ∈ R strictly increases from 0 to ∞,

and the map (−∞, 0] ∋ s 7→
∫ s
0
g(u) du ∈ R strictly decreases from ∞ to 0. Consequently,

there exists y∗ ∈ R so that y(t) → y∗ as t → ∞. By (2.4), the integral
∫∞
0
(g(y(t)))2 dt

converges. These facts combined yield y∗ = 0. Thus, yψ(t) → 0 as t→ ∞ for all ψ ∈ Y .
In order to show local stability of the zero solution, let ϵ > be given. By hypothesis

(Hg), there exists m ≥ a2 such that

|g(u)| ≤ m|u| for all u ∈ [−1, 1].

Choose δ = δ(ϵ) ∈ (0, 1) so that (
1 +

m

1− a2

)
δ2 <

ϵ2

2
. (2.5)

In addition, by (Hg), δ can be chosen so small that∫ s

0

g(u) du <
m

2
δ2 implies s2 <

ϵ2

2
. (2.6)

Let ψ ∈ Y with ||ψ||Y < δ, and let y = yψ : [−r,∞) → R be the corresponding
solution of (1.5). Then K(s) ∈ [0, 1], s ∈ [0, r], |ψ(0)| ≤ ||ψ||Y < δ < 1, and the choice of
m guarantee that

w(0) =

∫ 0

−r
K(−s)(ψ̇(s))2 ds+ 2

a2

∫ ψ(0)

0

g(u) du

≤
∫ 0

−r
(ψ̇(s))2 ds+

2

a2
m

2
(ψ(0))2

≤ m

a2

(∫ 0

−r
(ψ̇(s))2 ds+ (ψ(0))2

)
=

m

a2
||ψ||2Y <

m

a2
δ2.

This estimation for w(0) combined with inequality (2.3) yields∫ ∞

0

(ẏ(t))2 dt <
m

1− a2
δ2. (2.7)

The estimation w(0) < (m/a2)δ2, the definition of w(t), and w(t) ≤ w(0) combined give∫ y(t)

0

g(u) du ≤ a2

2
w(t) ≤ a2

2
w(0) <

m

2
δ2, t ≥ 0. (2.8)

From ||ψ||Y < δ and inequality (2.7) it follows that∫ 0

−r
(ẏ(t+ s))2 ds <

(
1 +

m

1− a2

)
δ2 for all t ≥ 0. (2.9)

A combination of (2.9), (2.5), (2.6), (2.8) implies

||yt||Y =

(∫ 0

−r
(ẏ(t+ s))2 ds+ (y(t))2

)1/2

<

(
ϵ2

2
+
ϵ2

2

)1/2

= ϵ

for all t ≥ 0. This proves the local stability of y = 0.
The global attractivity of y = 0, that is ||yψt ||Y → 0 as t → ∞, for all ψ ∈ Y , follows

from
∫ 0

−r(ẏ
ψ(t+ s))2 ds→ 0, t→ ∞, implied by (2.3), and yψ(t) → 0, t→ ∞. Therefore,

y = 0 is globally asymptotically stable.
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3 Global stability in Eq. (1.3)

In this section, we consider Eq. (1.3) under hypotheses (Hg) and (Hη).
The natural phase space for Eq. (1.3) is C([−r, 0],R). A maximal solution of (1.3)

with initial function φ ∈ C([−r, 0],R) is a continuous function x = xφ : [−r, tφ) → R with
tφ > 0 so that x|[−r,0] = φ, x is differentiable on (0, tφ), Eq. (1.3) holds on (0, tφ), and any
other solution with the same initial function is a restriction of xφ.

Recall that the solution x = 0 of Eq. (1.3) is stable if for any ϵ > 0 there exists
δ(ϵ) > 0 such that, for each φ ∈ C([−r, 0],R) with ||φ|| < δ(ϵ), the solution xφ exists on
[−r,∞) and ||xφt || < ϵ for all t ≥ 0. The solution x = 0 is globally asymptotically stable
if in addition to stability for each φ ∈ C([−r, 0],R) the solution xφ exists on [−r,∞) and
||xφt || → 0 as t→ ∞.

First, for arbitrary a > 0, we show that the maximal solutions exist on [−r,∞).

Proposition 3.1. Assume that a > 0 and conditions (Hg), (Hη) hold. For each φ ∈
C([−r, 0],R) Eq. (1.3) has a unique maximal solution xφ which is defined on [−r,∞).

Proof. The map

f : C([−r, 0],R) ∋ φ 7→ a

∫ r

0

φ(−s) dη(s)− g(φ(0)) ∈ R

is continuous, it is also Lipschitzian in each compact subset of C([−r, 0],R), and f takes
bounded sets into bounded sets. Then, by [5, Chapter 2, Theorem 2.3], for each φ ∈
C([−r, 0],R) there is a unique maximal solution xφ : [−r, tφ) → R of Eq. (1.3). Moreover,
by [5, Chapter 2, Theorem 3.2], in case tφ <∞ we have ||xφt || → ∞ as t→ t−φ .

Let φ ∈ C([−r, 0],R), and let |η| denote the total variation of η. Define

k(t) = (||φ||+ 1) e(a|η|+1)t, t ∈ [0,∞).

We claim that
|xφ(t)| < k(t) for all t ∈ [0, tφ). (3.1)

If inequality (3.1) does not hold then, by |xφ(0)| ≤ ||φ|| < k(0), there exists t0 ∈ (0, tφ)
such that |xφ(t)| < k(t) for all t ∈ [0, t0), |xφ(t0)| = k(t0), |ẋφ(t0)| ≥ k′(t0) = (a|η| +
1)k(t0). Assume xφ(t0) = k(t0) (the case −xφ(t0) = k(t0) is similar). Then Eq. (1.3),
k(t) < k(t0) for t ∈ [0, t0), and g(x

φ(t0)) > 0 combined yield the contradiction

ẋφ(t0) ≤ a|η|k(t0)− g(xφ(t0)) < a|η|k(t0).

Therefore, inequality (3.1) holds. Then, by [5, Chapter 2, Theorem 3.2], tφ = ∞.

Now we consider Eq. (1.3) for a ∈ (0, 1), and prove the global asymptotic stability of
the zero solution.

Theorem 3.2. Assume hypotheses (Hg), (Hη) hold, and a ∈ (0, 1). Then the zero solution
of Eq. (1.3) is globally asymptotically stable.

Proof. In order to show local stability, let ϵ > 0 be given. By Theorem 2.2 there exists
γ = γ(ϵ) > 0 such that for each ψ ∈ Y with ||ψ||Y < γ, for the solution yψ of Eq. (1.5),
the inequality ||yψt ||Y < ϵ holds for all t ≥ 0.

Define

δ1 =
1√
1 + r

γ.
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Let |η| denote the total variation of η. By condition (Hg), we can find δ2 ∈ (0, δ1) such
that

(1 + a|η|)δ2 + max
|u|≤δ2

|g(u)| < δ1.

By continuous dependence on initial data of solutions of Eq. (1.3), see [5, Chapter 2,
Theorem 2.2], we can choose δ > 0 such that, for each φ ∈ C([−r, 0],R) with ||φ|| < δ,
the unique solution xφ of Eq. (1.3) satisfies

|xφ(t)| < min{ϵ, δ2} for all t ∈ [−r, r].

Then for xφ with φ ∈ C([−r, 0],R) and ||φ|| < δ, from Eq. (1.3) it follows that

|ẋφ(t)| ≤ a|η|δ2 + max
|u|≤δ2

|g(u)| < δ1 for all t ∈ (0, r]

and
|xφ(t)| < δ2 < δ1 for all t ∈ [0, r].

By the uniform continuity of xφ|[−r,r], the limit limt→0+ ẋ
φ(t) exists and equals a

∫ r
0
φ(−s) dη(s)−

g(φ(0)). It follows that xφ is right differentiable at t = 0, and xφr ∈ C1([−r, 0],R). Then
xφr ∈ Y and

||xφr ||Y =

(∫ r

0

(ẋφ(t))2 dt+ (xφ(t))2
)1/2

<
(
rδ21 + δ21

)1/2
=

√
r + 1δ1 = γ.

By (1.4), y(t) = xφ(t + r), t ∈ [−r,∞), is a solution of Eq. (1.5) with µ(s) =
∫ s
0
η and

initial function y0 = xφr ∈ Y . Then the choice of γ guarantees that

||yt||Y = ||xφt+r||Y < ϵ for all t ≥ 0.

The definition of ∥·∥Y and the choice of δ imply that for each φ ∈ C([−r, 0],R) with
||φ|| < δ, the inequality

|xφ(t)| < ϵ for all t ≥ 0

holds. Therefore the zero solution of Eq. (1.3) is locally stable.
Global attractivity of x = 0 also follows from Theorem 2.2 since xφr ∈ Y for all

φ ∈ C([−r, 0],R).

Eq. (1.1) is a particular case of (1.3) with r = 1, g(u) = β|u|u and

η(s) =

{
1 if s ∈ (0, 1),

0 if s = 0 or s = 1.

Therefore, Theorem 3.2 implies a solution to the global stability conjecture of [1, 2, 9].

Corollary 3.3. If a ∈ (0, 1) then the zero solution of Eq. (1.1) is globally asymptotically
stable.

Let the constants bi > 0, 0 ≤ si < ri ≤ 1, i ∈ {1, . . . , n}, be given so that
∑n

i=1 bi(ri−
si) = 1 holds. Define the functions

ηi(s) =

{
bi if s ∈ (si, ri),

0 if s ∈ [0, si] ∪ [ri, 1],
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for i ∈ {1, . . . , n}, and let

η : [0, 1] ∋ s 7→
n∑
i=1

ηi(s) ∈ R.

Then it is easy to see that η satisfies condition (Hη) with r = 1, and Eq. (1.2) is a
particular case of Eq. (1.3). Therefore the following result holds.

Corollary 3.4. If a ∈ (0, 1), bi > 0, 0 ≤ si < ri ≤ 1,
∑n

i=1 bi(ri − si) = 1, and g satisfies
condition (Hg), then the zero solution of Eq. (1.2) is globally asymptotically stable.

The equation

ẋ(t) = α
n∑
i=1

βi[x(t− si)− x(t− ri)]− g(x(t)), (3.2)

was studied in [4] under the conditions α > 0, βi > 0, 0 ≤ si < ri ≤ 1, i ∈ {1, . . . , n},∑n
i=1 βi = 1, and g satisfied a condition stronger than (Hg). Setting

a = α
n∑
i=1

βi(ri − si), bi =
βi∑n

i=1 βi(ri − si)
(i ∈ {1, . . . , n}),

it is clear that Eq. (3.2) is equivalent to Eq. (1.2). Consequently, we obtain the following
result.

Corollary 3.5. If α > 0, βi > 0, 0 ≤ si < ri ≤ 1, i ∈ {1, . . . , n}, and g satisfies (Hg),
then

α
n∑
i=1

βi(ri − si) < 1

implies the global asymptotic stability of the zero solution of Eq. (3.2).

We remark that [4] proved global asymptotic stability of x = 0 for Eq. (3.2) assuming
α
∑n

i=1 βi(ri−si) < 1, a condition on g that is stronger than (Hg), and the extra condition

α2

n∑
i=1

βi(r
2
i − s2i ) <

(
1− α

n∑
i=1

βi(ri − si)

)2

was also used. By the local stability result for Eq. (3.2), and by the analogous conjecture
for Eq. (1.1), it was suspected in [4] that Corollary 3.5 holds.

4 Discussion

In this section we show that the global stability result a < 1 for Eq. (1.3), and then also
for Eqs. (1.1) and (1.2), is sharp in the sense that under the additional condition g′(0) = 0
inequality a > 1 implies that the zero solution is unstable. Remark that g′(0) = 0 holds
for Eq. (1.1). Paper [4] also assumed g′(0) = 0 when studied Eq. (3.2) or equivalenty Eq.
(1.2).

Theorem 4.1. Suppose that hypotheses (Hg), (Hη) hold, and g
′(0) = 0. If a > 1 then the

zero solution of Eq. (1.3) is unstable.
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Proof. By g′(0) = 0, the linear variational equation of Eq. (1.3) is

ẋ(t) = a

∫ r

0

x(t− s) dη(s). (4.1)

The characteristic function is ∆ : C ∋ λ 7→ λ− a
∫ r
0
e−λs dη(s) ∈ C.

Condition (Hη) and integration by parts for Stieltjes integrals gives∫ r

0

e−λs dη(s) =
[
e−λsη(s)

]s=r
s=0

−
∫ r

0

η(s) ds
(
e−λs

)
= λ

∫ r

0

η(s)e−λs ds.

Hence, if λ is real and tends to ∞, then, using again (Hη), it is clear that

∆(λ) = λ− a

∫ r

0

e−λs dη(s) = λ

[
1− a

∫ r

0

η(s)e−λs ds

]
→ ∞.

Combining this fact with ∆(0) = −a
∫ r
0
dη = 0 and ∆′(0) = 1− a

∫ r
0
η(s) ds = 1− a < 0,

it follows that ∆ has a real positive zero. Therefore, a classical result, e.g. from [5], yields
that x = 0 is unstable.

Eqs. (1.1), (1.2), (1.3) as price models are also important when the zero solution is
unstable. In this case there are results about the dynamics only for Eq. (1.1) with a single
delay, see [1, 2, 9, 10]. It is an interesting open problem to understand the dynamics in
the presence of multiple or distributed delays, that is, for Eqs. (1.2) and (1.3).

We have seen in the Introduction that the neutral differential equation (1.5) is also
interesting as a price model. Global asymptotic stability is obtained in this paper for
a ∈ (0, 1) provided (Hg) and (Hµ) hold. However, the understanding of the dynamics is
completely open for a ≥ 1. The simple-looking equation (1.6) is a particular case. There
are results only for a ∈ (0, 1), and the case a ≥ 1 is also an interesting open problem.
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