
DOE-Maxima Reference Manual

Michael Clarkson,

http://starship.python.net/crew/mike/

Version 5.9
Released August 2002

Printed September 26, 2002Enhancementsc© 1990 Mike Clarkson, All Rights Reserved.

CONTENTS

1 Fundamental Concepts 1
1.1 Beginning and Ending Maxima. 1
1.2 Entering Commands. 1

1.2.1 Recalling Previous Expressions. 2
1.3 Reader Syntax. 3

1.3.1 Defining Variables . 4
1.3.2 Defining Functions. 6

1.4 Data Types. 6
1.4.1 Constants. 6
1.4.2 Data Type Predicates. 7
1.4.3 Numerical Predicates. 8
1.4.4 Data Type Coercion. 9
1.4.5 Control Characters. .10

1.5 Command Line Flags. .10

2 Programming Constructs 13
2.1 Program Flow .13

2.1.1 Conditionals. .13
2.1.2 Local Blocks and Variables. .14
2.1.3 Throw and Catch. .15
2.1.4 Iteration. .16

2.2 Reading Input .19
2.3 Displaying Expressions. .19
2.4 Flags Effecting the Displayed Form. .21

2.4.1 Display of Numbers. .23
2.4.2 Display of Exponentials. .24
2.4.3 Display of Logarithms. .25
2.4.4 Display of Trig Functions. .26
2.4.5 Display of Sums .27
2.4.6 Display of Products. .27
2.4.7 Display of Simplification. .27
2.4.8 Display of Factoring .28
2.4.9 Display of Expansion. .28

2.5 Ordering of the Display .28

i

2.6 Reviewing Options. .29
2.7 Accessing the Underlying Lisp. .30
2.8 Utility Functions .30

3 Mathematical Functions 33
3.1 Comparison Functions. .33
3.2 Arithmetic Functions. .33
3.3 Transcendental Functions. .34

3.3.1 Exponential Functions. .34
3.3.2 Logarithm Functions. .35
3.3.3 Trig Functions. .35

3.4 Factorial and Gamma Functions. .38
3.4.1 Factorials .38
3.4.2 Binomials and Generalized Factorials. 39
3.4.3 Gamma and Related Functions. .39

3.5 Special Functions. .41
3.5.1 Airy Functions .41
3.5.2 Bernoulli Numbers. .41
3.5.3 Elliptic Functions. .42
3.5.4 Zeta Functions. .42
3.5.5 Miscellaneous Special Functions. 43

3.6 Complex Variables. .44
3.7 Number Theory Functions. .45

4 Manipulating Expressions 47
4.1 Evaluation .47

4.1.1 Evaluation Flags. .49
4.1.2 Noun and Verb Forms. .50

4.2 Canonical Rational Expressions. .51
4.2.1 Converting To and From CRE form. 51
4.2.2 Operations on CRE Expressions. 53
4.2.3 Rational Expression Flags. .54

4.3 Selecting Parts of Expressions. .55
4.3.1 Selecting Top Level Expressions. 55
4.3.2 Isolating and Revealing Expressions. 56
4.3.3 Selecting Sub Expressions. .58
4.3.4 Analysing Expressions. .60

4.4 Manipulating Lists. .62
4.4.1 Sorting Lists. .64

4.5 Mapping Functions. .64
4.6 Substituting Expressions. .67

4.6.1 Substitution Flags. .68
4.6.2 Substituting in CRE Expressions. 69
4.6.3 Partial Substitutions. .69

5 Simplifying Expanding and Factoring 71
5.1 Simplifying Expressions. .71

5.1.1 Simplifying CRE Expressions. .71

ii

5.1.2 Simplifying Trig Expressions. .73
5.1.3 Simplifying Logarithms and Exponentials. 73
5.1.4 Simplifying Factorials .74
5.1.5 Combining Sums of Quotients. .75

5.2 Expanding Expressions. .76
5.2.1 Expand Flags. .77
5.2.2 Expanding CRE Expressions. .77
5.2.3 Partial Expansion. .78
5.2.4 Partial Fractions. .79
5.2.5 Trigonometric Expansions. .80
5.2.6 Controlled Expansions. .80

5.3 Factoring Expressions. .82
5.3.1 Factor Flags. .83

5.4 Manipulating Polynomials. .84
5.4.1 Greatest Common Divisors. .85

6 Linear Algebra 87
6.1 Arrays .87

6.1.1 Defining Arrays. .87
6.1.2 Manipulating Arrays .87

6.2 Basic Matrix Operations. .88
6.2.1 Matrices Flags .89
6.2.2 Non-Commutative Operations. .90

6.3 Defining Matrices .91
6.3.1 Defining Special Matrices. .92

6.4 Matrix Information. .92
6.5 Manipulating Matrices. .93
6.6 Operating on Matrices. .94

6.6.1 Characteristic Polynomials. .96
6.6.2 Eigenvalues and Eigenvectors. .96

7 Series 101
7.1 Sums and Products. .101

7.1.1 Sums .101
7.1.2 Products. .103
7.1.3 Operations on Sums and Products. .103

7.2 Power Series. .104
7.3 Taylor Series. .104

7.3.1 Taylor Series Operations. .106
7.3.2 Taylor Series Flags. .106

7.4 Pade Approximates. .107
7.5 Poisson Series. .107
7.6 Continued Fractions. .109

8 Calculus 111
8.1 Limits .111
8.2 Residues. .112
8.3 Differentiation .112

iii

8.3.1 Differentiation Flags. .113
8.3.2 Defining Gradients. .114
8.3.3 Defining Functional Dependencies. .114
8.3.4 Differentiating Tensors. .116

8.4 Integration .116
8.5 Change of Variable. .121
8.6 Laplace Transforms. .122
8.7 Specifying Boundary Conditions. .125

9 Solving 127
9.1 Solving Expressions. .127

9.1.1 Solve Flags. .128
9.2 Solving Linear Equations. .129
9.3 Solving Simultaneous Equations. .130

9.3.1 Algsys Flags .131
9.4 Roots of Polynomials .131
9.5 Interpolation .133

9.5.1 Interpolation Flags. .134
9.6 Solving Ordinary Differential Equations. .135

9.6.1 First Order Equations. .135
9.6.2 Second Order Equations. .136

9.7 Integral Equations. .140

10 Maxima Knowledge Database 143
10.1 Adding to the Database. .143

10.1.1 Defining Operators. .143
10.1.2 Defining Macros .145
10.1.3 Declarations. .148
10.1.4 Assumptions .151
10.1.5 Contexts. .151
10.1.6 Properties. .153
10.1.7 Rules .154

10.2 Querying the Database. .158
10.3 Deleting From the Database. .160
10.4 Renaming Elements in the Database. .162

11 Input and Output 163
11.1 Loading Files. .163

11.1.1 Autoloading. .164
11.2 Batching Files .164

11.2.1 Indexed Batch Files. .165
11.3 Demoing Files. .166
11.4 Writing to Files. .166
11.5 Operating on Files. .167
11.6 Directories .168
11.7 File Defaults .168
11.8 Saving and Restoring. .168

iv

12 Programming Environment 171
12.1 On-Line Help. .171

12.1.1 Apropos. .171
12.1.2 Describe. .171
12.1.3 Example. .171
12.1.4 Primer. .172

12.2 Editing .172
12.2.1 Line Editing. .172
12.2.2 Full Screen Editing. .173
12.2.3 Expression Editor. .173

12.3 System Functions. .177
12.3.1 System Status. .177
12.3.2 Timing the Evaluation of Expressions. .178

12.4 Error Handling. .178
12.5 Break Points and Debugging. .179
12.6 Tracing .181

12.6.1 Tracing Flags. .183
12.7 Operating System. .183

13 Translation and Compiling 185
13.1 Mode Declarations. .185

13.1.1 Mode Declaration Flags. .186
13.2 Translation. .186

13.2.1 Translation Flags. .187
13.2.2 Optimizing .190

13.3 Compiling .191
13.3.1 Compiler Declarations. .192

14 Plotting and Graphing 195
14.1 Character Plotting. .195

14.1.1 Character Plotting Flags. .196
14.2 Character Graphing. .196
14.3 2D Plotting. .197
14.4 2D Graphing. .199
14.5 3D Plotting. .199

14.5.1 Plotting Flags. .200

15 Numeric Interface 203
15.1 Generating Fortran Code. .203
15.2 Numerical Integration. .203

15.2.1 Romberg Integration. .203
15.2.2 Newton-Coates Integration. .206

15.3 IMSL Routines. .207

16 Advanced Packages 211
16.1 Fast Fourier Transforms. .211
16.2 Tensors. .213

16.2.1 Component Tensor Manipulation. .213

v

16.2.2 Indicial Tensor Manipulation. .217
16.3 Exterior Calculus. .221
16.4 Dirac Gamma Matrices. .222

16.4.1 Capabilities. .222
16.4.2 Summary of GAMALG Functions. .222
16.4.3 Doing Traces. .224
16.4.4 Squaring Amplitudes. .225
16.4.5 Contracting Indices. .226
16.4.6 Simplifying Products of Gamma Matrices. .227
16.4.7 Kinematic Substitutions. .227
16.4.8 Technical Information .227

16.5 Linear Programming. .228
16.6 Dimensional Analysis. .228
16.7 Asymptotic Analysis. .229

16.7.1 Simple Example. .230
16.8 Set Packages. .231

16.8.1 Set. .231
16.8.2 Sets .233

16.9 Vectors .233

Index 239

vi

Preface

This manual has been painfully and laboriously converted from the files in themanual/descrips directory of
DOE-Maxima to a version of GNU Emacs TEXinfo format. If you find material that is incorrect, or needs
further elaboration or clarification, please send me any corrections and I will gladly incorporate them into
subsequent editions of this manual.

mailto:mike@python.net

Notational Conventions of this Manual

All Maxima functions, variables and keywords are set inUPPER-CASE TYPE. Function and variable
definitions are set in slightly largerUPPER-CASE TYPE. Arguments to functions are set initalic type.

In general, arguments to functions are abbreviated as follows:

exp any expression

arg any argument

array an array

file a file name

float a floating point number

bfloat a big floating point number

fun a function

int an integer

list a list

mode a mode

poly a polynomial

prop a property

1

file:mike@python.net

string a string

var a variable

tensor a tensor

Variables are usually followed by their default values as in the following example: FOOBAR default: [3].
This says that FOOBAR has a default value of 3, though the choice of square brackets is rather unfortunate
as it is alsoMaxima’s representation for a list.

File Naming Conventions

The are a wide-variety of file naming conventions that have been used over the years withMaxima. In
general, the following are more or less standard:

.dem demo file

.l lisp source code

.lsp lisp source code

.mac øMaxima source code

.mc øMaxima source code

.mil mail file

.o compiled binary code (øUnix)

.usg usage description

.xmp example

We will adopt the Unix naming conventions in this manual. Similarly, all file names have been converted to
Unix format, relative to the top levelMaxima directory.

2 Contents

CHAPTER

ONE

Fundamental Concepts

1.1 Beginning and Ending Maxima

An Init file is a file which is loaded automatically for you when you start up aMaxima, to customize
Maxima for you. The init file defaults to the filename ‘Maxima-init.l ’ in the users home directory. It
is possible to have an init file written as a BATCH file ofMaxima commands. We hope this makes it easier
for users to customize theirMaxima environment. Here is an example init file

setup_autoload("share/bessel", j0, j1, jn);
showtime:all; comgrind:true;

SETUP_AUTOLOAD can be used to make functions in BATCH files autoloading, meaning that you can
then use (for instance, here) the functionsJ0, J1 andJn from the BESSEL package directly because when
you use the function the BESSEL package will be loaded in for you automatically. If the second file name
or extension in the argument to SETUP_AUTOLOAD is not specified, then the standard search for second
file names of. o . l, is done. See section11.1.1[Autoloading], page164.

[Function]QUIT ()

kills the currentMaxima.

1.2 Entering Commands

A Maxima command is terminated by either a$ or a ;. In the first case the expression that is typed in is
not displayed in its simplified form, and with the semi-colon the expression is displayed. See section1.3
[Reader Syntax], page3.

If an expression to be displayed is in CRE form or if it contains any subexpressions in CRE form, the
symbol /R/ will follow the line label. The symbol/ P/ follows the line label of Poisson Series expressions.
The symbol/ T/ follows the line label of Taylor Series expressions.

See section4.2[Canonical Rational Expressions], page51.

1

1.2.1 Recalling Previous Expressions

[Variable]%

The last D-line computed byMaxima (whether or not it was printed out).

[Variable]%%

The value of the last computation performed while in a Maxima-BREAK. See section12.5[Break Points
and Debugging], page179. It also may be used in compound statements in then ’th statement to refer to the
value of the(n-1) ’th statement. See section2.1.2[Local Blocks and Variables], page14.

F(N):=(INTEGRATE(X^N,X),
SUBST(3,X,%%)-SUBST(2,X,%%));

is in essence equivalent to

F(N):=BLOCK([%%],
%%:INTEGRATE(X^N,X),
SUBST(3,X,%%)-SUBST(2,X,%%));

This will also work for communicating between the(n-1) th andnth (non-atomic) BLOCK statements. See
section2.1.2[Local Blocks and Variables], page14.

[Function]%TH (i)

is thei ’th previous computation. That is, if the next expression to be computed isD(j) this is D(j-i). This is
useful in BATCH files or for referring to a group of D expressions. For example, ifSUM is initialized to 0
thenFOR I:1 THRU 10 DO SUM:SUM+%TH(I); will setSUM to the sum of the last tenDexpressions.

[Special Form]LABELS (char)

takes achar C, D, or E as an argument, and generates a list of all C-labels, D-labels, or E-labels, respectively.
(If you’ve generated many E-labels via SOLVE, thenFIRST(REST(LABELS(C))); reminds you what the
last C-label was.) LABELS will take as argument any symbolic name, so if you have reset INCHAR,
OUTCHAR, or LINECHAR, it will return the list of labels whose first character matches the first character
of the arg you give to LABELS.

[Variable]LABELS

is a list of C, D, and E lines which are bound.

[Special Form]PLAYBACK (arg)

“plays back” input and output lines.arg can be one or more of:

2 Chapter 1. Fundamental Concepts

n (a number) the lastn expressions (Ci, Di, and Ei count as 1 each) are “played back,” while ifarg is
omitted, all lines are. If a list of numbers is given,[m,n], then all lines with numbers from m to n
inclusive are played-back. If m=n then [m] is sufficient for arg.

INPUT then only input lines are played back.

SLOW places PLAYBACK in a slow-mode similar to DEMO’s (as opposed to the faster BATCH). This is
useful in conjunction with SAVE or STRINGOUT when creating a secondary-storage file in order to
pick out useful expressions.

TIME then the computation times are displayed as well as the expressions.

GCTIME or TOTALTIME then a complete breakdown of computation times are displayed, as with
SHOWTIME:ALL;.

STRING “strings out” (see the STRING function) all input lines when playing back, rather than DIS-
PLAYing them.

NOSTRING displays all input lines when playing back rather than STRINGing them.

GRIND “grind” mode can also be turned on (for processing input lines) (see GRIND).

One may include any number of options as inPLAYBACK([5,10],20,TIME,SLOW);.

1.3 Reader Syntax

Maxima statements are read line-by-line, and are terminated by a semicolon or a dollar sign. If the statement
is terminated by a semicolon, the result is printed out.

(c1) 1 + 1;

(d1) 2

If the statement is terminated by a dollar sign, the result is calculated but not printed out.

(c2) 2 + 2$

(c3)

Note that although the result is not printed out, it is still assigned to the correspondingD label:

(c3) d2;

(d3) 4

Maximauses the standard mathematical operators:

1.3. Reader Syntax 3

+ for addition,

- for subtraction.

* for multiplication,

/ for division,

** for exponentiation,

. for non-commutative multiplication See section6.2.2[Non-Commutative Operations], page90.

= defines an equation.

! for factorial,

!! for double factorial,

In addition,Maxima uses a quoting and evaluating operator which derive from its Lisp parenthood:

’ (single quote) has the effect of preventing evaluation. E.g.’ (F(X)) means do not evaluate the expression
F(X). ’ F(X) means return the noun form of F applied to [X] . See section4.1.2 [Noun and Verb
Forms], page50.

” (two single quotes) causes an extra evaluation to occur. E.g.’ ’c4; will re-execute lineC4. ’ ’(F(X))
means evaluate the expression F(X) an extra time.’ ’F(X) means return the verb form ofF applied to
X. See section4.1[Evaluation], page47.

See section3.1[Comparison Functions], page33, for the inequality operators. See section10.1.1[Defining
Operators], page143, for how to define your own operators. See section10.1.2[Defining Macros], page145,
for how to define a macro.

1.3.1 Defining Variables

There are two assignment operators inMaxima, : and ::.

[Syntax]:

A:3 sets the variable A to 3.

[Syntax]::

: : assigns the value of the expression on its right to the value of the quantity on its left, which must evaluate
to an atomic variable or subscripted variable.

[Special Form]DEFINE_VARIABLE (name, default-binding, mode, documentation)

introduces a global variable into theMaxima environment. This is for user-written packages, which are
often translated or compiled. E.g.:DEFINE_VARIABLE(FOO,TRUE,BOOLEAN); does the following:

4 Chapter 1. Fundamental Concepts

1. MODE_DECLARE(FOO,BOOLEAN); sets it up for the translator.

2. If the variable is unbound, it sets it:FOO:TRUE.

3. DECLARE(FOO,SPECIAL); declares it special.

4. Sets up an assign property for it to make sure that it never gets set to a value of the wrong mode. E.g.
FOO:44 would be an error once FOO is defined BOOLEAN.

See section13.1[Mode Declarations], page185, for a list of the possible modes.

The optional 4’th argument is a documentation string. When TRANSLATE_FILE is used on a package
which includes documentation strings, a second file is output in addition to the Lisp file which will contain
the documentation strings, formatted suitably for use in manuals, usage files, or (for instance) DESCRIBE.

With any variable which has been DEFINE_VARIABLE’d with mode other than ANY, you can give a
VALUE_CHECK property, which is a function of one argument called on the value the user is trying to set
the variable to.

PUT(’G5,LAMBDA([U],IF U#’G5 THEN ERROR("Don’t set G5")),’VALUE_CHECK); -
>
DEFINE_VARIABLE(G5,’G5,ANY_CHECK, "this ain’t supposed to be set
by anyone but me.")

ANY_CHECK is a mode which means the same as ANY, but which keeps DEFINE_VARIABLE from
optimizing away the assign property.

[Special Form]NUMERVAL (var1, exp1, var2, exp2, . . .)

declaresvari to have a numerical value ofexpi, which is evaluated and substituted for the variable in any
expressions in which the variable occurs if the NUMER flag isTRUE.

See section2.6[Reviewing Options], page29.

1.3.1.1 Assignment Flags

[variable, default: FALSE]REFCHECK

if TRUE causes a message to be printed each time a bound variable is used for the first time in a computation.

[variable, default: FALSE]SETCHECK

if set to a list of variables (which can be subscripted) will cause a printout whenever the variables, or
subscripted occurrences of them, are bound (with : or :: or function argument binding). The printout
consists of the variable and the value it is bound to. SETCHECK may be set to ALL orTRUE thereby
including all variables. Note: No printout is generated when a SETCHECKed variable is set to itself, e.g.
X:’X.

See section2.4.1[Display of Numbers], page23.

1.3. Reader Syntax 5

1.3.2 Defining Functions

[Syntax]:=

To define a function inMaxima you use the := operator. E.g.F(X):=SIN(X) defines a functionF.

[Special Form]FUNDEF (fun)

returns the function definition associated withfun. FUNDEF(fun); is similar toDISPFUN(fun); except that
FUNDEF does not invoke DISPLAY.

[Function]FUNMAKE (fun, [arg1, arg2, . . .])

returnsf un(arg1,. . . ,argn) without calling the functionfun.

[Special Form]DEFINE (f(x1, . . .), body)

is equivalent tof (x1,. . .):=”body, but when used inside functions, it takes place at execution time rather
than at the time of definition of the function which contains it.

[Variable]FUNCTIONS

a list of all user defined functions (set up byf (x) := . . .).

1.4 Data Types

1.4.1 Constants

1.4.1.1 Logical Constants

TRUE the Boolean constant, true. (T in Lisp)

FALSE the Boolean constant, false. (NIL in Lisp)

1.4.1.2 Arithmetic Constants

INF real positive infinity.

INFINITY complex infinity, an infinite magnitude of arbitrary phase angle.

MINF real minus infinity.

%PI TheMaxima representation for pi.

%E TheMaxima representation for the base of natural logarithms

%I The Maxima representation for the square root of -1. Some commands and switches which handle
%I are, LOGNEGINT, REALPART, IMAGPART, RECTFORM, POLARFORM, ABS, CARG, and
CABS. See section3.6[Complex Variables], page44.

6 Chapter 1. Fundamental Concepts

%GAMMA The Euler-Mascheroni constant. The notation %GAMMA is used for consistency with stan-
dard texts which use the Greek letter gamma; it can be defined as follows:

M
====
\ 1

\%GAMMA = limit ((> -) - LOG(M))
M -> INF / N

====
N = 1

Currently %GAMMA has a NUMER property of .577215665 and a CONSTANT property. It is used
along with the Polygamma simplification routines to permit their reduction to closed forms.

%PHI The constant (SQRT(5)+1)/2 = 1.618033989). If you want the Rational Function Package to know
about %PHI doTELLRAT(%PHI**2-%PHI-1); ALGEBRAIC:TRUE. See also FIBTOPHI.

1.4.2 Data Type Predicates

[Function]ATOM (exp)

is TRUE if exp is atomic (i.e. a number or a name), otherwiseFALSE. ThusATOM(5) is TRUE, while
ATOM(A[1]) andATOM(SIN(X)) areFALSE (assuming A[1] and X are unbound).

[Function]LISTP (exp)

is TRUE if exp is a list, otherwiseFALSE.

[Function]MATRIXP (exp)

is TRUE if exp is a matrix, otherwiseFALSE.

[Function]NUMBERP (exp)

is TRUE if exp is an integer, a rational number, a floating point number or a bigfloat, otherwiseFALSE.

[Function]SYMBOLP (exp)

returnsTRUE if exp is a symbol or name, elseFALSE. I.e., in effect,SYMBOLP(X):=ATOM(X) AND
NOT NUMBERP(X).

[Function]UNKNOWN (exp)

returnsTRUE iff exp contains an operator or function not known to the built-in simplifier.

1.4. Data Types 7

1.4.3 Numerical Predicates

[Function]BFLOATP (exp)

is TRUE if exp is a bigfloat number, elseFALSE.

[Function]CONSTANTP (exp)

is TRUE if exp is a constant (i.e. composed of only of numbers and %PI, %E, %I, or any variables that
have been either bound to a constant or DECLAREd constant); otherwiseFALSE. Any function whose
arguments are constant is also considered to be a constant.

[Function]EVENP (exp)

is TRUE if exp is an even integer.FALSE is returned in all other cases.

[Function]FLOATNUMP (exp)

is TRUE if exp is a floating point number, otherwiseFALSE.

[Function]INTEGERP (exp)

is TRUE if exp is an integer, otherwiseFALSE.

[Function]NONSCALARP (exp)

is TRUE if exp is a non-scalar, i.e. it contains atoms declared as non-scalars, lists, or matrices.

[Function]ODDP (exp)

is TRUE if exp is an odd integer.FALSE is returned in all other cases.

[Function]PRIMEP (int)

returnsTRUE if int is a prime,FALSE if not.

[Function]RATNUMP (exp)

is TRUE if exp is a rational number, including integers, otherwiseFALSE.

[Function]RATP (exp)

is TRUE if exp is in CRE form or extended CRE form, otherwiseFALSE.

8 Chapter 1. Fundamental Concepts

[Function]SCALARP (exp)

is TRUE if exp is a number, constant, or variable DECLAREd SCALAR, or composed entirely of numbers,
constants, and such variables, but not containing matrices or lists.

[Function]SUBVARP (exp)

is TRUE if exp is a subscripted variable, for exampleA[I].

[Function]TAYLORP (exp)

a predicate function which returnsTRUE if and only if the expressionexp is in Taylor Series representation.

1.4.4 Data Type Coercion

[Function]BFLOAT (X)

converts all numbers and functions of numbers to bigfloat numbers. Setting FPPREC default: [16] toN, sets
the bigfloat precision toN digits. If FLOAT2BF default: [FALSE] isFALSE a warning message is printed
when a floating point number is converted into a bigfloat number (since this may lead to loss of precision).

[Function]ENTIER (float)

largest integer <=float wherefloat is numeric. FIX (as in FIXnum) is a synonym for this, soFIX(X); is
precisely the same.

[Function]FIX (float)

a synonym for ENTIER. Returns the largest integer <=float, wherefloat is numeric.

[Function]FLOAT (exp)

converts integers, rational numbers and bigfloats inexp to floating point numbers.

[Function]REALPART (exp)

gives the real part ofexp. REALPART and IMAGPART will work on expressions involving trigonometric
and hyperbolic functions, as well as SQRT, LOG, and exponentiation.

[Function]IMAGPART (exp)

returns the imaginary part ofexp.

1.4. Data Types 9

1.4.5 Control Characters

Control characters are typed by holding down the key labeledCONTROLor CTRLand typing the indicated
letter, much the same way theSHIFT key is used.

1.5 Command Line Flags

See section2.4[Flags Effecting the Displayed Form], page21.

[Variable]LABELS

all bound C, D, and E labels.

[variable, default: FALSE]NOLABELS

if TRUE then no labels will be bound except for E lines generated by the SOLVE functions. This is most
useful in the BATCH mode where it eliminates the need to doKILL(LABELS); in order to free up storage.

[variable, default: FALSE]BOTHCASES

if TRUE will causeMaxima to retain lower case text as well as upper case. Note, however, that the names
of any Maxima special variables or functions must be typed in upper case. (For historical reasons this is
also a function, but it should be used as a switch. Please use it as described here, not as a function.)

[variable, default: FALSE]TTYOFF

if TRUE stops printing output to the console.

[Variable]LINEL

the number of characters which are printed on a line. It is initially set byMaxima to the line length of the
type of terminal being used (as far as is known) but may be reset at any time by the user.

[Variable]LINENUM

is the line number of the last expression.

[variable, default: TRUE]LINEDISP

Allows the use of line graphics in the drawing of equations on those systems which support them. This can
be disabled by setting LINEDISP toFALSE. It is automatically disabled during WRITEFILE.

[variable, default: FALSE]STARDISP

if TRUE will cause multiplication to be displayed explicitly with an * between operands.

10 Chapter 1. Fundamental Concepts

[variable, default: TRUE]CURSORDISP

If TRUE, causes expressions to be drawn by the displayer in logical sequence. This only works with a
console which can do cursor movement, such as a vt100. IfFALSE, expressions are simply printed line by
line. CURSORDISP isFALSE when a WRITEFILE is in effect.

[variable, default: FALSE]VERBOSE

if TRUE will cause comments about the progress of some functions to be printed as the execution of it
proceeds. One such function is POWERSERIES.

[variable, default: !]ABSBOXCHAR

is the character used to draw absolute value signs around expressions which are more than a single line high.

[Variable]PAGEPAUSE

This is set byMaxima according to what the system knows about your terminal type. If it is set toTRUE,
then “more processing,” which involves the printing of- -More display?– or- -Pause– at the bottom of your
screen, or after so many lines on a printing terminal, and pausing, will be enabled. It may be set toFALSE to
turn off the more processing on a display terminal. PAGEPAUSE is sometimes useful in batch files on slow
lines where you just wish to watch the output run past, and can keep up with the line speed well enough.

[variable, default: FALSE]MOREWAIT

Controls the action of more processing. When output is suspended and a- -Pause– or- -More Display?–
prompt is issued, one may type a space to continue the output. Typing any character other than space or
rubout (delete) will continue the output, and leave the character around to be read as part of the next c-line
and possibly intervening- -Pause– prompts.

[variable, default: C]INCHAR

the alphabetic prefix of the names of expressions typed by the user.

[variable, default: D]OUTCHAR

the alphabetic prefix of the names of outputted expressions.

[variable, default: E]LINECHAR

the alphabetic prefix of the names of intermediate displayed expressions.

1.5. Command Line Flags 11

12

CHAPTER

TWO

Programming Constructs

2.1 Program Flow

2.1.1 Conditionals

[Syntax]IF

The IF statement is used for conditional execution. The syntax is:

IF condition THEN expression1 ELSE expression2;

The result of an IF statement isexpression1 if condition isTRUE andexpression2 if it is FALSE. expres-

sion1 andexpression2 are anyMaxima expressions (including nested IF statements), andcondition is an
expression which evaluates toTRUE orFALSE, and is composed of relational and logical operators which
are as follows:

= equal to, relational infix

EQUAL equal to, relational infix

not equal to, relational infix

> greater than, relational infix

< less than, relational infix

>= greater than or equal to, relational infix

<= less than or equal to, relational infix

AND and, logical infix

OR or, logical infix

NOT not, logical infix

13

2.1.2 Local Blocks and Variables

[Syntax]BLOCK ([v1,. . . ,vk], statement1, . . .)

Blocks inMaxima are somewhat analogous to subroutines in FORTRAN or procedures in ALGOL or PL/I.
Blocks are like compound statements but also enable the user to label statements within the block and to
assign dummy variables to values which are local to the block. Thevi are variables which are local to the
BLOCK and thestatementi are anyMaximaexpressions. If no variables are to be made local then the list
may be omitted. A block uses these local variables to avoid conflict with variables having the same names
used outside of the block (i.e. global to the block). In this case, upon entry to the block, the global values
are saved onto a stack and are inaccessible while the block is being executed. The local variables then are
unbound so that they evaluate to themselves. They may be bound to arbitrary values within the block but
when the block is exited the saved values are restored to these variables. The values created in the block for
these local variables are lost. Where a variable is used within a block and is not in the list of local variables
for that block it will be the same as the variable used outside of the block.

If it is desired to save and restore other local properties besides VALUE, for example ARRAY (except for
complete arrays), FUNCTION, DEPENDENCIES, ATVALUE, MATCHDECLARE, ATOMGRAD, CON-
STANT, and NONSCALAR, then the function LOCAL should be used inside of the block, with arguments
being the names of the variables.

[Syntax]GO

The function GO may be used to transfer control to the statement of the block that is tagged with the
argument to GO. To tag a statement, precede it by an atomic argument as another statement in the BLOCK.
For example:

BLOCK([X],
X:1,
LOOP,

X:X+1,
\dots ,
GO(LOOP),

\dots);

The argument to GO must be the name of a tag appearing within the BLOCK. One cannot use GO to transfer
to a tag in a BLOCK other than the one containing the GO.

The value of the block is the value of the last statement, or the value of the argument to the function RETURN
which may be used to exit explicitly from the block. Blocks typically appear on the right side of a function
definition, but can be used in other places as well.

[variable, default: TRUE]DISPFLAG

if set toFALSE within a BLOCK will inhibit the display of output generated by the SOLVE functions called
from within the BLOCK. Termination of the BLOCK with a dollar sign, $, sets DISPFLAG toFALSE.

14 Chapter 2. Programming Constructs

[Special Form]LOCAL (var1, var2, . . .)

causes the variablesvari to be local with respect to all the properties in the statement in which this function is
used. LOCAL may only be used in BLOCKs, in the body of function definitions, in LAMBDA expressions,
or in the EV function and only one occurrence is permitted in each. LOCAL is independent of CONTEXT.

[Syntax]RETURN (exp)

may be used to exit explicitly from a BLOCK, returning its argument.

2.1.3 Throw and Catch

[Special Form]CATCH (exp1, . . . , expn)

evaluates its arguments one by one; if the structure of theexpi leads to the evaluation of an expression of the
form THROW(arg), then the value of the CATCH is the value ofTHROW(arg). This non-local return thus
goes through any depth of nesting to the nearest enclosing CATCH. There must be a CATCH corresponding
to a THROW, else an error is generated. If the evaluation of theexpi does not lead to the evaluation of any
THROW, then the value of the CATCH is the value ofexpn.

(C1) G(L) := CATCH(
MAP(LAMBDA([X],

IF X<0 THEN THROW(X) ELSE F(X)), L)
)$

(C2) G([1,2,3,7]);
(D2) [F(1), F(2), F(3), F(7)]
(C3) G([1,2,-3,7]);
(D3) - 3

The functionGreturns a list ofF applied to each element ofL, if L consists only of non-negative numbers;
otherwise,G“catches” the first negative element ofL and "throws" it up.

[Function]THROW (exp)

evaluatesexp and throws the value back to the most recent CATCH. THROW is used with CATCH as a
structured nonlocal exit mechanism.

[Special Form]ERRCATCH (exp1, exp2, . . .)

evaluates its arguments one by one and returns a list of the value of the last one if no error occurs. If an
error occurs in the evaluation of any arguments, ERRCATCH “catches” the error, and immediately returns
[] (the empty list). This function is useful in BATCH files where one suspects an error might occur which
would otherwise have terminate the BATCH if the error weren’t caught.

2.1. Program Flow 15

2.1.4 Iteration

[Syntax]DO

The DO statement is used for performing iteration. Due to its great generality the DO statement will be
described in two parts. First the usual form will be given which is analogous to that used in several other
programming languages (FORTRAN, ALGOL, PL/I, etc.); then the other features will be mentioned.

There are three variants of the first form, theFOR statement, that differ only in their terminating conditions.
They are:

(a) FOR variable : initial-value STEP increment
THRU limit DO body

(b) FOR variable : initial-value STEP increment
WHILE condition DO body

(c) FOR variable : initial-value STEP increment
UNLESS condition DO body

Alternatively, theSTEP may be given after the termination condition or limit. Theinitial-value, increment,

limit, andbody can be any expressions. If the increment is 1 thenSTEP 1 may be omitted.

The execution of the DO statement proceeds by first assigning the initial-value to the variable (henceforth
called the control-variable). Then:

1. If the control-variable has exceeded the limit of aTHRU specification, or if the condition of the
UNLESS is TRUE, or if the condition of theWHILE is FALSE then the DO terminates.

2. The body is evaluated.

3. The increment is added to the control-variable.

The process from (1) to (3) is performed repeatedly until the termination condition is satisfied. One may
also give several termination conditions in which case the DO terminates when any of them is satisfied.

In general the THRU test is satisfied when the control-variable is greater than the limit if the increment was
non-negative, or when the control-variable is less than the limit if the increment was negative. The increment
and limit may be non-numeric expressions as long as this inequality can be determined. However, unless
the increment is syntactically negative (e.g. is a negative number) at the time the DO statement is input,
Maxima assumes it will be positive when the DO is executed. If it is not positive, then the DO may not
terminate properly.

Note that the limit, increment, and termination condition are evaluated each time through the loop. Thus if
any of these involve much computation, and yield a result that does not change during all the executions of
the body, then it is more efficient to set a variable to their value prior to the DO and use this variable in the
DO form.

The value normally returned by a DO statement is the atom DONE, as every statement inMaxima returns a
value. However, the function RETURN may be used inside the body to exit the DO prematurely and give it
any desired value. Note however that a RETURN within a DO that occurs in a BLOCK will exit only the DO

16 Chapter 2. Programming Constructs

and not the BLOCK. Note also that the GO function may not be used to exit from a DO into a surrounding
BLOCK.

The control variable is always local to the DO and thus any variable may be used without affecting the
value of a variable with the same name outside of the DO. The control-variable is unbound after the DO
terminates.

(C1) FOR A:-3 THRU 26 STEP 7 DO LDISPLAY(A)$
(E1) A = -3
(E2) A = 4
(E3) A = 11
(E4) A = 18
(E5) A = 25

The function LDISPLAY generates intermediate labels; DISPLAY does not.

(C6) S:0$
(C7) FOR I:1 WHILE I<=10 DO S:S+I;
(D7) DONE
(C8) S;
(D8) 55

Note that the condition in C7 is equivalent toUNLESS I > 10 and alsoTHRU 10.

(C9) SERIES:1$
(C10) TERM:EXP(SIN(X))$
(C11) FOR P:1 UNLESS P>7 DO

(TERM:DIFF(TERM,X)/P,
SERIES:SERIES+SUBST(X=0,TERM)*X^P)$

(C12) SERIES;
7 6 5 4 2

(D12) X X X X X
-- - --- - -- - -- + -- + X + 1
96 240 15 8 2

which gives 8 terms of the Taylor series for%e**sin(x).

(C13) POLY:0$
(C14) FOR I:1 THRU 5 DO

FOR J:I STEP -1 THRU 1 DO
POLY:POLY+I*X^J$

(C15) POLY;
5 4 3 2

(D15) 5 X + 9 X + 12 X + 14 X + 15 X
(C16) GUESS:-3.0$
(C17) FOR I:1 THRU 10 DO (GUESS:SUBST(GUESS,X,.5*(X+10/X)),

IF ABS(GUESS^2-10)<.00005 THEN RETURN(GUESS));
(D17) - 3.1622807

2.1. Program Flow 17

This example computes the negative square root of 10 using the Newton-Raphson iteration a maximum of
10 times. Had the convergence criterion not been met the value returned would have beenDONE.

2.1.4.1 Additional Forms of the DO Statement

Instead of always adding a quantity to the control-variable one may sometimes wish to change it in some
other way for each iteration. In this case one may useNEXT expression instead of STEPincrement. This
will cause the control-variable to be set to the result of evaluating expression each time through the loop.

(C1) FOR COUNT:2 NEXT 3*COUNT THRU 20
DO DISPLAY(COUNT)$

COUNT = 2
COUNT = 6
COUNT = 18

As an alternative toFOR variable:value . . . DO . . . , the syntax FORvariable FROM value . . . DO . . . may
be used. This permits the FROM value to be placed after the step or next value or after the termination
condition. IfFROM value is omitted then 1 is used as the initial value.

Sometimes one may be interested in performing an iteration where the control-variable is never actually
used. It is thus permissible to give only the termination conditions omitting the initialization and updating
information as in the following example to compute the square-root of 5 using a poor initial guess.

(C1) X:1000
(C2) THRU 10 WHILE X#0.0 DO X:.5*(X+5.0/X)$
(C3) X;
(D3) 2.236068

If it is desired one may even omit the termination conditions entirely and just giveDO body which will
continue to evaluate the body indefinitely. In this case the function RETURN should be used to terminate
execution of the DO.

(C1) NEWTON(F,GUESS):=
BLOCK([NUMER,Y],

LOCAL(DF),
NUMER:TRUE,
DEFINE(DF(X),DIFF(F(X),X)),
DO (Y:DF(GUESS),

IF Y=0.0 THEN ERROR("Derivative at:",GUESS," is zero."),
GUESS:GUESS-F(GUESS)/Y,
IF ABS(F(GUESS))<5.0E-6 THEN RETURN(GUESS)))$

(C2) SQR(X):=X^2-5.0$
(C3) NEWTON(SQR,1000);
(D3) 2.236068

Note that RETURN, when executed, causes the current value ofGUESS to be returned as the value of the

18 Chapter 2. Programming Constructs

DO. The BLOCK is exited and this value of the DO is returned as the value of the BLOCK because the DO
is the last statement in the block.

One other form of the DO is available inMaxima, theFOR . . .IN statement. The syntax is:

FOR variable IN list [end-tests] DO body

The members of the list are any expressions which will successively be assigned to the variable on each
iteration of the body. The optional end-tests can be used to terminate execution of the DO; otherwise it will
terminate when the list is exhausted or when a RETURN is executed in the body. (In fact,list may be any
non-atomic expression, and successive parts are taken.)

(C1) FOR F IN [LOG, RHO, ATAN] DO LDISP(F(1))$
(E1) 0
(E2) RHO(1)

%PI
(E3) ---

4
(C4) EV(E3,NUMER);
(D4) 0.78539816

2.2 Reading Input

[Function]READ (string1, . . .)

prints its arguments, then reads in and evaluates one expression. For example:A:READ("ENTER THE
NUMBER OF VALUES").

[Function]READONLY (string1, . . .)

prints its arguments, then reads in an expression (which in contrast to READ is not evaluated).

See section11.1[Loading Files], page163, for information on reading in files.

2.3 Displaying Expressions

[Special Form]DISPLAY (exp1, exp2, . . .)

displays equations whose left side isexpi unevaluated, and whose right side is the value of the expression
centered on the line. This function is useful in blocks and FOR statements in order to have intermediate
results displayed. The arguments to DISPLAY are usually atoms, subscripted variables, or function calls.
See also the DISP function.

2.2. Reading Input 19

(C1) DISPLAY(B[1,2]);
2

B = X - X
1, 2

(D1) DONE

[Special Form]LDISPLAY (exp1, exp2, . . .)

is like DISPLAY but also generates intermediate labels.

[Function]DISP (exp1, exp2, . . .)

is like DISPLAY but only the value of the arguments are displayed rather than equations. This is useful for
complicated arguments which don’t have names or where only the value of the argument is of interest and
not the name.

[Function]LDISP (exp1, exp2, . . .)

is like DISP but also generates intermediate labels.

[Special Form]DISPFUN (f1, f2, . . .)

displays the definition of the user defined functionsfi which may also be the names of array associated
functions, subscripted functions, or functions with constant subscripts, which are the same as those used
when the functions were defined.DISPFUN(ALL); will display all user defined functions as given on the
FUNCTIONS and ARRAYS lists, except subscripted functions with constant subscripts. E.g. if the user has
defined a functionF(x), DISPFUN(F); will display the definition.

[Function]DISPFORM (exp)

returns the external representation ofexp with respect to its main operator. This should be useful in con-
junction with PART which also deals with the external representation. Supposeexp is - A. Then the internal
representation ofexp is " *"(-1,A), while the external representation is" -"(A)

DISPFORM(exp,ALL) converts the entire expression (not just the top-level) to external format.

[Function]PRINT (exp1, exp2, . . .)

evaluates and displays its arguments one after the other on a line starting at the leftmost position. Ifexpi

is unbound, or is preceded by a single quote, or is enclosed in double quotes, then it is printed literally.
For example,PRINT("THE VALUE OF X IS",X). The value returned by PRINT is the value of its last
argument. No intermediate lines are generated. (For printing files, see the PRINTFILE function.)

20 Chapter 2. Programming Constructs

[Special Form]GRIND (exp)

prints outexp in a more readable format than the STRING command. It returns a D-line as value.

[variable, default: FALSE]GRIND

if TRUE will cause the STRING, STRINGOUT, and PLAYBACK commands to use “grind” mode instead
of “string” mode. For PLAYBACK, “grind” mode can also be turned on (for processing input lines) by
specifying GRIND as an option.

[Special Form]STRING (exp)

convertsexp to Maxima’s linear notation (similar to FORTRAN’s) just as if it had been typed in and puts
exp into the buffer for possible editing (in which caseexp is usually Ci). The STRING’ed expression should
not be used in a computation.

2.4 Flags Effecting the Displayed Form

[variable, default: TRUE]NEGDISTRIB

when TRUE allows -1 to be distributed over an expression. E.g.- (X+Y) becomes- Y-X. Setting it to
FALSE will allow - (X+Y) to be displayed like that. This is sometimes useful but be very careful: like the
SIMP flag, this is one flag you do not want to set toFALSE as a matter of course, or necessarily for other
than local use in yourMaxima.

[variable, default: TRUE]NEGSUMDISPFLAG

whenTRUE, X-Y displays asX-Y instead of as- Y+X. Setting it toFALSE causes the special check in
display for the difference of two expressions to not be done. One application is that thusA+%I*B and
A-%I*B may both be displayed the same way.

[variable, default: TRUE]DISPLAY2D

if set to FALSE will cause the standard display to be a string (1-dimensional) form rather than a display
(2-dimensional) form. This may be of benefit for users on printing consoles who would like to conserve
paper.

[variable, default: FALSE]DISPLAY_FORMAT_INTERNAL

if set to TRUE will cause expressions to be displayed without being transformed in ways that hide the
internal mathematical representation. The display then corresponds to what the INPART command returns
rather than the PART command. Examples:

2.4. Flags Effecting the Displayed Form 21

User PART INPART
a-b; A - B A + (- 1) B

A - 1
a/b; - A B

B
1/2

sqrt(x); SQRT(X) X

4 X 4
X*4/3; --- - X

3 3

See section4.6[Substituting Expressions], page67.

[variable, default: REAL]DOMAIN

if set to COMPLEX,SQRT(X^2) will remainSQRT(X^2) instead of returningABS(X). The notion of a
domain of simplification is still in its infancy, and controls little more than this at the moment.

[variable, default: 0]EXPOP

the highest positive exponent which is automatically expanded. Thus(X+1)**3, when typed, will be auto-
matically expanded only if EXPOP is greater than or equal to 3. If it is desired to have(X+1)**n expanded
wheren is greater than EXPOP, then executingEXPAND((X+1)**n) will work only if MAXPOSEX is not
less thann.

[variable, default: 0]EXPON

the exponent of the largest negative power which is automatically expanded (independent of calls to EX-
PAND). For example if EXPON is 4 then(X+1)**(-5) will not be automatically expanded.

[variable, default: TRUE]PROGRAMMODE

whenFALSE will cause SOLVE, REALROOTS, ALLROOTS, and LINSOLVE to print E-labels (interme-
diate line labels) to label answers. WhenTRUE, SOLVE, etc. return answers as elements in a list. (Except
when BACKSUBST is set toFALSE, in which casePROGRAMMODE:FALSE is also used.)

[variable, default: FALSE]NOUNDISP

if TRUE will cause NOUNs to display with a single quote. This switch is alwaysTRUE when displaying
function definitions.

[variable, default: FALSE]POWERDISP

if TRUE will cause sums to be displayed with their terms in the reverse order. Thus polynomials would
display as truncated power series, i.e., with the lowest power first.

22 Chapter 2. Programming Constructs

[variable, default: TRUE]SQRTDISPFLAG

if FALSE causes SQRT to display with exponent1/2.

2.4.1 Display of Numbers

[variable, default: 10]IBASE

the base for inputing numbers.

[variable, default: 10]OBASE

the base for display of numbers.

[variable, default: FALSE]KEEPFLOAT

if set toTRUE will prevent floating point numbers from being rationalized when expressions which contain
them are converted to CRE form.

[variable, default: FALSE]FLOAT2BF

if FALSE, a warning message is printed when a floating point number is converted into a bigfloat number
(since this may lead to loss of precision).

[variable, default: TRUE]RATPRINT

if FALSE suppresses the printout of the message informing the user of the conversion of floating point
numbers to rational numbers.

[variable, default: 2.0E-8]RATEPSILON

the tolerance used in the conversion of floating point numbers to rational numbers.

[variable, default: 16]FPPREC

Floating Point PRECision. Can be set to an integer representing the desired precision.

[variable, default: 0]FPPRINTPREC

The number of digits to print when printing a bigfloat number, making it possible to compute with a large
number of digits of precision, but have the answer printed out with a smaller number of digits. If FPPRINT-
PREC is 0 (the default), or >= FPPREC, then the value of FPPREC controls the number of digits used for
printing. However, if FPPRINTPREC has a value between 2 and FPPREC-1, then it controls the number of
digits used. The minimal number of digits used is 2, one to the left of the point and one to the right. The
value 1 for FPPRINTPREC is illegal.

2.4. Flags Effecting the Displayed Form 23

[variable, default: FALSE]PFEFORMAT

if TRUE will cause rational numbers to display in a linear form and denominators which are integers to
display as rational number multipliers.

[variable, default: FALSE]BFTORAT

controls the conversion of a bigfloat number to a rational numbers. IfBFTORAT:FALSE, RATEPSILON
will be used to control the conversion (this results in relatively small rational numbers). IfBFTORAT:TRUE,
the rational number generated will accurately represent the bigfloat.

[variable, default: TRUE]BFTRUNC

causes trailing zeroes in non-zero bigfloat numbers not to be displayed. Thus, ifBFTRUNC:FALSE,
BFLOAT(1); displays as1.000000000000000B0. Otherwise, this is displayed as1.0B0.

[variable, default: TRUE]ZUNDERFLOW

if FALSE, an error will be signaled if floating point underflow occurs.

2.4.2 Display of Exponentials

[variable, default: FALSE]DEMOIVRE

if TRUE will cause%E**(A+B*%I) to become%E**A*(COS(B)+%I*SIN(B)) if B is free of %I. A andB
are not expanded. (DEMOIVRE:TRUE; is the way to reverse the effect ofEXPONENTIALIZE:TRUE;)

DEMOIVRE (exp) will cause the conversion without setting the switch or having to re-evaluate the expres-
sion with EV.

[variable, default: FALSE]%EDISPFLAG

if TRUE,Maxima displays %E to a negative exponent as a quotient, i.e.%E**-X as 1/%E**X.

[variable, default: TRUE]%EMODE

when TRUE %E**(%PI*%I*X) will be simplified as follows: it will become
COS(%PI*X)+%I*SIN(%PI*X) if X is an integer or a multiple of 1/2, 1/3, 1/4, or 1/6 and thus will
simplify further. For other numerical X it will become%E**(%PI*%I*Y) where Y is X-2*k for some
integer k such thatABS(Y)<1. If %EMODE isFALSE no simplification of%E**(%PI*%I*X) will take
place.

[variable, default: FALSE]%ENUMER

whenTRUE will reliably cause %E to be converted into 2.718. . . whenever NUMER isTRUE. The default
is that this conversion will take place only if the exponent in%E**X evaluates to a number.

24 Chapter 2. Programming Constructs

[variable, default: FALSE]%E_TO_NUMLOG

when set toTRUE, for r some rational number, andx some expression,%E**(r*LOG(x)) will be simplified
into x**r.

[variable, default: TRUE]EXPTDISPFLAG

if TRUE,Maxima displays expressions with negative exponents using quotients e.g.,X**(-1) as 1/X.

[variable, default: TRUE]RADEXPAND

if set to ALL will causen ’th roots of factors of a product which are powers ofn to be pulled outside of
the radical. E.g. if RADEXPAND is ALL,SQRT(16*X**2) will become4*X. More particularly, consider
SQRT(X**2):

1. If RADEXPAND is ALL or ASSUME(X>0) has been done,SQRT(X**2) will becomeX.

2. If RADEXPAND is TRUE and DOMAIN is REAL (its default),SQRT(X**2) will become ABS(X).

3. If RADEXPAND is FALSE, or RADEXPAND isTRUE and DOMAIN is COMPLEX,SQRT(X**2)
will be returned.

The notion of DOMAIN with settings of REAL or COMPLEX is still in its infancy. Note that its setting
here only matters when RADEXPAND isTRUE.

See section4.6.1[Substitution Flags], page68, for flags that effect the substitution of expressions.

2.4.3 Display of Logarithms

[variable, default: TRUE]LOGEXPAND

causesLOG(A**B) to become B*LOG(A). If it is set to ALL, LOG(A*B) will also simplify to
LOG(A)+LOG(B). If it is set to SUPER, thenLOG(A/B) will also simplify to LOG(A)-LOG(B) for ra-
tional numbersa/b, a#1. (LOG(1/B) forB an integer, always simplifies.) If it is set toFALSE, all of these
simplifications will be turned off.

[variable, default: FALSE]LOGNEGINT

if TRUE implements the ruleLOG(-n) -> LOG(n)+%i*%pi forn a positive integer.

[variable, default: FALSE]LOGNUMER

if TRUE then negative floating point arguments to LOG will always be converted to their absolute value
before the LOG is taken. If NUMER is alsoTRUE, then negative integer arguments to LOG will also be
converted to their absolute value.

2.4. Flags Effecting the Displayed Form 25

[variable, default: TRUE]LOGSIMP

if FALSE then no simplification of %E to a power containing LOG’s is done.

[variable, default: FALSE]LOGARC

if TRUE will cause the inverse circular and hyperbolic functions to be converted into logarithmic form.

[Function]LOGARC (exp)

will cause this conversion for a particular expression without setting the switch or having to re-evaluate the
expression with EV.

See section2.4.2[Display of Exponentials], page24, for the definition of %E_TO_NUMLOG.

2.4.4 Display of Trig Functions

[variable, default: TRUE]TRIGSIGN

if TRUE permits simplification of negative arguments to trigonometric functions. E.g.,SIN(-X) will become
- SIN(X) only if TRIGSIGN isTRUE.

[variable, default: ALL]TRIGINVERSES

controls the simplification of the composition of trig and hyperbolic functions with their inverse functions:
If ALL, both e.g. ATAN(TAN(X)) and TAN(ATAN(X)) simplify to X. If TRUE, thearcfun(fun(x)) sim-
plification is turned off. IfFALSE, both thearcfun(fun(x)) and fun(arcfun(x)) simplifications are turned
off.

[variable, default: FALSE]HALFANGLES

if TRUE causes half-angles to be simplified away.

See section5.2.5.1[Trig Expand Flags], page80, for the definition of TRIGEXPAND, TRIGEXPAND-
PLUS, TRIGEXPANDTIMES,

[variable, default: FALSE]EXPONENTIALIZE

if TRUE will cause all circular and hyperbolic functions to be converted to exponential form. (Setting
DEMOIVRE:TRUE; will reverse the effect.)

EXPONENTIALIZE (exp) will cause the conversion to exponential form of an expression without setting
the switch or having to re-evaluate the expression with EV.

26 Chapter 2. Programming Constructs

2.4.5 Display of Sums

See section7.1.1.1[Sum Flags], page102, for the definition of SIMPSUM.

[variable, default: FALSE]SUMEXPAND

if TRUE, products of sums and exponentiated sums are converted into nested sums.

SUMEXPAND:TRUE$
SUM(F(I),I,0,M)*SUM(G(J),J,0,N); ->

’SUM(’SUM(F(I1)*G(I2),I2,0,N),I1,0,M)
SUM(F(I),I,0,M)^2; -> ’SUM(’SUM(F(I3)*F(I4),I4,0,M),I3,0,M)

If FALSE, they are left alone. See also CAUCHYSUM.

[variable, default: FALSE]CAUCHYSUM

When multiplying together sums with INF as their upper limit, if SUMEXPAND isTRUE and
CAUCHYSUM is set toTRUE then the Cauchy product will be used rather than the usual product. In
the Cauchy product, the index of the inner summation is a function of the index of the outer one, rather than
varying independently. That is:SUM(F(I),I,0,INF)*SUM(G(J),J,0,INF) becomesSUM(SUM(F(I)*G(J-
I),I,0,J),J,0,INF).

[variable, default: FALSE]SUMHACK

if set to TRUE then SUM(F(I),I,3,1); will yield - F(2), by the identity SUM(F(I),I,A,B) = -
SUM(F(I),I,B+1,A-1) whenA>B.

2.4.6 Display of Products

[variable, default: FALSE]PRODHACK

if set to TRUE thenPRODUCT(F(I),I,3,1); will yield 1/F(2), by the identityPRODUCT(F(I),I,A,B) =
1/PRODUCT(F(I),I,B+1,A-1) whenA>B.

2.4.7 Display of Simplification

[variable, default: FALSE]ALGEBRAIC

must be set toTRUE in order for the simplification of algebraic integers to take effect.

[variable, default: TRUE]LISTARITH

if FALSE causes any arithmetic operations with lists to be suppressed; whenTRUE, list-matrix operations
are contagious causing lists to be converted to matrices yielding a result which is always a matrix. However,
list-list operations should return lists.

2.4. Flags Effecting the Displayed Form 27

2.4.8 Display of Factoring

See section5.3.1 [Factor Flags], page83, for the definition of FACTORFLAG, DONTFACTOR, SAVE-
FACTORS, INTFACLIM, BERLEFACT and NEWFAC.

2.4.9 Display of Expansion

See section5.2.1[Expand Flags], page77.

2.5 Ordering of the Display

[Special Form]ORDERGREAT (V1, . . . , Vn)

sets up aliases for the variablesV1, . . . , Vn such thatV1 > V2 > . . . > Vn > any other variable not mentioned

as an argument.

[Function]ORDERGREATP (exp1, exp2)

returnsTRUE if exp2 precedesexp1 in the set up with the ORDERGREAT function.

[Special Form]ORDERLESS (V1, . . . , Vn)

sets up aliases for the variablesV1, . . . , Vn such thatV1 < V2 < . . . < Vn < any other variable not mentioned

as an argument. Thus the complete ordering scale is: numerical constants < declared constants < declared
scalars < first argument to ORDERLESS < . . . < last argument to ORDERLESS < variables which begin
with A < . . . < variables which begin with Z < last argument to ORDERGREAT < . . . < first argument to
ORDERGREAT < declared MAINVARs. See section10.1.3[Declarations], page148, for the description
of MAINVAR for another ordering scheme.

[Function]ORDERLESSP (exp1, exp2)

returnsTRUE if exp1 precedesexp2 in the ordering set up by the ORDERLESS command.

[Function]UNORDER ()

stops the aliasing created by the last use of the ordering commands ORDERGREAT and ORDERLESS.
ORDERGREAT and ORDERLESS may not be used more than one time each without calling UNORDER.
See also ORDERGREAT and ORDERLESS.

28 Chapter 2. Programming Constructs

2.6 Reviewing Options

[Special Form]OPTIONS ()

enters the OPTIONS interpreter which is a structured list ofMaxima commands. You type the number of
the subject of interest, followed by a; to see the list of commands available for that subject. To move back
up the list the commandBACK; will go back up one level, andTOP; will get you back to the original entry
list. EXIT; will quit out of OPTIONS. DESCRIBE may be called inside OPTIONS on the commands listed,
either by number or by name.

OPTIONS(command); will give the various commands and switches associated withcommand.

[Variable]INFOLISTS

a list of the names of all of the information lists inMaxima. These are:

LABELS all bound C,D, and E labels.

VALUES all bound atoms, i.e. user variables, not øDOE-Maxima Options or Switches, (set up by :, ::, or
functional binding). See section1.3.1[Defining Variables], page4.

FUNCTIONS all user defined functions (set up by :=). See section1.3.2[Defining Functions], page6.

ARRAYS declared and undeclared arrays (set up by :, ::, or :=. See section6.1.1[Defining Arrays], page87.

MACROS any macros defined by the user. See section10.1.2[Defining Macros], page145.

MYOPTIONS all options ever reset by the user (whether or not they get reset to their default value).

RULES user defined pattern matching and simplification rules (set up by TELLSIMP, TELLSIMPAFTER,
DEFMATCH, or, DEFRULE.) See section10.1.7.1[Defining Simplification Rules], page154.

ALIASES atoms which have a user defined alias (set up by the ALIAS, ORDERGREAT, ORDERLESS
functions, or by DECLAREing the atom to be a NOUN).

DEPENDENCIES atoms which have functional dependencies (set up by the DEPENDS or GRADEF func-
tions). See section8.3.3[Defining Functional Dependencies], page114.

GRADEFS functions which have user defined derivatives (set up by the GRADEF function). See section
8.3.2[Defining Gradients], page114.

PROPS atoms which have any property other than those mentioned above, such as ATVALUEs,
MATCHDECLAREs, etc., as well as properties specified in the DECLARE function. See section
10.1.3[Declarations], page148.

LET_RULE_PACKAGES list of all the user-defined let rule packages plus the special package DE-
FAULT_LET_RULE_PACKAGE. (DEFAULT_LET_RULE_PACKAGE is the name of the rule pack-
age used when one is not explicitly set by the user.) See section10.1.7.2[Substitution Rules],
page155.

2.6. Reviewing Options 29

[Variable]OPTIONS

all options ever reset by the user (whether or not they get reset to their default value).

[variable, default: FALSE]OPTIONSET

if TRUE,Maxima will print out a message whenever aMaxima option is reset. This is useful if the user is
doubtful of the spelling of some option and wants to make sure that the variable he assigned a value to was
truly an option variable.

[Function]RESET ()

causes allMaxima options to be set to their default values. Please note that this does not include features
of terminals such as LINEL which can only be changed by assignment as they are not considered to be
computational features ofMaxima.

2.7 Accessing the Underlying Lisp

[Function]TO_LISP ()

enters the Lisp system underMaxima. This is useful on those systems where control-uparrow is not
available for this function. The user can now type any Lisp S-expression and have it evaluated. Typing
(CONTINUE) causesMaxima to be re-entered.

[Syntax]?

To access a function or variable in the Lisp, precede the function name or variable with ?.

(c1) ?status(?features);

(d1) (long-filenames, sun, portable, 68k, systems, string, unix, Franz,
franz)

2.8 Utility Functions

[Function]CLEARSCREEN ()

Clears the screen. The same as typing control-L.

[Function]GETCHAR (arg, i)

returns thei ’th character of the quoted string or atomic namearg. This function is useful in manipulating
the LABELS list.

30 Chapter 2. Programming Constructs

[Function]PAUSE ()

Causes the display to pause, printing- -Pause– and waiting for the aSPC to resume printing. Then it
clears the screen and continues.PAUSE("–Something else–"); will use- -Something else– as the string
printed instead of- -Pause–.PAUSE("–Something else–"," –And some more–"); will use- -Something
else– instead of- -Pause– and- -And some more– instead of- -Continued–.

[Special Form]ALARMCLOCK (arg1, arg2, arg3)

will execute the function of no arguments whose name isarg3 when the time specified byarg1 andarg2

elapses. Ifarg1 is the atomTIME thenarg3 will be executed afterarg2 seconds of real-time has elapsed,
while if arg1 is the atomRUNTIME, thenarg3 will be executed afterarg2 milliseconds of cpu time. Ifarg2

is negative then thearg1 timer is shut off.

2.8. Utility Functions 31

32

CHAPTER

THREE

Mathematical Functions

3.1 Comparison Functions

Maxima has the usual inequality operators:

< less than

> greater than

>= greater than or equal to

<= less than or equal to

not equal to

See section2.1.1[Conditionals], page13.

3.2 Arithmetic Functions

[Function]ABS (exp)

returns absolute value ofexp. ABSBOXCHAR[!] is the character used to draw absolute value signs around
expressions which are more than a single line high.

[Function]CABS (exp)

returns the complex absolute value (the complex modulus) ofexp.

[Function]MAX (X1, X2, . . .)

yields the maximum of its arguments (or returns a simplified form if some of its arguments are non-numeric).

33

[Function]MIN (X1, X2, . . .)

yields the minimum of its arguments (or returns a simplified form if some of its arguments are non-numeric).

[Function]SIGNUM (X)

If X<0 then -1 else ifX>0 then 1 else 0. If X is not numeric then a simplified but equivalent form is returned.
For example,SIGNUM(-X) gives - SIGNUM(X).

[Function]POLYSIGN (x)

same as SIGNUM but always returns a numerical result by looking at the numerical factor of the highest
degree term inx .

[Function]SQRT (x)

the square root ofx. It is represented internally byx**(1/2). See section9.4 [Roots of Polynomials],
page131, for the definition of ROOTSCONTRACT. See section2.4.2[Display of Exponentials], page24,
for the definition of RADEXPAND. See section2.4 [Flags Effecting the Displayed Form], page21, for the
definition of the variable SQRTDISPFLAG.

[Function]ISQRT (int)

takes one integer argument and returns the integer SQRT of its absolute value.

[Function]INRT (x, n)

takes two integer arguments,x andn, and returns the integern ’th root of the absolute value ofx.

3.3 Transcendental Functions

3.3.1 Exponential Functions

[Function]EXP (x)

the exponential function. It is represented internally as%E**X.

[Function]EXPT (A, B)

if an exponential expression is too wide to be displayed asA**B, it will appear as EXPT(A,B), or as
NCEXPT(A,B) in the case ofA^^B.

See section2.4.2[Display of Exponentials], page24, for the definition of DEMOIVRE, %EDISPFLAG,
%EMODE, %ENUMER EXPTDISPFLAG, EXPTSUBST and RADEXPAND.

34 Chapter 3. Mathematical Functions

3.3.2 Logarithm Functions

[Function]LOG (x)

the natural logarithm ofx.

[Function]PLOG (X)

the principal branch of the complex-valued natural logarithm with- %PI < CARG(X) <= +%PI.

See section2.4.3 [Display of Logarithms], page25 for the definition of LOGNEGINT, LOGEX-
PAND,LOGNUMER and LOGSIMP. See section2.4.2[Display of Exponentials], page24, for the definition
of DEMOIVRE and %E_TO_NUMLOG.

3.3.3 Trig Functions

Maxima has many trig functions defined. Not all trig identities are programmed, but it is possible for the
user to add many of them using the pattern matching capabilities of the system. The trig functions defined in
Maxima are: ACOS, ACOSH, ACOT, ACOTH, ACSC, ACSCH, ASEC, ASECH, ASIN, ASINH, ATAN,
ATANH, COS, COSH, COT, COTH, CSC, CSCH, SEC, SECH, SIN, SINH, TAN, and TANH. There is a
demo in the file: ‘demo/trig.dem ’.

There are a number of commands especially for handling trig functions, see TRIGEXPAND, TRIGRE-
DUCE, and the switch TRIGSIGN. Two SHARE packages extend the simplification rules built intoMax-
ima, ‘share1/ntrig.mc ’ and ‘share1/atrig1.mc ’.

See section2.4.4[Display of Trig Functions], page26.

3.3.3.1 Basic Trig Functions

[Syntax]SIN (exp)

Sine ofexp, in Radians.

[Syntax]COS (exp)

Cosine ofexp in radians.

[Syntax]TAN (exp)

Tangent ofexp in radians.

[Syntax]CSC (exp)

Cosecant ofexp, in Radians.

3.3. Transcendental Functions 35

[Syntax]SEC (exp)

Cosecant ofexp in radians.

[Syntax]COT (exp)

Cotangent ofexp in radians.

3.3.3.2 Inverse Trig Functions

[Syntax]SIN (exp)

Arc Sine ofexp, in Radians.

[Syntax]ACOS (exp)

Arc Cosine ofexp in radians.

[Syntax]ATAN (exp)

Arc Tangent ofexp in radians.

[Syntax]ATAN2 (Y,X)

yields the value ofATAN(Y/X) in the interval- %PI to%PI.

[Syntax]ACSC (exp)

Arc Cosecant ofexp, in Radians.

[Syntax]ASEC (exp)

Arc Cosecant ofexp in radians.

[Syntax]ACOT (exp)

Arc Cotangent ofexp in radians.

36 Chapter 3. Mathematical Functions

3.3.3.3 Hyperbolic Trig Functions

[Syntax]SINH (exp)

Hyperbolic Sine ofexp.

[Syntax]COSH (exp)

Hyperbolic Cosine ofexp.

[Syntax]TANH (exp)

Hyperbolic Tangent ofexp.

[Syntax]CSCH (exp)

Hyperbolic Cosecant ofexp.

[Syntax]SECH (exp)

Hyperbolic Cosecant ofexp.

[Syntax]COTH (exp)

Hyperbolic Cotangent ofexp.

3.3.3.4 Inverse Hyperbolic Trig Functions

[Syntax]ASINH (exp)

Arc Hyperbolic Sine ofexp.

[Syntax]ACOSH (exp)

Arc Hyperbolic Cosine ofexp.

[Syntax]ATANH (exp)

Arc Hyperbolic Tangent ofexp.

[Syntax]ACSCH (exp)

Arc Hyperbolic Cosecant ofexp.

3.3. Transcendental Functions 37

[Syntax]ASECH (exp)

Arc Hyperbolic Cosecant ofexp.

[Syntax]ACOTH (exp)

Arc Hyperbolic Cotangent ofexp.

3.4 Factorial and Gamma Functions

3.4.1 Factorials

[Function]FACTORIAL (int)

The factorial function.FACTORIAL(int) = int!.

[Syntax]!

The postfix factorial operator.

[Syntax]!!

The postfix double factorial operator.

[variable, default -1]FACTLIM

gives the highest factorial which is automatically expanded. If it is -1 then all integers are expanded.

[Function]BFFAC (exp, int)

is a bigfloat version of the factorial function.int is how many digits to retain and return: it’s a good idea to
request a couple of extra.

[Function]CBFAC (z, fpprec)

a factorial for complex bigfloats. It may be used by doingLOAD(BFAC);. There are some usage notes in
the file: ‘share2/bffac.usg ’.

See section5.1.4[Simplifying Factorials], page74, for the definition of FACTCOMB, SUMSPLITFACT,
MINFACTORIAL, and MAKEGAMMA.

38 Chapter 3. Mathematical Functions

3.4.2 Binomials and Generalized Factorials

[Function]BINOMIAL (X, Y)

the binomial coefficientX*(X-1)*. . . *(X-Y+1)/Y!. If X andY are integers, then the numerical value of the
binomial coefficient is computed. IfY, or the valueX-Y is an integer, the binomial coefficient is expressed
as a polynomial.

[Function]GENFACT (X, Y, Z)

is the generalized factorial ofX which is: X*(X-Z)*(X-2*Z)* . . . * (X-(Y-1)*Z). Thus, for integralX,
GENFACT(X,X,1)=X! andGENFACT(X,X/2,2)=X!!.

3.4.3 Gamma and Related Functions

[Function]GAMMA (exp)

the gamma function,GAMMA(I)=(I-1)! for I a positive integer. For the Euler-Mascheroni constant, see
%GAMMA. See also the MAKEGAMMA function. The variable GAMMALIM default: [1000000] con-
trols simplification of the GAMMA function.

[variable, default: 1000000]GAMMALIM

controls simplification of the gamma function for integral and rational number arguments. If the abso-
lute value of the argument is not greater than GAMMALIM, then simplification will occur. Note that the
FACTLIM switch controls simplification of the result of GAMMA of an integer argument as well.

[Function]CGAMMA (exp)

The Gamma function in the complex plane. DoLOAD(CGAMMA); to use these functions: CGAMMA,
CGAMMA2, and LOGCGAMMA2. These functions evaluate the GAMMA function over the complex
plane using the algorithm of Kuki, CACM algorithm 421. Calculations are performed in single precision and
the relative error is typically around 1.0E-7; evaluation at one point costs less than 1 msec. The algorithm
provides for an error estimate, but theMaxima implementation currently does not use it. CGAMMA is
the general function and may be called with a symbolic or numeric argument. With symbolic arguments,
it returns as is; with real floating or rational arguments, it uses theMaxima GAMMA function; and for
complex numeric arguments, it uses the Kuki algorithm.

CGAMMA2 of two arguments, real and imaginary, is for numeric arguments only; LOGCGAMMA2 is the
same, but the log-gamma function is calculated. These two functions are somewhat more efficient.

[Function]BETA (X, Y)

same asGAMMA(X)*GAMMA(Y)/GAMMA(X+Y).

3.4. Factorial and Gamma Functions 39

3.4.3.1 Polygamma Functions

[Function]PSI (exp)

derivative ofLOG(GAMMA(X)). At this time, Maxima does not have numerical evaluation capabilities
for PSI. Basic simplification routines for the polylogs and polygamma functions have been introduced in
Maxima. We have decided to use subscripted notation in order to be consistent with standard reference texts
for these functions. (Note that the theMaxima notation doesn’t implyMaxima can produce the definitions.)
The notation is:PSI[N](X) = DIFF(PSI[0](X),X,N) wherePSI[0](X) = DIFF(LOG(GAMMA(X)),X)

There are closed forms for: (in SIN, COS, or ZETA functions) rational X, N = 0; N integral, > -1 and X
integral or half-integral. Currently there are no numerical routines for the polygammas. The following flags
permit some control over simplification: they must

¯
be set to fixnum (integer) values:

[variable, default: 20]MAXPSIPOSINT

is the largest value of the integral part of X for which a closed form will be computed.

[variable, default: -10]MAXPSINEGINT

for negative X less than this no closed forms will be computed.

The following control simplification of PSI[0](P/Q) for P and Q integral and 0 < P/Q < 1 (i.e. the fractional
part of arguments)

[variable, default: 4]MAXPSIFRACNUM

is the largest P for which simplification occurs.

[variable, default: 4]MAXPSIFRACDENOM

is the largest Q for which simplification occurs.

[Function]BFPSI (n, z, fpprec)

gives polygammas of real arg and integer order. For digamma, BFPSI0(z,fpprec) is more direct. Note
- BFPSI0(1,fpprec) provides bigfloated %GAMMA. To use this doLOAD(BFFAC);,

[Function]LI (exp)

Basic simplification routines for the polylogs and polygamma functions have been introduced inMaxima.
We have decided to use subscripted notation in order to be consistent with standard reference texts for these
functions. (Note that the theMaxima notation doesn’t implyMaxima can produce the definitions.) The
notation is:LI[N](X) = I NTEGRATE(LI[N-1](T)/T,T,0,X) whereLI[1](X) = -LOG(1-X).

Simplification: Closed forms for argument 1, -1 when N is +integral (involving ZETA functions); closed
form for LI[2](1/2); numerical routine forLI[2](X). Fast numeric routines are now available forLI[2](x) and
LI[3](x). Chebyshev expansions are used in the approximations. The extension for large real values of X is
adopted following Lewin, i.e. when X is greater than unityLI[2](X) has - %I %PI LOG(X) as its imaginary
part. Currently this only concerns the numerical routine.

40 Chapter 3. Mathematical Functions

3.5 Special Functions

3.5.1 Airy Functions

[Function]AIRY (arg)

returns the Airy function AI of real argumentarg. The file ‘share1/airy.l ’ contains routines to eval-
uate the Airy functionsAI (exp), BI (exp), and their derivativesDAI (exp), DBI (exp). The Airy equation
diff(y(x),x,2)-x*y(x)=0 has two linearly independent solutions, taken to beAI(x) andBI(x). This equation
is very popular as an approximation to more complicated problems in many mathematical physics settings.

Do LOAD(’AIRY); to get the functionsAI (x), BI (x), DAI (x), DBI (x), which compute theAi(x), Bi(x),
d(Ai(x))/dx, andd(Bi(x))/dx functions respectively. The result will be a floating point number if the argu-
ment is a number, and will return a simplified form otherwise. An error will occur if the argument is large
enough to cause an overflow in the exponentials, or a loss of accuracy in SIN or COS. This makes the range
of validity about -2800 to 1.e38 for AI and DAI, and -2800 to 25 for BI and DBI. The GRADEF rules are
now known toMaxima:

diff(AI(x),x)=DAI(x),
diff(DAI(x),x)=x*AI(x),
diff(BI(x),x)=DBI(x),
diff(DBI(x),x)=x*BI(x).

The method is to use the convergent Taylor series for abs(x)<3., and to use the asymptotic expansions for x<-
3. or x>3. as needed. This results in only very minor numerical discrepancies at x=3. or x=-3. For details,
please see [AS64], section 10.4 (hardcover ed.) and Table 10.11. To get the floating point Taylor expansions
of the functions here, doEV(TAYLOR(AI(X),X,0,9),INFEVAL); for example. Please also try BESSEL (by
CFFK) for the AIRY function there. There are some usage notes in the file: ‘share1/airy.usg ’..

3.5.2 Bernoulli Numbers

[Function]BERN (int)

gives theint ’th Bernoulli number for integerint.

[variable, default: TRUE]ZEROBERN

if set toFALSE excludes the zero Bernoulli numbers. See also the BERN function.

[Function]BURN (int)

is like BERN(int), but without computing all of the uncomputed Bernoullis of smaller index. So BURN
works efficiently for large, isolated N. (BERN(402) takes about 645 secs vs 13.5 secs for BURN(402).
BERNs’ time growth seems to be exponential, while BURNs’ is about cubic. But if next you do BERN(404),
it only takes 12 secs, since BERN remembers all in an array, whereas BURN(404) will take maybe 14 secs

3.5. Special Functions 41

or maybe 25, depending on whetherMaxima needs to BFLOAT a better value of %PI.) BURN is available
by doingLOAD(BFFAC);. BURN uses an observation of WGD that (rational) Bernoulli numbers can be
approximated by (transcendental) zetas with tolerable efficiency.

[Function]BERNPOLY (var, int)

generates theint ’th Bernoulli polynomial in the variablevar.

3.5.3 Elliptic Functions

A package in the SHARE directory for numerical routines for Elliptic Functions and Complete Elliptic
Integrals. (Notation of [AS64], Chapters 16 and 17). DoLOAD(ELLIPT); to use this package. At present
all arguments must

¯
be floating point. You’ll get nonsense otherwise. Be warned. The functions available

are:

AM(U,M) - amplitude with modulus M
AM1(U,M1) - amplitude with complementary modulus M1
AM(U,M):=AM1(U,1-M); so use AM1 if M ~ 1
SN(U,M):=SIN(AM(U,M));
CN(U,M):=COS(AM(U,M));
DN(U,M):=SQRT(1-M*SN(U,M)^2);

(These functions come defined like this. Others CD, NS etc. may be similarly defined.)

ELLIPTK(M) Complete elliptic integral of first kind
ELLIPTK1(M1) Same but with complementary modulus.
ELLIPTK(M) := ELLIPTK1(1-M); so use if M ~ 1
ELLIPTE(M) Complete elliptic integral of second kind
ELLIPTE1(M1) Same but with complementary modulus.
ELLIPTE(M) := ELLIPTE1(1-M); so use if M ~ 1

There are some usage notes in the file: ‘share/ellipt.usg ’..

3.5.4 Zeta Functions

[Function]ZETA (int)

gives the Riemann zeta function for certain integer values ofint.

[variable, default: TRUE]ZETA%PI

if FALSE, suppressesZETA(n) givingcoeff*%PI**n for n even.

[Function]BFZETA (exp, int)

is a bigfloat version of the Riemann Zeta function. The 2nd argument is how many digits to retain and
return: it’s a good idea to request a couple of extra. This function is available by doingLOAD(BFFAC);.

42 Chapter 3. Mathematical Functions

[Function]BGZETA (s, fpprec)

is like BZETA, but avoids arithmetic overflow errors on large arguments, is faster on medium size arguments
(say S=55, FPPREC=69), and is slightly slower on small arguments. It may eventually replace BZETA.
BGZETA is available by doingLOAD(BFAC);.

[Function]BHZETA (s, h, fpprec)

gives FPPREC digits ofSUM((K+H)**-S,K,0,INF). This is available by doingLOAD(BFFAC);.

[Function]NZETA (Z)

returns the complex value of the Plasma Dispersion function for complexZ. NZETAR (Z) returns
REALPART(NZETA(Z)). NZETAI (Z) returnsI MAGPART(NZETA(Z)). This function is related to the
complex error function byNZETA(Z) = %I*SQRT(%PI)*EXP(-Z**2)*(1-ERF(-%I*Z)).Plasma Dispersion
Function

3.5.5 Miscellaneous Special Functions

[Function]BESSEL (Z, A)

returns the Bessel function J for complexZ and realA > 0.0 . Also an array BESSELARRAY is set up such
thatBESSELARRAY[I] = J[I + A - ENTIER(A)](Z).

[Function]EULER (int)

gives theint ’th Euler number for integerint. For the Euler-Mascheroni constant, see %GAMMA.

[Function]ERF (arg)

the error function, whose derivative is2*EXP(-X**2)/SQRT(%PI).

[Function]FIB (int)

the int ’th Fibonacci number withFIB(0)=0, FIB(1)=1, andFIB(-N)=(-1)**(N+1) *FIB(N). PREVFIB is
FIB(X-1), the Fibonacci number preceding the last one computed.

[Function]FIBTOPHI (exp)

converts FIB(n) to its closed form definition. This involves the constant %PHI ((SQRT(5)+1)/2 =
1.618033989). If you want the Rational Function Package to know about %PHI doTELLRAT(%PHI**2-
%PHI-1); ALGEBRAIC:TRUE;.

See section8.4[Integration], page116, for the definition of SPECINT which uses hypergeometric functions.

3.5. Special Functions 43

3.6 Complex Variables

A complex expression is specified inMaxima by adding the real part of the expression to %I times the
imaginary part. Thus the roots of the equationX**2-4*X+13=0 are 2+3*%I and2-3*%I. Note that sim-
plification of products of complex expressions can be effected by expanding the product. Simplification
of quotients, roots, and other functions of complex expressions can usually be accomplished by using the
REALPART, IMAGPART, RECTFORM, POLARFORM, ABS, CARG functions.

[Function]CARG (exp)

returns the argument (phase angle) ofexp. Due to the conventions and restrictions, principal value cannot
be guaranteed unlessexp is numeric.

[Function]POLARFORM (exp)

returnsR*%E**(%I*THETA) where RandTHETA are purely real.

[Function]RECTFORM (exp)

returns an expression of the formA + B*%I, whereA andB are purely real.

[Function]POLARTORECT (magnitude-array, phase-array)

converts from magnitude/phase form into real/imaginary form putting the real part in the magnitude
array and the imaginary part into the phase array (<real>=<magnitude>*COS(<phase>) and <imagi-
nary>=<magnitude>*SIN(<phase>).) This function is part of the FFT package. doLOAD(FFT); to use
it. Like FFT and IFT this function accepts 1 or 2 dimensional arrays. However, the array dimensions need
not be a power of 2, nor need the 2D arrays be square. The above function returns a list of the arguments.

[Function]RECTTOPOLAR (real-array, imag-array)

undoes POLARTORECT. The phase is given in the range from -%PI to %PI. This function is part of the
FFT package. DoLOAD(FFT); to use it. Like FFT and IFT this function accepts 1 or 2 dimensional arrays.
However, the array dimensions need not be a power of 2, nor need the 2D arrays be square. The above
function returns a list of the arguments.

[variable, default: FALSE]M1PBRANCH

principal branch for -1 to a power. Quantities such as(-1)**(1/3) [i.e. odd rational exponent] and(-
1)**(1/4) [i.e. even rational exponent] are now handled

See section1.4.4[Data Type Coercion], page9.

44 Chapter 3. Mathematical Functions

3.7 Number Theory Functions

[Function]DIVSUM (n, k)

adds up all the factors ofn raised to thek ’th power. If only one argument is given, thenk is assumed to be
1.

[Function]PRIME (int)

gives theint ’th prime. MAXPRIME default: [489318] is the largest number accepted as argument. Note:
The PRIME command does not work in Tops20Maxima.

[variable, default: 489318]MAXPRIME

the largest number which may be given to the PRIME command, which returns then ’th prime.

[Function]QUNIT (n)

gives the principal unit of the real quadratic number field SQRT(n) wheren is an integer, i.e. the element
whose norm is unity. This amounts to solving Pell’s equationA**2 - n*B**2=1.

(C1) QUNIT(17);
(D1) SQRT(17)+4
(C2) EXPAND(\%*(SQRT(17)-4));
(D2) 1

[Function]TOTIENT (n)

is the number of integers less than or equal ton which are relatively prime ton.

[Function]RANDOM (int)

returns a random integer between 0 andint-1. If no argument is given then a random integer between
-2**(29) and 2**(29) -1 is returned. Ifint is FALSE then the random sequence is restarted from the begin-
ning.

[Function]GAUSS (mean, sd)

returns a random floating point number from a normal distribution with meanmean and standard deviation
sd. This is part of the BESSEL function package, doLOAD(BESSEL); to use it.

3.7. Number Theory Functions 45

46

CHAPTER

FOUR

Manipulating Expressions

See section2.3[Displaying Expressions], page19.

4.1 Evaluation

[Special Form]EV (exp, arg1, . . . , argn)

is one ofMaxima’s most powerful and versatile commands. It evaluates the expressionexp in the environ-
ment specified by theargi. This is done in steps, as follows:

1. First the environment is set up by scanning theargi which may be as follows:

SIMP causesexp to be simplified regardless of the setting of the switch SIMP which inhibits simpli-
fication if FALSE.

NOEVAL suppresses the evaluation phase of EV (see step (4) below). This is useful in conjunction
with the other switches and in causingexp to be resimplified without being reevaluated.

EXPAND causes expansion.

EXPAND(m,n) causes expansion, setting the values of MAXPOSEX and MAXNEGEX tom andn

respectively.

DETOUT causes any matrix inverses computed inexp to have their determinant kept outside of the
inverse rather than dividing through each element.

DIFF causes all differentiations indicated inexp to be performed.

DERIVLIST(var1, . . . , vark) causes only differentiations with respect to the indicated variables.

FLOAT causes non-integral rational numbers to be converted to floating point.

NUMER causes some mathematical functions (including exponentiation) with numerical arguments
to be evaluated in floating point. It causes variables inexp which have been given numerical
values to be replaced by their values. It also sets the FLOAT switch on.

PRED causes predicates (expressions which evaluate toTRUE or FALSE) to be evaluated.

EVAL causes an extra post-evaluation ofexp to occur. (See step (5) below.)

E whereE is an atom DECLARE’d to be an EVFLAG, causesE to be bound toTRUE during the
evaluation ofexp.

47

V:expression (or alternately V=expression) causes V to be bound to the value ofexpression during
the evaluation ofexp. Note that if V is aMaxima option, then expression is used for its value
during the evaluation ofexp. If more than one argument to EV is of this type then the binding
is done in parallel. If V is a non-atomic expression then a substitution rather than a binding is
performed.

E whereE, a function name, has been DECLARE’d to be an EVFUN, ausesE to be applied toexp.

Any other function names (e.g.SUM) cause evaluation of occurrences of those names inexp as
though they were verbs. In addition a function occurring inexp (say F(args)) may be defined locally
for the purpose of this evaluation ofexp by giving F(args):=body as an argument to EV. If an atom
not mentioned above, or a subscripted variable or subscripted expression was given as an argument,
it is evaluated and if the result is an equation or assignment then the indicated binding or substitution
is performed. If the result is a list then the members of the list are treated as if they were additional
arguments given to EV. This permits a list of equations to be given e.g.[X=1, Y=A**2] , or a list of
names of equations e.g.[E1, E2] where E1 and E2 are equations) such as that returned by SOLVE.

The argi of EV may be given in any order, with the exception of substitution equations,
which are handled in sequence, left to right, and EVFUNs which are composed. For example,
EV(exp,RATSIMP,REALPART) is handled asREALPART(RATSIMP(exp)). The SIMP, NUMER,
FLOAT, and PRED switches may also be set locally in a block, or globally at the top level inMaxima
so that they will remain in effect until being reset. Ifexp is in CRE Form then EV will return a result
in CRE form provided the NUMER and FLOAT switches are not bothTRUE.

2. During step (1), a list is made of the non-subscripted variables appearing on the left side of equations
in the argi or in the value of someargi if the value is an equation. The variables (both subscripted
variables which do not have associated array functions, and non-subscripted variables) in the expres-
sion exp are replaced by their global values, except for those appearing in this list. Usually,exp is
just a label or % (as in(C2) below), so this step simply retrieves the expression named by the label,
so that EV may work on it.

3. If any substitutions are indicated by theargi, they are carried out now.

4. The resulting expression is then re-evaluated (unless one of theargi was NOEVAL) and simplified
according the theargi. Note that any function calls inexp will be carried out after the variables in it
are evaluated and thatEV(F(X)) thus may behave likeF(EV(X)).

5. If one of theargi was EVAL, steps (3) and (4) are repeated.

(C1) SIN(X)+COS(Y)+(W+1)**2+’DIFF(SIN(W),W);
d 2

(D1) COS(Y) + SIN(X) + -- SIN(W) + (W + 1)
dW

(C2) EV(\%,SIN,EXPAND,DIFF,X=2,Y=1);
2

(D2) COS(W) + W + 2 W + COS(1) + 1.90929742

An alternate top level syntax has been provided for EV, whereby one may just type in its arguments, without
the EV(). That is, one may write simplyexp, arg1, . . . , argn. This is not permitted as part of another
expression, i.e. in functions, blocks, etc.

48 Chapter 4. Manipulating Expressions

(C4) X+Y,X:A+Y,Y:2;
(D4) Y + A + 2

Notice the parallel binding process.

(C5) 2*X-3*Y=3$
(C6) -3*X+2*Y=-4$
(C7) SOLVE([D5,D6]);
SOLUTION

1
(E7) Y = - -

5
6

(E8) X = -
5

(D8) [E7, E8]
(C9) D6,D8;
(D9) - 4 = - 4
(C10) X+1/X > GAMMA(1/2);

1
(D10) X + - > SQRT(\%PI)

X
(C11) \%,NUMER,X=1/2;
(D11) 2.5 > 1.7724539
(C12) \%,PRED;
(D12) TRUE

[Variable]EVFLAG

is the list of things known to the EV function. An item will be bound toTRUE during the execution
of EV if it is mentioned in the call to EV, e.g.EV(%,numer);. Initial EVFLAGs are: FLOAT, PRED,
SIMP, NUMER, DETOUT, EXPONENTIALIZE, DEMOIVRE, KEEPFLOAT, LISTARITH, TRIGEX-
PAND, SIMPSUM, ALGEBRAIC, RATALGDENOM, FACTORFLAG, %EMODE, LOGARC, LOGNU-
MER, RADEXPAND, RATSIMPEXPONS, RATMX, RATFAC, INFEVAL, %ENUMER, PROGRAM-
MODE, LOGNEGINT, LOGABS, LETRAT, HALFANGLES, EXPTISOLATE, ISOLATE_WRT_TIMES,
SUMEXPAND, CAUCHYSUM, NUMER_PBRANCH, M1PBRANCH, DOTSCRULES, and LOGEX-
PAND.

[Variable]EVFUN

is the list of functions known to the EV function which will get applied if their name is mentioned. Initial
EVFUNs are FACTOR, TRIGEXPAND, TRIGREDUCE, BFLOAT, RATSIMP, RATEXPAND, RADCAN,
LOGCONTRACT, RECTFORM, and POLARFORM.

4.1.1 Evaluation Flags

NOEVAL suppresses the evaluation phase of EV. This is useful in conjunction with other switches and in
causing expressions to be resimplified without being reevaluated.

4.1. Evaluation 49

NOUNS when used as an option to the EV command, converts all noun forms occurring in the expression
being EV’d to verbs, i.e. it evaluates them.

NUMER causes some mathematical functions (including exponentiation) with numerical arguments to be
evaluated in floating point. It causes variables inexp which have been given numer values to be
replaced by their values. It also sets the FLOAT switch on.

FLOAT causes non-integral rational numbers and bigfloat numbers to be converted to floating point.

EVAL causes an extra post-evaluation ofexp to occur.

INFEVAL leads to an “infinite evaluation” mode. EV repeatedly evaluates an expression until it stops
changing. To prevent a variable, say X, from being evaluated away in this mode, simply include
X=’X as an argument to EV. Of course expressions such asEV(X,X=X+1,INFEVAL); will generate
an infinite loop. Caveat Evaluator

¯
.

PRED causes predicates (expressions which evaluate toTRUE orFALSE) to be evaluated.

DIFF causes all differentiations to be carried out. See section8.3[Differentiation], page112.

DERIVLIST(var1, . . . , vark) causes only differentiations with respect to the indicated variables. See sec-
tion 8.3[Differentiation], page112.

SIMP causesexp to be simplified regardless of the setting of the variable SIMP, which normally inhibits
simplification if set toFALSE.

4.1.2 Noun and Verb Forms

[Function]NOUNIFY (fun)

returns the noun form of the function namefun. This is needed if one wishes to refer to the name of a verb
function as if it were a noun. Note that some verb functions will return their noun forms if they can’t be
evaluated for certain arguments. This is also the form returned if a function call is preceded by a quote. Verb
is the opposite of noun form, i.e. a verb form which “does something” (for most functions the usual case).
E.g. I NTEGRATE integrates a function, unless it is DECLAREd to be a “noun,” in which case it represents
theI NTEGRAL of the function.

[Function]VERBIFY (fun)

returns the function namefun in its verb form.

[Function]APPLY_NOUNS (exp)

causes the application of noun forms in an expression. For example,EXP:’DIFF(X**2/2,X); AP-
PLY_NOUNS(EXP); givesX. This gives the same result asEV(EXP,NOUNS); except that it can be faster
and use less storage. It also can be used in translated code, where EV may cause problems. Note that it is
called APPLY_NOUNS, not EV_NOUNS, because what it does is to APPLY the rules corresponding to the
noun-form operators, which is not evaluation.

50 Chapter 4. Manipulating Expressions

4.2 Canonical Rational Expressions

Canonical Rational Expressions constitute a kind of representation which is especially suitable for expanded
polynomials and rational functions (as well as for partially factored polynomials and rational functions
when RATFAC default: [FALSE] is set toTRUE). In this CRE form an ordering of variables (from most
to least main) is assumed for each expression. Polynomials are represented recursively by a list consisting
of the main variable followed by a series of pairs of expressions, one for each term of the polynomial. The
first member of each pair is the exponent of the main variable in that term and the second member is the
coefficient of that term which could be a number or a polynomial in another variable again represented in
this form. Thus the principal part of the CRE form of3*X**2-1 is (X 2 3 0 -1) and that of2*X*Y+X-3 is
(Y 1 (X 1 2) 0 (X 1 1 0 -3)) assuming Y is the main variable, and is(X 1 (Y 1 2 0 1) 0 -3) assumingX is
the main variable. “Main”-ness is usually determined by reverse alphabetical order.

The variables of a CRE expression needn’t be atomic. In fact any subexpression whose main operator is not
+ - * / or ** with integer power will be considered a variable of the expression (in CRE form) in which it
occurs. For example the CRE variables of the expressionX+SIN(X+1)+2*SQRT(X)+1 areX, SQRT(X), and
SIN(X+1). If the user does not specify an ordering of variables by using the RATVARS functionMaxima
will choose an alphabetic one.

In general, CRE’s represent rational expressions, that is, ratios of polynomials, where the numerator and
denominator have no common factors, and the denominator is positive. The internal form is essentially a
pair of polynomials (the numerator and denominator) preceded by the variable ordering list. If an expression
to be displayed is in CRE form or if it contains any subexpressions in CRE form, the symbol/ R/ will follow
the line label. See the RAT function for converting an expression to CRE form. An extended CRE form
is used for the representation of Taylor Series. The notion of a rational expression is extended so that the
exponents of the variables can be positive or negative rational numbers rather than just positive integers
and the coefficients can themselves be rational expressions as described above rather than just polynomials.
These are represented internally by a recursive polynomial form which is similar to and is a generalization
of CRE form, but carries additional information such as the degree of truncation. As with CRE form, the
symbol/ T/ follows the line label of such expressions.

4.2.1 Converting To and From CRE form

[Function]RAT (exp, var1, var2, . . .)

convertsexp to CRE form by expanding and combining all terms over a common denominator and can-
celling out the greatest common divisor of the numerator and denominator as well as converting floating
point numbers to rational numbers within a tolerance of RATEPSILON default: [2.0E-8]. The variables are
ordered according to thev1, . . . , vn as in RATVARS, if these are specified. RAT does not generally simplify
functions other than +, -, *, /, and ** to an integer power whereas, RATSIMP does handle these cases. Note
that atoms (numbers and names) in CRE form are not the same as they are in the general form. ThusRAT(X)
- X results inRAT(0) which has a different internal representation than 0.

4.2. Canonical Rational Expressions 51

(C1) ((X-2*Y)**4/(X**2-4*Y**2)**2+1)*(Y+A)*(2*Y+X)
/(4*Y**2+X**2);

4
(X - 2 Y)

(Y + A) (2 Y + X) (------------ + 1)
2 2 2

(X - 4 Y)
(D1) ------------------------------------

2 2
4 Y + X

\clearpage
(C2) RAT(\%,Y,A,X);

2 A + 2 Y
(D2)/R/ ---------

X + 2 Y

[Function]RATDISREP (exp)

changes its argument from CRE form to general form. This is sometimes convenient if one wishes to stop the
contagion, or use rational functions in non-rational contexts. Most CRE functions will work on either CRE
or non-CRE expressions, but the answers may take different forms. If RATDISREP is given a non-CRE for
an argument, it returns its argument unchanged. See also TOTALDISREP.

[Function]TOTALDISREP (exp)

converts every subexpression ofexp from CRE to general form. Ifexp is itself in CRE form then this is
identical to RATDISREP but if not then RATDISREP would returnexp unchanged while TOTALDISREP
would totally DISREP it. This is useful for RATDISREPing expressions e.g., equations, lists, matrices, etc.
which have some subexpressions in CRE form.

[Function]TELLRAT (poly)

adds to the ring of algebraic integers known toMaxima, the element which is the solution of the polynomial
with integer coefficients.Maxima initially knows about %I and all roots of integers.TELLRAT(X); means
substitute 0 for X in rational functions. There is a command UNTELLRAT which takes kernels and removes
TELLRAT properties. When TELLRATing a multivariate polynomial, e.g.TELLRAT(X**2-Y**2);, there
would be an ambiguity as to whether to substitute Y**2 for X**2 or vice versa. The system will pick
a particular ordering, but if the user wants to specify which, e.g.TELLRAT(Y**2=X**2); provides a
syntax which says replace Y**2 by X**2. TELLRAT and UNTELLRAT both can take any number of
arguments, andTELLRAT(); returns a list of the current substitutions. Note: When you TELLRAT reducible
polynomials, you want to be careful not to attempt to rationalize a denominator with a zero divisor. E.g.
TELLRAT(W**3-1)$ ALGEBRAIC:TRUE$ RAT(1/(W**2-W)); will give quotient by zero. This error can
be avoided by setting RATALGDENOM: FALSE.

ALGEBRAIC default: [FALSE] must be set toTRUE in order for the simplification of algebraic integers to
take effect.

52 Chapter 4. Manipulating Expressions

[Function]UNTELLRAT (x)

takes kernels and removes TELLRAT properties.

4.2.2 Operations on CRE Expressions

[Function]RATDIFF (exp, var)

differentiates the rational expressionexp (which must be a ratio of polynomials or a polynomial in the
variable var) with respect tovar. For rational expressions this is much faster than DIFF. The result is left
in CRE form. However, RATDIFF should not be used on factored CRE forms; use DIFF instead for such
expressions. See section8.3[Differentiation], page112for the definition of DIFF.

(C1) (4*X**3+10*X-11)/(X**5+5);
3

4 X + 10 X - 11
(D1) ----------------

5
X + 5

(C2) MODULUS:3$
(C3) MOD(D1);

2
X + X - 1

(D3) --------------------
4 3 2

X + X + X + X + 1
(C4) RATDIFF(D1,X);

5 4 3
X - X - X + X - 1

(D4) ------------------------------
8 7 5 4 3

X - X + X - X + X - X + 1

[Function]RATVARS (var1, var2, . . .)

forms itsn arguments into a list in which the rightmost variablevarn will be the main variable of future ra-
tional expressions in which it occurs, and the other variables will follow in sequence. If a variable is missing
from the RATVARS list, it will be given lower priority than the leftmost variablevar1. The arguments to
RATVARS can be either variables or non-rational functions (e.g. SIN(X)). The variableRATVARS is a list
of the arguments which have been given to this function.

[Function]RATWEIGHT (v1, w1, . . . , vn, wn)

assigns a weight of wi to the variable vi. This causes a term to be replaced by 0 if its weight exceeds the
value of the variable RATWTLVL default:FALSE which means no truncation. The weight of a term is the
sum of the products of the weight of a variable in the term times its power. Thus the weight of3*v1**2*v2
is 2*w1+w2. This truncation occurs only when multiplying or exponentiating CRE forms of expressions.

4.2. Canonical Rational Expressions 53

(C5) RATWEIGHT(A,1,B,1);
(D5) [[B, 1], [A, 1]]
(C6) EXP1:RAT(A+B+1)$
(C7) \%**2;

2 2
(D7)/R/ B + (2 A + 2) B + A + 2 A + 1
(C8) RATWTLVL:1$
(C9) EXP1**2;
(D9)/R/ 2 B + 2 A + 1

Note: The RATFAC
¯

and RATWEIGHT schemes are incompatible and may not both be used at the same
time.

[Variable]RATWEIGHTS

a list of weight assignments (set up by the RATWEIGHT function), RATWEIGHTS; or RATWEIGHT();
will show you the list.KILL(. . . ,RATWEIGHTS), andSAVE(. . . ,RATWEIGHTS); both work.

[variable, default: FALSE]RATWTLVL

used in combination with the RATWEIGHT function to control the truncation of rational (CRE form) ex-
pressions (for the default value ofFALSE, no truncation occurs).

[Function]SHOWRATVARS (exp)

returns a list of the RATVARS (CRE variables) ofexp.

4.2.3 Rational Expression Flags

[variable, default: TRUE]RATALGDENOM

if TRUE allows rationalization of denominators with respect to radicals to take effect. To do this one must
use CRE form in algebraic mode.

[variable, default: FALSE]RATFAC

whenTRUE invokes a partially factored form for CRE rational expressions. During rational operations the
expression is maintained as fully factored as possible without an actual call to the factor package. This
should always save space and may save some time in some computations. The numerator and denominator
are still made relatively prime, for exampleRAT((X**2 -1)**4/(X+1)**2); -> (X-1)**4*(X+1)**2), but the
factors within each part may not be relatively prime.

In the CTENSR (Component Tensor Manipulation) Package, if RATFAC isTRUE, it causes the
Ricci, Einstein, Riemann, and Weyl tensors and the Scalar Curvature to be factored automatically.
This should only be set for cases where the tensorial components are known to consist of few terms

¯
.

Note that the RATFAC and RATWEIGHT schemes are incompatible and may not both be used at the same
time.

54 Chapter 4. Manipulating Expressions

4.3 Selecting Parts of Expressions

4.3.1 Selecting Top Level Expressions

[Function]FIRST (exp)

yields the first part ofexp which may result in the first element of a list, the first row of a matrix, the first
term of a sum, etc. Note that FIRST and its related functions, REST and LAST, work on the form ofexp

which is displayed, not the form which is typed on input. If the variable INFLAG default: [FALSE] is set
to TRUE however, these functions will look at the internal form ofexp. Note that the simplifier re-orders
expressions. ThusFIRST(X+Y) will be X if INFLAG is TRUE and Y if INFLAG isFALSE. (FIRST(Y+X)
gives the same results).

[Function]LAST (exp)

yields the last part (term, row, element, etc.) of theexp.

[Function]REST (exp, n)

yieldsexp with its firstn elements removed ifn is positive and its last-n elements removed ifn is negative.
If n is 1 it may be omitted.exp may be a list, matrix, or other expression.

The functions FIRST LAST and REST depend on the value of the variable INFLAG.

[Function]LHS (eqn)

returns the left side of the equationeqn.

[Function]RHS (eqn)

returns the right side of the equationeqn.

[Function]NUM (exp)

obtains the numerator,exp1, of the expressionexp = exp1/exp2.

[Function]DENOM (exp)

returns the denominator of the expressionexp.

[Function]RATNUMER (exp)

obtains the numerator of the rational expressionexp. If exp is in general form then the NUM function should
be used instead, unless one wishes to get a CRE form.

4.3. Selecting Parts of Expressions 55

[Function]RATDENOM (exp)

obtains the denominator of the rational expressionexp. If exp is in general form then the DENOM function
should be used instead, unless one wishes to get a CRE form.

[Function]NUMFACTOR (exp)

gives the numerical factor multiplying the expressionexp, which should be a single term. If the gcd of all
the terms in a sum is desired the CONTENT function may be used.

(C1) GAMMA(7/2);
(D1) 15 SQRT(\%PI)

8

(C2) NUMFACTOR(\%)
15

(D2) --
8

See section1.4.4[Data Type Coercion], page9, for the definition of REALPART and IMAGPART.

4.3.2 Isolating and Revealing Expressions

[Function]REVEAL (exp, depth)

will display exp to the specified integerdepth with the length of each part indicated. Sums will be displayed
asSum(n) and products asProduct(n) wheren is the number of subparts of the sum or product. Exponentials
will be displayed asExpt.

(C1) INTEGRATE(1/(X^3+2),X)$
(C2) REVEAL(\%,2);
(D2) Negterm + Quotient + Quotient
(C3) REVEAL(D1,3);

ATAN LOG
(D3) - Quotient + ---------- + ----------

Product(2) Product(2)

[Function]PICKAPART (exp, depth)

will assign E labels to all subexpressions ofexp down to the specified integerdepth. This is useful for
dealing with large expressions and for automatically assigning parts of an expression to a variable without
having to use the part functions.

56 Chapter 4. Manipulating Expressions

(C1) EXP:(A+B)/2+SIN(X^2)/3-LOG(1+SQRT(X+1));
2

SIN(X) B + A
(D1) - LOG(SQRT(X + 1) + 1) + ------- + -----

3 2
(C2) PICKAPART(\%,1);
(E2) - LOG(SQRT(X + 1) + 1)

2
SIN(X)

(E3) -------
3

B + A
(E4) -----

2
(D4) E4 + E3 + E2

[Function]ISOLATE (exp, var)

returnsexp with subexpressions which are sums and which do not containvar replaced by intermediate
expression labels (these being atomic symbols like E1, E2, . . .). This is often useful to avoid unnecessary
expansion of subexpressions which don’t contain the variable of interest. Since the intermediate labels are
bound to the subexpressions, they can all be substituted back by evaluating the expression in which they
occur.

[variable, default: FALSE]EXPTISOLATE

if TRUE will causeI SOLATE(exp, var); to examine exponents of atoms (like %E) which containvar.

[variable, default: FALSE]ISOLATE_WRT_TIMES

if set toTRUE, then ISOLATE will also isolate with respect to products. E.g. compare both settings of the
switch onI SOLATE(EXPAND((A+B+C)**2),C);.

[Function]DISOLATE (exp, var1, var2, . . .)

is similar to ISOLATE(exp, var) except that it enables the user to isolate more than one variable simultane-
ously. This might be useful, for example, if one were attempting to change variables in a multiple integra-
tion, and that variable change involved two or more of the integration variables. To access this function, do
LOAD(DISOL); . For example

DISOLATE(A*(B*(C+D) + E*(F+G)), A, B, E);

returns a form similar toA (B E1 + E E2), whereE1 is bound toC + D and E2 is bound toF +
G. There is a demo in the file: ‘share2/disol.dem ’. There are some usage notes in the file:
‘share2/disol.usg ’.

4.3. Selecting Parts of Expressions 57

[Function]DISPTERMS (exp)

displays its argument in parts one below the other. That is, first the operator ofexpr is displayed, then each
term in a sum, or factor in a product, or part of a more general expression is displayed separately. This is
useful if exp is too large to be otherwise displayed. For example if P1, P2, . . . are very large expressions
then the display program may run out of storage space in trying to display P1+P2+. . . all at once. However,
DISPTERMS(P1+P2+. . .) will display P1, then below it P2, etc. When not using DISPTERMS, if an expo-
nential expression is too wide to be displayed asA**B it will appear asEXPT(A,B) (or asNCEXPT(A,B)
in the case ofA^^B).

4.3.2.1 Isolating Expressions with Boxes

[Function]BOX (exp)

returnsexp enclosed in a box. The box is actually part of the expression.

BOX(exp, label) enclosesexp in a labelled box.label is a name which will be truncated in display if it is
too long.

[variable, default: "]BOXCHAR

is the character used to draw the box in the BOX and in the DPART and LPART functions.

[Function]REMBOX (exp, arg)

removes boxes fromexp according toarg. If arg is UNLABELED then all unlabelled boxes are removed. If
arg is the name of some label, then only boxes with that label are removed. Ifarg is omitted then all boxes
labelled and unlabelled are removed.

4.3.3 Selecting Sub Expressions

[Function]PART (exp, n1, . . . , nk)

deals with the displayed form ofexp. It obtains the part ofexp as specified by the indices n1,. . . ,nk. First
part n1 ofexp is obtained, then part n2 of that, etc. The result is part nk of . . . part n2 of part n1 ofexp.
ThusPART(Z+2*Y,2,1) yields 2. PART can be used to obtain an element of a list, a row of a matrix, etc. If
the last argument to a Part function is a list of indices then several subexpressions are picked out, each one
corresponding to an index of the list. ThusPART(X+Y+Z,[1,3]) -> Z+X. ALLBUT works with the PART
commands (i.e. PART, INPART, SUBSTPART, SUBSTINPART, DPART, and LPART) to select all but the
parts referred to by its arguments. For example,

EXPR: E+D+C+B+A;
PART(EXP,[2,5]); -> D+A;
PART(EXP,ALLBUT(2,5)); -> E+C+B;

58 Chapter 4. Manipulating Expressions

[variable, default: FALSE]PARTSWITCH

if set toTRUE then END is returned when a selected part of an expression doesn’t exist, otherwise an error
message is given.

[Variable]PIECE

holds the last expression selected when using the part functions. It is set during the execution of the function
and thus may be referred to in the function itself.

[Function]INPART (exp, n1, . . . , nk)

is similar to PART but works on the internal representation of the expression rather than the displayed form,
and thus may be faster since no formatting is done. Care should be taken with respect to the order of
subexpressions in sums and products (since the order of variables in the internal form is often different from
that in the displayed form) and in dealing with unary minus, subtraction, and division (since these operators
are removed from the expression).PART(X+Y,0) or I NPART(X+Y,0) yield+, though in order to refer to
the operator it must be enclosed in double quotes. For exampleI F INPART(D9,0)="+" THEN . . .

(C1) X+Y+W*Z;
(D1) W Z + Y + X
(C2) INPART(D1,3,2);
(D2) Z
(C3) PART(D1,1,2);
(D3) Z
(C4) ’LIMIT(F(X)**G(X+1),X,0,MINUS);

G(X + 1)
(D4) LIMIT F(X)

X ->0-
(C5) INPART(\%,1,2);
(D5) G(X + 1)

[Function]DPART (exp, n1, . . . , nk)

selects the same subexpression as PART, but instead of just returning that subexpression as its value, it
returns the whole expression with the selected subexpression displayed inside a box. The box is actually
part of the expression.

(C1) DPART(X+Y/Z**2,1,2,1);
Y

(D1) ---- + X
2

* Z *

4.3. Selecting Parts of Expressions 59

[Function]LPART (string, exp, n1, . . . , nk)

is similar to DPART but uses a labelled box. A labelled box is similar to the one produced by DPART but it
has the namestring in the top line. See section4.3.2.1[Isolating Expressions with Boxes], page58.

4.3.4 Analysing Expressions

[Function]LENGTH (exp)

gives (by default) the number of parts in the external (displayed) form ofexp. For lists this is the num-
ber of elements, for matrices it is the number of rows, and for sums it is the number of terms. (See
also DISPFORM). The LENGTH command is affected by the variable INFLAG default: FALSE. So, e.g.
LENGTH(A/(B*C)); -> 2 if INFLAG is FALSE (and assuming EXPTDISPFLAG isTRUE), but 3 if IN-
FLAG is TRUE. (The internal representation of the above is essentiallyA*B**-1*C**-1.)

[Function]NTERMS (exp)

gives the number of terms thatexp would have if it were fully expanded out and no cancellations or combi-
nation of terms occurred. Note that expressions likeSIN(E), SQRT(E),EXP(E), etc., count as just one term
regardless of how many termsE has (if it is a sum).

[Function]ARGS (exp)

returns a list of the args ofexp. I.e. it is essentially equivalent toSUBSTPART("[",exp,0).

Both ARGS and SUBSTPART depend on the setting of INFLAG.

[Function]COEFF (exp, var, int)

obtains the coefficient ofvar**int in exp. int may be omitted if it is 1.var may be an atom, or complete
subexpression ofexp e.g., X, SIN(X), A[I+1], X+Y, etc. (In the last case the expression(X+Y) should
occur inexp). Sometimes it may be necessary to expand or factorexp in order to makevar**int explicit.
This is not done automatically by COEFF.

(C1) COEFF(2*A*TAN(X)+TAN(X)+B=5*TAN(X)+3,TAN(X));
(D1) 2 A + 1 = 5
(C2) COEFF(Y+X*\%E**X+1,X,0);
(D2) Y + 1

[Function]BOTHCOEF (exp, var)

returns a list whose first member is the coefficient ofvar in exp (as found by RATCOEF ifexp is in CRE
form, otherwise by COEFF), and whose second member is the remaining part ofexp. That is, [A,B] where
exp=A*var+B.

60 Chapter 4. Manipulating Expressions

(C1) ISLINEAR(EXP,VAR):=BLOCK([C],
C:BOTHCOEF(RAT(EXP,VAR),VAR),
IS(FREEOF(VAR,C) AND C[1]#0))$

(C2) ISLINEAR((R**2-(X-R)**2)/X,X);
(D2) TRUE

[Function]RATCOEF (exp, var, n)

returns the coefficient,C, of the expressionvar**n in the expressionexp. n may be omitted if it is 1.C
will be free (except possibly in a non-rational sense) of the variables invar. If no coefficient of this type
exists, zero will be returned. RATCOEF expands and rationally simplifies its first argument and thus it may
produce answers different from those of COEFF which is purely syntactic. ThusRATCOEF((X+1)/Y+X,X);
-> (Y+1)/Y whereas COEFF returns 1.RATCOEF(exp, var, 0), viewingexp as a sum, gives a sum of those
terms which do not containvar. Therefore ifvar occurs to any negative powers, RATCOEF should not be
used. Sinceexp is rationally simplified before it is examined, coefficients may not appear quite the way they
were envisioned.

(C1) S:A*X+B*X+5$
(C2) RATCOEF(S,A+B);
(D2) X

[Function]FREEOF (x1, x2, . . . , exp)

yields TRUE if the xi do not occur inexp, and FALSE otherwise. Thexi are atoms or they may be
subscripted names, functions (e.g. SIN(X)), or operators enclosed in double quotes. Ifvar is a dummy
variable of exp, then FREEOF(var,exp); will returnTRUE. Dummy variables are mathematical things
like the index of a sum or product, the limit variable, and the definite integration variable. Example:
FREEOF(I,’SUM(F(I),I,0,N)); -> TRUE.

DISPFORM(exp,ALL) converts the entire expression (not just the top-level) to external format. For example,
if EXP:SIN(SQRT(X)), thenFREEOF(SQRT,EXP) andFREEOF(SQRT,DISPFORM(EXP)) giveTRUE,
while FREEOF(SQRT,DISPFORM(EXP,ALL)) givesFALSE.

[Function]LISTOFVARS (exp)

yields a list of the variables inexp.

(C1) LISTOFVARS(F(X[1]+Y)/G**(2+A));
(D1) [X[1], Y, A, G]

[variable, default: FALSE]LISTCONSTVARS

if TRUE will cause LISTOFVARS to include %E, %PI, %I, and any variables DECLAREd CONSTANT in
the list it returns if they appear in the expression LISTOFVARS is called on. The default is to omit these.

4.3. Selecting Parts of Expressions 61

[variable, default: TRUE]LISTDUMMYVARS

if FALSE, dummy variables in the expression will not be included in the list returned by LISTOFVARS.
(The meaning of dummy variables is as given in the section on FREEOF. Dummy variables are mathe-
matical things like the index of a sum or product, the limit variable, and the definite integration variable.)
Example: LISTOFVARS(’SUM(F(I),I,0,N)); -> [I,N] if LISTDUMMYVARS is TRUE, and[N] if LIST-
DUMMYVARS is FALSE.

[Function]PARTITION (exp, var)

returns a list of two expressions. They are (1) the factors ofexp (if it is a product), the terms ofexp (if it is
a sum), or the list (if it is a list), which don’t containvar and, (2) the factors, terms, or list which do.

(C1) PARTITION(2*A*X*F(X),X);
(D1) [2 A , X F(X)]
(C2) PARTITION(A+B,X);
(D2) [A + B , 0]
(C3) PARTITION([A,B,F(A),C],A);
(D3) [[B,C],[A,F(A)]]

[Function]HIPOW (exp, var)

the highest explicit exponent ofvar in exp. Sometimes it may be necessary to expandexp since this is not
done automatically by HIPOW. ThusHIPOW(Y**3*X**2+X*Y**4,X) -> 2.

[Function]LOPOW (exp, var)

the lowest exponent ofvar which explicitly appears inexp. ThusLOPOW((X+Y)**2+(X+Y)**A,X+Y) ->
MIN(A,2).

[Function]POWERS (exp, var)

gives the powers ofvar occurring inexp. This function is a generalisation of HIPOW and LOPOW in that
it returns a list of all the powers ofvar occurring inexp. it is still necessary to expandexp before applying
powers (on pain of getting the wrong answer).

This function has many uses, e.g. if you want to find all the coefficients ofx in a polynomialpoly you can
usemap(lambda([pow],coeff(poly,x,pow)),powers(poly,x)); and many other similar useful hacks. There are
some usage notes in the file: ‘share2/powers.usg ’.

See section8.3[Differentiation], page112for the definition of DERIVDEGREE.

4.4 Manipulating Lists

[Function]APPEND (list1, list2, . . .)

returns a single list of the elements oflist1 followed by the elements oflist2,. . . APPEND also works on
general expressions, e.g.APPEND(F(A,B), F(C,D,E)); -> F(A,B,C,D,E).

62 Chapter 4. Manipulating Expressions

[Special Form]APPLY (fun, list)

gives the result of applying the functionfun to the list of its argumentslist. This is useful when it is
desired to compute the arguments to a function before applying that function. For example, ifL is the
list [1, 5, -10.2, 4, 3], thenAPPLY(MIN, L) gives -10.2. APPLY is also useful when calling functions
which do not have their arguments evaluated if it is desired to cause evaluation of them. For example, if
FILESPEC is a variable bound to the list[TEST, CASE], thenAPPLY(CLOSEFILE,FILESPEC) is equiv-
alent toCLOSEFILE(TEST,CASE). In general the first argument to APPLY should be preceded by a ’ to
make it evaluate to itself. Since some atomic variables have the same name as certain functions, the values
of the variable would be used rather than the function because APPLY has its first argument evaluated as
well as its second.

[Function]COPYLIST (list)

creates a copy of the listlist.

[Function]CONCAT (arg1, arg2, . . .)

evaluates its arguments and returns the concatenation of their values resulting in a name, or a quoted
string the type being given by that of the first argument. Thus if X is bound to 1 and D is unbound, then
CONCAT(X,2)="12" andCONCAT(D,X+1)=D2.

[Function]CONS (exp, list)

returns a new list constructed of the elementexp as its first element, followed by the elements of list. CONS
also works on other expressions, e.g.CONS(X, F(A,B,C)); -> F(X,A,B,C).

[Function]ENDCONS (exp, list)

returns a new list consisting of the elements oflist followed by exp. ENDCONS also works on general
expressions, e.g.ENDCONS(X, F(A,B,C)); -> F(A,B,C,X).

[Function]DELETE (exp1, list)

removes all occurrences ofexp1 from list. exp1 may be a term oflist (if it is a sum), or a factor oflist (if it
is a product).

(C1) DELETE(SIN(X),X+SIN(X)+Y);
(D1) Y + X

DELETE(exp1, list, int) removes the firstint occurrences ofexp1 from list. Of course, if there are fewer
thanint occurrences ofexp1 in list then all occurrences will be deleted.

[Function]MAKELIST (exp, var, lo, hi)

returns a list as value. MAKELIST may be called asMAKELIST(exp, var, lo, hi) [lo and hi must be
integers], or asMAKELIST(exp, var, list). In the first case MAKELIST is analogous to SUM, whereas in
the second case MAKELIST is similar to MAP. Examples:

4.4. Manipulating Lists 63

MAKELIST(CONCAT(X,I),I,1,6) -> [X1,X2,X3,X4,X5,X6]
MAKELIST(X=Y,Y,[A,B,C]) -> [X=A,X=B,X=C]

[Function]MEMBER (exp, list)

returnsTRUE if exp occurs as a member oflist (not within a member). OtherwiseFALSE is returned.
Member also works on non-list expressions, e.g.MEMBER(B, F(A,B,C)); -> TRUE.

[Function]REVERSE (list)

reverses the order of the members of the list (not the members themselves). REVERSE also works on
general expressions, e.g.REVERSE(A=B); givesB=A.

4.4.1 Sorting Lists

[Function]SORT (list, optional-predicate)

sorts the listlist using a suitableoptional-predicate of two arguments (such as< or ORDERLESSP). If the
optional-predicate is not given, thenMaxima’s built-in ordering predicate is used.

4.5 Mapping Functions

[Special Form]MAP (fun(arg1, . . . , argn), exp1, . . . , expn)

returns an expression whose leading operator is the same as that of theexpi but whose subparts are the
results of applyingfun to the corresponding subparts of theexpi. Fun is either the name of a function ofn

arguments (wheren is the number ofexpi), or is a LAMBDA form of n arguments.

[variable, default: TRUE]MAPERROR

if FALSE will cause all of the mapping functions (e.g.MAP(fun, exp1, exp2, . . .)) to (1) stop when they
finish going down the shortestexpi if not all of theexpi are of the same length, and (2) applyfun to [exp1,

exp2, . . .] if the expi are not all the same type of object. If MAPERROR isTRUE then an error message will
be given in the above two instances. One of the uses of this function is to MAP a function (e.g. PARTFRAC)
onto each term of a very large expression where it ordinarily wouldn’t be possible to use the function on the
entire expression due to an exhaustion of list storage space in the course of the computation.

64 Chapter 4. Manipulating Expressions

(C1) MAP(F,X+A*Y+B*Z);
(D1) F(B Z) + F(A Y) + F(X)
(C2) MAP(LAMBDA([U],PARTFRAC(U,X)),X+1/(X^3+4*X^2+5*X+2));

1 1 1
(D2) ----- - ----- + -------- + X

X + 2 X + 1 2
(X + 1)

(C3) MAP(RATSIMP, X/(X^2+X)+(Y^2+Y)/Y);
1

(D3) Y + ----- + 1
X + 1

(C4) MAP("=",[A,B],[-0.5,3]);
(D4) [A = - 0.5, B = 3]

See section4.6.1[Substitution Flags], page68for the definition of INFLAG, which effects the behaviour of
the mapping functions.

[Special Form]FULLMAP (fun(arg1, . . . , argn), exp1, . . . , expn)

is similar to MAP but it will keep mapping down all subexpressions until the main operators are no longer
the same. The user should be aware that FULLMAP is used by theMaxima simplifier for certain matrix
manipulations; thus, the user might see an error message concerning FULLMAP even though FULLMAP
was not explicitly called by the user.

(C1) A+B*C$
(C2) FULLMAP(G,\%);
(D2) G(B) G(C) + G(A)
(C3) MAP(G,D1);
(D3) G(B C) + G(A)

[Special Form]FULLMAPL (fun(arg1, . . . , argn), exp1, . . . , expn)

is similar to FULLMAP but it only maps onto lists and matrices.

(C1) FULLMAPL("+",[3,[4,5]],[[A,1],[0,-1.5]]);
(D1) [[A + 3, 4], [4, 3.5]]

[Special Form]MAPLIST (fun(arg1, . . . , argn), exp1, . . . , expn)

yields a list of the applications offun to the parts of theexpi. This differs fromMAP(fun, exp1, exp2, . . .)
which returns an expression with the same main operator asexpi has (except for simplifications and the case
where MAP does an APPLY).fun is of the same form as in MAP.

[Special Form]SCANMAP (function, exp)

recursively applies function toexp, in a top down manner. This is most useful when complete factorization
is desired, for example:

4.5. Mapping Functions 65

(C1) EXP:(A^2+2*A+1)*Y + X^2$
(C2) SCANMAP(FACTOR,EXP);

2 2
(D2) (A + 1) Y + X

Note the way in which SCANMAP applies the given function FACTOR to the constituent subexpressions
of exp; if another form ofexp is presented to SCANMAP then the result may be different. Thus,D2 is not
recovered when SCANMAP is applied to the expanded form ofexp:

(C3) SCANMAP(FACTOR,EXPAND(EXP));
2 2

(D3) A Y + 2 A Y + Y + X

Here is another example of the way in which SCANMAP recursively applies a given function to all subex-
pressions, including exponents:

(C4) EXPR : U*V^(A*X+B) + C$
(C5) SCANMAP(’F, EXPR);

F(F(F(A) F(X)) + F(B))
(D5) F(F(F(U) F(F(V))) + F(C))

SCANMAP(function, expression, BOTTOMUP) applies function toexp in a bottom-up manner. E.g., for
undefined F,

SCANMAP(F,A*X+B) ->
F(A*X+B) ->
F(F(A*X)+F(B)) ->
F(F(F(A)*F(X))+F(B)).

SCANMAP(F,A*X+B,BOTTOMUP) ->
F(A)*F(X)+F(B) ->
F(F(A)*F(X))+F(B) ->
F(F(F(A)*F(X))+F(B)).

(In this case, you get the same answer both ways.)

[Function]SUBLIST (list, fun)

returns the list of elements of the listlist for which the function fun returns TRUE. E.g.,
SUBLIST([1,2,3,4],EVENP);→[2,4]. SUBLIS may be used to efficiently cause the evaluation of specific
noun forms in an expression.

EXP:(F(X)+G(C+B+A,SIN(COS(7*Q)),’H(X)))^(Q^2+P^3/2+M(A,B,C))+V$
H(X):=X^2$

EV(EXP,H) takes 62 msecs.
SUBLIS([NOUNIFY(’H)=lambda([u],h(u))],exp) takes 28 msecs.

66 Chapter 4. Manipulating Expressions

[Function]MAPATOM (exp)

is TRUE if and only ifexp is treated by theMAPping routines as an atom, a unit. "MAPATOMs are atoms,
numbers (including rational numbers), and subscripted variables.

4.6 Substituting Expressions

[Function]SUBST (a, b, c)

substitutesa for b in c. b must be an atom, or a complete subexpression ofc. For example,X+Y+Z is a
complete subexpression of2*(X+Y+Z)/W while X+Y is not. Whenb does not have these characteristics,
one may sometimes use SUBSTPART or RATSUBST (see below). Alternatively, ifb is of the forme/f then
one could useSUBST(a*f,e,c) while ifb is of the forme**(1/f) then one could useSUBST(a**f,e,c). The
SUBST command also discerns theX**Y in X**-Y so that SUBST(A,SQRT(X),1/SQRT(X)) -> 1/A.a and
b may also be operators of an expression enclosed in double quotes or they may be function names. If one
wishes to substitute for the independent variable in derivative forms then the AT function (see below) should
be used. Note:SUBST is an alias forSUBSTITUTE.

SUBST(eq1, exp) or SUBST([eq1,. . . ,eqk], exp) are other permissible forms. Theeqi are equations in-
dicating substitutions to be made. For each equation, the right side will be substituted for the left in the
expressionexp.

[Function]LRATSUBST (list, exp)

is analogous to SUBST(list_of_equations,exp) except that it uses RATSUBST instead of SUBST. The first
argument of LRATSUBST must be an equation or a list of equations identical in format to that accepted
by SUBST. The substitutions are made in the order given by the list of equations, that is, from left to
right. There is a demo in the file: ‘share2/lrats.dem ’. There are some usage notes in the file:
‘share2/lrats.usg ’.

[Function]SUBLIS (list, exp)

allows multiple substitutions into an expression in parallel. Each element of the list must be of the form
symbol = expression. The new expression, with appropriate substitutions made, is the value returned. SUB-
LIS will preserve sharing where possible. eg,SUBLIS([A=B],C+D); returns a pointer to the originalC+D
since no substitution is needed. SUBLIS does substitutions in parallel. eg,

SUBLIS([A=B,B=A],SIN(A)+COS(B));
=> SIN(B) + COS(A)

[variable, default: TRUE]SUBLIS_APPLY_LAMBDA

controls whether LAMBDA’s substituted are applied in simplification after SUBLIS is used or whether you
have to do an EV to get things to apply.TRUE means do the application.

4.6. Substituting Expressions 67

SUBLIS_APPLY_LAMBDA:TRUE$
SUBLIS([F=LAMBDA([X],X+1)],F(Y));

=> Y+1
SUBLIS_APPLY_LAMBDA:FALSE$
SUBLIS([F=LAMBDA([X],X+1)],F(Y));

=> LAMBDA([X],X+1)(Y).

For full documentation, see the file ‘share2/sublis.nfo ’.

4.6.1 Substitution Flags

[variable, default: FALSE]INFLAG

if set toTRUE, the functions for part extraction will look at the internal form ofexp. Note that the simplifier
re-orders expressions. ThusFIRST(X+Y) will be X if INFLAG is TRUE andY if INFLAG is FALSE.
(FIRST(Y+X) gives the same results). Also, setting INFLAG toTRUE and calling PART or SUBSTPART
is the same as calling INPART or SUBSTINPART. Functions affected by the setting of INFLAG are: PART,
SUBSTPART, FIRST, REST, LAST, LENGTH, the FOR . . . IN construct, MAP, FULLMAP, MAPLIST,
REVEAL and PICKAPART.

[variable, default: FALSE]EXPTSUBST

if TRUE permits substitutions such asY for %E**X in %E**(A*X) to take place.

[variable, default: TRUE]OPSUBST

if FALSE, SUBST will not attempt to substitute into the operator of an expression. E.g.
(OPSUBST:FALSE, SUBST(X**2,R,R+R[0])); will work.

(C1) SUBST(A,X+Y,X+(X+Y)**2+Y);
2

(D1) Y + X + A
(C2) SUBST(-\%I,\%I,A+B*\%I);
(D2) A - \%I B

Note that(C2) is one way of obtaining the complex conjugate of an analytic expression.

[variable, default: FALSE]DERIVSUBST

controls non-syntactic substitutions such asSUBST(X,’DIFF(Y,T),’DIFF(Y,T,2));. If DERIVSUBST is set
to TRUE, this gives’ DIFF(X,T).

68 Chapter 4. Manipulating Expressions

4.6.2 Substituting in CRE Expressions

[Function]RATSUBST (a, b, c)

substitutesa for b in c. b may be a sum, product, power, etc. RATSUBST knows something of the meaning
of expressions whereas SUBST does a purely syntactic substitution. ThusSUBST(A,X+Y,X+Y+Z); ->
X+Y+Z whereas RATSUBST would returnZ+A.

[Function]FULLRATSUBST (a, b, c)

is the same as RATSUBST except that it calls itself recursively on its result until that result stops changing.
This function is useful when the replacement expression and the replaced expression have one or more
variables in common.

FULLRATSUBST will also accept its arguments in the format of LRATSUBST. That is, the first argu-
ment may be a single substitution equation or a list of such equations, while the second argument is
the expression being processed. DoLOAD(LRATS); to use this function. There is a demo in the file:
‘share2/lrats.dem ’. There are some usage notes in the file: ‘share2/lrats.usg ’.

[variable, default: FALSE]RADSUBSTFLAG

if TRUE permits RATSUBST to make substitutions such asU for SQRT(X) in X.

4.6.3 Partial Substitutions

[Special Form]SUBSTPART (x, exp, n1, n2, . . .)

substitutesx for the subexpression picked out by the rest of the arguments as in PART. It returns the new
value ofexp. x may be some operator to be substituted for an operator ofexp. In some cases it needs to be
enclosed in double quotess; e.g.SUBSTPART("+",A*B,0);→B + A.

(C1) 1/(X**2+2);
1

(D1) ------
2

X + 2
(C2) SUBSTPART(3/2,\%,2,1,2);

1
(D2) --------

3/2
X + 2

(C3) A*X+F(B,Y);
(D3) A X + F(B, Y)
(C4) SUBSTPART("+",\%,1,0);
(D4) X + F(B, Y) + A

4.6. Substituting Expressions 69

Also, setting the option INFLAG toTRUE and calling PART/SUBSTPART is the same as calling IN-
PART/SUBSTINPART. See section4.3.3 [Selecting Sub Expressions], page58 for the definition of
PARTSWITCH.

[Special Form]SUBSTINPART (x, exp, n1, n2, . . .)

is like SUBSTPART but works on the internal representation ofexp.

(C1) X.’DIFF(F(X),X,2);
2

d
(D1) X . (--- F(X))

2
dX

(C2) SUBSTINPART(D**2,\%,2);
2

(D2) X . D
(C3) SUBSTINPART(F1,F[1](X+1),0);
(D3) F1(X + 1)

If the last argument to a part function is a list of indices then several subexpressions are picked out, each one
corresponding to an index of the list. ThusPART(X+Y+Z,[1,3]) -> Z+X.

PIECE holds the value of the last expression selected when using the part functions. It is set during the
execution of the function and thus may be referred to in the function itself as shown below. If PARTSWITCH
default: [FALSE] is set toTRUE then END is returned when a selected part of an expression doesn’t exist,
otherwise an error message is given.

(C1) 27*Y**3+54*X*Y**2+36*X**2*Y+Y+8*X**3+X+1;
3 2 2 3

(D1) 27 Y + 54 X Y + 36 X Y + Y + 8 X + X + 1
(C2) PART(D1,2,[1,3]);

2
(D2) 54 Y
(C3) SQRT(PIECE/54);
(D3) Y
(C4) SUBSTPART(FACTOR(PIECE),D1,[1,2,3,5]);

3
(D4) (3 Y + 2 X) + Y + X + 1
(C5) 1/X+Y/X-1/Z;

1 Y 1
(D5) - - + - + -

Z X X
(C6) SUBSTPART(XTHRU(PIECE),\%,[2,3]);

Y + 1 1
(D6) ----- - -

X Z

Also, setting the option INFLAG toTRUE and calling PART/SUBSTPART is the same as calling IN-
PART/SUBSTINPART.

70 Chapter 4. Manipulating Expressions

CHAPTER

FIVE

Simplifying Expanding and Factoring

5.1 Simplifying Expressions

[Function]SCSIMP (exp, rule1, rule2, . . .)

(Sequential Comparative Simplification [Stoute]) takes an expression (its first argument) and a set of iden-
tities, or rules (its other arguments) and tries simplifying. If a smaller expression is obtained, the process
repeats. Otherwise after all simplifications are tried, it returns the original answer. See section10.1.7.1
[Defining Simplification Rules], page154.

See section4.1[Evaluation], page47. See section2.4[Flags Effecting the Displayed Form], page21.

5.1.1 Simplifying CRE Expressions

[Function]RATSIMP (exp)

“rationally” simplifies (similar to RATEXPAND) the expressionexp and all of its subexpressions including
the arguments to non-rational functions. The result is returned as the quotient of two polynomials in a re-
cursive form, i.e. the coefficients of the main variable are polynomials in the other variables. Variables may,
as in RATEXPAND, include non-rational functions (e.g.SIN(X**2+1)) but with RATSIMP, the arguments
to non-rational functions are rationally simplified. Note that RATSIMP is affected by some of the variables
which affect RATEXPAND.

RATSIMP(exp, v1, v2, . . .) enables rational simplification with the specification of variable ordering as in
RATVARS.

71

(C1) SIN(X/(X^2+X))=\%E^((LOG(X)+1)**2-LOG(X)**2);
2 2

X (LOG(X) + 1) - LOG (X)
(D1) SIN(------) = \%E

2
X + X

(C2) RATSIMP(\%);
1 2

(D2) SIN(-----) = \%E X
X + 1

(C3) ((X-1)**(3/2)-(X+1)*SQRT(X-1))/SQRT((X-1)*(X+1));
3/2

(X - 1) - SQRT(X - 1) (X + 1)
(D3) --------------------------------

SQRT(X - 1) SQRT(X + 1)
(C4) RATSIMP(\%);

2
(D4) - -----------

SQRT(X + 1)
(C5) X**(A+1/A),RATSIMPEXPONS:TRUE;

2
A + 1

A
(D5) X

[variable, default: FALSE]RATSIMPEXPONS

if TRUE will cause exponents of expressions to be RATSIMPed automatically during simplification.

[Function]FULLRATSIMP (exp)

When non-rational expressions are involved, one call to RATSIMP followed as is usual by non-rational
(general) simplification may not be sufficient to return a simplified result. Sometimes, more than one such
call may be necessary. The command FULLRATSIMP makes this process convenient. FULLRATSIMP re-
peatedly applies RATSIMP followed by non-rational simplification to an expression until no further change
occurs. For example, consider the

EXP: (X^(A/2)+1)^2*(X^(A/2)-1)^2/(X^A-1);
RATSIMP(EXP); -> (X^(2*A)-2*X^A+1)/(X^A-1)
FULLRATSIMP(EXP); -> X^A-1

The problem may be seen by looking at

RAT(EXP); -> ((X^(A/2))^4-2*(X^(A/2))^2+1)/(X^A-1)

FULLRATSIMP(exp, var1, var2, . . .) takes one or more arguments similar to RATSIMP and RAT.

72 Chapter 5. Simplifying Expanding and Factoring

5.1.2 Simplifying Trig Expressions

[Function]TRIGSIMP (exp)

employs the identitiess in(x)**2 + cos(x)**2 = 1 andcosh(x)**2 - sinh(x)**2 = 1 to simplify expressions
containing TAN, SEC, etc. to SIN, COS, SINH, COSH, so that further simplification may be obtained by
using TRIGREDUCE on the result. There is a demo in the file: ‘share/trgsmp.dem ’. There are some
usage notes in the file: ‘share/trgsmp.usg ’.

The file ‘share1/ntrig.mc ’ allows Maxima to compute trig functions with arguments of the form
N*%PI/10 for integerN. Do LOAD(NTRIG); to access this. The main functions areUSIN andUCOS.

The file ‘share1/atrig1.mc ’ contains several additional simplification rules for inverse trig functions.
Together with rules already known toMaxima, the following angles are fully implemented:0, %PI/6,%PI/4,
%PI/3, and%PI/2. Corresponding angles in the other three quadrants are also available. DoLOAD(ATRIG1);
to use them.

[Function]TRIGREDUCE (exp, var)

combines products and powers of trigonometric and hyperbolic SINs and COSs ofvar, into of multiples of
the anglevar. It also tries to eliminate these functions when they occur in denominators. Ifvar is omitted
then all variables inexp are used. Also see the POISSIMP function.

(C4) TRIGREDUCE(-SIN(X)^2+3*COS(X)^2+X);
(D4) 2 COS(2 X) + X + 1

The trigonometric simplification routines will use DECLAREd information in some simple cases. Declara-
tions about variables are used as follows, e.g.

(C5) DECLARE(J, INTEGER, E, EVEN, O, ODD)$
(C6) SIN(X + (E + 1/2)*\%PI)$
(D6) COS(X)
(C7) SIN(X + (O + 1/2) \%PI);
(D7) - COS(X)

5.1.3 Simplifying Logarithms and Exponentials

[Function]RADCAN (exp)

simplifiesexp, which can contain logs, exponentials, and radicals, by converting it into a form which is
canonical over a large class of expressions and a given ordering of variables; that is, all functionally equiva-
lent forms are mapped into a unique form. For a somewhat larger class of expressions, RADCAN produces
a regular form. Two equivalent expressions in this class will not necessarily have the same appearance, but
their difference will be simplified by RADCAN to zero. For some expressions RADCAN can be quite time
consuming. This is the cost of exploring certain relationships among the components of the expression for
simplifications based on factoring and partial-fraction expansions of exponents. See section2.4.2[Display of

5.1. Simplifying Expressions 73

Exponentials], page24for the definition of DEMOIVRE, %EDISPFLAG, %EMODE, %E_TO_NUMLOG,
EXPTDISPFLAG, and RADEXPAND. There is a demo in the file: ‘demo/radcan.dem ’.

[Function]LOGCONTRACT (exp)

recursively scans anexp, transforming subexpressions of the forma1*LOG(b1) + a2*LOG(b2) + c into
LOG(RATSIMP(b1**a1 * b2**a2)) + c.

(C1) 2*(A*LOG(X) + 2*A*LOG(Y))$
(C2) LOGCONTRACT(\%);

2 4
(D3) A LOG(X Y)

If you do DECLARE(N,INTEGER); thenLOGCONTRACT(2*A*N*LOG(X)); givesA*LOG(X**(2*N)).
The coefficients that contract in this manner are those such as the 2 and theN here which satisfy
FEATUREP(coeff,INTEGER). The user can control which coefficients are contracted by setting the op-
tion LOGCONCOEFFP default: [FALSE] to the name of a predicate function of one argument. E.g. if you
like to generateSQRTs, you can do

LOGCONCOEFFP:’LOGCONFUN$
LOGCONFUN(M):=FEATUREP(M,INTEGER) OR RATNUMP(M);.

ThenLOGCONTRACT(1/2*LOG(X)); -> LOG(SQRT(X)).

[variable, default: FALSE]LOGCONCOEFFP

controls which coefficients are contracted when using LOGCONTRACT. It may be set to the name of a
predicate function of one argument.

See section2.4.3 [Display of Logarithms], page25 for the definition of LOGNEGINT, LOGEXPAND,
LOGNUMER and LOGSIMP.

5.1.4 Simplifying Factorials

[Function]FACTCOMB (exp)

tries to combine the coefficients of factorials inexp with the factorials themselves by converting, for exam-
ple, (N+1)*N! into (N+1)!.

[variable, default: TRUE]SUMSPLITFACT

if set toFALSE will cause MINFACTORIAL to be applied after a FACTCOMB.

74 Chapter 5. Simplifying Expanding and Factoring

(C1) (N+1)^B*N!^B;
B B

(D1) (N + 1) N!
(C2) FACTCOMB(\%);

B
(D1) (N + 1)!

[Function]MINFACTORIAL (exp)

examinesexp for occurrences of two factorials which differ by an integer. It then turns one into a polynomial
times the other. Ifexp involves binomial coefficients then they will be converted into ratios of factorials.

(C1) N!/(N+1)!;
N!

(D1) --------
(N + 1)!

(C2) MINFACTORIAL(\%);
1

(D2) -----
N + 1

[Function]MAKEGAMMA (exp)

transforms occurrences of binomial, factorial, and beta functions inexp to GAMMA functions.

5.1.5 Combining Sums of Quotients

[Function]XTHRU (exp)

combines all terms ofexp (which should be a sum) over a common denominator, without expanding products
and exponentiated sums as RATSIMP does. XTHRU cancels common factors in the numerator and denomi-
nator of rational expressions, but only if the factors are explicit. Sometimes it is better to use XTHRU before
RATSIMPing an expression in order to cause explicit factors of the gcd of the numerator and denominator
to be canceled, thus simplifying the expression to be RATSIMPed.

(C1) ((X+2)**20-2*Y)/(X+Y)**20+(X+Y)**-19-X/(X+Y)**20;
20

1 X (X + 2) - 2 Y
(D1) --------- - --------- + ---------------

19 20 20
(Y + X) (Y + X) (Y + X)

(C2) XTHRU(\%);
20

(X + 2) - Y
(D2) -------------

20
(Y + X)

5.1. Simplifying Expressions 75

[Function]COMBINE (exp)

simplifies the sumexp by combining terms with the same denominator into a single term.

[Function]RNCOMBINE (exp)

transformsexp by combining all terms ofexp that have identical denominators or denominators that differ
from each other by numerical factors only. This is slightly different from the behavior of COMBINE,
which collects terms that have identical denominators. Setting PFEFORMAT:TRUE and using COMBINE
will achieve results similar to those that can be obtained with RNCOMBINE, but RNCOMBINE takes the
additional step of cross-multiplying numerical denominator factors. This results in neater forms, and the
possibility of recognizing some cancellations. There is a demo in the file: ‘share1/rncomb.dem ’. ×
There are some usage notes in the file: ‘share1/rncomb.usg ’.

[Function]SUMCONTRACT (exp)

will combine all sums of an addition that have upper and lower bounds that differ by constants. The result
will be an expression containing one summation for each set of such summations added to all appropriate
extra terms that had to be extracted to form this sum. SUMCONTRACT will combine all compatible sums
and use one of the indices from one of the sums if it can, and then try to form a reasonable index if it cannot
use any supplied. It may be necessary to apply INTOSUM before the SUMCONTRACT.

[Function]INTOSUM (exp)

will take all things that a summation is multiplied by, and put them inside the summation. If the index is
used in the outside expression, then the function tries to find a reasonable index, the same as it does for
SUMCONTRACT. This is essentially the reverse idea of the OUTATIVE property of summations, but note
that it does not remove this property, it only bypasses it. In some cases, aSCANMAP(MULTTHRU, exp)
may be necessary before applying the INTOSUM.

5.2 Expanding Expressions

[Function]EXPAND (exp)

will cause products of sums and exponentiated sums to be multiplied out, numerators of rational expres-
sions which are sums to be split into their respective terms, and multiplication (commutative and non-
commutative) to be distributed over addition at all levels ofexp. For polynomials, one should usually use
RATEXPAND which uses a more efficient algorithm. MAXNEGEX default: [1000] and MAXPOSEX
default: [1000] control the maximum negative and positive exponents, respectively, which will expand.

EXPAND(exp, p, n) expandsexp, usingp for MAXPOSEX andn for MAXNEGEX. This is useful in order
to expand part, but not all, of an expression.

The EXPAND flag used with EV (see EV) also causes expansion; see section4.1[Evaluation], page47.

76 Chapter 5. Simplifying Expanding and Factoring

[Function]EXPANDWRT (exp, var1, var2, . . .)

expandsexp with respect to thevari. All products involving thevari appear explicitly. The form returned
will be free of products of sums of expressions that are not free of thevari. The vari may be variables,
operators, or expressions. By default, denominators are not expanded, but this can be controlled by means
of the switch EXPANDWRT_DENOM. DoLOAD(STOPEX); to use this function.

[Function]EXPANDWRT_FACTORED(exp, var1, var2, . . .)

is similar to EXPANDWRT, but treats expressions that are products somewhat differently. EXPAND-
WRT_FACTORED will perform the required expansion only on those factors ofexp that contain the vari-
ables in the argument list of EXPANDWRT_FACTORED. DoLOAD(STOPEX); to use this function.

5.2.1 Expand Flags

See section5.2.5.1[Trig Expand Flags], page80.

[variable, default: 1000]MAXNEGEX

the largest negative exponent which will be expanded by the EXPAND command.

[variable, default: 1000]MAXPOSEX

the largest exponent which will be expanded with the EXPAND command.

[variable, default: FALSE]EXPANDWRT_DENOM

controls the treatment of rational expressions by EXPANDWRT. IfTRUE, then both the numerator
and denominator of the expression will be expanded according to the arguments of EXPANDWRT, but
if EXPANDWRT_DENOM is FALSE, then only the numerator will be expanded in that way. Do
LOAD(STOPEX); to use.

5.2.2 Expanding CRE Expressions

[Function]RATEXPAND (exp)

expandsexp by multiplying out products of sums and exponentiated sums, combining fractions over a
common denominator, cancelling the greatest common divisor of the numerator and denominator, then
splitting the numerator (if a sum) into its respective terms divided by the denominator. This is accomplished
by convertingexp to CRE form and then back to general form. The switch RATEXPAND, default: [FALSE],
if TRUE will cause CRE expressions to be fully expanded when they are converted back to general form or
displayed, while if it isFALSE then they will be put into a recursive form (see RATSIMP).

5.2. Expanding Expressions 77

[variable, default: TRUE]RATDENOMDIVIDE

if FALSE will stop the splitting up of the terms of the numerator of RATEXPANDed expressions from
occurring.

KEEPFLOAT default: [FALSE] if set toTRUE will prevent floating point numbers from being rationalized
when expressions which contain them are converted to CRE form.

(C1) RATEXPAND((2*X-3*Y)**3);
3 2 2 3

(D1) - 27 Y + 54 X Y - 36 X Y + 8 X
(C2) (X-1)/(X+1)**2+1/(X-1);

X - 1 1
(D2) -------- + -----

2 X - 1
(X + 1)

(C3) EXPAND(D2);
X 1 1

(D3) ------------ - ------------ + -----
2 2 X - 1

X + 2 X + 1 X + 2 X + 1
(C4) RATEXPAND(D2);

2
2 X 2

(D4) --------------- + ---------------
3 2 3 2

X + X - X - 1 X + X - X - 1

[variable, default: FALSE]PSEXPAND

if TRUE will cause extended rational function expressions to display fully expanded. (RATEXPAND will
also cause this.) IfFALSE, multivariate expressions will be displayed just as in the rational function pack-
age. IfPSEXPAND:MULTI, then terms with the same total degree in the variables are grouped together.

5.2.3 Partial Expansion

[Function]DISTRIB (exp)

distributes sums over products. It differs from EXPAND in that it works at only the top level of an expres-
sion; it doesn’t recurse and it is faster than EXPAND. It differs from MULTTHRU in that it expands all
sums at that level. For example,

DISTRIB((A+B)*(C+D)) -> A C + A D + B C + B D
MULTTHRU ((A+B)*(C+D)) -> (A + B) C + (A + B) D
DISTRIB (1/((A+B)*(C+D))) -> 1/ ((A+B) *(C+D))
EXPAND(1/((A+B)*(C+D)),1,0) -> 1/ (A C + A D + B C + B D)

78 Chapter 5. Simplifying Expanding and Factoring

[Function]MULTTHRU (exp)

multiplies a factor (which should be a sum) ofexp by the other factors ofexp. That isexp is f1*f2* . . . *fn

where at least one factor, sayfi, is a sum of terms. Each term in that sum is multiplied by the other factors
in the product. (Namely all the factors exceptfi). MULTTHRU does not expand exponentiated sums.
This function is the fastest way to distribute products (commutative or noncommutative) over sums. Since
quotients are represented as products, MULTTHRU can be used to divide sums by products as well.

MULTTHRU(exp1, exp2) multiplies each term inexp2 (which should be a sum or an equation) byexp1. If
exp1 is not itself a sum then this form is equivalent toMULTTHRU(exp1*exp2).

(C1) X/(X-Y)**2-1/(X-Y)-F(X)/(X-Y)**3;
1 X F(X)

(D1) - ----- + -------- - --------
X - Y 2 3

(X - Y) (X - Y)
(C2) MULTTHRU((X-Y)**3,\%);

2
(D2) - (X - Y) + X (X - Y) - F(X)
(C3) RATEXPAND(D2);

2
(D3) - Y + X Y - F(X)
(C4) ((A+B)**10*S**2+2*A*B*S+(A*B)**2)/(A*B*S**2);

10 2 2 2
(B + A) S + 2 A B S + A B

(D4) --------------------------------
2

A B S
(C5) MULTTHRU(\%);

10
2 A B (B + A)

(D5) - + --- + -------
S 2 A B

S
(notice that (B+A)**10 is not expanded)
(C6) MULTTHRU(A.(B+C.(D+E)+F));
(D6) A . F + A . (C . (E + D)) + A . B
(compare with similar example under \fn{EXPAND})

5.2.4 Partial Fractions

[Function]PARTFRAC (exp, var)

expands the expressionexp in partial fractions with respect to the main variable,var. PARTFRAC does
a complete partial fraction decomposition. The algorithm employed is based on the fact that the denomi-
nators of the partial fraction expansion (the factors of the original denominator) are relatively prime. The
numerators can be written as linear combinations of denominators, and the expansion falls out.

5.2. Expanding Expressions 79

5.2.5 Trigonometric Expansions

[Function]TRIGEXPAND (exp)

expands trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring inexp.
For best results,exp should be expanded. To enhance user control of simplification, this function expands
only one level at a time, expanding sums of angles or multiple angles. To obtain full expansion into sines
and cosines immediately, set the switchTRIGEXPAND:TRUE;.

5.2.5.1 Trig Expand Flags

[variable, default: FALSE]TRIGEXPAND

if TRUE causes expansion of all expressions containing SINs and COSs occurring subsequently.

(C1) X+SIN(3*X)/SIN(X),TRIGEXPAND=TRUE,EXPAND;
2 2

(D1) - SIN (X) + 3 COS (X) + X
(C2) TRIGEXPAND(SIN(10*X+Y));
(D2) COS(10 X) SIN(Y) + SIN(10 X) COS(Y)

[variable, default: TRUE]TRIGEXPANDPLUS

controls the sum rule for TRIGEXPAND. Thus, when the TRIGEXPAND command is used or the TRIGEX-
PAND switch set toTRUE, expansion of sums (e.g.SIN(X+Y)) will take place only if TRIGEXPANDPLUS
is TRUE.

[variable, default: TRUE]TRIGEXPANDTIMES

controls the product rule for TRIGEXPAND. Thus, when the TRIGEXPAND command is used or the TRIG-
EXPAND switch set toTRUE, expansion of products (e.g. SIN(2*X)) will take place only if TRIGEX-
PANDTIMES isTRUE.

See section2.4.4[Display of Trig Functions], page26 for the definition of TRIGSIGN, TRIGINVERSES,
HALFANGLES and EXPONENTIALIZE.

5.2.6 Controlled Expansions

The file ‘share1/facexp.mc ’ contains several related functions that provide the user with the ability to
structure expressions by controlled expansion. DoLOAD(FACEXP); to use this function. This capability
is especially useful when the expression contains variables that have physical meaning, because it is often
true that the most economical form of such an expression can be obtained by fully expanding the expression
with respect to those variables, and then factoring their coefficients. While it is true that this procedure is
not difficult to carry out using standardMaxima functions, additional fine-tuning may also be desirable, and
these finishing touches can be more difficult to apply. The function FACSUM and its related forms provide

80 Chapter 5. Simplifying Expanding and Factoring

a convenient means for controlling the structure of expressions in this way. Another function, COLLECT-
TERMS, can be used to add two or more expressions that have already been simplified to this form, without
resimplifying the whole expression again. This function is particularly useful when the expressions are large
and address space or cpu time is in short supply.

[Function]FACSUM (exp, arg1, arg2, . . .)

returns a form ofexp which depends on theargi. The argi can be any form suitable for RATVARS, or
they can be lists of such forms. If theargi are not lists, then the form returned will be fully expanded with
respect to theargi, and the coefficients of theargi will be factored. These coefficients will be free of theargi,
except perhaps in a non-rational sense. If any of theargi are lists, then all such lists will be combined into a
single list, and instead of calling FACTOR on the coefficients of theargi, FACSUM will call itself on these
coefficients, using this newly constructed single list as the newargi for this recursive call. This process can
be repeated to arbitrary depth by nesting the desired elements in lists.

It is possible that one may wish to FACSUM with respect to more complicated subexpressions, such
as LOG(X+Y). Such arguments are also permissible. With no variable specification, for example
FACSUM(exp), the result returned is the same as that returned byRATSIMP(exp).

Occasionally the user may wish to obtain any of the above forms for expressions which are specified only
by their leading operators. For example, one may wish to FACSUM with respect to all LOG’s. In this
situation, one may include among theargi either the specific LOG’s which are to be treated in this way, or
alternatively, either the expressionOPERATOR(LOG) or’ OPERATOR(LOG). If one wished to FACSUM
the expressionexp with respect to the operatorsOP1, OP2, . . . , OPn, one would evaluateFACSUM(EXP,
OPERATOR(OP1, OP2, . . . , OPn)). TheOPERATOR form may also appear inside list arguments.

In addition, the setting of the switches FACSUM_COMBINE and NEXTLAYERFACTOR may affect the
result of FACSUM as follows:

[variable, default: FALSE]NEXTLAYERFACTOR

if TRUE will force the recursive calls of FACSUM to be applied to the factors of the factored form of the
coefficients of theargi. If FALSE then FACSUM will be applied to each coefficient as a whole whenever
recursive calls to FACSUM occur as described above. In addition, inclusion of the atom NEXTLAYER-
FACTOR in the argument list of FACSUM has the effect ofNEXTLAYERFACTOR:TRUE, but for the next
level of the expressiononly. Since NEXTLAYERFACTOR is always bound to either TRUE or FALSE, it
must be presented single-quoted whenever it is used in this way.

[variable, default: TRUE]FACSUM_COMBINE

controls the form of the final result returned by FACSUM when its argument is a quotient of polynomials.
If FACSUM_COMBINE is FALSE then the form will be returned as a fully expanded sum as described
above, but if TRUE, then the formed returned is a ratio of polynomials, with each polynomial in the form
described above. The TRUE setting of this switch is useful when one wants to FACSUM both the numerator
and denominator of a rational expression, but does not want the denominator to be multiplied through the
terms of the numerator.

5.2. Expanding Expressions 81

[Function]FACTORFACSUM (exp, arg1, arg2, . . . , argN)

returns a form ofexp which is obtained by calling FACSUM on the factors ofexp with theargi as arguments.
If any of the factors ofexp is raised to a power, both the factor and the exponent will be processed in this
way.

[Function]COLLECTTERMS (arg1, arg2, . . . argn)

If several expressions have been simplified with FACSUM, FACTORFACSUM, FACTENEXPAND, FAC-
EXPTEN or FACTORFACEXPTEN, and they are to be added together, it may be desirable to combine
them using the function COLLECTTERMS. COLLECTTERMS can take as arguments all of the arguments
that can be given to these other associated functions with the exception of NEXTLAYERFACTOR, which
has no effect on COLLECTTERMS. The advantage of COLLECTTERMS is that it returns a form simi-
lar to FACSUM, but since it is adding forms that have already been processed by FACSUM, it does not
need to repeat that effort. This capability is especially useful when the expressions to be summed are very
large. There is a demo in the file: ‘share1/facexp.dem ’. There are some usage notes in the file:
‘share1/facexp.usg ’.

5.3 Factoring Expressions

[Function]FACTOR (exp)

factors the expressionexp, containing any number of variables or functions, into factors irreducible over the
integers.

FACTOR(exp, p) factorsexp over the field of integers with an element adjoined whose minimum polyno-
mial is p. There is a demo in the file: ‘demo/factor.dem ’.

[Function]GFACTOR (exp)

factors the expressionexp, containing any number of variables or functions, into factors irreducible over the
Gaussian integers.

[Function]FACTOROUT (exp, var1, var2, . . .)

rearranges the sumexp into a sum of terms of the formf(var1,var2,. . .)*g whereg is a product of expressions
not containing thevari ’s andf is factored.

[Function]FACTORSUM (exp)

tries to group terms in factors ofexp which are sums into groups of terms such that their sum
is factorable. It can recover the result ofEXPAND((X+Y)**2+(Z+W)**2) but it can’t recover×
EXPAND((X+1)**2+(X+Y)**2) because the terms have variables in common.

82 Chapter 5. Simplifying Expanding and Factoring

(C1) (X+1)*((U+V)^2+A*(W+Z)^2),EXPAND;
2 2 2 2

(D1) A X Z + A Z + 2 A W X Z + 2 A W Z + A W X + V X
2 2 2 2

+ 2 U V X + U X + A W + V + 2 U V + U
(C2) FACTORSUM(\%);

2 2
(D2) (X + 1) (A (Z + W) + (V + U))

[Function]GFACTORSUM (exp)

the same as FACTORSUM but uses GFACTOR.

5.3.1 Factor Flags

[variable, default: FALSE]FACTORFLAG

if FALSE suppresses the factoring of integer factors of rational expressions.

[Variable]DONTFACTOR

may be set to a list of variables with respect to which factoring is not to occur. (It is initially empty).
Factoring also will not take place with respect to any variables which are less important (using the variable
ordering assumed for CRE form) than those on the DONTFACTOR list.

[variable, default: FALSE]SAVEFACTORS

if TRUE causes the factors of an expression which is a product of factors to be saved by certain functions,
in order to speed up later factorizations of expressions containing some of the same factors.

[variable, default: 1000]INTFACLIM

is the largest divisor which will be tried when factoring a bignum integer. If set toFALSE (this is the case
when the user calls FACTOR explicitly), or if the integer is a fixnum (i.e. fits in one machine word), complete
factorization of the integer will be attempted. The user’s setting of INTFACLIM is used for internal calls
to FACTOR. Thus, INTFACLIM may be reset to preventMaxima from taking an inordinately long time
factoring large integers.

[variable, default: TRUE]BERLEFACT

if FALSE then the Kronecker factoring algorithm will be used otherwise the Berlekamp algorithm, which is
the default, will be used.

[variable, default: FALSE]NEWFAC

may be set toTRUE to use the new factoring routines.

5.3. Factoring Expressions 83

5.4 Manipulating Polynomials

[Function]FASTTIMES (poly1, poly2)

multiplies the polynomialspoly1 andpoly2 by using a special algorithm for multiplication of polynomials.
They should be multivariate, dense, and nearly the same size. Classical multiplication is of order N*M
where N and M are the degrees. FASTTIMES is of orderMAX(N,M)**1.585.

[Function]DIVIDE (poly1, poly2, var1, . . . , varn)

computes the quotient and remainder of the polynomialpoly1 divided by the polynomialpoly2, in a main
polynomial variable,varn. The other variables are as in the RATVARS function. The result is a list whose
first element is the quotient and whose second element is the remainder.

(C1) DIVIDE(X+Y,X-Y,X);
(D1) [1, 2 Y]
(C2) DIVIDE(X+Y,X-Y);
(D2) [- 1, 2 X]

Note thatY is the main variable in(C2).

[Function]QUOTIENT (poly1, poly2, var1, . . .)

computes the quotient of the polynomialpoly1 divided by the polynomialpoly2.

[Function]REMAINDER (poly1, poly2, var1, . . .)

computes the remainder of the polynomialpoly1 divided by the polynomialpoly2.

[Function]RESULTANT (poly1, poly2, var)

computes the resultant of the two polynomialspoly1 andpoly2, eliminating the variablevar. The resultant
is a determinant of the coefficients ofvar in poly1 andpoly2 which equals zero if and only ifpoly1 and
poly2 have a non-constant factor in common. Ifpoly1 or poly2 can be factored, it may be desirable to call
FACTOR before calling RESULTANT.

[variable, default: SUBRES]RESULTANT

controls which algorithm will be used to compute the resultant. SUBRES for subresultant prs [the default],
MOD for modular resultant algorithm, and RED for reduced prs. On most problems SUBRES should be
best. On some large degree univariate or bivariate problems MOD may be better. Another alternative is the
BEZOUT command which takes the same arguments as RESULTANT and returns a matrix. DETERMI-
NANT of this matrix is the desired resultant.

84 Chapter 5. Simplifying Expanding and Factoring

[Function]MOD (poly)

converts the polynomial poly to a modular representation with respect to the current modulus which is the
value of the variable MODULUS.

MOD(poly, m) specifies a MODULUSm to be used for convertingpoly, if it is desired to override the
current global value of MODULUS.

[Function]POLYDECOMP (poly, var)

returns a list of polynomials[f1(var), f2(var), . . . , fn(var)] such thatpoly = f 1(f2(. . . fn(var) . . .)). There is
no other decomposition which involves more polynomials excepting linearfi.

[Function]HORNER (exp, var)

will convert exp into a rearranged representation as in Horner’s rule, usingvar as the main variable if it
is specified.Var may also be omitted in which case the main variable of the CRE form ofexp is used.
HORNER sometimes improves stability ifexp is to be numerically evaluated. It is also useful ifMaxima is
used to generate programs to be run in FORTRAN (see also STRINGOUT).

(C1) 1.0E-20*X^2-5.5*X+5.2E20;
2

(D1) 1.0E-20 X - 5.5 X + 5.2E+20
(C2) HORNER(\%,X),KEEPFLOAT:TRUE;
(D2) X (1.0E-20 X - 5.5) + 5.2E+20
(C3) D1,X=1.0E20;
ARITHMETIC OVERFLOW
(C4) D2,X=1.0E20;
(D4) 6.9999999E+19

5.4.1 Greatest Common Divisors

[Function]GCD (poly1, poly2, var1, . . .)

computes the greatest common divisor ofpoly1 andpoly2.

[variable, default: SPMOD]GCD

determines which algorithm is employed. Setting GCD to EZ, EEZ, SUBRES, RED, or SPMOD selects the
EZGCD, new EEZ GCD, subresultant PRS, reduced, or modular algorithm, respectively. IfGCD:FALSE
then GCD(poly1, poly2, var) will always return 1 for allvar. Many functions (e.g. RATSIMP, FAC-
TOR, etc.) cause gcd’s to be taken implicitly. For homogeneous polynomials it is recommended that
GCD:SUBRES be used. To take the gcd when an algebraic is present, e.g.GCD(X**2-2*SQRT(2)*X+2,X-
SQRT(2));, ALGEBRAIC must beTRUE and GCD must not be EZ. SUBRES is a new algorithm, and
people who have been using the RED setting should probably change it to SUBRES. The GCD flag, default:
[SPMOD], if FALSE will also prevent the greatest common divisor from being taken when expressions are
converted to CRE form. This will sometimes speed the calculation if gcds are not required.

5.4. Manipulating Polynomials 85

[Function]EZGCD (poly1, poly2, . . .)

gives a list whose first element is the g.c.d of the polynomialspoly1, poly2, . . . and whose remaining
elements are the polynomials divided by the g.c.d. This always uses the EZGCD algorithm. There is a demo
in the file: ‘demo/ezgcd.dem ’.

[Function]LCM (exp1, exp2, . . .)

returns the Least Common Multiple of its arguments. DoLOAD(FUNCTS); to access this function.

[Function]CONTENT (poly1, var1, . . . , varn)

returns a list whose first element is the greatest common divisor of the coefficients of the terms of the
polynomialpoly1 in the variablevarn (this is the content) and whose second element is the polynomial
poly1 divided by the content.

(C1) CONTENT(2*X*Y+4*X**2*Y**2,Y);
(D1) [2*X, 2*X*Y**2+Y].

86 Chapter 5. Simplifying Expanding and Factoring

CHAPTER

SIX

Linear Algebra

6.1 Arrays

6.1.1 Defining Arrays

[Special Form]ARRAY (array, dim1, dim2, . . . , dimk)

This sets up ak-dimensional array. A maximum of five dimensions may be used. The subscripts for the
i ’th dimension are the integers running from 0 todimi. If the user assigns to a subscripted variable before
declaring the corresponding array, an undeclared array is set up. If the user has more than one array to be
set up the same way, they may all be set up at the same time, byARRAY([list-of-names],dim1, dim2, . . . ,
dimk).

Undeclared arrays, otherwise known as (because hash coding is done on the subscripts), are more general
than declared arrays. The user does not declare their maximum size, and they grow dynamically by hashing
as more elements are assigned values. The subscripts of undeclared arrays need not even be numbers.
However, unless an array is rather sparse, it is probably more efficient to declare it when possible, rather
than to leave it undeclared. The ARRAY function can be also used to transform an undeclared array into a
declared array. There is a demo in the file: ‘demo/array.dem ’.

[Variable]ARRAYS

a list of all the arrays that have been allocated, both declared and undeclared. Functions which deal with
arrays are: ARRAY, ARRAYAPPLY, ARRAYINFO, ARRAYMAKE, FILLARRAY, LISTARRAY, and
REMARRAY.

[Function]ARRAYMAKE (array,[i1, i2, . . .])

returns the arrayarray[i1, i2, . . .].

6.1.2 Manipulating Arrays

[Function]LISTARRAY (array)

returns a list of the elements of a declared or hashed array. The order is row-major. Elements which you
have not defined yet will be represented by#####.

87

[Function]ARRAYAPPLY (array, [sub1, . . . , subk])

is like APPLY except the first argument is an array.

[Function]FILLARRAY (array, list-or-array)

fills array from list-or-array. If array is a floating-point (integer) array thenlist-or-array should be either
a list of floating-point (integer) numbers or another floating-point (integer) array. If the dimensions of the
arrays are different,array is filled in row-major order. If there are not enough elements inlist-or-array the
last element is used to fill out the rest of array. If there are too many elements, the remaining ones are thrown
away. FILLARRAY returns its first argument.

[Special Form]ARRAYINFO (array)

returns a list of information about the arrayarray. For hashed arrays it returns a list ofHASHED, the number
of subscripts, and the subscripts of every element which has a value. For declared arrays it returns a list of
DECLARED, the number of subscripts, and the bounds that were given the the ARRAY function when it
was called ona.

[Special Form]REMARRAY (name1, name2, . . .)

removes arrays and array associated functions and frees the storage occupied. If name is ALL then all arrays
are removed. It may be necessary to use this function if it is desired to redefine the values in a hashed array.

6.2 Basic Matrix Operations

Matrix multiplication is effected by using the dot operator, ., which is also convenient if the user wishes to
represent other non-commutative algebraic operations. The exponential of the . operation is ^^. Thus, for a
matrix A, A.A = A^^2 and, if it exists,A^^-1 is the inverse of A.

[Function]NCEXPT (A, B)

if an (non-commutative) exponential expression is too wide to be displayed asA^^B it will appear as
NCEXPT(A,B).

The operations +, -, *, ** are all element-by-element operations; all operations are normally carried out in
full, including the . (dot) operation. Many switches exist for controlling simplification rules involving dot
and matrix-list operations. See section6.3[Defining Matrices], page91.

Options Relating to Matrices: LMXCHAR, RMXCHAR, RATMX, LISTARITH, DETOUT, DOALLMX-
OPS, DOMXEXPT, DOMXMXOPS, DOSCMXOPS, DOSCMXPLUS, SCALARMATRIX, and SPARSE.
There is a demo in the file: ‘demo/matrix.dem ’.

88 Chapter 6. Linear Algebra

6.2.1 Matrices Flags

[variable, default: FALSE]RATMX

if FALSE will cause determinants and matrix addition, subtraction, and multiplication to be performed in
the representation of the matrix elements and will cause the result of matrix inversion to be left in general
representation. If it isTRUE, the 4 operations mentioned above will be performed in CRE form and the result
of matrix inverse will be in CRE form. Note that this may cause the elements to be expanded (depending on
the setting of RATFAC) which might not always be desired.

[variable]LMXCHAR

The character used to display the left delimiter of a matrix (see also RMXCHAR).

[variable]RMXCHAR

The character used to display the right delimiter of a matrix (see also LMXCHAR).

[variable, default: +]MATRIX_ELEMENT_ADD

May be set to?; may also be the name of a function, or a LAMBDA expression. In this way, a rich variety
of algebraic structures may be simulated. There is a demo in the file: ‘demo/matrix.dm1 ’. There is a
demo in the file: ‘demo/matrix.dm2 ’.

[variable, default: *]MATRIX_ELEMENT_MULT

May be set to. ; may also be the name of a function, or a LAMBDA expression. In this way, a rich variety
of algebraic structures may be simulated. There is a demo in the file: ‘demo/matrix.dm1 ’. There is a
demo in the file: ‘demo/matrix.dm2 ’.

[variable, default: FALSE]MATRIX_ELEMENT_TRANSPOSE

Other useful settings are TRANSPOSE and NONSCALARS; may also be the name of a function, or a
LAMBDA expression. In this way, a rich variety of algebraic structures may be simulated. There is a demo
in the file: ‘demo/matrix.dm1 ’. There is a demo in the file: ‘demo/matrix.dm2 ’.

[variable, default: TRUE]DOALLMXOPS

if TRUE all operations relating to matrices are carried out. If it isFALSE then the setting of the individual
DOT switches govern which operations are performed.

[variable, default: TRUE]DOMXEXPT

if TRUE, %E**MATRIX([1,2],[3,4]); → MATRIX([%E,%E**2],[%E**3,%E**4]). In general, this trans-
formation affects expressions of the form <base>**<power> where <base> is an expression assumed scalar
or constant, and <power> is a list or matrix. This transformation is turned off if this switch is set toFALSE.

6.2. Basic Matrix Operations 89

[variable, default: TRUE]DOMXMXOPS

if TRUE then all matrix-matrix or matrix-list operations are carried out (but not scalar-matrix operations); if
this switch isFALSE they are not.

[variable, default: FALSE]DOMXNCTIMES

Causes non-commutative products of matrices to be carried out.

[variable, default: FALSE]DOSCMXOPS

if TRUE then scalar-matrix operations are performed.

[variable, default: FALSE]DOSCMXPLUS

if TRUE will cause SCALAR + MATRIX to give a matrix answer. This switch is not subsumed under
DOALLMXOPS.

6.2.2 Non-Commutative Operations

[Special Form]Syntax .

The dot operator, for matrix (non-commutative) multiplication. When . is used in this way, spaces should
be left on both sides of it, e.g.A . B. This distinguishes it plainly from a decimal point in a floating point
number.

6.2.2.1 Flags for Non-Commutative Operations

[variable, default: TRUE]DOT0SIMP

Causes a non-commutative product of zero and a scalar term to be simplified to a commutative product.

[variable, default: TRUE]DOT0NSCSIMP

Causes a non-commutative product of zero and a nonscalar term to be simplified to a commutative product.

[variable, default: TRUE]DOT1SIMP

Causes a non-commutative product of one and another term to be simplified to a commutative product.

[variable, default: TRUE]DOTASSOC

whenTRUE causes(A.B).C to simplify toA.(B.C)

90 Chapter 6. Linear Algebra

[variable, default: TRUE]DOTCONSTRULES

Causes a non-commutative product of a constant and another term to be simplified to a commutative product.
Turning on this flag effectively turns on DOT0SIMP, DOT0NSCSIMP, and DOT1SIMP as well.

[variable, default: FALSE]DOTDISTRIB

if TRUE will causeA.(B+C) to simplify toA.B+A.C

[variable, default: TRUE]DOTEXPTSIMP

whenTRUE causes A.A to simplify to A^^2

[variable, default: 1]DOTIDENT

The value to be returned byX^^0.

[variable, default: FALSE]DOTSCRULES

whenTRUE will causeA.SC orSC.A to simplify toSC*A, andA.(SC*B) to simplify toSC*(A.B)

6.3 Defining Matrices

[Function]MATRIX (row1, . . . , rown)

defines a rectangular matrix with the indicated rows. Each row has the form of a list of expressions, e.g.[A,
X**2, Y, 0] is a list of 4 elements.

[Function]GENMATRIX (array, i2, j2, i1, j1)

generates a matrix from the arrayarray usingarray(i1,j1) for the first (upper-left) element andarray(i2,j2)

for the last (lower-right) element of the matrix. Ifj1=i1 thenj1 may be omitted. Ifj1=i1=1 theni1 andj1

may both be omitted. If a selected element of the array doesn’t exist a symbolic one will be used.

(C1) H[I,J]:=1/(I+J-1)$
(C2) GENMATRIX(H,3,3);

[1 1]
[1 - -]
[2 3]
[]
[1 1 1]

(D2) [- - -]
[2 3 4]
[]
[1 1 1]
[- - -]
[3 4 5]

6.3. Defining Matrices 91

[Function]ENTERMATRIX (m, n)

allows one to enter a matrix element by element withMaxima requesting values for each of them*n entries.

(C1) ENTERMATRIX(3,3);
Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4
1;
Row 1 Column 1: A;
Row 2 Column 2: B;
Row 3 Column 3: C;
Matrix entered.

[A 0 0]
[]

(D1) [0 B 0]
[]
[0 0 C]

[Function]COPYMATRIX (mat)

creates a copy of the matrixmat. This is the only way to make a copy aside from recreatingmat elementwise.
Copying a matrix may be useful when SETELMX is used.

6.3.1 Defining Special Matrices

[Function]DIAGMATRIX (n, exp)

returns a diagonal matrix of sizen by n with the diagonal elements allx. An identity matrix is created by
DIAGMATRIX(n,1), or one may useI DENT(n).

[Function]EMATRIX (m, n, exp, i, j)

will create an m byn matrix all of whose elements are zero except for thei, j element which isexp.

[Function]ZEROMATRIX (m, n)

takes integersm,n as arguments and returns anm by n matrix of 0’s.

6.4 Matrix Information

[Function]RANK (mat)

computes the rank of the matrixmat. That is, the order of the largest non-singular subdeterminant ofmat.
Caveat: RANK may return the wrong answer if it cannot determine that a matrix element that is equivalent
to zero is indeed so.

92 Chapter 6. Linear Algebra

[Function]MATTRACE (mat)

computes the trace [sum of the elements on the main diagonal] of the square matrixmat. It is used by
NCHARPOLY, an alternative to CHARPOLY. It is used by doingLOAD(NCHRPL);. There is a demo in
the file: ‘share1/nchrpl.dem ’.

[Function]DETERMINANT (mat)

computes the determinant ofmat by a method similar to Gaussian elimination. The form of the result de-
pends upon the setting of the switch RATMX. There is a special routine for dealing with sparse determinants
which can be used by setting the switches RATMX and SPARSE to beTRUE.

[variable, default: FALSE]DETOUT

if TRUE will cause the determinant of a matrix whose inverse is computed to be kept outside of the in-
verse. For this switch to have an effect DOALLMXOPS and DOSCMXOPS should beFALSE (see their
descriptions). Alternatively this switch can be given to EV which causes the other two to be set correctly.

[variable, default: FALSE]SPARSE

if TRUE and if RATMX:TRUE, then DETERMINANT will use special routines for computing sparse de-
terminants.

[Function]NEWDET (mat, n)

also computes the determinant ofmat but uses the Johnson-Gentleman tree minor algorithm.mat may be
the name of a matrix or array. The argumentn is the order; it is optional ifmat is a matrix.

[Function]PERMANENT (mat, int)

computes the permanent of the matrixmat. A permanent is like a determinant but with no sign changes.

6.5 Manipulating Matrices

[Function]SETELMX (exp, i, j, mat)

changes thei, j element ofmat to exp. The altered matrix is returned as the value.MAT[I,J]:EXP may also
be used, alteringmat in a similar manner, but returningEXP as the value.

[Function]ROW (mat, i)

gives a matrix of thei ’th row of matrixmat.

6.5. Manipulating Matrices 93

[Function]COL (mat, i)

gives a matrix of thei ’th column of the matrixmat.

[Function]ADDROW (mat, list1, list2, . . .)

appends the row(s) given by the one or more lists (or matrices) onto the matrixmat.

[Function]ADDCOL (mat, list1, list2, . . . , listn)

appends the column(s) given by the one or more lists (or matrices) onto the matrixmat.

[Function]SUBMATRIX (m1, . . . , mat, n1, . . .)

creates a new matrix composed of the matrixmat with rowsmi deleted, and columnsni deleted.

6.6 Operating on Matrices

[Function]ADJOINT (matrix)

computes the adjoint of a matrix using the adjoint method. DoLOAD("INVERT"); to use this function.
This allows a user to compute the inverse of a matrix with bfloat entries or polynomials with floating point
coefficients without converting to CRE form. The DETERMINANT command is used to compute cofactors,
so if RATMX is FALSE (the default) the inverse is computed without changing the representation of the
elements. The functions ADJOINT and INVERT are provided. The current implementation is inefficient
for matrices of high order. The DETOUT flag if true keeps the determinant factored out of the inverse.

[Function]AUGCOEFMATRIX ([eq1, . . .], [var1, . . .])

the augmented coefficient matrix for the variablesvar1,. . . of the system of linear equationseq1,. . . . This
is the coefficient matrix with a column adjoined for the constant terms in each equation (i.e. those not
dependent uponvar1,. . .).

[Function]COEFMATRIX ([eq1, . . .], [var1, . . .])

the coefficient matrix for the variablesvar1,. . . of the system of linear equationseq1,. . . .

[Function]ECHELON (mat)

produces the echelon form of the matrixmat. That is,mat with elementary row operations performed on
it such that the first non-zero element in each row in the resulting matrix is a one and the column elements
under the first one in each row are all zero.

94 Chapter 6. Linear Algebra

[2 1 - A -5 B]
(D2) []

[A B C]
(C3) ECHELON(D2);

[A - 1 5 B]
[1 - ----- - ---]
[2 2]

(D3) []
[2 C + 5 A B]
[0 1 ------------]
[2]
[2 B + A - A]

[Function]INVERT (matrix)

finds the inverse of a matrix using the adjoint method. This allows a user to compute the inverse of a matrix
with bigfloat entries or polynomials with floating point coefficients without converting to CRE form. The
DETERMINANT command is used to compute cofactors, so if RATMX isFALSE (the default) the inverse
is computed without changing the representation of the elements. The current implementation is inefficient
for matrices of high order. The DETOUT flag ifTRUE keeps the determinant factored out of the inverse.

Note: the results are not automatically expanded. If the matrix originally had polynomial entries, better
appearing output can be generated byEXPAND(INVERT(mat)),DETOUT. If it is desirable to then divide
through by the determinant this can be accomplished byXTHRU(%) or alternatively from scratch by

EXPAND(ADJOINT(mat))/EXPAND(DETERMINANT(mat)).

See section1.3[Reader Syntax], page3, for the definiition of ^^ for another method of inverting a matrix.

There are some usage notes in the file: ‘share1/invert.usg ’.

[Function]TRANSPOSE (mat)

produces the transpose of the matrixmat.

[Function]TRIANGULARIZE (mat)

produces the upper triangular form of the matrixmat, which needn’t be square.

[Special Form]MATRIXMAP (fun, mat)

will map the functionfun onto each element of the matrixmat.

6.6. Operating on Matrices 95

6.6.1 Characteristic Polynomials

[Function]CHARPOLY (mat, var)

computes the characteristic polynomial for matrixmat with respect tovar. That is, DETERMINANT(M -
DIAGMATRIX(LENGTH(mat),var)).

[Function]NCHARPOLY (mat, var)

finds the characteristic polynomial of the matrixmat with respect tovar. This is an alternative toMaxima’s
CHARPOLY.NCHARPOLY works by computing traces of powers of the given matrix, which are known
to be equal to sums of powers of the roots of the characteristic polynomial. From these quantities the
symmetric functions of the roots can be calculated, which are nothing more than the coefficients of the
characteristic polynomial. CHARPOLY works by forming the determinant ofVAR * IDENT(N) - A. Thus
NCHARPOLY wins, for example, in the case of large dense matrices filled with integers, since it avoids
polynomial arithmetic altogether. It may be used by doingLOAD(NCHRPL);.

6.6.2 Eigenvalues and Eigenvectors

[Function]EIGENVALUES (mat)

takes a matrixmat as its argument and returns a list of lists, the first sublist of which is the list of eigen-
values of the matrix, and the other sublist of which is the list of the multiplicities of the eigenvalues in the
corresponding order. It is able to handle multiple eigenvalues and the eigenvectors corresponding to those
eigenvalues. It will work with any square matrix (not necessarily symmetric or hermitian) and will tell
whether the matrix is diagonalizable. The calculated eigenvectors and the unit eigenvectors of the matrix
are the right eigenvectors and the right unit eigenvectors respectively.

You should be aware of the fact that this program uses theMaxima functions SOLVE and ALGSYS and
if SOLVE can not find the roots of the characteristic polynomial of the matrix or if it generates a rather
messy solution the EIGEN package may not produce any useful results. This package isdesigned to try
to get theexact solutions to the eigenvalue and eigenvector problems. if the matrices you have contain
floating point numbers, it may not be able to solve your problem. you should use the imsl eigenvalue and
eigenvector package for numerical matrices with floating point numbers. These excellent routines will find
the approximate solutions for numerical matrices with floating point numbers.

TheMaxima function SOLVE is used to find the roots of the characteristic polynomial of the matrix. Some-
times SOLVE may not be able to find the roots of the polynomial;in that case nothing in this package ex-
cept CONJUGATE, INNERPRODUCT, UNITVECTOR, COLUMNVECTOR and GRAMSCHMIDT will
work unless you know the eigenvalues. In some cases SOLVE may generate very messy eigenvalues. You
may want to simplify the answers yourself before you go on. There are provisions for this and they will
be explained below. This usually happens when SOLVE returns an apparently imaginary expression for an
eigenvalue which is supposed to be real. The EIGENVALUES command is available directly fromMaxima.
To use the other functions you must have loaded in the EIGEN package, either by a previous call to EIGEN-
VALUES, or by doingLOAD(EIGEN). There are some usage notes in the file: ‘share/eigen.usg ’.

96 Chapter 6. Linear Algebra

[Function]EIGENVECTORS (mat)

takes a matrixmat as its argument and returns a list of lists the first sublist of which is the output of the
EIGENVALUES command and the other sublists of which are the eigenvectors of the matrix corresponding
to those eigenvalues respectively. This function will work directly fromMaxima, but if you wish to take
advantage of the flags for controlling it (see below), you must first load in the EIGEN package from the
SHARE directory. You may do that byLOAD(EIGEN);. The flags that affect this function are:

6.6.2.1 Eigenvalue Flags

[variable, default: FALSE]NONDIAGONALIZEABLE

will be set toTRUE or FALSE depending on whether the matrix is nondiagonalizable or diagonalizable
after an EIGENVECTORS command is executed.

[variable, default: FALSE]HERMETIANMATRIX

If set toTRUE will cause the degenerate eigenvectors of the hermitian matrix to be orthogonalized using the
Gram-Schmidt algorithm.

[variable, default: FALSE]KNOWNEIGVALS

If set to TRUE the EIGEN package will assume the eigenvalues of the matrix are known to the user and
stored under the global name LISTEIGVALS.

[variable, default: FALSE]KNOWNEIGVECTS

If set toTRUE the EIGEN package will assume that the eigenvectors of the matrix are known to the user
and are stored under the global name LISTEIGVECTS. LISTEIGVECTS should be set to a list similar
to the output of the EIGENVECTORS command. (If KNOWNEIGVECTS is set toTRUE and the list of
eigenvectors is given the setting of the flag NONDIAGONALIZABLE may not be correct. If that is the case
please set it to the correct value. The author assumes that the user knows what he is doing and will not try to
diagonalize a matrix the eigenvectors of which do not span the vector space of the appropriate dimension. . .)

[Variable]LISTEIGENVALS

should be set to a list similar to the output of the EIGENVALUES command. TheMaxima function AL-
GSYSis used to solve for the eigenvectors. Sometimes if the eigenvalues are messy, ALGSYS may not be
able to produce a solution. In that case you are advised to try to simplify the eigenvalues by first finding
them using EIGENVALUES command and then using whatever marvelous tricks you might have to reduce
them to something simpler. You can then use the KNOWNEIGVALS flag to proceed further. There are
some usage notes in the file: ‘share/eigen.usg ’.

[variable, default: NOT_SET_YET]MULTIPLICITIES

will be set to a list of the multiplicities of the individual solutions returned by SOLVE or REALROOTS.

6.6. Operating on Matrices 97

6.6.2.2 Functions in the Eigenvalue Package

[Function]CONJUGATE (X)

is a function in the EIGEN package on the SHARE directory. It returns the complex conjugate of its ar-
gument. This package may be loaded byLOAD(EIGEN); . Note that %I’s in the expressions should be
explicit, since there is no complex variable declaration inMaxima at the present time. This is true for all
the functions in this package. There are some usage notes in the file: ‘share/eigen.usg ’.

[Function]COLUMNVECTOR (list)

a function in the EIGEN package. DoLOAD(EIGEN) to use it. COLUMNVECTOR takes a list as its
argument and returns a column vector the components of which are the elements of the list. The first
element is the first component, etc. This is useful if you want to use parts of the outputs of the functions in
this package in matrix calculations. There are some usage notes in the file: ‘share/eigen.usg ’.

[Function]GRAMSCHMIDT (X)

is a function in the EIGEN package. DoLOAD(EIGEN);to use it. GRAMSCHMIDT takes as its argument
a list of lists, the sublists of which are of equal length and not necessarily orthogonal with respect to the
innerproduct defined above, and returns a similar list each sublist of which is orthogonal to all others. The
returned results may contain integers that are factored. This is due to the fact that the function FACTOR is
used to simplify each substage of the Gram-Schmidt algorithm. This prevents the expressions from getting
very messy and helps to reduce the sizes of the numbers that are produced along the way. There are some
usage notes in the file: ‘share/eigen.usg ’.

[Function]INNERPRODUCT (X, Y)

is a function in the EIGEN package. DoLOAD(EIGEN); to use it. INNERPRODUCT takes two lists of
equal length as its arguments and returns their inner (scalar) product defined by(Complex Conjugate of X)

. Y (The “dot” operation is the same as the usual one defined for vectors) . There are some usage notes in
the file: ‘share/eigen.usg ’.

[Function]SIMILARITYTRANSFORM (mat)

is a function in the EIGEN package. DoLOAD(EIGEN); to use it. SIMILARITYTRANSFORM takes a
matrix as its argument and returns a list which is the output of the UNITEIGENVECTORS command. In
addition if the flag NONDIAGONALIZABLE isFALSE two global matrices LEFTMATRIX and RIGHT-
MATRIX will be generated. These matrices have the property thatLEFTMATRIX . MAT . RIGHTMATRIX
is a diagonal matrix with the eigenvalues ofMAT on the diagonal. If NONDIAGONALIZABLE isTRUE
these two matrices will not be generated. If the flag HERMITIANMATRIX isTRUE, thenLEFTMATRIX
is the complex conjugate of the transpose ofRIGHTMATRIX. OtherwiseLEFTMATRIX is the inverse of
RIGHTMATRIX. RIGHTMATRIX is the matrix the columns of which are the unit eigenvectors ofMAT.
The other flags (see EIGENVALUES and EIGENVECTORS) have the same effects since SIMILARITY-
TRANSFORM calls the other functions in the package in order to be able to formRIGHTMATRIX. There
are some usage notes in the file: ‘share/eigen.usg ’.

98 Chapter 6. Linear Algebra

[Function]UNITEIGENVECTORS (mat)

is a function in the EIGEN package. DoLOAD(EIGEN); to use it. UNITEIGENVECTORS takes a matrix
mat as its argument, and returns a list of lists the first sublist of which is the output of the EIGENVALUES
command and the other sublists of which are the unit eigenvectors of the matrix corresponding to those
eigenvalues respectively. The flags mentioned in the description of the EIGENVECTORS command have
the same effects in this one as well. In addition there is a flag which may be useful:

There are some usage notes in the file: ‘share/eigen.usg ’.

[Function]UNITVECTOR (list)

is a function in the EIGEN package. DoLOAD(EIGEN); to use it. UNITVECTOR takes a list as its
argument and returns a unit list. (i.e. a list with unit magnitude). There are some usage notes in the file:
‘share/eigen.usg ’.

6.6. Operating on Matrices 99

100

CHAPTER

SEVEN

Series

7.1 Sums and Products

7.1.1 Sums

[Special Form]SUM (exp, ind, low, high)

performs a summation of the values ofexp as the indexind varies fromlow to high. If the upper and
lower limits differ by an integer, then each term in the sum is evaluated and added together. Otherwise,
if the SIMPSUM default: [FALSE] isTRUE the result is simplified. This simplification may sometimes
be able to produce a closed form. If SIMPSUM isFALSE or if ’ SUM is used, the value is a sum noun
form which is a representation of the sigma notation used in mathematics. Ifhigh is one less thanlow,
we have an empty sum and SUM returns 0 rather than erroring out. Sums may be differentiated, added,
subtracted, or multiplied with some automatic simplification being performed. There is a demo in the file:
‘demo/sum.dem ’.

[Function]NUSUM (exp, var, low, high)

performs indefinite summation ofexp with respect tovar using a decision procedure due to R.W. Gosper.
exp and the potential answer must be expressible as products of n’th powers, factorials, binomials, and ra-
tional functions. The terms “definite” and “indefinite summation” are used analogously to “definite” and
“indefinite integration.” To sum indefinitely means to give a closed form for the sum over intervals of
variable length, not just e.g. 0 to inf. Thus, since there is no formula for the general partial sum of the
binomial series, NUSUM can’t do it. Both the summand and the answer must be expressible as prod-
ucts of n’th powers, factorials, binomials, and rational functions. There are some usage notes in the file:
‘share/nusum.usg ’.

nusum(n*n!,n,0,n); ==> (n+1)! - 1
nusum(n^4*4^n/binomial(2*n,n),n,0,n); ==> <moby mess>
unsum(\%,n); ==> n^4*4^n/binomial(2*n,n)

[Syntax]UNSUM (fun, int)

is the first backward differencefun(int) - fun(int-1). There are some usage notes in the file:
‘share/nusum.usg ’.

101

(C1) G(P):=P*4^N/BINOMIAL(2*N,N);
N

P 4
(D1) G(P) := ----------------

BINOMIAL(2 N, N)
(C2) G(N^4);

4 N
N 4

(D2) ----------------
BINOMIAL(2 N, N)

(C3) NUSUM(D2,N,0,N);
4 3 2 N

2 (N + 1) (63 N + 112 N + 18 N - 22 N + 3) 4 2
(D3) -- - ------

693 BINOMIAL(2 N, N) 3 11 7
(C4) UNSUM(\%,N);

4 N
N 4

(D4) ----------------
BINOMIAL(2 N, N)

See section5.1.5 [Combining Sums of Quotients], page75 for the definitions of XTHRU, SUMCON-
TRACT, INTOSUM, COMBINE, and RNCOMBINE. See section7.1.3[Operations on Sums and Products],
page103, for the definitions of BASHINDICES, and NICEINDICES and RENAME.

7.1.1.1 Sum Flags

See section2.4.5 [Display of Sums], page27 for the definition of SUMEXPAND, CAUCHYSUM and
SUMHACK

¯
.

[variable, default: FALSE]SIMPSUM

if TRUE, the result of a SUM is simplified. This simplification may sometimes be able to produce a closed
form. If SIMPSUM isFALSE or if ’ SUM is used, the value is a sum noun form, which is a representation
of the sigma notation used in mathematics.

[variable, default: I]GENINDEX

is the alphabetic prefix used to generate the next variable of summation.

[variable, default: 0]GENSUMNUM

is the numeric suffix used to generate the next variable of summation. If it is set toFALSE then the index
will consist only of GENINDEX with no numeric suffix.

See section2.4.5 [Display of Sums], page27 for the definition of SUMEXPAND, CAUCYSUM and
SUMHACK.

102 Chapter 7. Series

7.1.2 Products

[Special Form]PRODUCT (exp, ind, lo, hi)

gives the product of the values ofexp as the indexind varies fromlo to hi. The evaluation is similar to that
of SUM. No simplification of products is available at this time. Ifhi is one less thanlo, we have an empty
product, and PRODUCT returns 1 rather than erroring out. Also see PRODHACK.

(C1) PRODUCT(X+I*(I+1)/2,I,1,4);
(D1) (X + 1) (X + 3) (X + 6) (X + 10)

See section2.4.6[Display of Products], page27 for the definition of PRODHACK.

7.1.3 Operations on Sums and Products

[Function]BASHINDICES (exp)

transforms the expressionexp by giving each summation and product a unique index. This gives
CHANGEVAR greater precision when it is working with summations or products. The form of the unique
index is J<number>. The quantity <number> is determined by referring to GENSUMNUM, which can be
changed by the user. For example,GENSUMNUM:0 resets it.

[Function]NICEINDICES (exp)

will take the expression and change all the indices of sums and products to something easily understandable.
It makes each index it canI , unlessI is in the internal expression, in which case it sequentially tries
J ,K,L,M,N,I0,I1,I2,I3,I4,. . . until it finds a legal index. Sums

[variable, default: [I,J,K,L,M,N]]NICEINDICESPREF

the list which NICEINDICES uses to find indices for sums and products. This allows the
user to set the order of preference of how NICEINDICES finds the “nice indices.” E.g.×
NICEINDICESPREF:[Q,R,S,T,INDEX]. Then if NICEINDICES finds that it cannot use any of these as
indices in a particular summation, it uses the first as a base to try and tack on numbers. Here, if the list is
exhausted, Q0, then Q1, etc, will be tried.

[Function]RENAME (exp)

returns an expression equivalent toexp but with the dummy indices in each term chosen from the set
[!1,!2,. . .]. Each dummy index in a product will be different; for a sum RENAME will try to make each
dummy index in a sum the same. In addition, the indices will be sorted alphanumerically.

7.1. Sums and Products 103

7.2 Power Series

[Function]POWERSERIES (exp, var, pt)

generates the general form of the power series expansion forexp in the variablevar about the pointpt (which
may be INF for infinity). If POWERSERIES is unable to expandexp, the TAYLOR function may give the
first several terms of the series.

VERBOSE default: [FALSE] - ifTRUE will cause comments about the progress of POWERSERIES to be
printed as the execution of it proceeds.

(C1) VERBOSE:TRUE$
(C2) POWERSERIES(LOG(SIN(X)/X),X,0);
Can’t expand

LOG(SIN(X))
So we’ll try again after applying the rule:

d
/ -- (SIN(X))
[dX

LOG(SIN(X)) = I ----------- dX
] SIN(X)
/

In the first simplification we have returned:
/
[
I COT(X) dX - LOG(X)
]
/

INF
==== I1 2 I1 2 I1
\ (- 1) 2 BERN(2 I1) X

> ------------------------------
/ I1 (2 I1)!
====
I1 = 1

(D2) -------------------------------------
2

7.3 Taylor Series

[Function]TAYLOR (exp, var, pt, pow)

expands the expressionexp in a truncated Taylor series (or Laurent series, if required) in the variablevar

around the pointpt. The terms through(var-pt)**pow are generated. If MAXTAYORDER default: [FALSE]
is set toTRUE, then during algebraic manipulation of (truncated) Taylor series, TAYLOR will try to retain
as many terms as are certain to be correct.

104 Chapter 7. Series

If exp is of the formf(var)/g(var) andg(var) has no terms up to degreepow then TAYLOR will try to expand
g(var) up to degree2*pow. If there are still no non-zero terms TAYLOR will keep doubling the degree of the
expansion ofg(var) until reachingpow*2**n wheren is the value of the variable TAYLORDEPTH default:
[3].

TAYLOR(exp, [var1,pt1,ord1], [var2,pt2,ord2], . . .) returns a truncated power series in the variablesvari

about the pointspti, truncated atordi.

TAYLOR(exp, [var1, var2, . . .], pt, ord) where each ofpt andord may be replaced by a list which will
correspond to the list of variables. That is, then ’th items on each of the lists will be associated together.

TAYLOR(exp, [x,pt,ord,ASYMP]) will give an expansion ofexp in negative powers of(x-pt). The high-
est order term will be(x-pt)**(-ord). The ASYMP is a syntactic device and not to be assigned to.
See also the TAYLOR_LOGEXPAND switch for controlling expansion. There is a demo in the file:
‘demo/taylor.dem ’.

[Special Form]DEFTAYLOR (function, exp)

allows the user to define the Taylor series (about 0) of an arbitrary function of one variable asexp which
may be a polynomial in that variable, or which may be given implicitly as a power series using the SUM
function.

In order to display the information given to DEFTAYLOR one can usePOWERSERIES(F(X),X,0).

(C1) DEFTAYLOR(F(X),X**2+SUM(X**I/(2**I*I!**2),
I,4,INF));

(D1) [F]
(C2) TAYLOR(\%E**SQRT(F(X)),X,0,4);

2 3 4
X 3073 X 12817 X

(D2)/R/ 1 + X + -- + ------- + -------- + . . .
2 18432 307200

[Function]TAYLORINFO (exp)

returnsFALSE if exp is not a Taylor series. Otherwise, a list of lists is returned describing the particulars of
the Taylor expansion. For example,

(C3) TAYLOR((1-Y^2)/(1-X),X,0,3,[Y,A,INF]);
2 2

(D3)/R/ 1 - A - 2 A (Y - A) - (Y - A)
2 2

+ (1 - A - 2 A (Y - A) - (Y - A)) X
2 2 2

+ (1 - A - 2 A (Y - A) - (Y - A)) X
2 2 3

+ (1 - A - 2 A (Y - A) - (Y - A)) X
+ . . .

(C4) TAYLORINFO(D3);
(D4) [[Y, A, INF], [X, 0, 3]]

7.3. Taylor Series 105

7.3.1 Taylor Series Operations

[Function]TAYTORAT (exp)

convertsexp from TAYLOR form to CRE form, i.e. it is likeRAT(RATDISREP(exp)) although much faster.

[Function]REVERT (exp, var)

does reversion of Taylor series.var is the variable the original Taylor expansionexp is in. Do
LOAD(REVERT); to access this function. Try REVERT(exp, var); The expression must be a Taylor se-
ries aboutvar=0.

[Function]REVERT2 (exp, var, hipower)

The REVERT2 function truncates the returned polynomial tohipower order in the variablevar.

There is a demo in the file: ‘share2/revert.dem ’. There are some usage notes in the file:
‘share2/revert.usg ’.

[Function]TAYLOR_SIMPLIFIER (exp)

A function of one argument which TAYLOR uses to simplify coefficients of power series.

[Function]TRUNC (exp)

causesexp which is in general representation to be displayed as if its sums were truncated Taylor series. E.g.
compareEXP1:X**2+X+1; with EXP2:TRUNC(X**2+X+1); . Note thatI S(EXP1=EXP2); ->TRUE.

7.3.2 Taylor Series Flags

[variable, default: TRUE]MAXTAYORDER

if TRUE, then during algebraic manipulation of (truncated) Taylor series, TAYLOR will try to retain as
many terms as are certain to be correct.

[variable, default: 3]MAXTAYDEPTH

If there are still no non-zero terms TAYLOR will keep doubling the degree of the expansion ofg(var) until
reachingpow*2**n wheren is the value of the variable TAYLORDEPTH default: [3].

106 Chapter 7. Series

[variable, default: TRUE]TAYLOR_LOGEXPAND

controls expansions of logarithms in TAYLOR series. WhenTRUE all LOG’s are expanded fully so that
zero-recognition problems involving logarithmic identities do not disturb the expansion process. How-
ever, this scheme is not always mathematically correct since it ignores branch information. If TAY-
LOR_LOGEXPAND is set toFALSE, then the only expansion of LOG’s that will occur is that necessary to
obtain a formal power series.

[variable, default: TRUE]TAYLOR_ORDER_COEFFICIENTS

controls the ordering of coefficients in the expression. The default is that coefficients of Taylor series will
be ordered canonically.

[variable, default: TRUE]TAYLOR_TRUNCATE_POLYNOMIALS

WhenFALSE polynomials input to TAYLOR are considered to have infinite precision; otherwise (the de-
fault) they are truncated based upon the input truncation levels.

7.4 Pade Approximates

[Function]PADE (taylor-series, num-deg-bound, denom-deg-bound)

returns a list of all rational functions which have the giventaylor-series expansion, where the sum of the
degrees of the numerator and the denominator is less than or equal to the truncation level of the power series,
i.e. are best approximants, and which additionally satisfy the specified degree bounds. Its first argument
must be a univariate Taylor Series, the second and third are positive integers specifying degree bounds on
the numerator and denominator.

PADE’s first argument can also be a Laurent series, and the degree bounds can be INF which causes all
rational functions whose total degree is less than or equal to the length of the power series to be returned.
Total degree isnum-degree + denom-degree. Length of a power series ist runcation level + 1 - minimum(0,
order of series).

7.5 Poisson Series

[Function]INTOPOIS (exp)

convertsexp into a Poisson encoding.

[Function]OUTOFPOIS (exp)

convertsexp from Poisson encoding to general representation. Ifexp is not in Poisson form, it will make the
conversion, i.e. it will look like the result ofOUTOFPOIS(INTOPOIS(A)). This function is thus a canonical
simplifier for sums of powers of SIN’s and COS’s of a particular type.

7.4. Pade Approximates 107

[Function]POISPLUS (A, B)

is functionally identical toI NTOPOIS(A+B).

[Function]POISTIMES (A, B) is functionally identical toI NTOPOIS(A*B)

.

[Function]POISEXPT (A, B) (B a positive integer)

is functionally identical toI NTOPOIS(A**B).

[Function]POISSIMP (exp)

convertsexp into a Poisson series forexp in general representation.

[Function]POISSUBST (A, B, C)

substitutes A for B in C. C is a Poisson series. (1) Where B is a variable U, V, W, X, Y, or Z then A must
be an expression linear in those variables (e.g. 6*U+4*V). (2) Where B is other than those variables, then
A must also be free of those variables, and furthermore, free of sines or cosines.

POISSUBST(A, B, C, D, N) is a special type of substitution which operates on A and B as in type (1)
above, but where D is a Poisson series, expands COS(D) and SIN(D) to order N so as to provide the result of
substituting A+D for B in C. The idea is that D is an expansion in terms of a small parameter. For example,
POISSUBST(U,V,COS(V),E,3); -> COS(U)*(1-E**2/2) - SIN(U)*(E-E**3/6).

[Function]PRINTPOIS (exp)

prints a Poisson series in a readable format. In common with OUTOFPOIS, it will convertexp into a Poisson
encoding first, if necessary.

[Function]POISMAP (series, sinfun, cosfun)

will map the functionss infun on the SIN terms andcosfun on the COS terms of the Poisson seriesseries.
sinfun andcosfun are functions of two arguments which are a coefficient and a trigonometric part of a term
in series respectively.

[Function]POISDIFF (A, B)

differentiatesA with respect toB. B must occur only in the trig arguments or only in the coefficients.

[Function]POISINT (A, B)

integrates in a similarly restricted sense (to POISDIFF). Non-periodic terms in B are dropped if B is in the
trig arguments.

108 Chapter 7. Series

POISTRIM() is a reserved function name which (if the user has defined it) gets applied during Poisson
multiplication. It is a predicate function of 6 arguments which are the coefficients of the U, V,. . . , Z in
a term. Terms for which POISTRIM isTRUE (for the coefficients of that term) are eliminated during
multiplication.

[variable, default: 5]POISLIM

determines the domain of the coefficients in the arguments of the trig functions. The initial value of 5
corresponds to the interval[-2**(5-1)+1, 2**(5-1)], or [-15,16], but it can be set to[-2**(n-1)+1, 2**(n-
1)].

7.6 Continued Fractions

[Special Form]CF (exp)

convertsexp into a continued fraction.exp is an expression composed of arithmetic operators and lists which
represent continued fractions. A continued fractiona+1/(b+1/(c+. . .)) is represented by the list[a,b,c,. . .].
a,b,c, . . . must be integers.exp may also involveSQRT(n) wheren is an integer. In this case CF will
give as many terms of the continued fraction as the value of the variable CFLENGTH default: [1] times the
period. Thus the default is to give one period. (CF binds LISTARITH toFALSE so that it may carry out its
function.) There is a demo in the file: ‘demo/cf.dem ’.

[Function]CFDISREP (list)

converts the continued fraction represented by list into general representation.

(C1) CF([1,2,-3]+[1,-2,1]);
(D1) [1, 1, 1, 2]
(C2) CFDISREP(\%);

1
(D2) 1 + ---------

1
1 + -----

1
1 + -

2

[Function]CFEXPAND (x)

gives a matrix of the numerators and denominators of the next-to-last and last convergents of the continued
fractionx.

7.6. Continued Fractions 109

(C1) CF(SQRT(3));
(D1) [1, 1, 2, 1, 2, 1, 2, 1]
(C2) CFEXPAND(\%);

[71 97]
(D2) []

[41 56]
(C3) D2[1,2]/D2[2,2],NUMER;
(D3) 1.7321429

[variable, default: 1]CFLENGTH

controls the number of terms of the continued fraction the function CF will give, as the value CFLENGTH[1]
times the period. Thus the default is to give one period.

110 Chapter 7. Series

CHAPTER

EIGHT

Calculus

8.1 Limits

[Function]LIMIT (exp, var, val, dir)

finds the limit ofexp as the real variablevar approaches the valueval from the directiondir. Dir may have
the value PLUS for a limit from above, MINUS for a limit from below, or may be omitted (implying a two-
sided limit is to be computed). For the method see [Wan71]. LIMIT uses the following special symbols: INF
(positive infinity) and MINF (negative infinity). On output it may also useUND (undefined),IND (indefinite
but bounded) andINFINITY (complex infinity). There is a demo in the file: ‘demo/limit.dem ’.

[variable, default: 4]LHOSPITALLIM

is the maximum number of times L’Hospital’s rule is used in LIMIT. This prevents infinite looping in cases
like LIMIT(COT(X)/CSC(X),X,0).

[variable, default: FALSE]LIMSUBST

prevents LIMIT from attempting substitutions on unknown forms. This is to avoid bugs like
LIMIT(F(N)/F(N+1),N,INF); giving 1. Setting LIMSUBST toTRUE will allow such substitutions. Since
LIMIT is often called upon to simplify constant expressions, for example,I NF-1, LIMIT may be used in
such cases with only one argument, e.g.LIMIT(INF-1);.

[variable, default: FALSE]TLIMSWITCH

whenTRUE will cause the LIMIT package to use Taylor series when possible.

[Function]TLIMIT (exp, var, val, dir)

is just the function LIMIT with TLIMSWITCH set toTRUE.

111

8.2 Residues

[Function]RESIDUE (exp, var, val)

computes the residue in the complex plane of the expressionexp when the variablevar assumes the value
val. The residue is the coefficient of(var-val)**(-1) in the Laurent series forexp.

(C1) RESIDUE(S/(S**2+A**2),S,A*\%I);
1

(D1) -
2

(C2) RESIDUE(SIN(A*X)/X**4,X,0);
3

A
(D2) - --

6

8.3 Differentiation

[Function]DIFF (exp, var1, int1, var2, int2, . . .)

differentiatesexp with respect to eachvari, inti times. If just the first derivative with respect to one variable
is desired, then the formDIFF(exp,var) may be used. If the noun form of the function is required (as,
for example, when writing a differential equation),’ DIFF should be used and this will display in a two
dimensional format.

DIFF(exp) gives the total differential, that is, the sum of the derivatives ofexp with respect to each of its
variables times the functionDEL of the variable. No further simplification of DEL is offered.

112 Chapter 8. Calculus

(C1) DIFF(EXP(F(X)),X,2);
2

F(X) d F(X) d 2
(D1) \%E (--- F(X)) + \%E (-- (F(X)))

2 dX
dX

(C2) DERIVABBREV:TRUE$
(C3) ’INTEGRATE(F(X,Y),Y,G(X),H(X));

H(X)
/
[

(D3) I F(X, Y) dY
]
/

G(X)
(C4) DIFF(\%,X);

H(X)
/
[

(D4) I F(X, Y) dY + F(X, H(X)) H(X) - F(X, G(X)) G(X)
] X X X
/

G(X)

See section4.2.2[Operations on CRE Expressions], page53 for the definition of RATDIFF, to differentiate
polynomials in CRE form. .

[Function]GENDIFF (exp, var, n)

SometimesDIFF(exp, var, n) can be reduced even thoughn is symbolic. LOAD(GENDIF); and you can
try, for example,DIFF(%E**(A*X),X,Q) by using GENDIFF rather than DIFF. Items that cannot be eval-
uated come out quoted. Some items are in terms of GENFACT. There are some usage notes in the file:
‘share2/gendif.usg ’.

[Function]DERIVDEGREE (exp, dv, iv)

finds the highest degree of the derivative of the dependent variabledv with respect to the independent
variableiv occurring inexp.

(C1) ’DIFF(Y,X,2)+’DIFF(Y,Z,3)*2+’DIFF(Y,X)*X**2$
(C2) DERIVDEGREE(\%,Y,X);
(D2) 2

8.3.1 Differentiation Flags

[variable, default: FALSE]DERIVABBREV

if TRUE will cause derivatives to display as subscripts.

8.3. Differentiation 113

8.3.2 Defining Gradients

[Special Form]GRADEF (fun(var1, . . . , varn), exp1, . . . , expn)

defines the derivatives of the functionfun with respect to itsn arguments. That is,dfun/dvari = expi etc. If
fewer thann gradients, sayi, are given, then they refer to the firsti arguments offun. Thevari are merely
dummy variables as in function definition headers, and are used to indicate thei ’th argument offun. All
arguments to GRADEF except the first are evaluated so that if one ofexpi is a defined function then it is
invoked and the result is used.

Gradients are needed when, for example, a function is not known explicitly but its first derivatives are and
it is desired to obtain higher order derivatives. GRADEF may also be used to redefine the derivatives of
Maxima’s predefined functions, e.g.GRADEF(SIN(X),SQRT(1-SIN(X)**2));. It is not permissible to use
GRADEF on subscripted functions.PRINTPROPS([fun1, fun2, . . .],GRADEF) may be used to display the
GRADEFs of the functionsfun1,fun2,. . . .

GRADEF(atom, var, exp) may be used to state that the derivative of the atomic variableatom with respect
to var is exp. This automatically does aDEPENDS(a,v).PRINTPROPS([a1,a2,. . .],ATOMGRAD) may be
used to display the atomic gradient properties ofa1,a2,. . . .

[Variable]GRADEFS

is a list of the functions which have been given gradients by use of the GRADEF command, i.e.
GRADEF(f(x1, . . . , xn), g1, . . . , gn).

[Variable]ATOMGRAD

the atomic gradient property of an expression. May be set by GRADEF.

8.3.3 Defining Functional Dependencies

[Function]DEPENDS (funlist1, varlist1, funlist2, varlist2, . . .)

declares functional dependencies for variables to be used by DIFF.×
DEPENDS([F,G],[X,Y],[R,S],[U,V,W],U,T) informs DIFF that F and G depend on X and Y, that R
and S depend on U,V, and W, and that U depends on T. The arguments to DEPENDS are evaluated. The
variables in eachfunlist are declared to depend on all the variables in the nextvarlist. A funlist can contain
the name of an atomic variable or array. In the latter case, it is assumed that all the elements of the array
depend on all the variables in the succeeding varlist.

Initially, DIFF(F,X) is 0; executingDEPENDS(F,X) causes future differentiations of F with respect to X to
givedF/dX orY if DERIVABBREV is set toTRUE.

114 Chapter 8. Calculus

(C1) DEPENDS([F,G],[X,Y],[R,S],[U,V,W],U,T);
(D1) [F(X, Y), G(X, Y), R(U, V, W), S(U, V, W), U(T)]
(C2) DEPENDENCIES;
(D2) [F(X, Y), G(X, Y), R(U, V, W), S(U, V, W), U(T)]
(C3) DIFF(R.S,U);

dR dS
(D3) -- . S + R . --

dU dU

SinceMaxima knows the chain rule for symbolic derivatives, it takes advantage of the given dependencies
as follows:

(C4) DIFF(R.S,T);
dR dU dS dU

(D4) (-- --) . S + R . (-- --)
dU dT dU dT

If we set

(C5) DERIVABBREV:TRUE;
(D5) TRUE

then re-executing the command C4, we obtain

(C6) ’’C4;
(D6) (R U) . S + R . (S U)

U T U T

To eliminate a previously declared dependency, the REMOVE command can be used. For example, to say
thatRno longer depends onUas declared inC1, the user can typeREMOVE(R,DEPENDENCY). This will
eliminate all dependencies that may have been declared forR.

(C7) REMOVE(R,DEPENDENCY);
(D7) DONE
(C8) ’’C4;
(D8) R . (S U)

U T

DIFF is the only Maxima command which uses DEPENDENCIES information. The arguments to
INTEGRATE, LAPLACE, etc. must be given their dependencies explicitly in the command, e.g.,
I NTEGRATE(F(X),X).

[Variable]DEPENDENCIES

the list of atoms which have functional dependencies (set up by the DEPENDS or GRADEF functions). The
older command DEPENDENCIES has been replaced by the DEPENDS command.

8.3. Differentiation 115

8.3.4 Differentiating Tensors

For the tensor package, the following modifications have been incorporated:

1. the derivatives of any indexed objects inexp will have the variablesvi appended as additional argu-
ments. Then all the derivative indices will be sorted.

2. the vi may be integers from 1 up to the value of the variable DIMENSION default: 4. This will
cause the differentiation to be carried out with respect to thevi th member of the list COORDINATES
which should be set to a list of the names of the coordinates, e.g.,[x, y, z, t]. If COORDINATES
is bound to an atomic variable, then that variable subscripted byvi will be used for the variable of
differentiation. This permits an array of coordinate names or subscripted names likeX[1], X[2],. . . to
be used. If COORDINATES has not been assigned a value, then the variables will be treated as in (1)
above.

See section16.2[Tensors], page213.

8.4 Integration

Maxima has several routines for handling integration. The INTEGRATE command makes use of most
of them. There is also the ANTID package, which handles an unspecified function (and its derivatives,
of course). For numerical uses, there is the ROMBERG function, and the IMSL version of Romberg,
DCADRE. There is also an adaptive integrator which uses the Newton-Cotes 8 panel quadrature rule, called
QUANC8.

Generally speaking,Maxima only handles integrals which are integrable in terms of the elementary func-
tions (rational functions, trigonometrics, logs, exponentials, radicals, etc.) and a few extensions (error func-
tion, dilogarithm). It does not handle integrals in terms of unknown functions such asg(x) andh(x).

[Function]INTEGRATE (exp, var)

integratesexp with respect tovar or returns an integral expression (the noun form) if it cannot perform the
integration (see note 1 below). Roughly speaking three stages are used:

1. INTEGRATE sees if the integrand is of the formF(G(X))*DIFF(G(X),X) by testing whether the
derivative of some subexpression (i.e.G(X) in the above case) divides the integrand. If so, it looks up
F in a table of integrals and substitutes G(X) for X in the integral of F. This may make use of gradients
in taking the derivative. If an unknown function appears in the integrand it must be eliminated in this
stage or else INTEGRATE will return the noun form of the integrand.

2. INTEGRATE tries to match the integrand to a form for which a specific method can be used, e.g.
trigonometric substitutions.

3. If the first two stages fail, it uses the Risch algorithm.

Functional relationships must be explicitly represented in order for INTEGRATE to work properly. INTE-
GRATE is not affected by DEPENDENCIES set up with the DEPENDS command.

116 Chapter 8. Calculus

INTEGRATE (exp, var, low, high) finds the definite integral ofexp with respect tovar from low to high,
or returns the noun form if it cannot perform the integration. The limits should not containvar. Several
methods are used, including direct substitution in the indefinite integral and contour integration. Improper
integrals may use the names INF for positive infinity and MINF for negative infinity. If an integral form
is desired for manipulation (for example, an integral which cannot be computed until some numbers are
substituted for some parameters), the noun form’ INTEGRATE may be used and this will display with an
integral sign. The function LDEFINT uses LIMIT to evaluate the integral at the lower and upper limits.

Sometimes during integration the user may be asked what the sign of an expression is. Suitable responses
arePOS;, ZERO;, or NEG;.

(C1) INTEGRATE(SIN(X)**3,X);
3

COS (X)
(D1) ------- - COS(X)

3
(C2) INTEGRATE(X**A/(X+1)**(5/2),X,0,INF);
IS A + 1 POSITIVE, NEGATIVE, OR ZERO?
POS;
IS 2 A - 3 POSITIVE, NEGATIVE, OR ZERO?
NEG;

3
(D2) BETA(A + 1, - - A)

2
(C3) GRADEF(Q(X),SIN(X**2));
(D3) Q(X)
(C4) DIFF(LOG(Q(R(X))),X);

d 2
(-- R(X)) SIN(R (X))

dX
(D4) --------------------

Q(R(X))
(C5) INTEGRATE(\%,X);
(D5) LOG(Q(R(X)))

The fact thatMaxima does not perform certain integrals does not always imply that the integral does not
exist in closed form. In the example below the integration call returns the noun form but the integral can be
found fairly easily. For example, one can compute the roots ofX**3+X+1 = 0 to rewrite the integrand in the
form 1/((X-A)*(X-B)*(X-C)) where A, B and C are the roots.Maxima will integrate this equivalent form
although the integral is quite complicated.

(C6) INTEGRATE(1/(X^3+X+1),X);
/
[1

(D6) I ---------- dX
] 3
/ X + X + 1

8.4. Integration 117

[variable, default: FALSE]ABCONVTEST

whenTRUE causes INTEGRATE to test for absolute convergence.

[Variable]INTEGRATION_CONSTANT_COUNTER

is a counter which is updated each time a constant of integration (called byMaxima, e.g.,
I NTEGRATIONCONSTANT1) is introduced into an expression by indefinite integration of an equation.

[variable, default: FALSE]LOGABS

when doing indefinite integration where LOGs are generated, e.g.I NTEGRATE(1/X,X), the answer is given
in terms ofLOG(ABS(. . .)) if LOGABS isTRUE, but in terms ofLOG(. . .) if LOGABS isFALSE. For
definite integration, the LOGABS:TRUE setting is used, because here evaluation of the indefinite integral at
the endpoints is usually needed.

[Function]DEFINT (exp, var, low, high)

DEFinite INTegration, the same asI NTEGRATE(exp, var, low, high). There is a demo in the file:
‘demo/defint.dem ’.

[Function]LDEFINT (exp, var, ll, ul)

yields the definite integral ofexp by using LIMIT to evaluate the indefinite integral ofexp with respect to
var at the upper limitul and at the lower limitll.

[Function]TLDEFINT (exp, var, ll, ul)

is just LDEFINT with TLIMSWITCH set toTRUE.

[Function]RISCH (exp, var)

integratesexp with respect tovar using the transcendental case of the Risch algorithm. (The algebraic case of
the Risch algorithm has not been implemented.) This currently handles the cases of nested exponentials and
logarithms which the main part of INTEGRATE can’t do. INTEGRATE will automatically apply RISCH if
given these cases.

(C1) RISCH(X^2*ERF(X),X);
2 2

- X X 3 2
\%E (\%E SQRT(\%PI) X ERF(X) + X + 1)

(D1) --
3 SQRT(\%PI)

(C2) DIFF(\%,X),RATSIMP;
2

(D2) X ERF(X)

There is a demo in the file: ‘demo/risch.dem ’.

118 Chapter 8. Calculus

[variable, default: TRUE]ERFFLAG

if FALSE prevents RISCH from introducing the ERF function in the answer if there were none in the
integrand to begin with.

[Function]DBLINT (’F(X,Y), ’R(X), ’S(X), a, b)

a double-integral routine which was written in top-levelMaxima and then translated and compiled to ma-
chine code. DoLOAD(DBLINT); to access this package. It uses the Simpson’s Rule method in both the x
and y directions to calculate

/B /S(X)
| |
| | F(X,Y) DY DX .
| |
/A /R(X)

The functionF(X,Y) must be a translated or compiled function of two variables, andR(X) andS(X) must
each be a translated or compiled function of one variable, whilea andb must be floating point numbers.
The routine has two global variables which determine the number of divisions of the x and y intervals:
DBLINT_X default: 10 andDBLINT_Y default: 10, and can be changed independently to other inte-
ger values (there are2*DBLINT_X+1 points computed in the x direction, and2*DBLINT_Y+1 in the y
direction).

The routine subdivides the X axis and then for each value of X it first computesR(X) andS(X) ; then the Y
axis between R(X) and S(X) is subdivided and the integral along the Y axis is performed using Simpson’s
Rule; then the integral along the X axis is done using Simpson’s Rule with the function values being the
Y-integrals. This procedure may be numerically unstable for a great variety of reasons, but is reasonably
fast: avoid using it on highly oscillatory functions and functions with singularities (poles or branch points
in the region).

The Y integrals depend on how far apartR(X) andS(X) are, so if the distanceS(X)-R(X) varies rapidly with
X, there may be substantial errors arising from truncation with different step-sizes in the various Y integrals.
One can increase DBLINT_X and DBLINT_Y in an effort to improve the coverage of the region, at the
expense of computation time. The function values are not saved, so if the function is very time-consuming,
you will have to wait for re-computation if you change anything (sorry).

It is required that the functionsF, R, andS be either translated or compiled prior to calling DBLINT.
This will result in orders of magnitude speed improvement over interpreted code in many cases! The file
‘share1/dblint.dem ’ can be run in batch or demo mode to illustrate the usage on a sample problem;
the file ‘share1/dblnt.dm1 ’ is an extension of the demo, which also makes use of other numerical aids,
FLOATDEFUNK and QUANC8.

Note: Simpson’s Rule specifies that

8.4. Integration 119

/X[2*N]
|
| F(X) DX = H/3* (F(X[0]) +
|
/X[0] 4*(F(X[1])+F(X[3])+...+F(X[2*N-1])) +

2*(F(X[2])+F(X[4])+...+F(X[2*N-2])) +
F(X[2*N]))

in one dimension, where H is the distance between the equally spaced X[N]’s, and DBLINT_X=N. The
error in this formulation is of orderH**5*N*DIFF(F(X),X,4) for some X in (X[0],X[2*N]).

There are some usage notes in the file: ‘share1/dblint.usg ’. There is a demo in the file:
‘share1/dblint.dem ’. There is a demo in the file: ‘share1/dblint.dm1 ’.

[Function]INTSCE (exp, var)

‘share1/intsce.mc ’ contains a routine, written by Richard Bogen, for integrating products of sines,
cosines and exponentials of the formEXP(A*X+B) * COS(C*X)**N*SIN(C*X)**M. exp may be any
expression, but if it is not in the above form then the regular integration program will be invoked if the switch
ERRINTSCE default: [TRUE] isTRUE.There are some usage notes in the file: ‘share1/intsce.usg ’.

[variable, default: TRUE]ERRINTSCE

If a call to the INTSCE routine is not of the formEXP(A*X+B)*COS(C*X)**N*SIN(C*X)**M then the
regular integration program will be invoked if the switch ERRINTSCE default: [TRUE] isTRUE. If it is
FALSE then INTSCE will error out.

[Function]ANTIDIFF (G, X, U(X))

is a routine for evaluating integrals of expressions involving an arbitrary unspecified function and its deriva-
tives. It may be used byLOAD(ANTID);, after which, the function ANTIDIFF may be used. E.g.
ANTIDIFF(G,X,U(X)); where G is the expression involving U(X) (U(X) arbitrary) and its derivatives, whose
integral with respect to X is desired.

The functionsNONZEROANDFREEOF andLINEAR are also defined, as well as ANTID.ANTID is
the same as ANTIDIFF except that it returns a list of two parts, the first part is the integrated part of the
expression and the second part of the list is the non-integrable remainder.

[Function]SPECINT (EXP(-p*var)*expr, var)

The Hypergeometric Special Functions Package HYPGEO is still under development. At the moment it will
find the Laplace Transforms or rather, the integral from0 to I NF of some special functions or combinations
of them. The factor,EXP(-P*var) must be explicitly stated.var is the variable of integration andexpr may
be any expression containing special functions (at your own risk). Special function notation follows:

%J[index (exp)] Bessel Funct of the 1st Kind

%K[index (exp)] Bessel Funct of the 12nd Kind

120 Chapter 8. Calculus

%I[()] Modified Bessel

%HE[()] Hermite Polynomial

%P[()] Legendre Function of the 1st Kind

%Q[()] Legendre of the 2nd Kind

HSTRUVE[()] Struve H Function

LSTRUVE[()] Struve L Function

%F[([],[], exp)] Hypergeometric Function

GAMMA() Gamma Function

GAMMAGREEK()

GAMMAINCOMPLETE() Incomplete Gamma Function

SLOMMEL() Slommel Function

%M[()] Whittaker Funct of the 1st Kind

%W[()] Whittaker Funct of the 1st Kind

Not available inMaxima at this time. There is a demo in the file: ‘share1/hypgeo.dem ’. There are
some usage notes in the file: ‘share1/hypgeo.usg ’.

8.5 Change of Variable

[Function]CHANGEVAR (exp, f(x,y), x, y)

makes the change of variable given byf(x,y) = 0 in all integrals occurring inexp with integration with
respect tox; y is the new variable.

8.5. Change of Variable 121

(C1) ’INTEGRATE(\%E**SQRT(A*Y),Y,0,4);
4

/
[SQRT(A) SQRT(Y)

(D1) I (\%E) dY
]
/

0
(C2) CHANGEVAR(D1,Y-Z^2/A,Z,Y);

2 SQRT(A)
/
[Z

2 I Z \%E dZ
]
/

0
(D4) ---------------------

A

CHANGEVAR may also be used to changes in the indices of a sum or product. However, it must be realized
that when a change is made in a sum or product, this change must be a shift, i.e.I = J+ . . . , not a higher
degree function. E.g.

(C3) SUM(A[I]*X^(I-2),I,0,INF);
INF
====
\ I - 2

(D3) > A X
/ I
====
I = 0

(C4) CHANGEVAR(\%,I-2-N,N,I);
INF
====
\ N

(D4) > A X
/ N + 2
====
N = - 2

8.6 Laplace Transforms

[Function]LAPLACE (exp, ovar, lvar)

takes the Laplace transform ofexp with respect to the variableovar and transform parameterlvar. exp may
only involve the functions EXP, LOG, SIN, COS, SINH, COSH, and ERF. It may also be a linear, constant
coefficient differential equation in which case ATVALUE of the dependent variable will be used. These
may be supplied either before or after the transform is taken. Since the initial conditions must be specified

122 Chapter 8. Calculus

at zero, if one has boundary conditions imposed elsewhere he can impose these on the general solution and
eliminate the constants by solving the general solution for them and substituting their values back.exp may
also involve convolution integrals.

Functional relationships must be explicitly represented in order for LAPLACE to work properly.
That is, if F depends onX and Y it must be written asF(X,Y) wherever F occurs as in×
LAPLACE(’DIFF(F(X,Y),X),X,S). LAPLACE is not affected by DEPENDENCIES set up with the DE-
PENDS command.

(C1) LAPLACE(\%E**(2*T+A)*SIN(T)*T,T,S);
A

2 \%E (S - 2)
(D1) ---------------

2 2
((S - 2) + 1)

[Function]ILT (exp, lvar, ovar)

takes the inverse Laplace transform ofexp with respect tolvar and parameterovar. exp must be a ratio of
polynomials whose denominator has only linear and quadratic factors. By using the functions LAPLACE
and ILT together with the SOLVE or LINSOLVE functions the user can solve a single differential or convo-
lution integral equations, or a set of them.

8.6. Laplace Transforms 123

(C1) ’INTEGRATE(SINH(A*X)*F(T-X),X,0,T)+B*F(T)=T**2;
T

/
[2

(D1) I (SINH(A X) F(T - X)) dX + B F(T) = T
]
/
0

(C2) LAPLACE(\%,T,S);
A LAPLACE(F(T), T, S)

(D2) ---------------------
2 2

S - A
2

+ B LAPLACE(F(T), T, S) = --
3

S
(C3) LINSOLVE([\%],[’LAPLACE(F(T),T,S)]);
SOLUTION

2 2
2 S - 2 A

(E3) LAPLACE(F(T), T, S) = --------------------
5 2 3

B S + (A - A B) S
(D3) [E3]
(C4) ILT(E3,S,T);
IS A B (A B - 1) POSITIVE, NEGATIVE, OR ZERO?
POS;

2
SQRT(A) SQRT(A B - B) T

2 COSH(------------------------)
B

(D4) F(T) = - --------------------------------
A

2
A T 2

+ ------- + ------------------
A B - 1 3 2 2

A B - 2 A B + A

[Function]DELTA (exp)

is the Dirac Delta function. Currently only LAPLACE knows about the DELTA function:

(C1) LAPLACE(DELTA(T-A)*SIN(B*T),T,S);
Is A positive, negative or zero?
POS;

- A S
(D1) SIN(A B) \%E

124 Chapter 8. Calculus

8.7 Specifying Boundary Conditions

[Function]ATVALUE (form, list, value)

enables the user to assign the boundary valuevalue to form form, at the points specified bylist.

(C1) ATVALUE(F(X,Y),[X=0,Y=1],A**2)$

The form must be a function,f(v1,v2,. . .), or a derivative,DIFF(f(v1, v2, . . .), vi, ni, vj, nj, . . .) in which
the functional arguments explicitly appear (ni is the order of differentiation with respectvi).

The list of equations determine the boundary at which the value is given;list may be a list of equations, as
above, or a single equation,vi = exp.

The symbols@1, @2, . . . will be used to represent the functional variablesv1, v2, . . . when ATVALUEs are
displayed.PRINTPROPS([f1, f2, . . .], ATVALUE) will display the ATVALUEs of the functionsf1,f2,. . .

as specified in previously given uses of the ATVALUE function. If the list contains just one element, then
the element can be given without being in a list. If a first argument ofALL is given, then ATVALUEs for all
functions which have them will be displayed.

[Function]AT (exp, list)

will evaluateexp (which may be any expression) with the variables assuming the values as specified for
them in the list of equations or the single equation similar to that given to the ATVALUE function. If a
subexpression depends on any of the variables in list but it hasn’t had an ATVALUE specified and it can’t
be evaluated, then a noun form of the AT will be returned which will display in a two-dimensional form.

8.7. Specifying Boundary Conditions 125

126

CHAPTER

NINE

Solving

9.1 Solving Expressions

[Function]SOLVE (exp, var)

solves the algebraic equationexp for the variablevar and returns a list of solution equations invar. If exp

is not an equation, it is assumed to be an expression to be set equal to zero.Var may be a function (e.g.
F(X)), or other non-atomic expression except a sum or product. It may be omitted ifexp contains only one
variable.exp may be a rational expression, and may contain trigonometric functions, exponentials, etc. The
following method is used:

Let E be the expression andX be the variable. IfE is linear inX then it is trivially solved forX. Otherwise,
if E is of the formA*X**N+B then the result is(-B/A)**(1/N) times the Nth roots of unity.

If E is not linear inX then the GCD of the exponents ofX in E (say N) is divided into the exponents and
the multiplicity of the roots is multiplied by N. Then SOLVE is called again on the result. IfE factors then
SOLVE is called on each of the factors. Finally SOLVE will use the quadratic, cubic, or quartic formulas
where necessary.

In the case whereE is a polynomial in some function of the variable to be solved for, say F(X), then it is
first solved for F(X) (call the result C), then the equation F(X)=C can be solved forX provided the inverse
of the function F is known.

SOLVE([eq1, . . . , eqn], [v1, . . . , vn]) solves a system of simultaneous (linear or non-linear) polynomial
equations by calling LINSOLVE or ALGSYS, and returns a list of the solution lists in the variables. In the
case of LINSOLVE this list would contain a single list of solutions. It takes two lists as arguments. The first
list represents the equations to be solved; the second list is a list of the unknowns to be determined. If the
total number of variables in the equations is equal to the number of equations, the second argument-list may
be omitted. For linear systems if the given equations are not compatible, the message INCONSISTENT
will be displayed (see the SOLVE_INCONSISTENT_ERROR switch); if no unique solution exists, then
SINGULAR will be displayed. There is an example in the file: ‘example/solve.xmp ’. There is a demo
in the file: ‘demo/solve.dem ’.

[Function]FUNCSOLVE (eqn, g(t))

gives [g(t) = . . .] or [], depending on whether or not there exists a rational function g(t) satisfyingeqn,
which must be a first order, linear polynomial in (for this case)g(t) andg(t+1).

127

(C1) FUNCSOLVE((N+1)*FOO(N)-(N+3)*FOO(N+1)/(N+1) =
(N-1)/(N+2),FOO(N));

N
(D1) FOO(N) = ---------------

(N + 1) (N + 2)

Warning: this is a very rudimentary implementation: many safety checks and obvious generalizations are
missing.

9.1.1 Solve Flags

[variable, default: TRUE]BREAKUP

if FALSE will cause SOLVE to express the solutions of cubic or quartic equations as single expressions
rather than as made up of several common subexpressions which is the default. BREAKUP:TRUE only
works when PROGRAMMODE isFALSE.

[variable, default: FALSE]GLOBALSOLVE

if set toTRUE then variables which are SOLVEd for will be set to the solution of the set of simultaneous
equations.

[variable, default: TRUE]SOLVEDECOMPOSES

if TRUE, will induce SOLVE to use POLYDECOMP in attempting to solve polynomials.

[variable, default: FALSE]SOLVEEXPLICIT

if TRUE, inhibits SOLVE from returning implicit solutions i.e. of the formF(x)=0.

[variable, default: TRUE]SOLVEFACTORS

if FALSE then SOLVE will not try to FACTOR the expression. TheFALSE setting may be desired in some
cases where factoring is not necessary.

[variable, default: TRUE]SOLVENULLWARN

if TRUE the user will be warned if he calls SOLVE with either a null equation list or a null variable list. For
example,SOLVE([],[]); would print two warning messages and return[].

[variable, default: FALSE]SOLVERADCAN

if TRUE then SOLVE will use RADCAN which will make SOLVE slower but will allow certain problems
containing exponentials and logs to be solved.

128 Chapter 9. Solving

[variable, default: TRUE]SOLVETRIGWARN

if set to FALSE will inhibit printing by SOLVE of the warning message saying that it is using inverse
trigonometric functions to solve the equation, and thereby losing solutions.

[variable, default: TRUE]SOLVE_INCONSISTENT_ERROR

If TRUE, SOLVE and LINSOLVE give an error if they meet up with a set of inconsistent linear equations,
e.g.SOLVE([A+B=1,A+B=2]). If FALSE, they return[].

9.2 Solving Linear Equations

[Function]LINSOLVE ([exp1, exp2, . . .], [var1, var2, . . .])

solves the list of simultaneous linear equations for the list of variables. Theexpi must each be polynomials
in the variables and may be equations. If GLOBALSOLVE default: [FALSE] is set toTRUE, then variables
which are SOLVEd for will be set to the solution of the set of simultaneous equations.

[variable, default: TRUE]BACKSUBST

if set to FALSE will prevent back substitution after the equations have been triangularized. This may be
necessary in very big problems where back substitution would cause the generation of extremely large
expressions.

(C1) X+Z=Y$
(C2) 2*A*X-Y=2*A**2$
(C3) Y-2*Z=2$
(C4) LINSOLVE([D1,D2,D3],[X,Y,Z]),GLOBALSOLVE:TRUE;
SOLUTION
(E4) X : A + 1
(E5) Y : 2 A
(E6) Z : A - 1
(D6) [E4, E5, E6]

[variable, default: TRUE]LINSOLVEWARN

if FALSE will cause the messageDependent equations eliminated to be suppressed.

[variable, default: TRUE]LINSOLVE_PARAMS

If TRUE, LINSOLVE also generates the%Ri symbols used to represent arbitrary parameters described
in the manual under ALGSYS. IfFALSE, LINSOLVE behaves as before, i.e. when it meets up with an
under-determined system of equations, it solves for some of the variables in terms of others.

9.2. Solving Linear Equations 129

9.3 Solving Simultaneous Equations

[Function]ALGSYS ([exp1, exp2, . . .], [var1, var2, . . .])

solves the list of simultaneous polynomials or polynomial equations (which can be non-linear), for the list
of variables. The symbols %R1, %R2, etc. will be used to represent arbitrary parameters when needed for
the solution (the variable %RNUM_LIST holds these). In the process described below, ALGSYS is entered
recursively if necessary.

The method is as follows:

1. First the equations are FACTORed and split into subsystems.

2. For each subsystem Si, an equationE and a variablevar are selected (thevar is chosen to have lowest
nonzero degree). Then the resultant ofE and Ej with respect tovar is computed for each of the
remaining equations Ej in the subsystem Si. This yields a new subsystem S’i in one fewer variables
(var has been eliminated). The process now returns to (1).

3. Eventually, a subsystem consisting of a single equation is obtained. If the equation is multivariate and
no approximations in the form of floating point numbers have been introduced, then SOLVE is called
to find an exact solution. The user should realize that SOLVE may not be able to produce a solution,
or if it does the solution may be a very large expression.

If the equation is univariate and is either linear, quadratic, or bi-quadratic, then again SOLVE is
called if no approximations have been introduced. If approximations have been introduced or the
equation is not univariate and neither linear, quadratic, or bi-quadratic, then if the switch REALONLY
default: [FALSE] isTRUE, the function REALROOTS is called to find the real-valued solutions. If
REALONLY:FALSE then ALLROOTS is called which looks for real and complex-valued solutions.
If ALGSYS produces a solution which has fewer significant digits than required, the user can change
the value of ALGEPSILON default: [10**8] to a higher value. If ALGEXACT default: [FALSE] is
set toTRUE, SOLVE will always be called.

4. Finally, the solutions obtained in step (3) are re-inserted into previous levels and the solution process
returns to (1).

The user should be aware of several caveats:

When ALGSYS encounters a multivariate equation which contains floating point approximations (usually
due to its failing to find exact solutions at an earlier stage), then it does not attempt to apply exact methods
to such equations and instead prints the message:

ALGSYS cannot solve - system too complicated.

Interactions with RADCAN can produce large or complicated expressions. In that case, the user may use
PICKAPART or REVEAL to analyze the solution. Occasionally, RADCAN may introduce an apparent %I
into a solution which is actually real-valued. There is a demo in the file: ‘demo/algsys.dem ’.

130 Chapter 9. Solving

9.3.1 Algsys Flags

[variable, default: 10**8]ALGEPSILON

The value of epsilon used by ALGSYS.

[variable, default: FALSE]ALGEXACT

affects the behavior of ALGSYS as follows: If ALGEXACT isTRUE, ALGSYS always calls SOLVE and
then uses REALROOTS on SOLVE’s failures. If ALGEXACT isFALSE, SOLVE is called only if the
eliminant was not univariate, or if it was a quadratic or biquadratic. Thus ALGEXACT:TRUE doesn’t
guarantee only exact solutions, just that ALGSYS will first try as hard as it can to give exact solutions, and
only yield approximations when all else fails.

[Variable]%R

The arbitrary parameters used by ALGSYS.

[Variable]%RNUM_LIST

When %R variables are introduced in solutions by the ALGSYS command, they are added to
%RNUM_LIST in the order they are created. This is convenient for doing substitutions into the solution
later on. It’s recommended to use this list rather than doingCONCAT(’%R,J).

[variable, default: FALSE]REALONLY

if TRUE causes ALGSYS to return only those solutions which are free of %I.

9.4 Roots of Polynomials

[Function]ALLROOTS (poly)

finds all the real and complex roots of the real polynomialpoly which must be univariate and may be an
equation, e.g.poly=0. For complex polynomials an algorithm by Jenkins and Traub is used (Algorithm 419,
Comm. ACM, vol. 15, (1972), p. 97). For real polynomials the algorithm used is due to Jenkins (Algorithm
493, TOMS, vol. 1, (1975), p.178). ALLROOTS may give inaccurate results in case of multiple roots. (If
poly is real and you get inaccurate answers, you may want to tryALLROOTS(%I*poly);).

ALLROOTS rejects non-polynomials. It requires that the numerator after RATting should be a polynomial,
and it requires that the denominator be at most a complex number. As a result of this ALLROOTS will
always return an equivalent (but factored) expression, if POLYFACTOR isTRUE.

9.4. Roots of Polynomials 131

[variable, default: FALSE]POLYFACTOR

whenTRUE causes ALLROOTS to factor the polynomial over the real numbers if the polynomial is real, or
over the complex numbers, if the polynomial is complex.

[Function]NROOTS (poly, low, high)

finds the number of real roots of the real univariate polynomialpoly in the half-open interval(low,high].
The endpoints of the interval may also be MINF, INF respectively for minus infinity and plus infinity. The
method of Sturm sequences is used.

(C1) POLY1:X**10-2*X**4+1/2$
(C2) NROOTS(POLY1,-6,9.1);
RAT REPLACED 0.5 BY 1/2 = 0.5
(D2) 4

[Function]NTHROOT (poly, int)

wherepoly is a polynomial with integer coefficients andint is a positive integer returnsq, a polynomial over
the integers, such thatq**n=p or prints an error message indicating thatpoly is not a perfectn ’th power.
This routine is much faster than FACTOR or even SQFR.

[Function]REALROOTS (poly, bound)

finds all of the real roots of the real univariate polynomialpoly within a tolerance ofbound which,
if less than 1, causes all integral roots to be found exactly. The parameterbound may be arbitrarily
small in order to achieve any desired accuracy. The first argument may also be an equation. REAL-
ROOTS sets MULTIPLICITIES, useful in case of multiple roots.REALROOTS(poly) is equivalent to
REALROOTS(poly,ROOTSEPSILON).

[variable, default: 1.0E-7]ROOTSEPSILON

a real number used to establish the confidence interval for the roots found by the REALROOTS function.

[Function]POLY_DISCRIMINANT (exp, var)

computes the discriminant of the polynomialexp, with respect tovar, which is the square of the product of
the differences of all pairs of roots.

[Function]ROOTSCONTRACT (exp)

converts products of roots into roots of products. For example,ROOTSCONTRACT(SQRT(X)*Y**(3/2));
->SQRT(X*Y**3). When RADEXPAND isTRUE and DOMAIN is REAL (their defaults), ROOTSCON-
TRACT converts ABS into SQRT, e.g.ROOTSCONTRACT(ABS(X)*SQRT(Y)); -> SQRT(X**2*Y).

132 Chapter 9. Solving

[variable, default: TRUE]ROOTSCONMODE

affects ROOTSCONTRACT as follows:

Problem ROOTSCONMODE Applying ROOTSCONTRACT

X^(1/2)*Y^(3/2) FALSE (X*Y^3)^(1/2)
X^(1/2)*Y^(1/4) FALSE X^(1/2)*Y^(1/4)
X^(1/2)*Y^(1/4) TRUE (X*Y^(1/2))^(1/2)
X^(1/2)*Y^(1/3) TRUE X^(1/2)*Y^(1/3)
X^(1/2)*Y^(1/4) ALL (X^2*Y)^(1/4)
X^(1/2)*Y^(1/3) ALL (X^3*Y^2)^(1/6)

(The above examples and more may be tried out by typingEXAMPLE(ROOTSCONTRACT);.)

When ROOTSCONMODE isFALSE, ROOTSCONTRACT contracts only with respect to rational number
exponents whose denominators are the same. The key to the ROOTSCONMODE: TRUE examples is sim-
ply that 2 divides into 4 but not into 3. ROOTSCONMODE: ALL involves taking the LCM (least common
multiple) of the denominators of the exponents. ROOTSCONTRACT uses RATSIMP in a manner similar
to LOGCONTRACT.

9.5 Interpolation

[Function]INTERPOLATE (fun, var, a, b)

finds the zero offun asvar varies. The last two args give the range to look in. The function must have a
different sign at each endpoint. If this condition is not met, the action of the of the function is governed by
INTPOLERROR default: [TRUE]). If INTPOLERROR isTRUE then an error occurs, otherwise the value
of INTPOLERROR is returned (thus for plotting INTPOLERROR might be set to 0.0). Otherwise (given
that Maxima can evaluate the first argument in the specified range, and that it is continuous) INTERPO-
LATE is guaranteed to come up with the zero (or one of them if there is more than one zero). The accuracy
of INTERPOLATE is governed by INTPOLABS default: [0.0] and INTPOLREL default [0.0] which must
be non-negative floating point numbers. INTERPOLATE will stop when the firstarg evaluates to something
less than or equal to INTPOLABS, or if successive approximants to the root differ by no more than INT-
POLREL * <one of the approximants>. The default values of INTPOLABS and INTPOLREL are 0.0 so
INTERPOLATE gets as good an answer as is possible with the single precision arithmetic.

The first argumentfun may be an equation. The order of the last two args is irrelevant. Thus
I NTERPOLATE(SIN(X)=X/2,X,%PI,.1); is equivalent toI NTERPOLATE(SIN(X)=X/2,X,.1,%PI);. The
method used is a binary search in the range specified by the last two args. When it thinks the function is
close enough to being linear, it starts using linear interpolation.

An alternative syntax has been added to INTERPOLATE, this replaces the first two arguments by a function
name. The function must

¯
be TRANSLATEd or COMPILEd function of one argument. No checking of the

result is done, so make sure the function returns a floating point number.

9.5. Interpolation 133

F(X):=(MODE_DECLARE(X,FLOAT),SIN(X)-X/2.0);
INTERPOLATE(SIN(X)-X/2,X,0.1,\%PI); time= 60 msec
INTERPOLATE(F(X),X,0.1,\%PI); time= 68 msec
TRANSLATE(F);
INTERPOLATE(F(X),X,0.1,\%PI); time= 26 msec
INTERPOLATE(F,0.1,\%PI); time= 5 msec

[Function]NEWTON (exp, var, X0, eps)

The file ‘share/newton.mc ’ contains a function which will do interpolation using Newton’s method.
It may be accessed byLOAD(NEWTON); . The Newton method can do things that INTERPOLATE will
refuse to handle, since INTERPOLATE requires that everything evaluate to a flonum. ThusNEWTON(x**2-
a**2,x,a/2,a**2/100); will say that it can’t tell iff lonum*a**2<a**2/100. DoingASSUME(a>0);, and
then doing NEWTON again works. You getx=a+<small flonum>*a, which is symbolic all the way.×
I NTERPOLATE(x**2-a**2,x,a/2,2*a); complains that. 5*a is not a flonum.

9.5.1 Interpolation Flags

[variable, default: TRUE]INTERPOLERROR

When INTERPOLATE is called, it determines whether or not the function to be interpolated satisfies the
condition that the values of the function at the endpoints of the interpolation interval are opposite in sign.
If they are of opposite sign, the interpolation proceeds. If they are of like sign, and INTPOLERROR is
TRUE, then an error is signaled. If they are of like sign and INTPOLERROR is notTRUE, the value of
INTPOLERROR is returned. Thus for plotting, INTPOLERROR might be set to 0.0.

[variable, default: 0.0]INTERPOLABS

The accuracy of the INTERPOLATE command is governed by INTPOLABS default: [0.0] and INTPOL-
REL default: [0.0] which must be non-negative floating point numbers. INTERPOLATE will stop when the
first arg evaluates to something less than or equal to INTPOLABS or if successive approximants to the root
differ by no more than INTPOLREL * <one of the approximants>. The default values of INTPOLABS and
INTPOLREL are 0.0, so INTERPOLATE gets as good an answer as is possible with the single precision
arithmetic we have.

[variable, default: 0.0]INTERPOLREL

The accuracy of the INTERPOLATE command is governed by INTPOLABS default: [0.0] and INTPOL-
REL default: [0.0] which must be non-negative floating point numbers. INTERPOLATE will stop when the
first arg evaluates to something less than or equal to INTPOLABS or if successive approximants to the root
differ by no more than INTPOLREL * <one of the approximants>. The default values of INTPOLABS and
INTPOLREL are 0.0, so INTERPOLATE gets as good an answer as is possible with the single precision
arithmetic we have.

134 Chapter 9. Solving

9.6 Solving Ordinary Differential Equations

[Function]ODE (eqn, y, x)

is a pot-pourri of Ordinary Differential solvers combined in such a way as to attempt more and more difficult
methods as each fails. For example, the first attempt is with ODE2, so therefore, a user using ODE can
assume he has all the capabilities of ODE2 at the very beginning, and if he/she has been using ODE2 in
programs they will still run if he substitutes ODE, as the returned values, and calling sequence are identical.
In addition, ODE has a number of user features which can assist an experienced ODE solver if the basic
system cannot handle the equation. These will be covered completely toward the end of this description,
but, essentially, he can make transforms of the dependent and independent variables, find the invariant in
the normal form, compute the normal form, the Schwartzian derivative, the adjoint or try various particular
solutions of the equation. These features are used to some extent in ODE’s attempts to find a general
solution. The user can also control a primitive learning capability of the program, i.e., it will remember his
attempts at trial particular solutions as long as he does not read in a fresh version. The program is called
with ODE(eqn, y, x); where equation is of the same form as required for ODE2; i.e.:

’diff(y,x,2)*F(x) + ’diff(y,x)*G(x) +y*H(x) = K(x,y)

The termK(x,y) is only permissible (for now) in first order equations; e.g.’ diff(y,x)=K(x,y). It’s presence
in a second order equation; i.e.,trying to solve a nonlinear higher order will return FALSE.

9.6.1 First Order Equations

Nearly all of the known methods for handling first order equations are present in ODE. The more basic
methods; e.g. Bernoulli, Generalized Homogeneous, Linear, Separable, are contained in ODE2 written
by J.P.Golden. [Lew79]. This program is also used by many of the other methods after they have done
the necessary transformations required by their algorithm. The following additional methods are applied if
ODE2 fails to solve the equation:

DIFFSOL This is the method of Laplace Transforms. Basically, it converts the DE to the form
DIFF(Y(X),X) + F(Y(X),X) = 0, sets the ATVALUEsY(X) at 0 to %K1 andDIFF(Y(X),X) at 0 to
%K2 and then calls DESOLVE.

NONLIN This will solve an equation nonlinear inY’ according to the method of Ince. The variableP is
substituted forDIFF(Y,X) and the resulting equation is solved forP. The two solutions thus obtained
are then reconverted to ODE’s inY, X and solved by a recursive call to ODE. The two solutions are
returned.

NONLIN1 This method is used for the special case in which the coefficients ofY’ and Y are polynomials
in X andY and are homogeneous (have the same powers of the variables). The transformation%v=y/x
is made and the resulting equation solved by ODE2.

RICCATI There are two Schmidt algorithms used by the Riccati solver: the first, called SCHMIDT, finds
in systematic way solutions of the formP(X) where P is a polynomial inX. The coefficients of
x**n in P may be symbolic butn must be a constant. The second, calledRICSOL, is a heuristic
which substitutes various likely looking expressions to see if they are solutions. RICSOL can solve
equations having functions ofX; eg,COS(x), as coefficients in the DE.

9.6. Solving Ordinary Differential Equations 135

EULER MULTIPLIER Some limited search for an integrating factor is performed by ODE2. This method
goes to additional lengths (as described by Schmidt) to find other possible factors. This is the last
method we use because it can consume lots of time, especially if it can’t find a multiplier.

9.6.2 Second Order Equations

After a failing attempt to solve by ODE2, we then try DIFFSOL, which is merely a new name for Bogen’s
Laplace Transform method, in which the appropriate notation has been substituted and the ATVALUEs for
the dependent variable and its derivatives have been set to%k1, %k2, etc.

Failing that, the following methods are used in the solution and the variable, METHOD, will be set accord-
ingly:

Invariant constant If the invariant of the DE in the normal form is a constant the substitution:y=v*exp(-
1/2*integral(G(x)dx)) is made and the equation is solved by ODE2 using the Constant Coefficients
rule. The answer is retransformed.

Solution of adjoint If the adjoint of the equation is solvable the answer is returned after retransformation.

Change of independent variableIf the value ofG’(x)+2*H(x)*G(x)/G(x)**3/2 is a constant, the equation
is transformed into a new equation via:z= integral(G(x)**1/2 dx)*c wherec is a constant chosen to
simplify the result. The resulting equation, which now has constant coefficients, is solved by ODE2
and the result retransformed.

Try a solution. Next, the fact thaty=R(x) may be a solution is used by scanning through the list, TRYLIST
default: [], and changing the dependent variable via:y= R * v and solving the resulting equation for
v and retransforming. Note that, in a pinch, the user may CONS a solution of his own into TRYLIST
(if he thinks he knows one).

The program will try some more sophisticated methods at this point. The first, solution by factorization of
the differential operator, uses the Riccati equation solver (see Lafferty in [Lew79]).

Failing the above, we are left with the unfortunate alternative of SERIES solutions. But first, we can see if
we have a Hypergeometric or a Whittaker. This is done by looking at the singularities of the equation. If it
possesses three singularities, all regular, then we have a Hypergeometric and solve by means of a Riemann
P-Symbol. If two singularities, one irregular and at infinity (or at zero with the regular one at infinity), we
transform such that the singularities are at [zero, infinity] and generate a Whittaker solution. Both the Whit-
taker and Hypergeometric solutions are then fed to the Hypergeometric series reduction routine to generate a
closed form, if possible. Otherwise, the program returns the series in the form:%F[m,n]([a],[b],arg), where
a and b are the lists of factorial function arguments and arg is an expression. The user has the some control
of this process in that he can suppress the generation of the hypergeometric by setting the flagCLOSED-
FORM default: [TRUE] toFALSE, and further, he can cause the result to display as a sum by setting the
flagSUMFORM default: [FALSE] toTRUE.

Failing to find either of the preceding cases, the program will default to the SERIES solver (see Lafferty in
[Lew79]). This will default to the truncated Taylor form (see Fateman in [Lew79]). if no complete solution
is obtainable from the recurrence relation. The complete solution can be obtained in any of the above forms;
i.e., closed, hypergeometric or sum by setting the various flags.

136 Chapter 9. Solving

9.6.2.1 Assistance For Experienced Users

There are a number of transformation routines which are available in the environment of ODE for experi-
enced users to manipulate their ODE with the intention of solving it by one of the methods above. These
are described here. For further info and theory see Rainville-IDE and Ince. By the environment of ODE is
meant that ODE should have been run at least once in the currentMaxima, otherwise the routines will not
autoload.

DEPTRAN(EQN, Y, X, V, F) will transform usingY=V*F, X=X.

INDTRAN (EQN, Y, X, Z, F) will transform usingY=Y, Z=F(x).

INVARIANT (EQN, Y, X) will compute the invariant in the normal form ofEQN and return it as a function
of X.

NORMALFORM (EQN, Y, X, V) will transform EQN to its normalform in terms of the new dependent
variableV. Note thatV is related toY by Y = V*exp(-1/2*integrate(P,X)) whereP is the coefficient ofdy/dx
in the original equation.

SCHWARTZIAN (S, X) will compute the Schwartzian derivative of s with respect to x, denoted in the
literature by{ s, x}. It is defined by the third order ODE:{ s, x} = s”’/s’ - 3/2*(s”/s’)**2. An attempt is
made to simplify the result trigonometrically.

DADJOINT (EQN, Y, X, W) will return the Adjoint equation ofEQN. The definition is as follows:A(EQ)=
W” + P*W’ + (Q-P’)*W = 0 where P and Q are the coefficients in the original equation and ’ denotes
differentiation with respect toX.

TRANSFORM (EQN, Y, X, V, Z, [RELATIONS]) is a general transform package which can handle two
variable transforms as well as the single ones described above. It is somewhat by the current capabilities of
SOLVE. The relations can be any two equations relating the old and new variables; example:

TRANSFORM(EQ,Y,X,V,Z,[V=Y*SIN(X),Z=COS(X)]);

Some simplification of the resulting equation is done, both trigonometric and algebraic with the intention of
a future call to ODE.

9.6.2.2 ODE Options

Optional arguments can be given to ODE following the third mandatory argument which can have the
following values:

ANY equivalent to no value, i.e., run the methods as in the current version a solution is found.

ALL run all appropriate (a test is made for degree) methods even if one or more return a solution. Return a
list of solutions including FALSE.

SERIES run SERIES in closedform mode.

SOLVEHYPER solve as a hypergeometric using P-symbols

WHITTAKER solve as a confluent hyper using tables of Kummer solutions.

ODE2 run ODE2 on it.

9.6. Solving Ordinary Differential Equations 137

DIFFSOL solve by Laplace transforms.

DESOL solve using more advanced methods.

SOLFAC solve by factoring the operator.

RICCATI run the Riccati solver.

NONLIN solve for nonlinear first order in Y’.

NONLIN1 solve for nonlinear first order in Y.

Example:ODE(’diff(y,x,2)=0, y, x, series, ode2); will apply SERIES and ODE2 in that order and return a
list of the two solutions obtained.

A user may have his own favorite method which he may want to include in the list. This can be done easily
for the ALL case or for a specific call, but not for the ANY or default case.

Three demos are available. They should be run in the following order: ‘ode/ode.dm1 ’,
‘ode/ode.dm2 ’, ‘ ode/ode.dm3 ’. The first is a small sample of the first order capability, especially
Riccati equations. The second shows some of the second order capability, Legendre and Bessel equations.
The demos also show how some of the variables and switches can be used to help see what is happening.
There is a demo in the file: ‘ode/ode.dem ’. There is a demo in the file: ‘ode/ode.dm1 ’. There is a
demo in the file: ‘ode/ode.dm2 ’. There is a demo in the file: ‘ode/ode.dm3 ’. There are some usage
notes in the file: ‘ode/ode.usg ’.

[Function]ODE2 (exp, dvar, ivar)

takes three arguments: an ODE of first or second order (only the left hand side need be given if the right
hand side is 0), the dependent variabledvar, and the independent variableivar. When successful, it returns
either an explicit or implicit solution for the dependent variable. %C is used to represent the constant in the
case of first order equations, and %K1 and %K2 the constants for second order equations. If ODE2 cannot
obtain a solution for whatever reason, it returnsFALSE, after perhaps printing out an error message.

The methods implemented for first order equations in the order in which they are tested are: linear, separa-
ble, exact - perhaps requiring an integrating factor, homogeneous, Bernoulli’s equation, and a generalized
homogeneous method. For second order: constant coefficient, exact, linear homogeneous with non-constant
coefficients which can be transformed to constant coefficient, the Euler or equidimensional equation, the
method of variation of parameters, and equations which are free of either the independent or of the depen-
dent variable so that they can be reduced to two first order linear equations to be solved sequentially.

In the course of solving ODEs, several variables are set purely for informational purposes: METHOD
denotes the method of solution used e.g. LINEAR, INTFACTOR denotes any integrating factor used,
ODEINDEX denotes the index for Bernoulli’s method or for the generalized homogeneous method, and
YP denotes the particular solution for the variation of parameters technique. There is a demo in the file:
‘demo/ode2.dem ’. There are some usage notes in the file: ‘share/ode2.usg ’.

9.6.2.3 Boundary Value Problems

[Function]IC1 (exp, var, var)

In order to solve initial value problems (IVPs) and boundary value problems (BVPs), the routine IC1 is

138 Chapter 9. Solving

available in the ODE2 package for first order equations, andIC2 andBC2 for second order IVPs and BVPs,
respectively. DoLOAD(ODE2); to access these. They are used as in the following examples:

(C3) IC1(D2,X=\%PI,Y=0);
COS(X) + 1

(D3) Y = - ----------
3

X
(C4) ’DIFF(Y,X,2) + Y*’DIFF(Y,X)^3 = 0;

2
d Y dY 3

(D4) --- + Y (--) = 0
2 dX

dX
(C5) ODE2(\%,Y,X);

3
Y - 6 \%K1 Y - 6 X

(D7) ------------------ = \%K2
3

(C8) RATSIMP(IC2(D7,X=0,Y=0,’DIFF(Y,X)=2));
3

2 Y - 3 Y + 6 X
(D9) - ---------------- = 0

3
(C10) BC2(D7,X=0,Y=1,X=1,Y=3);

3
Y - 10 Y - 6 X

(D11) --------------- = - 3
3

In order to see more clearly which methods have been implemented, a demonstration file is available. There
is a demo in the file: ‘demo/ode2.dem ’. There are some usage notes in the file: ‘share/ode2.usg ’.

[Function]DESOLVE ([eq1, . . . , eqn], [fun1, . . . , funn])

where theeqi are differential equations in the dependent variablesvar1,. . . ,varn. The functional relation-
ships must be explicitly indicated in both the equations and the variables. For example

(C1) ’DIFF(F,X,2)=SIN(X)+’DIFF(G,X);
(C2) ’DIFF(F,X)+X^2-F=2*’DIFF(G,X,2);

is not
¯

the proper format. The correct way is:

(C3) ’DIFF(F(X),X,2)=SIN(X)+’DIFF(G(X),X);
(C4) ’DIFF(F(X),X)+X^2-F(X)=2*’DIFF(G(X),X,2);

The call is thenDESOLVE([D3,D4],[F(X),G(X)]);. If initial conditions at 0 are known, they should be
supplied before calling DESOLVE by using ATVALUE.

9.6. Solving Ordinary Differential Equations 139

(C11) ’DIFF(F(X),X)=’DIFF(G(X),X)+SIN(X);
d d

(D11) -- F(X) = -- G(X) + SIN(X)
dX dX

(C12) ’DIFF(G(X),X,2)=’DIFF(F(X),X)-COS(X);
2

d d
(D12) --- G(X) = -- F(X) - COS(X)

2 dX
dX

(C13) ATVALUE(’DIFF(G(X),X),X=0,A);
(D13) A
(C14) ATVALUE(F(X),X=0,1);
(D14) 1
(C15) DESOLVE([D11,D12],[F(X),G(X)]);

X X
(D16) [F(X)=A \%E - A+1, G(X) = COS(X) + A \%E - A + G(0) - 1]
/* VERIFICATION */
(C17) [D11,D12],D16,DIFF;

X X X X
(D17) [A \%E = A \%E , A \%E - COS(X) = A \%E - COS(X)]

If DESOLVE cannot obtain a solution, it returnsFALSE.

9.7 Integral Equations

[Function]IEQN (ieqn, unk, tech, n, guess)

is an integral equation solving routine. DoLOAD(INTEQN); to access it.

ieqn is the integral equation

unk is the unknown function;

tech is the technique to be tried from those given above.tech = FIRST means: try the first technique which
finds a solution;tech = ALL means: try all applicable techniques);

n is the maximum number of terms to take for TAYLOR, NEUMANN, FIRSTKINDSERIES, or FRED-
SERIES (it is also the maximum depth of recursion for the differentiation method);

guess is initial guess for NEUMANN or FIRSTKINDSERIES.

Default values for the 2’nd thru 5’th parameters are:

unk P(X), whereP is the first function encountered in an integrand which is unknown toMaxima and X is
the variable which occurs as an argument to the first occurrence of P found outside of an integral in
the case of SECONDKIND equations, or is the only other variable besides the variable of integration
in FIRSTKIND equations. If the attempt to search for X fails, the user will be asked to supply the
independent variable;

140 Chapter 9. Solving

tech FIRST

n 1

guessNONE, which will cause NEUMANN and FIRSTKINDSERIES to useF(X) as an initial guess.

The value returned by IEQN is a list of labels of solution lists. the solution lists are printed as they are found
unless the option variable IEQNPRINT is set to FALSE. These lists are of the form[solution, technique

used, nterms, flag] whereflag is absent if the solution is exact. Otherwise it is the word APPROXIMATE
or INCOMPLETE corresponding to an inexact or non-closed form solution respectively. If a series method
was used,NTERMS gives the number of terms taken which could be less than then given to IEQN if
an error was encountered preventing generation of further terms. There are some usage notes in the file:
‘share1/inteqn.usg ’.

[variable, default: TRUE]IEQNPRINT

governs the behavior of the result returned by the IEQN command. If IEQNPRINT is set toFALSE, the lists
returned by the IEQN function are of the form[SOLUTION, TECHNIQUE USED, NTERMS, FLAG],
where FLAG is absent if the solution is exact. Otherwise, it is the word APPROXIMATE or INCOM-
PLETE corresponding to an inexact or non-closed form solution, respectively. If a series method was used,
NTERMS gives the number of terms taken (which could be less than the n given to IEQN if an error pre-
vented generation of further terms).

There are some usage notes in the file: ‘share1/inteqn.usg ’.

9.7. Integral Equations 141

142

CHAPTER

TEN

Maxima Knowledge Database

10.1 Adding to the Database

10.1.1 Defining Operators

The term operator is used in either of two senses: syntactic meaning that it has special syntax properties
in the Maxima language, or semantic referring to its functionality. In the syntactic sense it is something
which usually consists of non-alphanumeric characters, e.g. + or * (exceptions include AND, OR, and
NOT). Semantically we sometimes refer to the operator of an expression, meaning that thing which is in the
operator part of the expression, such as the+ in A+B or SIN in SIN(x). Note: + in this latter example is also
an operator in the syntactic sense, whereas SIN is a mathematical function.

It is possible to add new operators toMaxima (INFIX, PREFIX, POSTFIX, UNARY, or MATCHFIX with
given precedences), to remove existing operators, or to redefine the precedence of existing operators. While
Maxima’s syntax should be adequate for most ordinary applications, it is possible to define new operators
or eliminate predefined ones that get in the user’s way. The extension mechanism is rather straightforward
and should be evident from the examples below.

(C1) PREFIX("DDX")$
(C2) DDX Y$ means "DDX"(Y)
(C3) INFIX("<-")$
(C4) A<-DDX Y$ means "<-"(A,"DDX"(Y))

For each of the types of operator except SPECIAL, there is a corresponding creation function that will give
the lexeme specified the corresponding parsing properties. Thus("DDX") will make DDX a prefix operator
just like - or NOT. Of course, certain extension functions require additional information such as the matching
keyword for a matchfix operator. In addition, binding powers and parts of speech must be specified for all
keywords defined. This is done by passing additional arguments to the extension functions. If a user does
not specify these additional parameters,Maxima will assign default values. The six extension functions
with binding powers and parts of speech defaults (enclosed in brackets) are summarized below.

1. PREFIX(operator, rbp[180], rpos[ANY], pos[ANY])

2. POSTFIX(operator, lbp[180], lpos[ANY], pos[ANY])

3. INFIX(operator, lbp[180], rbp[180], lpos[ANY], rpos[ANY],pos[ANY])

4. NARY(operator, bp[180], argpos[ANY], pos[ANY])

143

5. NOFIX(operator, pos[ANY])

6. MATCHFIX(operator, match, argpos[ANY], pos[ANY])

The defaults have been provided so that a user who does not wish to concern himself with parts of speech
or binding powers may simply omit those arguments to the extension functions. Thus the following are all
equivalent:

PREFIX("DDX",180,ANY,ANY)$
PREFIX("DDX",180)$
PREFIX("DDX")$

It is also possible to remove the syntax properties of an operator by using the functions REMOVE or KILL.
Specifically,REMOVE("DDX",OP) orKILL("DDX") will return DDX to operand status; but in the second
case all the other properties ofDDX will also be removed.

PREFIX (op) A PREFIX operator is one which signifies a function of one argument, which argument im-
mediately follows an occurrence of the operator.PREFIX("x") is a syntax extension function to declarex

to be a PREFIX operator.

[Function]POSTFIX (op)

POSTFIX operators like the PREFIX variety denote functions of a single argument, but in this case the ar-
gument immediately precedes an occurrence of the operator in the input string, e.g.3! . ThePOSTFIX("x")
function is a syntax extension function to declarex to be a POSTFIX operator.

[Function]INFIX (op)

INFIX operators are used to denote functions of two arguments, one given before the operator and one after,
e.g.A**2 . I NFIX(fun) is a syntax extension function to DECLAREfun to be an INFIX operator.

[Function]MATCHFIX (op)

MATCHFIX operators are used to denote functions of any number of arguments which are passed to
the function as a list. The arguments occur between the main operator and its matching delimiter.
MATCHFIX(fun,. . .) is a syntax extension function which declaresfun to be a MATCHFIX operator.

[Function]NOFIX (op)

NOFIX operators are used to denote functions of no arguments. The mere presence of such an operator in a
command will cause the corresponding function to be evaluated. For example, when one typesexit; to exit
from aMaxima break,exit is behaving similar to a NOFIX operator. The functionNOFIX("x") is a syntax
extension function which declaresx to be a NOFIX operator.

[Function]NARY (op)

An NARY operator is used to denote a function of any number of arguments, each of which is separated
by an occurrence of the operator, e.g.A+B or A+B+C.NARY(fun) is a syntax extension function to declare

144 Chapter 10. Maxima Knowledge Database

fun to be an NARY operator. Functions may be DECLAREd to be NARY.DECLARE(J,NARY); tells the
simplifier to simplifyJ (J(A,B),J(C,D)) toJ (A, B, C, D).

See section10.1.3[Declarations], page148.

10.1.2 Defining Macros

The Maxima macro facility allows the user to define forms which are similar in appearance toMaxima
functions but whose evaluation and simplification can be more carefully controlled. This high degree of
control provides users with many powerful capabilities (the ability to write definitions of operators which
act as extended control structures, which implicitly quote certain of their arguments, or which establish
special environments for the evaluation of their arguments, to name just a few). Additionally, macros are
highly efficient from a compilation standpoint– references to macros can be made to yield extremely good
code when compiled.

A macro is a definition of a transformation between some syntactic construct typed in by the user and a form
which can be interpreted by theMaxima evaluator. Suppose a user had several lists (X, Y, and Z) which he
often wanted to print out the values of in the following way:

FOR I THRU LENGTH(X) DO PRINT(’X[I]=X[I]);
FOR I THRU LENGTH(Y) DO PRINT(’Y[I]=Y[I]);
\dots etc

This could get tedious to type. He might, for instance, want to define aMaxima operator which did most
the work for him, so that he could type

SHOWME(X);

and have the same thing happen as if he had typed out theFOR loop. Without using macros, trying to write
a definition forSHOWME which allows this syntax is tedious at best, and in any case would require the user
to type

SHOWME(’X);

in order to get a hold of the name of the form being displayed. (Try it yourself as an exercise.) Let’s see how
you would do this as a macro. It’s quite simple, really.SHOWME will be an operator with just one thing in
its argument position, so we’ll want to write

SHOWME(LISTNAME) ::= \dots something \dots

The ::= is used instead of := to indicate that what follows is a macro definition, rather than an ordinary
functional definition. Proceeding, we must next write a definition. The definition should do something to
create the form which we really want to evaluate, returning that form as a value. In this case, we shall want

FOR I THRU LENGTH(LISTNAME) DO PRINT(’LISTNAME[I]=LISTNAME[I])

to get returned bySHOWME. Note that we don’t want to do this action – we only want to return the new

10.1. Adding to the Database 145

(“expanded”) form – theMaxima interpreter will take care of any evaluation later. One way to do this might
be to use FUNMAKE and SUBSTPART but that can be pretty hard to do, especially with a form likeFOR.
An easier way is to use the BUILDQ function. Using BUILDQ, the definition would look like:

SHOWME(LISTNAME)::=
BUILDQ([LISTNAME],

FOR I THRU LENGTH(LISTNAME)
DO PRINT(’LISTNAME[I]=LISTNAME[I]))$

What happens when theMaxima evaluator encounters a macro? First it calls the macro definition on the
appropriate parts of the form – for example, in the case ofSHOWME(X), theSHOWME macro would be
called withLISTNAME bound to X. Note that no

¯
evaluation of arguments is done prior to application of the

macro – that will come later. TheSHOWME definition will then create a new form which looks like

FOR I THROUGH LENGTH(X) DO PRINT(’X[I]=X[I])

and return that to the evaluator. The evaluator will then take the new form, and evaluate that in place of the
originalSHOWME form, finally returning the value of this second evaluation as the value of theSHOWME.
So we might actually type:

X:[’A,’B]$

SHOWME(X)$

X = A
1

X = B
2

A symbol can have either a macro property or a function property but not both at the same time. Defining
an atom with ::= will remove the atom’s function properties and vice versa.

10.1.2.1 Useful Functions and Variables for Macros

[Variable]MACROS

is a variable (similar to FUNCTIONS) which lists at any time all macros defined in the current environment.
It is one of the variables which can be found in INFOLISTS.

DISPFUN(macro) and GRIND(macro) will display either the function property or the macro property if
either exist.STRINGOUT(FUNCTIONS); may be used to STRINGOUT all functions and macros in the
current environment.

[variable, default: FALSE]MACROEXPANSION

Controls advanced features which affect the efficiency of macros. Possible settings:

146 Chapter 10. Maxima Knowledge Database

FALSE Macros expand normally each time they are called.

EXPAND The first time a particular call is evaluated, the expansion is remembered internally, so that it
doesn’t have to be recomputed on subsequent calls making subsequent calls faster. The macro call
still GRINDs and DISPLAYs normally, however extra memory is required to remember all of the
expansions.

DISPLACE The first time a particular call is evaluated, the expansion is substituted for the call. This
requires slightly less storage than when MACROEXPANSION is set to EXPAND and is just as fast,
but has the disadvantage that the original macro call is no longer remembered and hence the expansion
will be seen if DISPLAY or GRIND is called. Macros always expand and displace at the time of
translation when calls to them are translated. See section13.2[Translation], page186.

[Special Form]MACROEXPAND (macro)

expandsmacro repeatedly until it is no longer a macro call. The final expansion is returned without doing
the automatic evaluation.

[Special Form]MACROEXPAND1 (macro)

expandsmacro exactly once ifmacro is a macro call without doing the automatic evaluation. Ifmacro is
not a macro call,macro is returned, again unevaluated. There is a demo in the file: ‘demo/macex.dem ’.

10.1.2.2 More Macro Examples

PUSH(VALUE,STACKNAME)::=BUILDQ([VALUE,STACKNAME],
STACKNAME:CONS(VALUE,STACKNAME))$

POP(STACKNAME)::=BUILDQ([STACKNAME],
BLOCK([TEMP:FIRST(STACKNAME)],

STACKNAME:REST(STACKNAME),TEMP))$

A:[]; => []
PUSH(’FOO,A); => [FOO]
PUSH(’BAR,A); => [BAR, FOO]
A; => [BAR, FOO]
POP(A); => BAR
A; => [FOO]
POP(A); => FOO
A; => []

There is a demo in the file: ‘demo/macro.dem ’. There are some usage notes in the file:
‘demo/macro.usg ’.

[Special Form]BUILDQ (variable-list, expression)

is aMaxima function for constructing pieces of code to be executed. It will be very useful in conjunction
with macros, but may have other applications as well. BUILDQ is a generalized substitution function used
to createMaxima forms. (Its primary use is in macro bodies.)

10.1. Adding to the Database 147

variable-list is similar to the variable list for a BLOCK (i.e. it can contain both atomic variables and
assignment-forms). The right hand sides of any assignment-forms in thevariable-list are evaluated left
to right and the resulting variable bindings are substituted in parallel into theexpression (actually, the pro-
cess is more complicated than what SUBST would provide, as we shall see farther down). Theexpression

can be anyMaxima expression (including a nested BUILDQ). The new expression is returned as is, not
evaluated. For example:

S:A+B$

BUILDQ([S,A:B*C,FUN:BAR],
S^2+G(A,’A)+FUN(S));

2
=> (A + B) + G(B C, ’(B C)) + BAR(A + B)

The parallel nature of the substitution can probably be most easily seen in the following example:

BUILDQ([A:’B,B:’A], SIN(A)+COS(B));

=> SIN(B) + COS(A)

BUILDQ also recognizes specially the keyword SPLICE when it is used in a functional position within the
expression. If SPLICE is used with only one argument and that argument is the name of one of the variables
being substituted for, then the value of the variable is spliced into the expression instead of being substituted.
The spliced variable must evaluate to a list.

L:[A,B,C]$

BUILDQ([L],F(L,SPLICE(L)));

F([A, B, C], A, B, C)

There is a demo in the file: ‘demo/buildq.dem ’. There are some usage notes in the file:
‘demo/buildq.usg ’.

10.1.3 Declarations

Maxima has built-in properties which are handled by the database. These are called features.
One can doDECLARE(N,INTEGER) to declare thatN is an integer. One can also DECLARE
one’s own features by e.g.DECLARE(INCREASING,FEATURE); which will then allow one to say
DECLARE(F,INCREASING);. One can then check if F is INCREASING by using the predicate FEA-
TUREP viaFEATUREP(F,INCREASING). There is an infolist FEATURES which is a list of known FEA-
TURES.

Maxima currently recognizes and uses the following features of objects: EVEN, ODD, INTEGER,
NONINTEGER, RATIONAL, IRRATIONAL, REAL, IMAGINARY, and COMPLEX. The useful fea-
tures of functions include: INCREASING, DECREASING, ODDFUN (odd function), EVENFUN (even
function), POSFUN, COMMUTATIVE (or SYMMETRIC), ANTISYMMETRIC, ANALYTIC, LAS-

148 Chapter 10. Maxima Knowledge Database

SOCIATIVE and RASSOCIATIVE.DECLARE(F,INCREASING) is in all respects equivalent to×
ASSUME(KIND(F,INCREASING)). Theai and fi may also be lists of objects or features. The com-
mandFEATUREP(object,feature) may be used to determine ifobject has been DECLAREd to havefeature.
COMMUTATIVE, LASSOCIATIVE, RASSOCIATIVE, SYMMETRIC, and ANTISYMMETRIC. System
features may be checked withSTATUS(FEATURE,. . .);

[Special Form]DECLARE (a1, f1, a2, f2, . . .)

gives the atomai the flagfi. Theai ’s andfi ’s may also be lists of atoms and flags respectively in which case
each of the atoms gets all of the properties. The possible flags and their meanings are:

CONSTANT makesai a constant as is %PI.

MAINVAR makes ai a MAINVAR . The ordering scale for atoms is: numbers < constants (e.g.
%E, %PI) < scalars < other variables < mainvars. E.g. compareEXPAND((X+Y)**4); with
(DECLARE(X,MAINVAR), EXPAND((X+Y)**4));. (Note: Care should be taken if you elect to
use the above feature. E.g. if you subtract an expression in which X is a MAINVAR from one in
which X isn’t a MAINVAR, resimplification e.g. with EV(expression,SIMP) may be necessary if
cancellation is to occur. Also, if you SAVE an expression in which X is a MAINVAR, you probably
should alsoSAVE X.) See section2.5[Ordering of the Display], page28.

SCALAR makesai a scalar.

NONSCALAR makesai behave as does a list or matrix with respect to the dot operator . .

NOUN makes the functionai a noun so that it won’t be evaluated automatically.

EVFUN makesai known to the EV function so that it will get applied if its name is mentioned. Ini-
tial evfuns are FACTOR, TRIGEXPAND, TRIGREDUCE, BFLOAT, RATSIMP, RATEXPAND, and
RADCAN.

EVFLAG makesai known to the EV function so that it will be bound toTRUE during the execution of
EV if it is mentioned. Initial evflags are: FLOAT, PRED, SIMP, NUMER, DETOUT, EXPONEN-
TIALIZE, DEMOIVRE, KEEPFLOAT, LISTARITH, TRIGEXPAND, SIMPSUM, ALGEBRAIC,
RATALGDENOM, FACTORFLAG, %EMODE, LOGARC, LOGNUMER, RADEXPAND, RAT-
SIMPEXPONS, RATMX, RATFAC, INFEVAL, %ENUMER, PROGRAMMODE, LOGNEGINT,
LOGABS, LETRAT, HALFANGLES, EXPTISOLATE, ISOLATE_WRT_TIMES, SUMEXPAND,
CAUCHYSUM, NUMER_PBRANCH, M1PBRANCH, DOTSCRULES, and LOGEXPAND. See
section4.1[Evaluation], page47.

BINDTEST causesai to signal an error if it ever is used in a computation unbound.DECLARE([var1,
var2, . . .], BINDTEST) causesMaxima to give an error message whenever any of thevari occur
unbound in a computation.

ALPHABETIC adds toMaxima’s alphabet (initiallyA-Z,% and _). Thus,DECLARE(" ",ALPHABETIC)
enablesNEW VALUE to be used as a name.

ADDITIVE If DECLARE(F,ADDITIVE) has been executed, then:

1. If F is univariate, whenever the simplifier encountersF applied to a sum,F will be distributed
over that sum. I.e.F(Y+X); will simplify to F(Y)+F(X).

10.1. Adding to the Database 149

2. If F is a function of 2 or more arguments, additivity is defined as additivity in the first ar-
gument to F, as in the case of SUM or INTEGRATE, i.e.F(H(X)+G(X),X); will simplify to
F(H(X),X)+F(G(X),X).

This simplification does not occur whenF is applied to expressions of the formSUM(X[I], I, lo, hi).

SYMMETRIC If DECLARE(H,SYMMETRIC); is done, this tells the simplifier that H is a symmetric
function. E.g.H(X, Z, Y) will simplify to H(X, Y, Z). This is the same as COMMUTATIVE.

ANTISYMMETRIC If DECLARE(H,ANTISYMMETRIC); is done, this tells the simplifier that H is an-
tisymmetric. E.g. H(X,Z,Y) will simplify to - H(X, Y, Z). That is, it will give (-1)**n times the
result given by SYMMETRIC or COMMUTATIVE, where n is the number of interchanges of two
arguments necessary to convert it to that form.

COMMUTATIVE If DECLARE(H,COMMUTATIVE); is done, this tells the simplifier that H is a com-
mutative function. E.g.H(X, Z, Y) will simplify to H(X, Y, Z). This is the same as SYMMETRIC.

LASSOCIATIVE DECLARE(G,LASSOCIATIVE); tells simplifier thatG is left-associative. E.g.
G(G(A,B),G(C,D)) will simplify to G(G(G(A,B),C),D).

RASSOCIATIVE DECLARE(G,RASSOCIATIVE); tells the simplifier thatG is right-associative. E.g.
G(G(A,B),G(C,D)) will simplify to G(A,G(B,G(C,D))).

POSFUN POSitive FUNction, e.g.DECLARE(F,POSFUN); IS(F(X)>0); -> TRUE.

LINEAR For univariateF so declared, expansionF(X+Y) -> F(X)+F(Y), F(A*X) -> A*F(X) takes place
whereA is a “constant.’ For functionsF of 2 or more arguments, “linearity” is defined to be as in
the case of SUM or INTEGRATE, i.e.F(A*X+B,X) -> A*F(X,X)+B*F(1,X) for A,B FREEOF X.
(LINEAR is just ADDITIVE + OUTATIVE.)

MULTIPLICATIVE If DECLARE(F,MULTIPLICATIVE) has been executed, then:

1. If F is univariate, whenever the simplifier encountersF applied to a product,F will be distributed
over that product, i.e.i ntoF(X*Y); will simplify to F(X)*F(Y).

2. If F is a function of 2 or more arguments, multiplicativity is defined as multiplicativity in the
first argument toF, i.e. F(G(X)*H(X),X); will simplify to F(G(X),X)*F(H(X),X). This simpli-
fication does not occur whenF is applied to expressions of the formPRODUCT(X[I],I,lower-
limit,upper-limit).

OUTATIVE If DECLARE(F,OUTATIVE); has been executed, then:

1. If F is univariate, whenever the simplifier encountersF applied to a product, that product will be
partitioned into factors that are constant and factors that are not and the constant factors will be
pulled out. I.e.F(A*X); will simplify to A*F(X) where A is a constant. Non-atomic constant
factors will not be pulled out.

2. If F is a function of 2 or more arguments, outativity is defined as in the case of SUM or IN-
TEGRATE, i.e.F(A*G(X),X); will simplify to A*F(G(X),X) for A FREEOFX. Initially, SUM,
INTEGRATE, and LIMIT are declared to be OUTATIVE.

150 Chapter 10. Maxima Knowledge Database

10.1.4 Assumptions

[Special Form]ASSUME (pred1, pred2, . . .)

First checks the specified predicates for redundancy and consistency with the current database. If the pred-
icates are consistent and non-redundant, they are added to the database; if inconsistent or redundant, no
action is taken. ASSUME returns a list whose entries are the predicates added to the database and the atoms
REDUNDANT or INCONSISTENT where applicable.

[variable, default: FALSE]ASSUME_POS

When using INTEGRATE, etc. one often introduces parameters which are real and positive or one’s cal-
culations can often be constructed so that this is true. There is a switch ASSUME_POS default:FALSE
such that if set toTRUE, Maxima will assume one’s parameters are positive. The intention here is to cut
down on the number of questionsMaxima needs to ask. Obviously, ASSUME information or any contex-
tual information present will take precedence. The user can control what is considered to be a parameter
for this purpose. Parameters by default are those which satisfySYMBOLP(x) or SUBVARP(x). The user
can change this by setting the option ASSUME_POS_PRED default: [FALSE] to the name of a predicate
function of one argument. E.g. if you want only symbols to be parameters, you can do

ASSUME_POS:TRUE$
ASSUME_POS_PRED:’SYMBOLP$
SIGN(A); -> POS,
SIGN(A[1]); -> PNZ.

[variable, default: FALSE]ASSUME_POS_PRED

may be set to one argument to control what will be considered a parameter for the assumptions that INTE-
GRATE will make. See also ASSUME and ASSUME_POS.

[variable, default: TRUE]ASSUMESCALAR

helps govern whether expressionsexp for which NONSCALARP(exp) givesFALSE are assumed to be-
have like scalars for certain transformations as follows: Letexp represent any non-list/non-matrix, and
[1,2,3] any list or matrix.exp . [1,2,3]; will give [exp, 2*exp, 3*exp] if ASSUMESCALAR isTRUE or
SCALARP(exp) isTRUE or CONSTANTP(exp) isTRUE. If ASSUMESCALAR isTRUE, such expres-
sions will behave like scalars only for the commutative operators, but not for . If ASSUMESCALAR is
FALSE, such expressions will behave like non-scalars. If ASSUMESCALAR is ALL, such expressions
will behave like scalars for all the operators listed above.

10.1.5 Contexts

[variable, default: [INITIAL, GLOBAL]]CONTEXTS

is a list of the contexts which currently exist, including the currently active context. The context mechanism
makes it possible for a user to bind together and name a selected portion of his database, called a context.

10.1. Adding to the Database 151

Once this is done, the user can haveMaxima assume or forget large numbers of facts merely by activating
or deactivating their context. Any symbolic atom can be a context, and the facts contained in that context
will be retained in storage until the user destroys them individually by using FORGET or destroys them as
a whole by using KILL to destroy the context to which they belong.

Contexts exist in a formal hierarchy, with the root always being the context GLOBAL, which contains
information aboutMaxima that some functions need. When in a given context, all the facts in that context
are active (meaning that they are used in deductions and retrievals) as are all the facts in any context which is
an inferior of that context. When a freshMaxima is started up, the user is in a context called INITIAL, which
has GLOBAL as a subcontext. The functions which deal with contexts are: FACTS, NEWCONTEXT,
SUPCONTEXT, KILLCONTEXT, ACTIVATE, DEACTIVATE, ASSUME, and FORGET.

[variable, default: INITIAL]CONTEXT

Whenever a user assumes a new fact, it is placed in the context named as the current value of the variable
CONTEXT. Similarly, FORGET references the current value of CONTEXT. To change contexts, simply
bind CONTEXT to the desired context. If the specified context does not exist it will be created by an invisible
call to NEWCONTEXT. The context specified by the value of CONTEXT is automatically activated.

[Function]FACTS (context)

If context is the name of a context then FACTS returns a list of the facts in the specified context. If no
argument is given, it lists the current context. Ifcontext is not the name of a context then it returns a list of
the facts known aboutcontext in the current context. Facts that are active, but in a different context, are not
listed.

[Function]NEWCONTEXT (context)

creates a new (empty) context, calledcontext, which has GLOBAL as its only subcontext. The new context
created will become the currently active context.

[Special Form]SUPCONTEXT (name, context)

will create a new context (calledname) whose subcontext iscontext. If context is not specified, the current
context will be assumed. If it is specified, context must exist.

[Function]ACTIVATE (context1, context2, . . .)

causes the specified contextscontexti to be activated. The facts in these contexts are used in making de-
ductions and retrieving information. The facts in these contexts are not listed whenFACTS(); is done. The
variable ACTIVECONTEXTS is the list of contexts which are active by way of the ACTIVATE function.

[Variable]ACTIVECONTEXTS

is a list of the contexts which are active by way of the ACTIVATE function, as opposed to being active
because they are subcontexts of the current context.

152 Chapter 10. Maxima Knowledge Database

[Function]DEACTIVATE (context1, context2, . . .)

causes the specified contextscontexti to be deactivated.

[Function]KILLCONTEXT (context1, context2, . . . , contextn)

kills the specified contexts. If one of them is the current context, the new current context will become the
first available subcontext of the current context which has not been killed. If the first available unkilled
context is GLOBAL then INITIAL is used instead. If the INITIAL context is killed, a new INITIAL is
created, which is empty of facts. KILLCONTEXT doesn’t allow the user to kill a context which is currently
active, either because it is a subcontext of the current context, or by use of the function ACTIVATE.

10.1.6 Properties

[Special Form]PROPERTIES (atom)

will yield a list showing the names of all the properties associated with the atomatom.

[Special Form]PROPVARS (prop)

yields a list of those atoms on the PROPS list which have the property indicated byprop. Thus
PROPVARS(ATVALUE) will yield a list of atoms which haveATVALUES.

[Variable]PROPS

atoms which have any property other than those explicitly mentioned in INFOLISTS, such as ATVALUEs,
MATCHDECLAREs, etc. as well as properties specified in the DECLARE function.

[Function]PUT (atom, prop, ind)

associates with the atomatom the propertyprop with the indicatorind. This enables the user to give an
atom any arbitrary property.

[Special Form]QPUT (atom, prop, ind)

is similar to PUT but it doesn’t have its arguments evaluated.

[Function]GET (atom, ind)

retrieves the user property indicated byind associated with atomatom or returnsFALSE if a doesn’t have
propertyind.

10.1. Adding to the Database 153

(C1) PUT(\%E,’TRANSCENDENTAL,’TYPE);
(D1) TRANSCENDENTAL
(C2) PUT(\%PI,’TRANSCENDENTAL,’TYPE)$
(C3) PUT(\%I,’ALGEBRAIC,’TYPE)$
(C4) TYPEOF(EXP) := BLOCK([Q],

IF NUMBERP(EXP)
THEN RETURN(’ALGEBRAIC),
IF NOT ATOM(EXP)
THEN RETURN(MAPLIST(’TYPEOF, EXP)),
Q : GET(EXP, ’TYPE),
IF Q=FALSE
THEN ERRCATCH(ERROR(EXP,"is not nu-

meric.")) ELSE Q)$
(C5) TYPEOF(2*\%E+X*\%PI);
X is not numeric.
(D5) [[TRANSCENDENTAL, []], [ALGEBRAIC, TRANSCENDENTAL]]
(C6) TYPEOF(2*\%E+\%PI);
(D6) [TRANSCENDENTAL, [ALGEBRAIC, TRANSCENDENTAL]]

[Special Form]PRINTPROPS (atom, ind)

will display the property with the indicatorind associated with the atomatom. atom may also be a list of
atoms or the atom ALL in which case all of the atoms with the given property will be used. For example,
PRINTPROPS([F,G],ATVALUE). PRINTPROPS is for properties that cannot otherwise be displayed, i.e.
for ATVALUE, ATOMGRAD, GRADEF, and MATCHDECLARE.

10.1.7 Rules

User defined pattern matching and simplification rules can be set up by TELLSIMP, TELLSIMPAFTER,
DEFMATCH, or, DEFRULE.

10.1.7.1 Defining Simplification Rules

[Special Form]TELLSIMPAFTER (pattern, replacement)

defines a replacement for pattern which theMaxima simplifier uses after it applies the built-in simplification
rules. The pattern may be anything but a single variable or a number.

[Special Form]TELLSIMP (pattern, replacement)

is similar to TELLSIMPAFTER but places new information before old so that it is applied before the built-in
simplification rules. TELLSIMP is used when it is important to modify the expression before the simplifier
works on it, for instance if the simplifier knows something about the expression, but what it returns is not
to your liking. If the simplifier knows something about the main operator of the expression, but is simply
not doing enough for you, you probably want to use TELLSIMPAFTER. The pattern may not be a sum,
product, single variable, or number. RULES is a list of names having simplification rules added to them by
DEFRULE, DEFMATCH, TELLSIMP, or TELLSIMPAFTER.

154 Chapter 10. Maxima Knowledge Database

10.1.7.2 Substitution Rules

[Special Form]LET (prod, repl, predname, arg1, arg2, . . .)

defines a substitution rule for LETSIMP such thatprod gets replaced byrepl. prod is a product of positive
or negative powers of the following types of terms:

1. Atoms which LETSIMP will search for literally unless previous to calling LETSIMP the MATCHDE-
CLARE function is used to associate a predicate with the atom. In this case LETSIMP will match the
atom to any term of a product satisfying the predicate.

2. Kernels such asSIN(X), N!, F(X,Y), etc. As with atoms above LETSIMP will look for a literal match
unless MATCHDECLARE is used to associate a predicate with the argument of the kernel.

A term to a positive power will only match a term having at least that power in the expression being LET-
SIMPed. A term to a negative power on the other hand will only match a term with a power at least as
negative. In the case of negative powers in product the switch LETRAT must be set toTRUE. If a predicate
is included in the LET function followed by a list of arguments, a tentative match (i.e. one that would be ac-
cepted if the predicate were omitted) will be accepted only ifpredname(arg1’,. . . ,argn’) evaluates toTRUE
whereargi’ is the value matched toargi. Theargi may be the name of any atom or the argument of any
kernel appearing inprod. repl may be any rational expression. If any of the atoms or arguments fromprod

appear inrepl the appropriate substitutions will be made.

[variable, default: FALSE]LETRAT

whenFALSE, LETSIMP will simplify the numerator and denominator ofexp independently and return the
result. Substitutions such asN!/N goes to(N-1)! will fail. To handle such situations LETRAT should be set
to TRUE, then the numerator, denominator, and their quotient will be simplified in that order.

These substitution functions allow you to work with several rule packages at once. Each rule package
can contain any number of LETed rules and is referred to by a user supplied name. To insert a rule into
the rule packagename, do LET([prod, repl, pred, arg1, . . .], name). To apply the rules in rule package
name, do LETSIMP(exp, name). The functionLETSIMP(exp, name1, name2, . . .) is equivalent to doing
LETSIMP(exp, name1) followed byLETSIMP(%, name2) etc.

[Special Form]LETSIMP (exp)

will continually apply the substitution rules previously defined by the function LET until no further change
is made toexp.

LETSIMP(exp, rule_pkg_name) will cause the rule packagerule_pkg_name to be used for that LETSIMP
command only, i.e. the value of CURRENT_LET_RULE_PACKAGE is not changed.

[Special Form]LETRULES ()

displays the rules in the current rule package (initially DEFAULT_LET_RULE_PACKAGE).×
LETRULES(name) displays the rules in the rule package namedname. The current rule package is the
value of CURRENT_LET_RULE_PACKAGE.

10.1. Adding to the Database 155

[variable, default: DEFAULT_LET_RULE_PACKAGE]CURRENT_LET_RULE_PACKAGE

the name of the rule package that is presently being used. The user may reset this variable to the name of
any rule package previously defined via the LET command. Whenever any of the functions comprising the
let package are called with no package name the value of CURRENT_LET_RULE_PACKAGE is used. If
a call such asLETSIMP(exp,rule_pkg_name); is made, the rule packagerule_pkg_name is used for that
LETSIMP command only, i.e. the value of CURRENT_LET_RULE_PACKAGE is not changed.

[Variable]DEFAULT_LET_RULE_PACKAGE

the name of the rule package used when one is not explicitly set by the user with LET or by changing the
value of CURRENT_LET_RULE_PACKAGE.

[variable, default: DEFAULT_LET_RULE_PACKAGE]LET_RULE_PACKAGES

The value of LET_RULE_PACKAGES is a list of all the user-defined let rule packages plus the special
package DEFAULT_LET_RULE_PACKAGE. DEFAULT_LET_RULE_PACKAGE is the name of the rule
package used when one is not explicitly set by the user.

10.1.7.3 Pattern Matching Rules

[Special Form]DEFMATCH (progname, pattern, parm1, . . . , parmn)

creates a function ofn+1 arguments with the nameprogname which tests an expression to see if it can
match a particularpattern. The pattern is some expression containing pattern variables and parameters. The
parms are given explicitly as arguments to DEFMATCH, while the pattern variables (if supplied) were given
implicitly in a previous MATCHDECLARE function. The first argument to the created functionprogname is
an expression to be matched against thepattern and the othern arguments are the actual variables occurring
in the expression which are to take the place of dummy variables occurring in thepattern. Thus theparms

in the DEFMATCH are like the dummy arguments to theSUBROUTINE statement inFORTRAN. When
the function is called, the actual arguments are substituted. For example:

(C1) NONZEROANDFREEOF(X,E):= IF E#0 AND FREEOF(X,E)
THEN \code{TRUE} else \code{FALSE}$

/*IS(E#0 AND FREEOF(X,E)) is an equivalent function definition */
(C2) MATCHDECLARE(A,NONZEROANDFREEOF(X),B,FREEOF(X))$
(C3) DEFMATCH(LINEAR,A*X+B,X)$

This has caused the functionLINEAR(exp, var1) to be defined. It testsexp to see if it is of the form
A*var1+B, whereA andB do not containvar1, andA is not zero. If the match is successful, DEFMATCHed
functions return a list of equations whose left sides are the pattern variables andparms, and whose right
sides are the expressions which the pattern variables and parameters matched. The pattern variables, but not
the parameters, are set to the matched expressions. If the match fails, the function returnsFALSE. Thus
LINEAR(3*Z+(Y+1)*Z+Y**2,Z) would return [B=Y**2, A=Y+4, X=Z].

Any variables not declared as pattern variables in MATCHDECLARE or as parameters in DEFMATCH
which occur in pattern will match only themselves so that if the third argument to the DEFMATCH in(C3)

156 Chapter 10. Maxima Knowledge Database

had been omitted, thenLINEAR would only match expressions linear in X, not in any other variable. A
pattern which contains no parameters or pattern variables returnsTRUE if the match succeeds.

[Special Form]MATCHDECLARE (pattern, pred, . . .)

associates a predicatepred with a pattern variablepattern, so that the variable will only match expressions for
which the predicate is notFALSE. The matching is accomplished by one of the functions described below.
For example afterMATCHDECLARE(Q,FREEOF(X,%E)) is executed,Q will match any expression not
containingX or %E. If the match succeeds, then the variable is set to the matched expression. The predicate
(in this caseFREEOF) is written without the last argument which should be the one against which the pattern
variable is to be tested. Note thatpattern and the arguments to the predicatepred are evaluated at the time
the match is performed.

The odd numbered argument may also be a list of pattern variables all of which are to have the asso-
ciated predicate. Any even number of arguments may be given. For pattern matching, predicates re-
fer to functions which are eitherFALSE, or not FALSE, i.e. any nonFALSE value acts likeTRUE.
MATCHDECLARE(var,TRUE) will permitvar to match any expression.

[Special Form]DEFRULE (rulename, pattern, replacement)

defines and names a replacement rule for the given pattern. If the rule namedrulename is applied to an ex-
pression (by one of the APPLY functions below), every subexpression matching the pattern will be replaced
by the replacement. All variables in the replacement which have been assigned values by the pattern match
are assigned those values in the replacement which is then simplified. The rules themselves can be treated
as functions which will transform an expression by one operation of the pattern match and replacement. If
the pattern fails, the original expression is returned.

[Special Form]DISPRULE (rulename1, rulename2, . . .)

will display rules with the namesrulenamei, as were given by DEFRULE, TELLSIMP, or TELLSIM-
PAFTER, or a pattern defined by DEFMATCH. For example, the first rule modifyingSIN will be called
SINRULE1. DISPRULE(ALL); will display all rules.

[Function]REMRULE (fun, rule)

will remove a rule with the namerule from the functionfun, which was placed there by DEFRULE, DEF-
MATCH, TELLSIMP, or TELLSIMPAFTER. If rulename is ALL, then all rules will be removed.

10.1.7.4 Applying Rules

[Special Form]APPLY1 (exp, rule1, . . . , rulen)

repeatedly applies the first rule toexp until it fails, then repeatedly applies the same rule to all subexpressions
of exp, left-to-right, until the first rule has failed on all subexpressions. Call the result of transformingexp

in this mannerexp’. Then the second rule is applied in the same fashion starting at the top ofexp’. When
the final rule fails on the final subexpression, the application is finished.

10.1. Adding to the Database 157

[Special Form]APPLY2 (exp, rule1, . . . , rulen)

differs from APPLY1 in that if the first rule fails on a given subexpression, then the second rule is repeatedly
applied, etc. Only if they all fail on a given subexpression is the whole set of rules repeatedly applied to the
next subexpression. If one of the rules succeeds, then the same subexpression is reprocessed, starting with
the first rule.

[Special Form]APPLYB1 (exp, rule1, . . . , rulen)

is similar to APPLY1 but works from the bottom-up instead of from the top-down. That is, it processes the
smallest subexpression of exp, then the next smallest, etc.

[variable, default: 10000]MAXAPPLYDEPTH

the maximum depth to which APPLY1 and APPLY2 will delve.

[variable, default: 10000]MAXAPPLYHEIGHT

the maximum height to which APPLYB1 will reach before giving up.

10.2 Querying the Database

[Function]FEATUREP (atom, feat)

attempts to determine whether the objectatom has the featurefeat on the basis of the facts in the current
database. If so, it returnsTRUE, otherwiseFALSE.

(C1) DECLARE(J,EVEN)$
(C2) FEATUREP(J,INTEGER);
(D2) TRUE

[Special Form]IS (exp)

attempts to determine whetherexp (which must evaluate to a predicate) is provable from the facts in the
current database. IS returnsTRUE if the predicate isTRUE for all values of its variables consistent with the
database, and returnsFALSE if it is false for all such values. Otherwise, its action depends on the setting of
the switch PREDERROR default:TRUE. IS errors out if the value of PREDERROR isTRUE, and returns
UNKNOWN if PREDERROR isFALSE.

[variable, default: TRUE]PREDERROR

If TRUE, an error message is signalled whenever the predicate of an IF statement or an IS function fails to
evaluate to eitherTRUE orFALSE. If FALSE, UNKNOWN is returned instead in this case. The PREDER-
ROR :FALSE mode is not supported in translated code.

158 Chapter 10. Maxima Knowledge Database

[Function]EQUAL (expr1, expr2)

when used with an IS, returnsTRUE (or FALSE) if and only if expr1 and expr2 are
equal (or not equal) for all possible values of their variables (as determined by RATSIMP).
Thus I S(EQUAL((X+1)**2,X**2+2*X+1)) returns TRUE, whereas if X is unbound ×
I S((X+1)**2=X**2+2*X+1) returns FALSE. Note also thatI S(RAT(0)=0) givesFALSE but

I S(EQUAL(RAT(0),0)) givesTRUE. If a determination can’t be made with EQUAL then a simplified but
equivalent form is returned whereas = always causes eitherTRUE orFALSE to be returned. All variables
occurring inexp are presumed to be real valued.EV(exp,PRED) is equivalent toI S(exp).

(C1) IS(X**2 >= 2*X-1);
(D1) TRUE
(C2) ASSUME(A>1);
(D2) DONE
(C3) IS(LOG(LOG(A+1)+1)>0 AND A^2+1>2*A);
(D3) TRUE

[Function]ZEROEQUIV (exp, var)

tests whether the expressionexp in the variablevar is equivalent to zero. It returns eitherTRUE,
FALSE, or DONTKNOW. For exampleZEROEQUIV(SIN(2*X) - 2*SIN(X)*COS(X),X) returnsTRUE
andZEROEQUIV(%E**X+X,X) returnsFALSE. On the other hand,ZEROEQUIV(LOG(A*B) - LOG(A)
- LOG(B),A) will return DONTKNOW because of the presence of an extra parameter. The restrictions are:

1. Do not use functions thatMaxima does not know how to differentiate and evaluate.

2. If the expression has poles on the real line, there may be errors in the result (but this is unlikely to
occur).

3. If the expression contains functions which are not solutions to first order differential equations (e.g.
Bessel functions) there may be incorrect results.

4. The algorithm uses evaluation at randomly chosen points for carefully selected subexpressions. This
is always a somewhat hazardous business, although the algorithm tries to minimize the potential for
error.

[Function]SIGN (exp)

attempts to determine the sign of its specified expression on the basis of the facts in the current database.
It returns one of the following answers: POS (positive), NEG (negative), ZERO,PZ (positive or zero), NZ
(negative or zero), PN (positive or negative), or PNZ (positive, negative, or zero, i.e. nothing known).

[Function]ASKINTEGER (exp, optional-arg)

If exp is any validMaxima expression andoptional-arg is EVEN, ODD, INTEGER and defaults to INTE-
GER if not given. This function attempts to determine from the database whetherexp is EVEN, ODD or
just an INTEGER. It will ask the user if it cannot deduce it on its own, and attempt to install the information
in the database if possible.

10.2. Querying the Database 159

[Function]ASKSIGN (exp)

first attempts to determine whether the specified expressionexp is positive, negative, or zero. If it cannot,
it asks the user the necessary questions to complete its deduction. The user’s answer is recorded in the
database for the duration of the current computation (oneC-line). The value of ASKSIGN is one of POS,
NEG, or ZERO.

[Variable]ASKEXP

contains the expression upon which ASKSIGN is called. A user may enter aMaxima break and inspect this
expression in order to answer questions asked by ASKSIGN.

10.3 Deleting From the Database

[Special Form]FORGET (pred1, pred2, . . .)

removes relations established by ASSUME. The predicates may be expressions equivalent to (but not nec-
essarily identical to) those previously ASSUMEd.FORGET(list) is also a legal form.

[Special Form]KILL (arg1, arg2, . . .)

eliminates its arguments from theMaxima system. Ifargi is a variable, a single array element, a function,
or an array, the designated item with all of its properties is removed from core. Ifargi is

LABELS then all input, intermediate, and output lines to date (but not other named items) are eliminated.

CLABELS then only input lines will be eliminated.

ELABELS then only intermediate E-lines will be eliminated.

DLABELS only the output lines will be eliminated.

n a number, then the lastn lines (i.e. the lines with the lastn line numbers) are deleted. Ifargi is of the
form [m,n] then all lines with numbers betweenm andn inclusive are KILLed.

VALUES will kill all properties associated with every item on the VALUES list

ALL then every item on every information list previously defined, as well as LABELS is KILLed.

ALLBUT ALLBUT(name1,. . .) will do aKILL(ALL), except it will not KILL the names specified. Note
thatnamei means a name such asU, V, F, G, not an infolist such as FUNCTIONS.)

If argi is the name of any of the other information lists (the elements of theMaxima variable INFOLISTS),
then every item in that class (and its properties) is KILLed. See section2.6 [Reviewing Options], page29,
for a listing of the INFOLISTS.

Note thatKILL(VALUES) or KILL(variable) will not free the storage occupied unless the labels which are
pointing to the same expressions are also KILLed. Thus if a large expression was assigned toX on lineC7
one should doKILL(D7) as well asKILL(X) to release the storage occupied.

160 Chapter 10. Maxima Knowledge Database

KILL removes all properties from the given argument thusKILL(VALUES) will kill all properties associated
with every item on the VALUES list whereas the REMOVE set of functions (REMVALUE, REMFUNC-
TION, REMARRAY, REMRULE) remove a specific property. Also the latter print out a list of names or
FALSE if the specific argument doesn’t exist, whereas KILL always has valueDONE even if the named
item doesn’t exist.

[Special Form]REMOVE (args)

will remove some or all of the properties associated with variables or functions.REMOVE(a1, p1, a2, p2,
. . .) removes the propertypi from the atomai. Ai andpi may also be lists as with DECLARE.Pi may
be any property e.g. FUNCTION, MODE_DECLARE, etc. It may also be TRANSFUN implying that the
translated Lisp version of the function is to be removed. This is useful if one wishes to have theMaxima
version of the function executed rather than the translated version.Pi may also be OP or OPERATOR to
remove a syntax extension given toai. If ai is ALL then the property indicated bypi is removed from
all atoms which have it. Unlike the more specific remove functions (REMVALUE, REMARRAY, REM-
FUNCTION, and REMRULE), REMOVE does not indicate when a given property is non-existent; it always
returnsDONE.

[Function]REM (atom, ind)

removes the property indicated byind from the atomatom.

[Special Form]REMLET (prod, rule)

deletes the substitution rule,prod –> repl, most recently defined by the LET function. If name is supplied
the rule is deleted from the rule packagerule. REMLET() andREMLET(ALL) delete all substitution rules
from the current rulepackage. If the name of a rule package is supplied, e.g.REMLET(ALL, name), the rule
packagename is also deleted. If a substitution is to be changed using the same product, REMLET need not
be called, just redefine the substitution using the same product (literally) with the LET function and the new
replacement and/or predicate name. ShouldREMLET(product); now be executed, the original substitution
rule will be revived.

[Special Form]REMFUNCTION (f1, f2, . . .)

removes the user defined functionsfi from Maxima. If there is only one argument of ALL, then all functions
are removed.

REMFUNCTION(fun) removes all functional properties and macro properties fromfun. ×
REMFUNCTION(ALL) removes all functions and macros from the current environment. REMOVE(name,
FUNCTION) removes the function property ofmacro if one exists, but will not remove macro properties.
REMOVE(name, MACRO) removes the macro property ofname if one exists, but will not remove function
properties. See section10.3[Deleting From the Database], page160.

KILL(FUNCTIONS) only effects the functions in the current environment and has no effects on any macros.
Similarly, KILL(MACROS) only affects macros and has no effects on any defined functions.

10.3. Deleting From the Database 161

[Special Form]REMVALUE (name1, name2, . . .)

removes the values of user variables (which can be subscripted) from the system. If name is ALL then the
values of all user variables are removed. Values are those items given names by the user as opposed to those
which are automatically labeled byMaxima as Ci, Di, or Ei.

10.4 Renaming Elements in the Database

[Special Form]ALIAS (newname1, oldname1, newname2, oldname2, . . .)

provides an alternate name for a (user or system) function, variable, array, etc. Any even number of argu-
ments may be used.

[Variable]ALIASES

atoms which have a user defined alias (set up by the ALIAS, ORDERGREAT, ORDERLESS functions or
by DECLAREing the atom a NOUN).

162 Chapter 10. Maxima Knowledge Database

CHAPTER

ELEVEN

Input and Output

A file is simply an area on a particular storage device which contains data or text. Files on the disks are
figuratively grouped into directories. A directory is just a list of all the files stored under a given user name.

[Variable]FILE_SEARCH

this is a list of files naming directories to search by LOAD and a number of other functions. The default
value of this is a list of the various SHARE directories used byMaxima.

[Function]FILE_SEARCH ("filename")

searches on those directories and devices specified by the FILE_SEARCH variable, and returns the name
of the first file it finds. This function is invoked by the LOAD function, which is whyLOAD("FFT") finds
and loads ‘share/fft.o ’. You may do FILE_SEARCH:CONS("devdir",FILE_SEARCH); to add other
directories to the search rules, wheredevdir is the name of a device and a directory.

11.1 Loading Files

[Function]LOAD ("filename")

takes one argument, a filename represented as a string (i.e. inside quotation marks), or as list (e.g. inside
square brackets), and locates and loads in the indicated file. If no directory is specified, it then searches the
SHAREi directories and any other directories listed in the FILE_SEARCH variable, and loads the first file
that is found.LOAD("EIGEN") will load the eigen package, without the need for the user to be aware of
the details of whether the package was compiled, translated, saved, or fassaved, i.e. LOAD will work on
both LOADFILEable and BATCHable files. Note that LOAD will use BATCHLOAD if it finds the file is
BATCHable, which means that it will BATCH the file in silently without terminal output or labels.

[Special Form]LOADFILE ("filename")

loads a file as designated by its argument. This function may be used to bring back quantities that were
stored from a priorMaxima session by use of the SAVE or STORE functions.filename must be a file of
Lisp functions and expressions, not ofMaxima command lines, in which case BATCH or DEMO is to be
used.

163

[variable, default: TRUE]LOADPRINT

governs the printing of messages accompanying loading of files. The following options are available:

TRUE means always print the message;

’LOADFILE means print only when the LOADFILE command is used;

’AUTOLOAD means print only when a file is automatically loaded in;

FALSE means never print the loading message.

[variable, default: FALSE]PACKAGEFILE

designers who use SAVE, FASSAVE, or TRANSLATE to create packages (files) for others to use may want
to setPACKAGEFILE:TRUE; to prevent information from being added toMaxima’s information-lists (e.g.
VALUES, FUNCTIONS) except where necessary when the file is loaded in. In this way, the contents of the
package will not get in the user’s way when he adds his own data. Note that this will not solve the problem
of possible name conflicts. Also note that the flag simply affects what is output to the package file. Setting
the flag toTRUE is also useful for creatingMaxima init files.

11.1.1 Autoloading

[Special Form]SETUP_AUTOLOAD (file, func1, . . .)

which takes two or more arguments: a file specification, and one or more function names,funci, and which
indicates that if a call tofunci is made andfunci is not defined, that the file specified byfile is to be
automatically loaded in via LOAD, which file should contain a definition forfunci. (This is the process
by which calling e.g.I NTEGRATE in a freshMaxima causes various files to be loaded in.) As with the
other file-handling commands inMaxima, the arguments to SETUP_AUTOLOAD are not evaluated. Note:
SETUP_AUTOLOAD does not work for array functions.

11.2 Batching Files

[Special Form]BATCH (file-specification)

reads in and evaluatesMaxima command lines from a file. This is a facility for executing command lines
stored on a disk file rather than in the usual on-line mode. This facility has several uses, namely to provide
a reservoir for working command lines, for giving error-free demonstrations, or helping in organizing one’s
thinking in complex problem-solving situations where modifications may be done via a text editor.

A batch file consists of a set ofMaxima command lines, each with its terminating ; or $, which may
be further separated by spaces, carriage-returns, form-feeds, and the like. The BATCH function calls for
reading in the command lines from the file one at a time, echoing them on the user console, and executing
them in turn. Control is returned to the user console only when serious errors occur, or when the end of the

164 Chapter 11. Input and Output

file is met. Of course, the user may quit out of the file-processing by typing control-G at any point. BATCH
files may be created using a text editor or by use of the STRINGOUT command.

[variable, default: FALSE]BATCHKILL

if TRUE then the effect of all previous BATCH files is nullified because aKILL(ALL) and a RESET() will
be done automatically when the next one is read in. If BATCHKILL is bound to any other atom, then a
KILL of the value of BATCHKILL will be done.

[Function]BATCHLOAD (file-specification)

BATCHes in the file silently without terminal output or labels.

[Special Form]BATCON (argument)

continues BATCHing in a file which was interrupted.

[variable, default: 0]BATCHCOUNT

may be set to the number of the last expression BATCHed in from a file. ThusBATCON(BATCOUNT-1)
will resume BATCHing from the expression before the last BATCHed in from before.

11.2.1 Indexed Batch Files

[Function]OPEN_INDEX_FILE (filename)

returns a symbol which represents the indexed file. It is easiest to use if the user sets a variable to the
value returned, or refers to it by its D-line number. E.g.F:OPEN_INDEX_FILE(KAM1,EXPODE); sets
the variableF to the symbol which represents the indexed file object.

[Function]MAKE_INDEX_FILE (filename)

will parse a batch file without evaluating it. This is useful for debugging init files.

[Function]READ_NTH_OBJECT (n, symbol-returned-by-OPEN_INDEX_FILE)

returns then ’th object in an indexed file.

[Function]MAP_OVER_INDEX_FILE (function, fileobject)

is convenient for generating an index list of properties of the objects in a file vs. their positions in the file.

INDEX_FILE_DIM (symbol-returned-by-OPEN_INDEX_FILE) returns an integer indicating the number
of expressions in the indexed file.

11.2. Batching Files 165

11.3 Demoing Files

[Special Form]DEMO (file)

This is the same as BATCH but pauses after each command line and continues when a space is typed.
In øNIL Maxima, DEMO does file searching like BATCH does, and in addition searches for files on the
DEMO directory in theMaxima directory hierarchy, and also for files with extensions of. DEM, . DM1,
and. DM2 in addition to. MC.

[variable, default: _]PROMPT

is the prompt symbol of the DEMO function, PLAYBACK(SLOW) mode, and BREAK.

11.4 Writing to Files

[Special Form]WRITEFILE ("file")

opens up a file for writing. All interaction between the user andMaxima is then recorded in this file, just
as it is on the console. Such a file is a transcript of the session, and is not reloadable or BATCHable into
Maxima again. (See also CLOSEFILE.)

[Special Form]APPENDFILE (filename1, filename2, directory)

is like WRITEFILE(filename) but appends to the file whose name isfilename. A subsequent CLOSEFILE
will delete the original file and rename the appended file.

[Special Form]STRINGOUT (args)

will output an expression to a file in a linear format. Such files are then used by the BATCH or DEMO
commands.

STRINGOUT (file, A1, A2, . . .) outputs to a file given byfile the values given byA1, A2, . . . in aMaxima
readable format. The file-specification may be omitted, in which case the default values will be used. The
Ai are usually C labels or may be

INPUT meaning the value of all C labels.

FUNCTIONS which will cause all of the user’s function definitions to be strungout (i.e. all those retrieved
by DISPFUN(ALL)).

VALUES all the variables to which the user has assigned values will be strungout.

166 Chapter 11. Input and Output

ai may also be a list[m,n] which means to stringout all labels in the rangem throughn inclusive. This
function may be used to create a file of FORTRAN statements by doing some simple editing on the strungout
expressions. If the GRIND switch is set toTRUE, then STRINGOUT will use GRIND format instead of
STRING format. Note: a STRINGOUT may be done while a WRITEFILE is in progress.

[Special Form]CLOSEFILE (file)

closes a file opened by WRITEFILE and gives it the namefile. (On a Lisp Machine, or under Franz Lisp,
one need only sayCLOSEFILE();.) Thus to save a file consisting of the display of all input and output
during some part of a session withMaxima the user issues a WRITEFILE, interacts withMaxima, then
issues a CLOSEFILE. The user can also issue the PLAYBACK function after a WRITEFILE to save the
display of previous transactions. The expression can then be brought back intoMaxima via the LOADFILE
function. To save the expression in a linear form which may then be BATCHed in later, the STRINGOUT
function is used.

[Special Form]DELFILE (file)

will delete the file given by the file-specificationfile.

11.5 Operating on Files

[Special Form]PRINTFILE (file)

prints the contents of the filefile on the user’s terminal.

There are some usage notes in the file: ‘share/fileop.usg ’.

[Function]FILENAME_MERGE ("filename1", "filename2", . . .)

merges together filenames. What this means is that it returnsfilename1 except that missing components
come from the corresponding components offilename2, and if they are missing there, then fromfilename3,
etc.

[Special Form]RENAMEFILE (oldfile, newfile)

Gives a new name to a file.Oldfile may name any file.Newfile must be a filename on the same device and
directory. Attempting to change the name of a file that does not exist, or to rename a file to the name of a
file that exists already will generate an error; hence, it is not possible to inadvertently destroy a file using
this command.

There are some usage notes in the file: ‘share/fileop.usg ’.

11.5. Operating on Files 167

11.6 Directories

[Special Form]LISTFILES (DSK, username)

To list your directory. If you use a shared directory such as Users or Plasma, only your files–the ones
with your login name as first file name–will be shown. The length and date of creation of each file is also
shown. There is a shorter list command, QLISTFILES which gives just the file names and no length or date
information.

There are some usage notes in the file: ‘share/fileop.usg ’.

[Special Form]QLISTFILES (DSK,username)

“Quick LISTFILES” lists the names of your files. There are some usage notes in the file:
‘share/fileop.usg ’.

11.7 File Defaults

[Function]FILE_TYPE (filename)

returnsFASL, LISP, orMaxima, depending on what kind of file it is.FASL means a compiled Lisp file,
LISP means Lisp source code, andMaxima meansMaxima source code. The type of the file is determined
by looking up the filename extension in the variableFILE_TYPES .

11.8 Saving and Restoring

[Special Form]SAVE ([optional file spec], arg1, arg2, . . . , argi)

saves quantities described by its arguments on disk and keeps them in core also. If you omit the file spec,
Maxima will select a file name for you consisting of the first three letters of your login name followed by a
digit (the lowest digit which will give a unique file name). Thearg ’s are the expressions to be SAVEd. ALL
is the simplest, but note that saving ALL will save the entire contents of yourMaxima, which in the case
of a large computation may result in a file which is too large to be reloaded. VALUES, FUNCTIONS, or
any other items on the INFOLISTS may be SAVEd, as may functions and variables by name.CandD lines
may also be saved, but it is better to give them explicit names, which may be done in the command line, e.g.
SAVE(RES1=D15);. Files saved with SAVE should be reloaded with LOADFILE.

SAVE returns a list of the form[<name of file>, <size of file in blocks>,. . .] where... are the things
saved. Warnings are printed out in the case of large files, or if an empty file is accidently generated. It is
possible to do a SAVE when a WRITEFILE is in progress.

[Special Form]FASSAVE (args)

is similar to SAVE but produces a FASL file in which the sharing of subexpressions which are shared in core
is preserved in the file created. Hence, expressions which have common subexpressions will consume less

168 Chapter 11. Input and Output

space when loaded back from a file created by FASSAVE rather than by SAVE. Files created with FASSAVE
are reloaded using LOADFILE, just as files created with SAVE. FASSAVE returns a list of the form[<name
of file>, <size of file in blocks>, . . .] where... are the things saved. Warnings are printed out in the case
of large files. FASSAVE may be used while a WRITEFILE is in progress.

[Special Form]RESTORE (file)

reinitializes all quantities filed away by a use of the SAVE or STORE functions, in a priorMaxima session,
from the file given by ‘file ’ without bringing them into core.

11.8. Saving and Restoring 169

170

CHAPTER

TWELVE

Programming Environment

12.1 On-Line Help

For introductory help withMaxima you may try the on-line Primer, which is an interactive tutorial. Type
PRIMER(); in Maxima. For HELP withMaxima the DESCRIBE command is useful.DESCRIBE(); will
tell you how to use it, or to find out about a specificMaxima command, doDESCRIBE("command");. See
section2.6[Reviewing Options], page29 for the definition of INFOLISTS.

12.1.1 Apropos

[Special Form]APROPOS (string)

takes a character string as argument and looks at all theMaxima names for ones with that string appearing
anywhere within them. Thus,APROPOS(EXP); will return a long list of all the flags and functions which
haveEXP as part of their names, such as EXPAND, EXP, EXPONENTIALIZE. Thus if you can only
remember part of the name of something you can use this command to find the rest of the name. Similarly,
you could sayAPROPOS(TR_); to find a list of many of the switches relating to theTRANSLATOR, as
most of these begin withTR_.

12.1.2 Describe

[Special Form]DESCRIBE (arg)

prints out information aboutarg, which may be anyMaxima command, switch or variable. Certain key
words have also been included, where they seem appropriate, thusDESCRIBE(TRIG); will print out a list of
the trig functions implemented inMaxima. Some function names or operators may require quotation marks
around them, e.g.DESCRIBE("DO"); orDESCRIBE(".");. See also APROPOS which allows you to locate
command names even if you aren’t sure of the full name.

12.1.3 Example

[Special Form]EXAMPLE (command)

will start up a demonstration of howcommand works on some expressions. After each command line it will

171

pause and wait for a space to be typed, as in the DEMO command.

12.1.4 Primer

[Special Form]PRIMER ()

starts up the on-line PRIMER inMaxima. The first time it is run by a particular user, the script CON-
SOLEPRIMER is gone through to make sure the user knows how to use a console. Subsequently it will start
up offering a list of scripts to choose from. PRIMER(script) will start it with a particular script.

12.2 Editing

12.2.1 Line Editing

There is a line editor inMaxima, which you may enter by typing an altmode (theESCkey on most consoles).
Your current command line will be automatically brought into the editor for you to edit. Commands are
terminated by two altmodes. An additional two altmodes will return you toMaxima with the edited string
on your command line. Some useful commands:

nC moves the cursor past n characters.

nR moves the cursor past n characters in the reverse direction (nR = -nC).

nSstring<$> moves the cursor to the right (left ifn is negative) of then ’th occurrence ofstring in the input
string.

) or] moves the cursor right from the current position over the next balanced pair of parentheses (or brack-
ets).

(or [similar to) or] but moves left.

nD deletesn characters, and saves them in the save-register (see theGR command below).

nK deletes all the characters through then ’th carriage return (0K kills left), and saves them in the save-
register; e.g.,K deletes the remainder of this line.

Istring<$> inserts the charactersstring at the current cursor position. The cursor is positioned at the right
of the inserted text. If no argument is given then the string of the last I command which had one is
used.

GR inserts at the current cursor position the characters deleted by the last use ofD or K. ThusGR may be
used in combination withD or K to move characters from one place to another in the input string; or
to recover from an accidental use ofDor K. There is only one save-register.

[variable, default: $]CURSOR

is the prompt symbol of theMaxima line editor.

172 Chapter 12. Programming Environment

12.2.2 Full Screen Editing

12.2.3 Expression Editor

12.2.3.1 Terminology

Expression A Maxima expression is the fundamental data object used by the expression editor, just as
characters or lines are fundamental units within a text editor. An expression as used by the editor consists
of a mathematical expression in the internalMaxima format, and a label displayed with it. Several other
pieces of information are also associated with the expression. One is its “reveal depth”, i.e. the depth to
which the body of the expression is displayed within the buffer, as done by the REVEAL command. The
position of the expression relative to the others within the buffer is also maintained. Finally, an expression
will possess a “region”, which is a subexpression to which the nextMaxima command will be applied.

Region Essentially, the region is that portion of an expression which is of interest. The subexpression
designated by the region can be used as input to anyMaxima command, and the result returned by the com-
mand can displace the original subexpression. This capability allows one to selectively apply theMaxima
simplifiers to a portion of an expression, without modifying the entire form. The region of an expression
must exist entirely at one level within the expression, and can contain any number of adjacent branches at
that level.

Level A single node within the tree structure representing a mathematical expression. A level is char-
acterized by an operator and a number of operands which are the branches of that node. For example, the
operator ‘+’ and the operandsa**2, 2ab, andb**2 describe the top level of the expressiona**2+2ab+b**2.
Similarly, the operator ‘* ’ and the operands2, a, andb describe the middle node of the next level of the
expression.

Branch Also a single node within a tree structure. Refers to one of the operands at a given level. For
example,a**2 is a branch of the top level of the expressiona**2+2ab+b**2.

Region Width The number of branches contained within the region of an expression.

Buffer An object used to group expressions together, for viewing as a whole or for storing into a file as a
single unit. A buffer can contain any number of expressions, and is designated by a name. When a collection
of expressions in a buffer is being edited, one of the expressions will be considered “current”, and the region
of the current expression will be outlined in a box.

Window A rectangular region of the screen which is used for viewing a portion of a buffer. Only a certain
number of the expressions within a buffer will be displayed in a window at single time, however this window
can be adjusted to view any portion of the buffer which will fit within the size of the window.

12.2. Editing 173

12.2.3.2 User Interface

The editor itself is structured into several components—expression and buffer manipulating primitives,
screen management routines, and a terminal/operating system interface. The expression and buffer ma-
nipulation is performed by a set of commands, which are listed below. Each command will have a long
name and may optionally be associated with a single key on the terminal keyboard. Typing the key associ-
ated with a command will cause the command to be invoked, in much the same way single keystrokes are
used by display-oriented text editors for moving a cursor and modifying text. An initial association between
commands and keys is provided by the editor, however this association can be easily modified by the user to
fit particular needs.

12.2.3.3 Keyboard Commands

The editor is ideally designed to be used from a Knight keyboard, i.e. one of the type used on a Lisp Machine
or on the MIT Plasma Physics Lab terminal system, however it can be used from an ASCII keyboard as
well. Three types of keystrokes are recognized: The first involves the typing of a single keyboard character
without any shift key being depressed. The second is the typing of a character with the ‘Control ’ key of
the keyboard depressed. The keystroke generated by typing the ‘A’ key with the ‘Control ’ key depressed
will be written as ‘Control-A ’ or ‘ C-A ’. The third is the typing of a character with the ‘Meta ’ key
depressed. Meta keys will be written with a prefix of ‘Meta- ’ or ‘ M-’. Terminals without Meta keys
can type these keystrokes by using the ‘ESCAPE’ key as a prefix character. Those of you familiar with
the øEmacs text editor will recognize that the keystroke/editor command association mechanism and user
interface in general are quite similar. In addition, the commands for moving the region within an expression
correspond to those used in øEmacs for moving the cursor within a text buffer.

The editor also has a primitive self-documenting capability. Hopefully, this will be extended to include
many of the features available in the current øEmacs system. Currently, one can type ‘?’ and then a key, to
see a description of the command associated with that key.

12.2.3.4 Usage

TheMaxima expression editor currently runs on both the Maxima Consortium machine and the Lisp Ma-
chines at MIT. The redisplay algorithm currently used is not very sophisticated, and the editor can only
effectively be used from terminals operating at 120 characters/sec speed or greater. When the redisplay
is improved to take advantage of such terminal capabilities as line insertion and deletion (as provided by
the Teleray 1061 or HP 2645 terminals) and variable scroll regions (as proved by the HDS Concept 100 or
DEC VT-100), the editor should be quite usable at 30 characters/sec. The editor is invoked by the function
DISPLAYEDIT which may be called with no arguments or with a number of expressions to edit.

12.2.3.5 Command Summary

The first set of commands deal with moving the region within an expression and selecting expressions within
a buffer. Those commands which end in “branch”, “level”, or “region” apply to the current expression,
i.e. involve movement within or modification of the current expression. These commands are generally
associated with the control keys. Those commands ending with “expression” apply to the current buffer and
may involve selection or creation of an expression within the buffer. These commands are associated with
the meta keys.

174 Chapter 12. Programming Environment

C-F Forward Branch

C-B Next Branch

M-F Grow Region

M-B Shrink Region

< Top Level

C-A First Branch

C-E Last Branch

C-P Previous Level

C-N Next Level

M-A First Expression

M-E Last Expression

M-P Previous Expression

M-N Next Expression

This group of commands deal with creating, deleting, and modifying expressions within a buffer, and with
performing the same operations on portions of an expression.

C-D Delete Region

C-K Kill Following Branches

C-C Copy Region

C-I Insert Branch

C-S Substitute In Region

C-T Transpose Branch

C-R Replace Region

C-Y Yank Branch

M-D Delete Expression

M-K Kill Following Expressions

M-C Copy Expression

M-I Insert Expression

M-S Substitute In Expression

M-T Transpose Expression

M-R Replace Expression

M-Y Yank Expression

12.2. Editing 175

Maxima Commands Each of the following commands are applied to the subexpression contained in the
region and the result displaces the subexpression originally there. These commands were selected as being
among the most commonly usedMaxima commands, but are by no means all that could be integrated into
the expression editor. AnyMaxima command which is frequently used and often applied to only part of an
expression can be easily added.

: Assign Expression

+ Add To Region

* Multiply To Region

^ Exponentiate Region

s Simplify Region

v Evaluate Region

r Ratsimp Region

m Multthru Region

d Differentiate Region

e Expand Region

f Factor Region

i Integrate Region

Auxiliary Commands

? Describe Key

C-G Command Abort

C-^ Control Prefix

ESC Meta Prefix

0-9 Numeric argumen

C-L New Window

C-X C-C Exit

C-X B Select Buffer

C-X C-B List Buffers

C-X C-E Evaluate Maxima Expression

C-X C-R Read File

C-X C-W Write File

176 Chapter 12. Programming Environment

12.3 System Functions

12.3.1 System Status

[Special Form]STATUS (arg)

will return miscellaneous status information about the user’sMaxima depending upon thearg given. Not all
of these features are supported on all versions ofMaxima. Permissible arguments and results are as follows:

TIME the time used so far in the computation.

DAY the day of the week.

DATE a list of the year, month, and day.

DAYTIME a list of the hour, minute, and second.

RUNTIME accumulated cpu time in milliseconds in the currentMaxima.

REALTIME the real time (in sec) elapsed since the user started up hisMaxima.

GCTIME the garbage collection time used so far in the current computation.

TOTALGCTIME gives the total garbage collection time used inMaxima so far.

FREECORE the number of blocks of core yourMaxima can expand before it runs out of address space.
(A block is 1024 words.)

FEATURE gives you a list of system features. For example, he list for øFranz UnixMaxima is LONG-
FILENAMES, SUN, PORTABLE, 68K, SYSTEMS, STRING, UNIX and FRANZ. Any of these fea-
tures may be given as a second argument toSTATUS(FEATURE,. . .); If the specified feature exists,
TRUE will be returned„ otherwiseFALSE. Note: these are system features, and not really user re-
lated.

[Special Form]SSTATUS (feature,package)

meaning “set status.” It can be used toSSTATUS(FEATURE,HACK_PACKAGE) so that×
STATUS(FEATURE,HACK_PACKAGE) will then returnTRUE. This can be useful for package writers,
to keep track of what features they have loaded in.

[variable, default: 304]VERSION

is the version number ofMaxima. This could be useful if the user wants to label his output, or to associate
bugs with a particular version.

12.3. System Functions 177

12.3.2 Timing the Evaluation of Expressions

[variable, default: FALSE]SHOWTIME

if TRUE then the computation time will be printed automatically with each output expression. By setting
SHOWTIME:ALL, in addition to the cpu timeMaxima now also prints out (when not zero) the amount of
time spent in garbage collection (gc) in the course of a computation. This time is of course included in the
time printed out ast ime= . (It should be noted that since thet ime= time only includes computation time
and not any intermediate display time or time it takes to load in out-of-core files, and since it is difficult
to ascribe responsibility for gc’s, the gctime printed will include all gctime incurred in the course of the
computation and hence may in rare cases even be larger thant ime=).

[Special Form]TIME (Di1, Di2, . . .)

gives a list of the times in milliseconds taken to compute theDi. (Note: the variable SHOWTIME default:
[FALSE], may be set toTRUE to have computation times printed out with each D-line.)

[Variable]LASTTIME

returns the time to compute the last expression in milliseconds presented as a list of time and gctime.

12.4 Error Handling

[Function]ERROR (arg1, arg2, . . .)

will evaluate and print its arguments and then will cause an error return to top levelMaxima, or to the
nearest enclosing ERRCATCH. This is useful for breaking out of nested functions if an error condition is
detected, or wherever one can’t type control-^. The variableERROR is set to a list describing the error, the
first of it being a string of text, and the rest the objects in question.ERRORMSG(); is the preferred way to
see the last error message.

[Variable]ERREXP

When an error occurs in the course of a computation,Maxima prints out an error message and terminates the
computation. ERREXP is set to the offending expression and the messageERREXP contains the offending
expression is printed. The user can then typeERREXP; to see this and hopefully find the problem.

[Variable]ERROR_SYMS

In error messages, expressions larger than ERROR_SIZE are replaced by symbols, and the symbols are
set to the expressions. The symbols are taken from the list ERROR_SYMS, and are initially ERREXP1,
ERREXP2, ERREXP3, etc. After an error message is printed, e.g.The function FOO doesn’t like ERREXP1
as input., the user can type ERREXP1; to see the expression. ERROR_SYMS may be set by the user to a
different set of symbols, if desired.

178 Chapter 12. Programming Environment

[variable, default: 10]PARSEWINDOW

the maximum number of lexical tokens that are printed out on each side of the error-point when a syntax
(parsing) error occurs. This option is especially useful on slow terminals. Setting it to -1 causes the entire
input string to be printed out when an error occurs.

[variable, default: 20]ERROR_SIZE

controls the size of error messages. For example, letU:(C**D**E+B+A)/(COS(X-1)+1);. U has an error
size of 24. So if ERROR_SIZE has value < 24 then

(C1) ERROR("The function", FOO,"doesn’t like", U,"as input.");

prints as:The function FOO doesn’t like ERREXP1 as input. IfERROR_SIZE>24 then it prints as:

E
D

C + B + A
The function FOO doesn’t like -------------- as input.

COS(X - 1) + 1

Expressions larger than ERROR_SIZE are replaced by symbols, and the symbols are set to the expres-
sions. The symbols are taken from the user-settable list ERROR_SYMS default:[ERREXP1, ERREXP2,
ERREXP3]. The default value of this switch might change depending on user experience.

[variable, default: FALSE]ERRORFUN

if set to the name of a function of no arguments will cause that function to be executed whenever an error
occurs. This is useful in BATCH files where the user may want his or herMaxima killed or his terminal
logged out if an error occurs. In these cases ERRORFUN would be set to QUIT or LOGOUT.

[Function]ERRORMSG ()

reprints the last error message. This is very helpful if you are using a display console and the message has
gone off the screen. The variable ERROR is set to a list describing the error, the first of it being a string of
text, and the rest the objects in question.TTYINTFUN:LAMBDA([],ERRORMSG(),PRINT("")); will set
up the user-interrupt character to reprint the message.

See section2.1.3[Throw and Catch], page15, for a programming construct useful for catching errors.

12.5 Break Points and Debugging

[Function]BREAK (arg1, . . .)

Will evaluate and print its arguments and will then cause a Maxima-BREAK at which point the user can
examine and change his environment. Upon typingEXIT; the computation resumes. Control-A will enter

12.5. Break Points and Debugging 179

a Maxima-BREAK from any point interactively.EXIT; will continue the computation. Control-X may be
used inside theMaxima-BREAK to quit locally, without quitting the main computation.

[variable, default: FALSE]DEBUGMODE

causesMaxima to enter aMaxima break loop whenever aMaxima error occurs if it isTRUE and to
terminate that mode if it isFALSE. If it is set to ALL then the user may examine BACKTRACE for the list
of functions currently entered.

[Variable]BACKTRACE

whenDEBUGMODE:ALL has been done, this variable has as value a list of all functions currently entered.

[Function]DEBUGPRINTMODE ()

returns current printing mode used by the DEBUG function.DEBUGPRINTMODE(LISP) sets it to lisp
printing (the default),DEBUGPRINTMODE(x, y) wherex is FALSE or a positive fixnum, sets the max-
imum length to which Lisp expressions are printed tox, and the maximum depth toy. This is used to
abbreviate printout.FALSE meansI NFINITY.

DEBUGPRINTMODE(Maxima) sets it to try printing expressions as they would be displayed atMaxima
level, except with more information and a slightly different notation.

[Function]LISPDEBUGMODE (TRUE)

will cause lisp errors to enter normal lisp break points, from which it is normal to call the lisp function
(DEBUG) which prompts for single character commands to move up and down the evaluation stack at the
point of the error. The following are some of its commands:

U move up the stack.

D move down the stack.

S pretty-print the expression current stack level.

A print indented list of function calls on stack.

? type out list of commands.

LISPDEBUGMODE is useful for debugging translated code. It is possible to do sophisticated error recovery
from inside these break loops. DoLISPDEBUGMODE(FALSE) to turn off.LISPDEBUGMODE() returns
present debugging state. Note: LISPDEBUGMODE also passes its argument to DEBUGMODE.

In Lisp (DEBUG) calls the lisp stack debugger when at lisp level (e.g. a lisp debugging break).

[Special Form]TOPLEVEL

During a break one may typeTOPLEVEL;. This will cause top-levelMaxima to be entered recursively.
Labels will now be bound as usual. Everything will be identical to the previous top-level state except that the

180 Chapter 12. Programming Environment

computation which was interrupted is saved. The function TOBREAK will cause the break which was left
by typingTOPLEVEL; to be re-entered. If TOBREAK is given any argument whatsoever, then the break
will be exited, which is equivalent to typingTOBREAK() immediately followed byEXIT;.

[Special Form]TOBREAK ()

causes theMaxima break which was left by typingTOPLEVEL; to be re-entered. If TOBREAK is given any
argument whatsoever, then the break will be exited, which is equivalent to typingTOBREAK() immediately
followed byEXIT;.

[variable, default: FALSE]SETCHECKBREAK

if set toTRUE will cause a Maxima-BREAK to occur whenever the variables on the SETCHECK list are
bound. The break occurs before the binding is done. At this point, SETVAL holds the value to which the
variable is about to be set. Hence, one may change this value by resetting SETVAL.

[Variable]SETVAL

holds the value to which a variable is about to be set when a SETCHECKBREAK occurs. Hence, one may
change this value by resetting SETVAL.

12.6 Tracing

[Function]TRACE (name1, name2, . . .)

gives a trace printout whenever the functions mentioned are called.TRACE() prints a list of the
functions currently under TRACE. To remove tracing, see UNTRACE. There is a demo in the file:
‘demo/trace.dem ’. There are some usage notes in the file: ‘macdoc/trace.usg ’.

[Special Form]UNTRACE (name, . . .)

removes tracing invoked by the TRACE function.UNTRACE() removes tracing from all functions.

[Special Form]TRACE_OPTIONS (fun, option1, option2, . . .)

gives the functionfun the options indicated. An option is either a keyword or an expression. The possible
keywords are:

NOPRINT if TRUE do no printing.

BREAK if TRUE give a breakpoint.

LISP_PRINT if TRUE use lisp printing.

INFO Extra info to print.

12.6. Tracing 181

ERRORCATCH if TRUE errors are caught.

A keyword means that the option is in effect. Using a keyword as an expression, e.g.
NOPRINT(predicate_function) means to apply thepredicate_function (which is user-defined) to some argu-
ments to determine if the option is in effect. The argument list to this predicate function is always[LEVEL,
DIRECTION, FUNCTION, ITEM] where LEVEL is the recursion level for the function. DIRECTION is
eitherENTER or EXIT. FUNCTION is the name of the function. ITEM is either the argument list or the
return value. Its usage and motivation is probably best shown by the following example:

(C21) DEBUGMODE:TRUE$ /* For best results */
(C22) f(x):=1/x$
(C23) trace(F);
(D23) [F]
(C24) trace_options(f,errorcatch);
(D24) [ERRORCATCH]
(C25) f(0);
1 Enter F [0]
Division by 0
ERROR-BREAK (Type EXIT; to exit.)
_f(x):=if x=0 then und else 1/x$
_exit;
Exited from the break
Error during application of F at level 1

Do you want to:
0 -> Signal an error, i.e. PUNT?
1 -> Retry with same arguments?
2 -> Retry with new arguments?
3 -> Exit with user supplied value

1;
Re-applying the function F
1 Enter F [0]
1 Exit F UND
(D25) UND

What the person did was to realize that the definition ofF was wrong, and then simply re-define it while in
the break loop, tellingMaxima to retry the function with the same arguments as before. However, had it
been the caller ofF who was at fault, he could have fixed the caller, and then used option2 to manually give
F the correct arguments. Option3 is used when you don’t want to fix anything yet, and just want to manually
makeF return the correct value. Option0 is good for returning to the next higher dynamic level of control,
(hence the not-quite-accurate football analogyPUNT). There is a demo in the file: ‘demo/trace.dem ’.
There are some usage notes in the file: ‘macdoc/trace.rcn ’. ḑone

[Function]TIMER (fun)

will put a timer-wrapper on the functionfun, within the TRACE package, i.e. it will print out the time spent
in computingfun.

[Special Form]TIMER_INFO (F)

will print the information on timing which is stored asGET(’F,’CALLS); GET(’F,’RUNTIME); and
GET(’F,’GCTIME);. This is a function in the TRACE package.

182 Chapter 12. Programming Environment

12.6.1 Tracing Flags

[Variable]TRACE_BREAK_ARG

Bound to list of argument duringBREAK ENTER, and the return value duringBREAK EXIT. This lets
you change the arguments to a function, or make a function return a different value, which are both useful
debugging hacks.

[Variable]TRACE_MAX_INDENT

The maximum indentation of trace printing.

[variable, default: TRUE]TRACE_SAFETY

Consider for example

F(X):=X;
BREAKP([L]):=(PRINT("Hi!",L), FALSE), TRACE(F,BREAKP);
TRACE_OPTIONS(F,BREAK(BREAKP));
F(X);

Note that even thoughBREAKP is traced, and it is called, it does not print out as if it were traced. If you
set TRACE_SAFETY toFALSE thenF(X); will cause a normal trace-printing forBREAKP. However, then
considerTRACE_OPTIONS(BREAKP,BREAK(BREAKP)); WhenTRACE_SAFETY:FALSE; F(X); will
give an infinite recursion, which it would not if TRACE_SAFETY were turned on.

12.7 Operating System

[Function]TIMEDATE ()

prints out the current date and time.

12.7. Operating System 183

184

CHAPTER

THIRTEEN

Translation and Compiling

13.1 Mode Declarations

[Function]MODE_DECLARE (y1, mode1, y2, mode2, . . .)

MODE_DECLARE is used to declare the modes of variables and functions for subsequent translation or
compilation of functions. Its arguments are pairs consisting of a variableyi, and a mode which is one of
BOOLEAN, FIXNUM, NUMBER, RATIONAL, or FLOAT. Eachyi may also be a list of variables all of
which are declared to havemodei. MODEDECLARE is a synonym for this.

If yi is an array, and if every element of the array which is referenced has a value, thenARRAY(yi,
COMPLETE, dim1, dim2, . . .) rather thanARRAY(yi, dim1, dim2, . . .) should be used when first
declaring the bounds of the array. If all the elements of the array are of mode FIXNUM or FLOAT, use
FIXNUM or FLOAT instead of COMPLETE. Also if every element of the array is of the same mode,
saym, thenMODE_DECLARE(COMPLETEARRAY(yi),m)) should be used for efficient translation. Also
numeric code using arrays can be made to run faster by declaring the expected size of the array, as in:
MODE_DECLARE(COMPLETEARRAY(A[10,10]),FLOAT) for a floating point number array which is 10
x 10.

Additionally one may declare the mode of the result of a function by usingFUNCTION(F1, F2, . . .) as an
argument; hereF1,F2,. . . are the names of functions. For example the expression,

MODE_DECLARE([FUNCTION(F1,F2,\dots),X],FIXNUM,Q,COMPLETEARRAY(Q),FLOAT)

declares that X and the values returned by F1,F2,. . . are single-word integers and that Q is an array of floating
point numbers.

MODE_DECLARE is used either immediately inside of a function definition or at top-level for global
variables. See the file ‘maxdoc/mcompi.doc ’ for some examples of the use ofMODE_DECLARE in
translation and compilation.

[Special Form]MODE_IDENTITY (arg1, arg2)

A special form used with MODE_DECLARE and MACROS to declare, e.g., a list of lists of flonums, or
other compound data object. The first argument to MODE_IDENTITY is a primitive value mode name as
given to MODE_DECLARE (i.e.[FLOAT,FIXNUM,NUMBER, LIST,ANY]), and the second argument is
an expression which is evaluated and returned as the value of MODE_IDENTITY. However, if the return

185

value is not allowed by the mode declared in the first argument, an error or warning is signalled. The
important thing is that the MODE of the expression as determined by theMaxima to Lisp translator, will be
that given as the first argument, independent of anything that goes on in the second argument. E.g.X:3.3;
MODE_IDENTITY(FIXNUM,X); is an error.MODE_IDENTITY(FLONUM,X) returns 3.3.

This has a number of uses, e.g., if you knew thatFIRST(L) returned a number then you might write
MODE_IDENTITY(NUMBER,FIRST(L)). However, a more efficient way to do it would be to define a
new primitive,

FIRSTNUMB(X) ::= BUILDQ([X],MODE_IDENTITY(NUMBER,X));

and useFIRSTNUMB every time you take the first of a list of numbers.

13.1.1 Mode Declaration Flags

[variable, default: TRUE]MODE_CHECKP

If TRUE, MODE_DECLARE checks the modes of bound variables.

[variable, default: FALSE]MODE_CHECK_ERRORP

If TRUE, MODE_DECLARE calls ERROR.

[variable, default: TRUE]MODE_CHECK_WARNP

If TRUE, mode errors are described.

13.2 Translation

[Special Form]TRANSLATE (fun1, fun2, . . .)

translates the user defined functionsfuni from theMaxima language to Lisp (i.e. it makes them EXPRs).
This results in a gain in speed when they are called. There is now a version ofMaxima with theMaxima
to lisp translator pre-loaded into it. Functions to be translated should include a call to MODE_DECLARE
at the beginning when possible in order to produce more efficient code. For example:

F(X1,X2,\dots) := BLOCK([v1,v2,\dots],
MODE_DECLARE(v1,mode1,v2,mode2,\dots),\dots)

where theX1,X2,. . . are the parameters to the function and thev1,v2,. . . are the local variables. The names
of translated functions are removed from the FUNCTIONS list if SAVEDEF isFALSE (see below), and
are added to the PROPS lists. Functions should not be translated unless they are fully debugged. Also,
expressions are assumed simplified; if they are not, correct but non-optimal code gets generated. Thus,
the user should not set the SIMP switch toFALSE which inhibits simplification of the expressions to be
translated.

186 Chapter 13. Translation and Compiling

One can translate functions stored in a file by giving TRANSLATE an argument which is a file specification.
The result returned by TRANSLATE is a list of the names of the functions TRANSLATEd. In the case of a
file translation, the corresponding element of the list is a list of the first and second new file names containing
the Lisp code resulting from the translation. This will be fn1 Lisp on the disk directory dir. The file of Lisp
code may be read intoMaxima by using the LOADFILE function.

[Function]TRANSLATE_FILE (file)

translates a file ofMaxima code into a file of Lisp code. It takes one or two arguments. The first
argument is the name of theMaxima file, and the optional second argument is the name of the Lisp
file to produce. The second argument defaults to the first argument with second file name the value
of TR_OUTPUT_FILE_DEFAULT which defaults to. LSP. Also produced is a file of translator warn-
ing messages of various degrees of severity. The second file name is usually. UNL. This file con-
tains valuable (albeit obscure for some) information for tracking down bugs in translated code. Do
APROPOS(TR_) to get a list of TRANSLATE switches. In summary,TRANSLATE_FILE([FOO.BAR]),
LOADFILE(FOO.TRLISP) is equal toBATCH(FOO,BAR) modulo certain restrictions (the use of ” and %
for example).

13.2.1 Translation Flags

[variable, default: FALSE]TRANSLATE

If TRUE, causes automatic translation of a user’s function to Lisp. Note that translated functions may not
run identically to the way they did before translation as certain incompatpbilities may exist between the
Lisp andMaxima versions. Principally, the RAT function with more than one argument, and the RATVARS
function should not be used if any variables are MODE_DECLAREd CRE form. Also the PREDERROR
default: [FALSE] setting will not translate.

[variable, default: TRUE]SAVEDEF

if TRUE will cause theMaxima version of a user function to remain when the function is TRANSLATEd.
This permits the definition to be displayed by DISPFUN, and allows the function to be edited.

[variable, default: TRUE]TRANSRUN

if FALSE will cause the interpreted version of all functions to be run (provided they are still around), rather
than the translated version.

[Variable]TRANSBIND

if TRUE removes global declarations in the local context. This applies to variables which are formal param-
eters to functions which one is TRANSLATEing fromMaxima code to Lisp.

13.2. Translation 187

[variable, default: FALSE]TRANSCOMPILE

if true, TRANSLATE will generate the declarations necessary for possible compilation. The COMPFILE
command usesTRANSCOMPILE:TRUE;.

[variable, default: COMPFILE]UNDECLAREDWARN

A switch in the Translator. There are four relevant settings:

FALSE never print warning messages.

COMPFILE warn when in COMPFILE

TRANSLATE warn when in TRANSLATE and when TRANSLATE:TRUE

ALL warn in COMPFILE and TRANSLATE

DoMODE_DECLARE(variable,ANY) to declare a variable to be a generalMaxima variable (i.e. not limited
to being FLOAT or FIXNUM). The extra work in declaring all your variables in code to be compiled should
pay off.

[variable, default: TRUE]TR_ARRAY_AS_REF

if TRUE runtime code uses the value of the variable as the array.

[variable, default: TRUE]TR_BOUND_FUNCTION_APPLYP

Gives a warning if a bound variable is found being used as a function.

[variable, default: FALSE]TR_FILE_TTY_MESSAGESP

Determines whether messages generated by TRANSLATE_FILE during translation of a file will be sent to
the TTY. If FALSE (the default), messages about translation of the file are only inserted into the UNLisp
file. If TRUE, the messages are sent to the TTY and are also inserted into the UNLisp file.

[variable, default: TRUE]TR_FLOAT_CAN_BRANCH_COMPLEX

States whether the arc functions might return complex results. The arc functions are SQRT, LOG, ACOS,
etc. When it isTRUE thenACOS(X) will be of mode ANY even ifX is of mode FLOAT. WhenFALSE
thenACOS(X) will be of mode FLOAT if and only ifX is of mode FLOAT.

[variable, default: GENERAL]TR_FUNCTION_CALL_DEFAULT

FALSE means give up and call MEVAL, EXPR means assume Lisp fixed arg function. GENERAL, the
default gives code good for MEXPRS and MLEXPRS but not MACROS. GENERAL assures variable bind-
ings are correct in compiled code. In GENERAL mode, when translatingF(X), if F is a bound variable,
then it assumes thatAPPLY(F,[X]) is meant, and translates a such, with appropriate warning. There is no

188 Chapter 13. Translation and Compiling

need to turn this off. With the default settings, no warning messages implies full compatibility of translated
and compiled code with theMaxima interpreter.

[variable, default: FALSE]TR_GEN_TAGS

If TRUE, TRANSLATE_FILE generates a Tags file for use by the text editor.

[variable, default: FALSE]TR_NUMER

If TRUE numer properties are used for atoms which have them, e.g. %PI.

[variable, default: 100]TR_OPTIMIZE_MAX_LOOP

The maximum number of times the macro-expansion and optimization pass of the translator will loop in
considering a form. This is to catch macro expansion errors, and non-terminating optimization properties.

[variable, default: TRLISP]TR_OUTPUT_FILE_DEFAULT

This is the second file name to be used for translated lisp output (on øMC).

[variable, default: FALSE]TR_PREDICATE_BRAIN_DAMAGE

If TRUE, output possible multiple evaluations in an attempt to interface to the COMPARE package.

[variable, default: FALSE]TR_SEMICOMPILE

if TRUE TRANSLATE_FILE and COMPFILE output forms which will be macro expanded, but not com-
piled into machine code by the lisp compiler.

[Variable]TR_STATE_VARS

Default values: [TRANSCOMPILE, TR_SEMICOMPILE, TR_WARN_UNDECLARED,
TR_WARN_MEVAL, TR_WARN_FEXPR, TR_WARN_MODE, TR_WARN_UNDEFINED_VARIABLE,×
TR_FUNCTION_CALL_DEFAULT, TR_ARRAY_AS_REF, TR_NUMER]. The list of the switches that
affect the form of the translated output. This information is useful to system people when trying to debug
the translator. By comparing the translated product to what should have been produced for a given state, it
is possible to track down bugs.

[Variable]TR_TRUE_NAME_OF_FILE_BEING_TRANSLATED

Is bound to the quoted string form of theTRUE name of the file most recently translated by TRANS-
LATE_FILE.

[Variable]TR_VERSION

The version number of the translator.

13.2. Translation 189

[Function]TR_WARNINGS_GET ()

Prints a list of warnings which have been given by the translator during the current translation.

[variable, default: TRUE]TR_WARN_BAD_FUNCTION_CALLS

Gives a warning when when function calls are being made which may not be correct due to improper
declarations that were made at translate time.

[variable, default: COMPFILE]TR_WARN_FEXPR

Gives a warning if any FEXPRs are encountered. FEXPRs should not normally be output in translated code,
all legitimate special program forms are translated.

[variable, default: COMPFILE]TR_WARN_MEVAL

Gives a warning if the function MEVAL gets called. If MEVAL is called that indicates problems in the
translation.

[variable, default: ALL]TR_WARN_MODE

Gives a warning when variables are assigned values inappropriate for their mode.

[variable, default: COMPILE]TR_WARN_UNDECLARED

Determines when to send warnings about undeclared variables to the TTY.

[variable, default: ALL]TR_WARN_UNDEFINED_VARIABLE

Gives a warning when undefined global variables are seen.

[variable, default: TRUE]TR_WINDY

Generate helpful comments and programming hints.

13.2.2 Optimizing

When using TRANSLATE and generating code withMaxima, there are a number of techniques which
can save time and be helpful. In particular, the function FLOATDEFUNK from ‘transl/optimu.mc ’
creates a function definition from a math-like expression, but it optimizes it (with OPTIMIZE) and puts in
the MODE_DECLAREations needed to COMPILE correctly. (This can be done by hand, of course). There
is a demo in the file: ‘demo/optimub.dem ’.

190 Chapter 13. Translation and Compiling

[Function]OPTIMIZE (exp)

returns an expression that produces the same value and side effects asexp but does so more efficiently by
avoiding the recomputation of common subexpressions. OPTIMIZE also has the side effect of collapsing
its argument so that all common subexpressions are shared.

[Function]COLLAPSE (exp)

collapses its argument by causing all of its common (i.e. equal) subexpressions to share (i.e. use the same
cells), thereby saving space. (COLLAPSE is a subroutine used by the OPTIMIZE command.) Thus, calling
COLLAPSE may be useful before using FASSAVE or after loading in a SAVE file. You can collapse several
expressions together by usingCOLLAPSE([expr1,. . . ,exprN]);. Similarly, you can collapse the elements of
the array A by doingCOLLAPSE(LISTARRAY(’A));.

[variable, default: %]OPTIMPREFIX

The prefix used for generated symbols by the OPTIMIZE command.

13.3 Compiling

[Special Form]COMPILE (fun1, fun2, . . .)

The COMPILE command is a convenience feature inMaxima. It handles the calling of the function COMP-
FILE, which translatesMaxima functions into lisp, the calling of the lisp compiler on the file produced by
COMPFILE, and the loading of the output of the compiler, know as a FASL file, into theMaxima. It also
checks the compiler comment listing output file for certain common errors. All these things can be done
manually of course, but I have found that using COMPILE, with its convenient default actions, make some
work go much faster, mainly use of PLOT2 and numerical integration. COMPILE() ; causesMaxima to
prompt for arguments.

COMPILE(fun1, fun2, . . .) compiles the functions, it uses the name offun1 as the first name of the file
to put the lisp output.COMPILE(ALL); or COMPILE(’FUNCTIONS); will compile all functions. The
arguments to COMPILE are evaluated, thereforeCOMPILE(FUNCTIONS) will not work. You must do
COMPILE(’FUNCTIONS); This is so that COMPILE works when called inside a program the same as it
does when called on a C-line. See section13.3.1[Compiler Declarations], page192 for the definition of
FLOATDEFUNK.

[Special Form]COMPFILE ([file], f1, f2, . . . , fn)

Compiles functionsfi in the filefile.

[Function]COMPILE_LISP_FILE ("input-filename")

which takes an optional second argument ofoutput-filename, can be used in conjunction with
TRANSLATE_FILE("filename"). For convenience you might define

13.3. Compiling 191

COMPILE_AND_LOAD(FILENAME):=
LOAD(COMPILE_LISP_FILE(TRANSLATE_FILE(FILENAME)[2]))[2]);

These file-oriented commands are to be preferred over the use of COMPILE, COMPFILE, and the TRANS-
LATE SAVE combination.

[variable, default: FALSE]COMPGRIND

whenTRUE function definitions output by COMPFILE are pretty-printed.

13.3.1 Compiler Declarations

In order to get the most out of compilation, declarations about what things are, need to be made. The basic
idea of compilation is for the computer to make certain calculations only once, that is, at compile time. The
not-so-basic ideas are optimization and variable binding semantics, which we can talk about some other
time.

For example:F(X,Y):=X*Y; If what you want to do is callF(3.2,2.2) then there is some inefficiency, because
you could have also doneF(’X,’X) and expected to receive backX**2, and it takes many times longer for
Maxima to figure out that it needs to call the floating point multiply instruction, than it does to execute this
instruction.

F(X,Y):=(MODE_DECLARE(X,FLOAT,Y,FLOAT),X*Y); tells Maxima thatX andY are the equivalent of
the Fortran REAL, and when you COMPILE or TRANSLATE the function, it can use that information to
decide to use the multiply instruction.

In general, the MODE_DECLARE should appear as the first function call where ever new variables are
introduced. Variables should be MODE_DECLAREd as soon as they are introduced, not before, or after.
By introduced, we mean the lexical contour in which they appear. The following things, and only these
things, mark the beginning of a contour:

:= starts a contour for all the formal parameters, and for all free variables used in the function.

BLOCK starts a contour for all of the block variables.

DO starts a contour for its FOR variable, presently the FOR variable should be declared in the next outer
contour though, this bug will be soon fixed. Then a proper example would beFOR X:X1 THRU XN
STEP DX DO(MODE_DECLARE(X,FLOAT),SUM:SUM+F(X)*DX)

LAMBDA starts a contour for its lambda variables.

Certain constructs, such as SUM, have an implied contour of limited scope. e.g.SUM(J**2,J,1,N). In this
case, it is not the responsibility of the user to declare the mode of the variableJ , which is bound by the
construct. The code which handles the SUM can look at those modes of the lower and upper limits and infer
the mode ofJ .

192 Chapter 13. Translation and Compiling

F(X,Y):=(MODE_DECLARE([X,Y],FLOAT),SIN(4*X)+SQRT(1+X^2)*COS(X));
F(X,Y):=(MODE_DECLARE([X,Y,A,B],FLOAT,N,INTEGER), SQRT(A*B*X+Y^N));
F(X):=(MODE_DECLARE(X,FLOAT),

BLOCK([P,Q],
MODE_DECLARE([P,Q],FLOAT),
P:SIN(X)*X^2,
Q:4*X^2-X+14,
IF X>0 THEN SQRT(P^2+ABS(P*Q)+SIN(Q)+1)

ELSE P+Q/10));

/* dY/dX=F(X,Y), [X0,Y0] and X_FIN and DX */

Declaring that a function will return a floating point number:

EULER(F,X0,Y0,X_FIN,DX):=
(MODE_DECLARE([X0,Y0,X_FIN,DX],FLOAT,FUNCTION(F),FLOAT),

BLOCK([Y:Y0,X:X0],
MODE_DECLARE([Y,X],FLOAT),
LOOP, IF X>=X_FIN THEN RETURN(Y),
Y:Y+DX*APPLY(F,[X]), X:X+DX,
GO(LOOP)));

Or, without the GO:

EULER(F,X0,Y0,X_FIN,DX):=
(MODE_DECLARE([X0,Y0,X_FIN,DX],FLOAT,FUNCTION(F),FLOAT),

BLOCK([Y:Y0],
MODE_DECLARE([Y,X],FLOAT),
FOR X:X0 THRU X_FIN STEP DX

DO Y:Y+DX*APPLY(F,[X]),
Y);

Declaring arrays, for example,A is an array that returns some number:

SUM_ARRAY(A):=(MODE_DECLARE(ARRAY(A),NUMBER),
IF LENGTH(ARRAYDIMS(A))#1 THEN ERROR("Takes only 1 dim array"),
BLOCK([N:ARRAYDIMS(A)[1],SUM:0],
MODE_DECLARE([N,J],FIXNUM,SUM,NUMBER),
FOR J:1 THRU N DO SUM:SUM+A[J],

SUM));

[Function]FLOATDEFUNK (’fun, [’var], exp)

is a utility for making floating point functions from mathematical expression. It will take the input ex-
pression and FLOAT it, then OPTIMIZE it, and then insert MODE_DECLAREations for all the vari-
ables. This isthe way to use ROMBERG, fPLOT2, INTERPOLATE, etc. e.g.EXP:expression;
FLOATDEFUNK(’F,[’X],EXP); will define the functionF(X) for you.

13.3. Compiling 193

194

CHAPTER

FOURTEEN

Plotting and Graphing

Maxima has a large number of PLOT commands, ranging from simple character plots of specified functions
and data points to plotting 3 dimensional surfaces. Tektronix 4010 and 4013, Imlac PDS 1 and PDS 4 (using
ARDS Graphics conventions), the XGP and the Gould Line printer (at MIT), as well as printing and display
consoles are supported by the plot packages. See PLOT, PLOT2, PLOT3D, GRAPH, GRAPH2, GRAPH3D,
MULTIGRAPH, PARAMPLOT, and PARAMPLOT2 for details, as well as the file ‘share/plot2.usg ’.

14.1 Character Plotting

[Special Form]PLOT (exp, var, low, high)

produces a character-plot of the expressionexp asvar (the independent variable) ranges fromlow to high.
An optional fifth argument ofI NTEGER causes PLOT to choose only integer values forvar in the given
domain. For graphics terminals there are routines which do more sophisticated plots; see PLOT2. There is
a demo in the file: ‘demo/plot.dem ’.

PLOT(fun(x), x, [x1, x2, x3, . . . , xn]) Plots the functionfun(x) for the valuesx1, x2, x3, . . . , xn.

[Special Form]PARAMPLOT (f1(t), f2(t), t, low, high)

plots the plane curvef(t) = (f1(t), f2(t)) with parametert. The syntax is basically like that of PLOT. For
example,

PARAMPLOT(COS(T),SIN(T),T,0,2*\%PI)
PARAMPLOT([f1(t), g1(t), \dots, h1(t)],

[f2(t), g2(t), \dots, h2(t)], t, low, high,
[list of plotting characters])

plots the plane curvesf(t) = (f1,f2), g(t) = (g1,g2),. . . ,h(t) = (h1,h2) using the specified plotting characters,
or the default* . For example,

PARAMPLOT([COS(T),COS(T)+7],[SIN(T),SIN(T)],
T,0,2*\%PI,["\"])

plots two circles.

195

14.1.1 Character Plotting Flags

[variable, default: FALSE]XAXIS

if set toTRUE will cause theY=0 axis to be displayed in PLOT commands.

[variable, default: FALSE]YAXIS

If set toTRUE will cause theX=0 axis to be displayed in PLOT commands.

[Variable]PLOT

the height of the area used for plotting, in terms of characters.

14.2 Character Graphing

[Special Form]GRAPH (xlist, ylist, xlabel, ylabel)

graphs the two lists of data points, and labels the axes as indicated or omits labels if just the first two
arguments are given.

GRAPH([x1, x2, x3, . . . , xn], [y1, y2, y3, . . . , yn]) graphs the two sets of data points.

GRAPH([[x1, y1], [x2, y2], . . . , [xn, yn]]) graphs the points specified by the list of coordinate pairs.

GRAPH(xset, [yset1, yset2,. . . , ysetn],optional-args) allows graphing of one x-domain with several y-
ranges; e.g.

GRAPH([0,1],[[0,1],[1,2]],["\&"]).

There is a demo in the file: ‘demo/graph.dem ’.

[Special Form]MULTIGRAPH ([[xset1, yset1], . . . , [xsetn, ysetn]], optional-args)

allows the user to produce a scatter-graph involving several x-domains each with a single y-range; e.g.
MULTIGRAPH([[[0,1],[0,1]],[[3,4],[1,2]]],["&"]).

[Special Form]GRAPH3D (x-lists, y-lists, z-lists, optional-args)

takes 3 arguments (GRAPH2 takes 2), and interprets them as lists ofx , y , andz points which it uses to draw
lines using the 3d transformations. It can be used to add lines (e.g. axes) to your 3D plot. The hidden line
routines are not used.

196 Chapter 14. Plotting and Graphing

14.3 2D Plotting

The capabilities of the routines described here include plotting of several curves on a single graph, plotting
several graphs in different positions on the screen, saving plots, replotting plots with different scales without
having to recompute any points, plotting of 3 dimensional surfaces, plotting of user defined dashed lines and
symbols.

The devices supported are: The Tektronix 4010, 4013, 4025 and 4662, the Imlac PDS 1 and PDS 4 (using
ARDS graphics conventions), the XGP, the Gould line-printer (in 38-246), the Dover, some Versatecs on the
MFE-NET and in a preview mode printing and display consoles.

[Special Form]PLOT2 (y-exprs, variable, var-range, optionals-args)

plotsy-exprs on they axis as variable (thex axis) takes on values specified byvar-range. y-exprs can take
one of two forms:

1. exp plots a curve ofexp against variable

2. [expr1,expr2, .., expri, .. ,exprn] plots n curves ofexpri against variable.expri gets evaluated in
the contextFLOAT(EV(expri,variable=value gotten from var-range, NUMER)). It is an error if this
doesn’t result in a floating point number.

var-range can have the following forms:

1. low, high wherelow andhigh evaluate to numbers.low may be either greater or less thanhigh.
variable will take on PLOTNUM values equally spaced betweenlow andhigh.

Note that the first argument will be evaluated atlow first e.g.PLOT2(1/X, X, -1, -3); calculates1/(-
1.0) before1/(-3.0). This will only make a difference if the computation of the first argument changes
a variable which changes the value returned by subsequent computation. Whether or notlow < high,
min(low, high) will be on the left of the plot.

2. low,high,INTEGER. As in (1), except variable will take on all integer values betweenlow andhigh

inclusive.

3. [val1,val2, . . . , valn] variable takes the values specified by the list.

4. arrayname wherearrayname is the name of a declared floating-point one-dimensional array (i.e. de-
clared byARRAY(arrayname,FLOAT, max-index);).variable takes the values from arrayname[0] thru
arrayname[max-index] (max-index is the maximum index ofarrayname.

optional-args can be any of the following:

1. X-Label, Y-Label or Title descriptor

2. Line type descriptor

3. FIRST, SAME and LAST

4. POLAR, LOG, LINLOG, LOGLIN

14.3. 2D Plotting 197

The optional arguments may appear in any order. The rule for evaluation of the optional args is as follows.
If the argument is atomic it gets evaluated. The resulting arguments are the ones that get used. If you want
to plot more than 3-4 curves on the same plot investigate using the NOT3D option to PLOT3D. Examples:

PLOT2(SIN(X),X,-\%PI,\%PI); plots sin(X) against X as X takes on
\vr{PLOTNUM} values between -\%PI to \%PI

PLOT2(X!,X,0,6,INTEGER); plots X! as X takes integral values
between 0 and 6

F(X):=SQRT(X);
PLOT2(F(X),X,[-2,3,100.12]); plots F(X) as X takes the values in the

values in the list
PLOT2([X+1,X^2+1],X,-1,1); plots 2 curves on top of each other

PLOT2(y-funs, var-range, optionals-args) is the alternative form for PLOT2.y-funs must be a function of
one argument or a list of functions of one argument. The functions must be either translated or compiled
functions which return a floating point number when it is given floating point arg (or integer arg if the
INTEGER arg to PLOT2 is given). This form of PLOT2 acts as though you had given a argument to the
y-funs, and also specified that argument as the variable in the form above. E.g.PLOT2(F,-2,2); acts like
PLOT2(F(X),X,-2,2);. This is supposed to provide a quicker evaluation of the first arg, and for that reason
no
¯

checking is done on the result. If the wrong kind of number is returned, the resulting plot will not be
meaningful.

TRANSLATE:TRUE;
F(X):=(MODE_DECLARE(X,FLOAT),EXP(-X*X));
PLOT2(F,-2,2);
PLOT2(F,[-2,-1,0,1,2]);
ARRAY(V,FLOAT,10);
FOR I FROM 0 THRU 10 DO V[I]:FLOAT(I*I);
PLOT2(F,V);

There is a demo in the file: ‘demo/plot2.dem ’. There is a demo in the file: ‘share/plot2.usg ’.

[Special Form]PARAMPLOT2 (x-exprs, y-exprs, variable, var-range, optional-args)

plotsx-exprs as thex coordinate againsty-exprs as they coordinate. The format for the first two arguments
is the same as that for the first argument to PLOT2. Thus ifx-exprs is [x-expr1, x-expr2, . . . , x-expri, . . . ,x-

exprn], andy-exprs is [y-expr1, y-expr2, . . . ,y-expri,. . . ,y-exprk], thenmax(n,k) curves will be plotted.
They will be (assuming n > k):x-expr1 vs. y-expr1, . . . , x-exprk vs. y-exprk, x-expr(k+1) vs. y-exprk, . . . ,

x-exprn vs. y-exprk. The format for the remaining arguments is the same as for PLOT2.

PARAMPLOT2(x-funs.y-funs,var-range,optional-args) efficiently evaluates its first 2 arguments in the same
way that the alternative form of PLOT2 works.

Examples:

TRANSLATE:TRUE; /* causes automatic translation */
F(X):=(MODE_DECLARE(X,FLOAT),COS(X));
G(X):=(MODE_DECLARE(X,FLOAT),SIN(X));
PARAMPLOT2(F,G,0,2*\%PI);

plotsF(x) vs G(x) as x goes from 0 to 2*%PI

198 Chapter 14. Plotting and Graphing

PARAMPLOT2(SIN(T),COS(T),T,0,2*\%PI);

plotss in(T) for the x-axis andcos(T) for the y-axis asT takes on PLOTNUM values between0 and2*%PI.
If EQUALSCALE is TRUE, this draws a circle.

PLOTNUM default: [20] is the number of points PLOT2 and PARAMPLOT2 plot when given thelow,high

type of variablerange. The default when PLOT2 is first called is 20, which is sufficient for trying things out.
100 is a suitable value for a final hard copy.

14.4 2D Graphing

[Special Form]GRAPH2 (x-lists,y-lists,optional-args)

plots points specified by the firstx-lists andy-lists.

The format forx-lists can be one of

1. [x-pt1, . . . , x-ptn] wherex-pti each evaluates to a number

2. arrayname wherearrayname is the name of a declared one-dimensional array of floating point num-
bers

3. 2d-arrayname where2d-arrayname is the name of a declared two-dimensional array of floating point
numbers (i.e. byARRAY(2d-arrayname, FLOAT, max-row-index, max-col-index);)

4. [x-list1,x-list2, . . . , x-listi, . . . , x-listk] wherex -listi can have the form of either (1) or (2).

The format ofy-lists is similar. The format ofoptional-args is the same as for PLOT2. Note that GRAPH2
is more similar to theMaxima function MULTIGRAPH than to GRAPH.

14.5 3D Plotting

[Special Form]PLOT3D (z-exprs, x-var, var-range, y-var, var1-range, optional-args)

makes a 3-dimensional plot ofz-exprs againstx-var andy-var. The plot consists of curves ofy-exprs against
x-var (the x coordinate) withy-var (the y coordinate) held fixed. Perspective is used and curves further away
from the viewer have those parts of them which are hidden by the closer curves removed.

The format ofy-exprs is the same as for PLOT2. The context of evaluation isFLOAT(EV(expri,x-var=value

gotten from var-range,y-var=value gotten from var1-range,NUMER)).

The format forvar-range andvar1-range is the same as for PLOT2 except that ifvar1-range is of the form
low,high theny-var will take on PLOTNUM1 values.

The format ofoptional-args is the same as for PLOT2 except that additional options NOT3D, 3D and CON-
TOUR are available.

14.4. 2D Graphing 199

PLOT3D(z-funs, var-range, var1-range, optional-args) is analogous to the alternative form for PLOT2.z-

funs must be a function or list of functions of 2 arguments, which must return a floating point argument
when given floating point (integer, if the INTEGER argument is used for eithervar-range or var1-range)
arguments. The functions must be translated or compiled. If you expect to make several 3D plots this form
is recommended.

A simple example is

TRANSLATE:TRUE; / *causes automatic translation */
G(X,Y):=(MODECLARE(X,FLOAT),

EXP(-X*X-Y*Y)); /* defines a funtion G */
PLOT3D(G,-2,2,-2,2); /* plots it */

14.5.1 Plotting Flags

[Variable]3D

in the plotting functions, indicates a 3 Dimensional plot will be made.

[Variable]NOT3D

The addition of NOT3D as an argument to PLOT3D causes exactly the same points as in the bare PLOT3D
to be calculated. Instead of plotting a 3-dimensional representation of the data, the data is plotted in a 2D
one. Specifically 1 2D curve ofz vs. x for eachy value, and so is a convenient way to plot several curves
on the same plot.

[Variable]CONTOUR

An option in the PLOT3D package to allow contour plotting.

[variable, default: TRUE]PERSPECTIVE

In the plotting functions, if PERSPECTIVE is set toFALSE, it causes a non-perspective view to be taken.
This is equivalent to extending the viewing position out to infinity along a line connecting the origin and
VIEWPT.

[variable, default: FALSE]REVERSE

in the plotting functions, ifTRUE it causes a left-handed coordinate system to be assumed.

[variable, default: TRUE]PLOTBELL

whenFALSE inhibits the dinging of the bell.

200 Chapter 14. Plotting and Graphing

[variable, default: 320]PLOTBOTMAR

adjusts the bottom margin for XGP plots. This defaults to values (in increments of 1/200 inch) such that the
plots will fit comfortably on an 8 1/2 x 11 page.

[variable, default: 128]PLOTLFTMAR

adjusts the left margin for XGP plots. This defaults to values (in increments of 1/200 inch) such that the
plots will fit comfortably on an 8 1/2 x 11 page.

[variable, default: 20]PLOTNUM

is the number of points PLOT2 and PARAMPLOT2 plot when given thelow, high type of variable range.
The default when PLOT2 is first called is 20, which is sufficient for trying things out. 100 is a suitable value
for a final hard copy.

[Variable]CENTERPLOT

VIEWPT and CENTERPLOT determine the perspective view taken for plotting commands. They are de-
faulted to be unbound. VIEWPT may be set to a list of 3 numbers and gives the point from which the
projection should be made. CENTERPLOT may likewise be set to a list of 3 numbers and gives a point
on the line of sight. The projection will be made onto a plane perpendicular to a line joining VIEWPT and
CENTERPLOT.

If VIEWPT and CENTERPLOT are unbound (the default), then they will be chosen as follows: the extreme
values of the coordinates are determined. This gives the two pointsmin: [xmin, ymin, zmin],max:[xmax,
ymax, zmax]. CENTERPLOT is chosen as (min+max)/2, and VIEWPT is chosen as max+3*(max-min).
The view is then one in which the z axis is vertical, the x axis is increasing towards you to the left and the
y axis is increasing towards you to the right. If CENTERPLOT isFALSE then the old type of perspective
view will be given (like setting the x and z components of CENTERPLOT to the corresponding components
of VIEWPT).

[Variable]VIEWPT

VIEWPT and CENTERPLOT determine the perspective view taken for plotting commands. They are de-
faulted to be unbound. VIEWPT may be set to a list of 3 numbers and gives the point from which the
projection should be made. CENTERPLOT may likewise be set to a list of 3 numbers and gives a point
on the line of sight. The projection will be made onto a plane perpendicular to a line joining VIEWPT and
CENTERPLOT.

If VIEWPT and CENTERPLOT are unbound (the default), then they will be chosen as follows: the extreme
values of the coordinates are determined. This gives the two pointsmin:[xmin, ymin, zmin], max:[xmax,

ymax, zmax]. CENTERPLOT is chosen as (min+max)/2, and VIEWPT is chosen asmax+3*(max-min).
The view is then one in which thez axis is vertical, the x axis is increasing towards you to the left and the
y axis is increasing towards you to the right.

If CENTERPLOT isFALSE then the old type of perspective view will be given (like setting the x and z
components of CENTERPLOT to the corresponding components of VIEWPT).

14.5. 3D Plotting 201

[variable, default: [1,7,1,7]]DOVARD_VIEWPORT

determines the perspective for Dover output plots, similar to VIEWPT. It accepts 4 arguments,
[XMIN,XMAX,YMIN,YMAX] in inches on the page.

202 Chapter 14. Plotting and Graphing

CHAPTER

FIFTEEN

Numeric Interface

15.1 Generating Fortran Code

[Special Form]FORTRAN (exp)

convertsexp into a FORTRAN linear expression in legal FORTRAN with 6 spaces inserted at the beginning
of each line, continuation lines, and ** for exponentiation. When FORTSPACES default:[FALSE] isTRUE,
the FORTRAN command fills out to 80 columns using spaces.

If FORTRAN is called on a bound symbolic atom, e.g.FORTRAN(X); whereX:A*B has been done, then
X=value of X, e.g.X=A*B will be generated. In particular, if e.g.M:MATRIX(. . .); has been done, then
FORTRAN(M); will generate the appropriate assignment statements of the formname(i,j)=<corresponding
matrix element>.

[variable, default: FALSE]FORTSPACES

if TRUE, the FORTRAN command fills out to 80 columns using spaces.

[variable, default: 0]FORTINDENT

controls the left margin indentation of expressions printed out by the FORTRAN command. 0 gives normal
printout (i.e. 6 spaces), and positive values will causes the expressions to be printed farther to the right.

15.2 Numerical Integration

15.2.1 Romberg Integration

[Function]ROMBERG (exp, var, ll, ul)

There are two ways to use this function. The first is an inefficient way like the definite integral version of
INTEGRATE:

203

ROMBERG(<integrand>,<variable of integration>,<lower limit>,
<upper limit>);

ROMBERG(SIN(Y),Y,1,\%PI);
TIME= 39 MSEC. 1.5403023

F(X):=1/(X^5+X+1);
ROMBERG(F(X),X,1.5,0);

TIME= 162 MSEC. - 0.75293843

The second is an efficient way that is used as follows: Example:

ROMBERG(<function name>,<lower limit>,<upper limit>);

F(X):=(MODE_DECLARE([FUNCTION(F),X],FLOAT),1/(X^5+X+1));
TRANSLATE(F);
ROMBERG(F,1.5,0);

TIME= 13 MSEC. - 0.75293843

The first argument must be a TRANSLATEd or compiled function. (If it is compiled, it must be declared
to return a FLONUM.) If the first argument is not already TRANSLATEd, ROMBERG will not attempt to
TRANSLATE it but will give an error.

The accuracy of the integration is governed by the global variables ROMBERGTOL default: [1.E-4] and
ROMBERGIT default: [11]. ROMBERG will return a result if the relative difference in successive ap-
proximations is less than ROMBERGTOL. It will try halving the stepsize ROMBERGIT times before it
gives up. The number of iterations and function evaluations which ROMBERG will do is governed by
ROMBERGABS and ROMBERGMIN.

ROMBERG may be called recursively and thus can do double and triple integrals.

Example:

INTEGRATE(INTEGRATE(X*Y/(X+Y),Y,0,X/2),X,1,3);
13/3 (2 LOG(2/3) + 1)

\%,NUMER;
0.81930233

DEFINE_VARIABLE(X,0.0,FLOAT,"Global variable in function F")$
F(Y):=(MODE_DECLARE(Y,FLOAT), X*Y/(X+Y))$
G(X):=ROMBERG(’F,0,X/2)$
ROMBERG(G,1,3);

0.8193023

The advantage with this way is that the functionF can be used for other purposes, like plotting. The
disadvantage is that you have to think up a name for both the functionF and its free variable X. Or, without
the global:

G1(X):=(MODE_DECLARE(X,FLOAT), ROMBERG(X*Y/(X+Y),Y,0,X/2))$
ROMBERG(G1,1,3);

0.8193023

The advantage here is shortness.

204 Chapter 15. Numeric Interface

Q(A,B):=ROMBERG(ROMBERG(X*Y/(X+Y),Y,0,X/2),X,A,B)$
Q(1,3);

0.8193023

It is even shorter this way, and the variables do not need to be declared because they are in the context of
ROMBERG.

Use of ROMBERG for multiple integrals can have great disadvantages, though. The amount of extra calcu-
lation needed because of the geometric information thrown away by expressing multiple integrals this way
can be incredible. The user should be sure to understand and use the ROMBERGTOL and ROMBERGIT
switches.

[variable, default: 0.0]ROMBERGABS

Assuming that successive estimates produced by ROMBERG areY[0], Y[1], Y[2] etc., then ROMBERG
will return afterN iterations if (roughly speaking)

(ABS(Y[N]-Y[N-1]) <= ROMBERGABS OR
ABS(Y[N]-Y[N-1])/(IF Y[N]=0.0 THEN 1.0 ELSE Y[N]) <= ROMBERGTOL)

is TRUE. The condition on the number of iterations given by ROMBERGMIN must also be satisfied. Thus
if ROMBERGABS is 0.0 (the default), you just get the relative error test. The usefulness of the additional
variable comes when you want to perform an integral, where the dominant contribution comes from a small
region. Then you can do the integral over the small dominant region first, using the relative accuracy check,
followed by the integral over the rest of the region using the absolute accuracy check. Suppose you want to
computeI ntegral(exp(-x),x,0,50) (numerically) with a relative accuracy of 1 part in 10000000.

/* Define the function. N is a counter, so we can see how many
function evaluations were needed. */

F(X):=(MODE_DECLARE(N,INTEGER,X,FLOAT),N:N+1,EXP(-X))$
TRANSLATE(F)$
/* First of all try doing the whole integral at once */
BLOCK([ROMBERGTOL:1.E-6,ROMBERABS:0.],N:0,ROMBERG(F,0,50));

==> 1.00000003
N; ==> 257 /* Number of function evaluations*/
/* Now do the integral intelligently, by first doing

Integral(exp(-x),x,0,10) and then setting ROMBERGABS to 1.E-6*(this
partial integral). */

BLOCK([ROMBERGTOL:1.E-6,ROMBERGABS:0.,SUM:0.],
N:0,SUM:ROMBERG(F,0,10),ROMBERGABS:SUM*ROMBERGTOL,ROMBERGTOL:0.,
SUM+ROMBERG(F,10,50)); ==> 1.00000001 /* Same as before */

N; ==> 130

So if F(X) were a function that took a long time to compute, the second method would be about 2 times
quicker.

[variable, default: 11]ROMBERGIT

The accuracy of the ROMBERG integration command is governed by the global variables ROMBERGTOL
default: [1.E-4] and ROMBERGIT default: [11]. ROMBERG will return a result if the relative difference

15.2. Numerical Integration 205

in successive approximations is less than ROMBERGTOL. It will try halving the stepsize ROMBERGIT
times before it gives up.

[variable, default: 0]ROMBERGMIN

governs the minimum number of function evaluations that ROMBERG will make. ROMBERG will eval-
uate its first argument at least2**(ROMBERGMIN+2)+1 times. This is useful for integrating oscillatory
functions, when the normal converge test might sometimes wrongly pass.

[variable, default: 1.E-4]ROMBERGTOL

The accuracy of the ROMBERG integration command is governed by the global variables ROMBERGTOL
default: [1.E-4] and ROMBERGIT default: [11]. ROMBERG will return a result if the relative difference
in successive approximations is less than ROMBERGTOL. It will try halving the stepsize ROMBERGIT
times before it gives up.

15.2.2 Newton-Coates Integration

[Function]QUANC8 (’fun, lo, hi)

The file ‘share1/qq.mc ’ (which may be loaded withLOAD("QQ");) contains a function QUANC8
which can take either 3 or 4 arguments. The 3 argument version computes the integral of the function
specified as the first argument over the interval fromlo to hi as inQUANC8(’fun, lo, hi);. The function
name should be quoted. The 4 arg version will compute the integral of the function or expression (first arg)
with respect to the variable (second arg) over the interval fromlo to hi as in QUANC8(f(x), x, lo, hi).

The method used is the Newton-Cotes 8th order polynomial quadrature, and the routine is adaptive. It will
thus spend time dividing the interval only when necessary to achieve the error conditions specified by the
global variables QUANC8_RELERR default: 1.0e-4 and QUANC8_ABSERR default : 1.0e-8 which give
the relative error test: | integral(function)-computed value|< quanc8_relerr*|integral(function)| and the
absolute error test:| integral(function)-computed value|<quanc8_abserr.

The error from each subinterval is estimated and the contribution from a subinterval is accepted only when
the integral over the subinterval satisfies the error test over the subinterval. The total estimated error of the
integral is contained in the global variable QUANC8_ERREST default: [0.0].

[variable, default: 0.0]QUANC8_FLAG

will contain valuable information if the computation fails to satisfy the error conditions. The integer part
will tell you how many subintervals failed to converge and the fractional part will tell you where the singu-
lar behavior is, as follows:s ingular point=lo+(1.-frac part)*(hi-lo). Thusquanc8(tan(x),x,1.57,1.6); gives
f rac=.97 so trouble is at1.57+.03*.03=1.5709 (=pi/2). If QUANC8_FLAG is not 0.0, you should be cau-
tious in using the return value, and should try ROMBERG or a Simpson method and see if the result checks.
Analysis of possible singular behavior might be advisable. You may getQUANC8_FLAG=<integer>.0 and
an error message (such as division by 0) when a singular point is hit in the interval. You will have to find the
singularity and eliminate it before QUANC8 will get an answer. Functions which have very large deriva-
tives may throw the error estimate way off and cause the wrong points to be used, and a wrong answer

206 Chapter 15. Numeric Interface

returned. Tryr omberg(exp(-.002*x**2)*cos(x)**2,x,0.,100.); with the default tolerance, andquanc8(exp(-
.002*x**2)*cos(x)**2,x,0.,100.); withquanc8_relerr=1.e-7 and1.e-8. The last result is consistent with
ROMBERG, while the previous one is off by a factor of 2 ! This is due to the bad behavior of the deriva-
tives nearx=10.0 which cause the adaptive routine to have trouble. If you usequanc8(’f,a,c)+quanc8(’f,c,b)
wherea<c<b, you will do better in such cases.

You can doDEMO("QQ"); for some comparisons with the ROMBERG numerical integrator (which is not
adaptive). Note that ROMBERG usually gives more accurate answers for comparable tolerances, while
QUANC8 will get the same answer faster even with a smaller tolerance, because ROMBERG subdivides
the whole interval if the total result is not within error tolerance, while QUANC8 improves only where
needed, thus saving many function calls. ROMBERG will also fail to converge when oscillatory behavior is
overwhelming, while QUANC8 will adapt in the regions as it sees fit. (The global variable ROMBERGMIN
is designed to allow you a minimum number of function calls in such cases, so thatexp(-x)*sin(12*x) can
be integrated from 0 to4*%pi without erroneously giving 0. from the first few function calls.)

To make yourMaxima user function callable in the fastest way, you must use MODE_DECLARE and then
translate and compile the function. The speed of the computation may be increased by well over an order
of magnitude when compilation is used. If you do multiple integrals, it is really necessary to compile the
function in order to avoid the time spent on function calls. A sample use of QUANC8 for a double integral
is in the demo file, and compilation is nearly a hundred times faster in doing the work! There is a demo in
the file: ‘share1/qq.dem ’. There are some usage notes in the file: ‘share1/qq.usg ’.

15.3 IMSL Routines

IMSL-based routines currently return[SUCCESS, . . .] or[ERROR, . . .]. They will soon be changed to
return[SUCCESS, . . .],[WARNING, . . .] and[ERROR, . . .].

This is a numerical integration package using cautious, adaptive Romberg extrapolation. The DCADRE
package is written to call the IMSL fortran library routineDCADRE. To load this package, do
LOAD(IMSL);. The IMSL version of Romberg integration is not available inMaxima. The worker function
takes the following syntax:

IMSL_ROMBERG (fun, low, hi) wherefun is a function of 1 argument andlow andhi should be the lower
and upper bounds of integration.fun must return floating point values.

IMSL_ROMBERG(exp, var, low, hi) whereexp should be integrated over the rangevar=low to hi. The
result of evaluatingexp must always be a floating point number.

FAST_IMSL_ROMBERG (fun, low, hi) This function does no error checking, but may achieve a speed
gain over the IMSL_ROMBERG function. It expects thatfun is a Lisp function (or translatedMaxima
function) which accepts a floating point argument, and that it always returns a floating point value.

Returns either[SUCCESS, answer, error] whereanswer is the result of the integration anderror is the
estimated bound on the absolute error of the output, DCADRE, as described in PURPOSE below. or
[WARNING, n, answer, error] wheren is a warning code,answer is the answer, anderror is the estimated
bound on the absolute error of the output, DCADRE, as described in PURPOSE below.

The following warnings may occur:

65 One or more singularities were successfully handled.

66 In some subinterval(s), the estimate of the integral was accepted merely because the estimated error was

15.3. IMSL Routines 207

small, even though no regular behavior was recognized.

or [ERROR, errorcode] where error code is the IMSL-generated error code. The following error codes may
occur:

132 Failure. This may be due to too much noise in function (relative to the given error requirements) or due
to an ill-behaved integrand.

133 RERR is greater than 0.1 or less than 0.0 or is too small for the precision of the machine.

The following flags have an influence upon the operation of IMSL_ROMBERG:

[variable, default: 1.0E-5]ROMBERG_AERR

Desired absolute error in answer.

[variable, default: 0.0]ROMBERG_RERR

Desired relative error in the answer.

If IMSL signals an error, a message will be printed on the user’s console stating the nature of the error. (This
error message may be suppressed by setting IMSLVERBOSE toFALSE.)

Because this uses a translated Fortran routine, it may not be recursively invoked.

IMSL ROMBERG Purpose

DCADRE attempts to solve the following problem: Given a real-valued functionF of one argument, two
real numbers A and B, find a number DCADRE such that:

/ B [| / B |]
[[| [|]
I F(x)dx - DCADRE <= max [ROMBERG_AERR, ROMBERG_RERR * | I F(x)dx |]
] [|] |]
/ A [| / A |]

Algorithm (modified version of the IMSL documentation):

This routine uses a scheme whereby DCADRE is computed as the sum of estimates for the integral of F(x)
over suitably chosen subintervals of the given interval of integration. Starting with the interval of integration
itself as the first such subinterval, cautious Romberg extrapolation is used to find an acceptable estimate on
a given subinterval. If this attempt fails, the subinterval is divided into two subintervals of equal length, each
of which is considered separately.

Programming Notes (modified version of the IMSL documentation):

1. DCADRE (the translated-Fortran base for IMSL_ROMBERG) can, in many cases, handle jump dis-
continuities and certain algebraic discontinuities. See reference for full details.

2. The relative error parameter ROMBERG_RERR must be in the interval[0.0,0.1]. For example,
ROMBERG_RERR=0.1 indicates that the estimate of the intergral is to be correct to one digit, where

208 Chapter 15. Numeric Interface

as ROMBERG_RERR=1.0E-4 calls for four digits of accuracy. If DCADRE determines that the
relative accuracy requirement cannot be satisfied, IER is set to 133 (ROMBERG_RERR should be
large enough that, when added to 100.0, the result is a number greater than 100.0 (this will not be
TRUE of very tiny floating point numbers due to the nature of machine arithmetic)).

3. The absolute error parameter, ROMBERG_AERR, should be nonnegative. In order to give a reason-
able value for ROMBERG_AERR, the user must know the approximate magnitude of the integral
being computed. In many cases, it is satisfactory to use AERR=0.0. In this case, only the relative
error requirement is satisfied in the computation. We quote from the reference, “A very cautious man
would accept DCADRE only if IER [the warning or error code] is 0 or 65. The merely reasonable
man would keep the faith even if IER is 66. The adventurous man is quite often right in accepting
DCADRE even if the IER is 131 or 132.” Even when IER is not 0, DCADRE returns the best estimate
that has been computed.

For references on this technique, see de Boor, Calr, “CADRE: An Algorithm for Numerical Quadrature,”
Mathematical Software (John R. Rice, Ed.), New York, Academic Press, 1971, Chapter 7.

NDIFFQ is a package residing on the SHARE directory for numerical solutions of differential equations.
Do LOAD(NDIFFQ) to load in for use. An example of its use would be: Not availableMaxima.

DEFINE_VARIABLE(N,0.3,FLOAT);
DEFINE_VARIABLE(H,0.175,FLOAT);
F(X,E):=(MODE_DECLARE([X,E],FLOAT),N*EXP(X)/(E+X^(2*H)*EXP(H*X)));
COMPILE(F);
ARRAY([X,E],FLOAT,35);
INIT_FLOAT_ARRAY(X,1.0E-3,6.85); /* Fills X with the interval */
E[0]:5.0; /* Initial condition */
RUNGE_KUTTA(F,X,E); /* Solve it */
GRAPH2(X,E); /* Graph the solution */

RUNGE_KUTTA(F,X,E,E_Prime) would be the call for a second-order equation. Not availableMax-
ima. There is a demo in the file: ‘share2/ndiffq.dem ’. There are some usage notes in the file:
‘share2/ndiffq.usg ’.

The IMSL ZRPOLY routine for finding the zeros of simple polynomials (single variable, real co-
efficients, non-negative integer exponents), using the Jenkins-Traub technique. The command is
POLYROOTS(polynomial);. Not available inMaxima.

For those who can make use of approximate numerical solutions to problems, there is a package which
calls a routine which has been translated from the IMSL fortran library to solve N simultaneous non-linear
equations in N unknowns. It uses black-box techniques that probably aren’t desirable if an exact solution
can be obtained from one of the smarter solvers (LINSOLVE, ALGSYS, etc). But for things that the other
solvers don’t attempt to handle, this can probably give some very useful results. Not available inMaxima.

15.3. IMSL Routines 209

210

CHAPTER

SIXTEEN

Advanced Packages

The ‘share ’ directories contains programs, information files, etc. which are considered to be of interest to
theMaxima community. Most of these files are not part of theMaxima system per se and must be loaded
individually by the user, e.g.LOAD(ARRAY);. Many of the files were contributed byMaxima users.

16.1 Fast Fourier Transforms

[Function]FFT (real-array, imag-array)

Fast Fourier Transform. This package may be loaded by doingLOAD(FFT); There is also an IFT
command, for Inverse Fourier Transform. These functions perform a (complex) fast fourier transform
on either 1 or 2 dimensional floating-point arrays, obtained by:ARRAY(<ary>,FLOAT,<dim1>); or
ARRAY(<ary>,FLOAT,<dim1>,<dim2>);. For 1D arrays<dim1> must equal2**n-1, and for 2D arrays
<dim1>=<dim2>=2**n-1 (i.e. the array is square). (Recall thatMaxima arrays are indexed from a 0 ori-
gin so that there will be2**n and (2**n)**2 arrays elements in the above two cases.) This package also
contains two other functions, POLARTORECT and RECTTOPOLAR.

The real and imaginary arrays must of course be the same size. The transforms are done in place so that
real-array andimag-array will contain the real and imaginary parts of the transform. (If you want to keep
the transformed and un-transformed arrays separate copy the arrays before calling FFT or IFT using the
FILLARRAY function.

The definitions of the Fast Fourier Transform and its inverse are given here. HereA is the array to be
transformed andAT is its transform. Both A and AT are complex arrays, although as noted above FFT and
IFT can only deal with separate real arrays for the real and imaginary parts ofA andAT. N (or N**2) is
the number of elements in A in the 1D (or 2D) case. (In fact these definitions are not of the FFTs but of
the discrete Fourier transforms. The FFT and IFT functions merely provided efficient algorithms for the
implementation of these definitions.)

1D case:

211

N - 1
==== - 1
\ 2 \%I \%PI I K N

AT = > A \%E
K / I

====
I = 0

N - 1
==== - 1

- 1 \ - 2 \%I \%PI I K N
A = N > AT \%E

I / K
====
K = 0

2D case:

N - 1 N - 1
==== ==== - 1
\ \ 2 \%I \%PI (I K + J L) N

AT = > > A \%E
K, L / / I, J

==== ====
I = 0 J = 0

N - 1 N - 1
==== ==== - 1

- 2 \ \ - 2 \%I \%PI (I K + J L) N
A = N > > AT \%E

I, J / / K, L
==== ====
K = 0 L = 0

Not available inMaxima because it depends on a machine-coded FFT routine on the MIT-MC ma-
chine. There is a demo in the file: ‘share/fft.dmo ’. There are some usage notes in the file:
‘share/fft.usg ’.

[Function]IFT (real-array, imag-array)

Inverse Fourier Transform. DoLOAD(FFT); to load in this package. These functions (FFT and IFT) per-
form a (complex) fast fourier transform on either 1 or 2 dimensional FLOATING-POINT arrays, obtained
by: ARRAY(<ary>,FLOAT,<dim1>); orARRAY(<ary>,FLOAT,<dim1>,<dim2>);. For 1D arrays <dim1>
must equal2**n-1, and for 2D arrays<dim1>=<dim2>=2**n-1 (i.e. the array is square). (Recall thatMax-
ima arrays are indexed from a 0 origin so that there will be 2**n and (2**n)**2 arrays elements in the
above two cases.) There is a demo in the file: ‘share/fft.dmo ’. There are some usage notes in the file:
‘share/fft.usg ’.

212 Chapter 16. Advanced Packages

16.2 Tensors

There are two tensor packages inMaxima, CTENSR and ITENSR. CTENSR is Component Tensor Ma-
nipulation, and may be accessed withLOAD(CTENSR);. ITENSR is Indicial Tensor Manipulation, and is
loaded by doingLOAD(ITENSR); A manual for CTENSR AND ITENSR is available from the LCS Pub-
lications Office. Request MIT/LCS/TM-167. See the file ‘tensor/tensor.doc ’. In addition, demos
exist in the TENSOR directory under the filenames ‘tensor/ctensr.dmX ’ whereX is from 1 to 4, or
‘ tensor/itensr.dmX ’ whereX is from 1 to 7. DoDEMO("tensor/ctensr.dmX"); whereX is from 1 to
4, orDEMO("tensor/itensr.dmX"); whereX is from 1 to 7, for a demonstration.

16.2.1 Component Tensor Manipulation

To use the CTENSR package, typeTSETUP(); which automatically loads it from withinMaxima (if
it is not already loaded) and then prompts the user to input his coordinate system. The user is first
asked to specify the dimension of the manifold. If the dimension is 2, 3 or 4 then the list of coordi-
nates defaults to[X,Y], [X,Y,Z] or [X,Y,Z,T] respectively. These names may be changed by assigning
a new list of coordinates to the variable OMEGA (described below) and the user is queried about this.
Care must be taken to avoid the coordinate names conflicting with other object definitions.

¯
Next, the user enters the metric either directly or from a file by specifying its ordinal position. As an example
of a file of common metrics, see the file ‘tensor/metric.fil ’. The metric is stored in the matrix LG.
Finally, the metric inverse is computed and stored in the matrix UG. One has the option of carrying out all
calculations in a power series. A sample protocol is begun below for the static, spherically symmetric metric
(standard coordinates) which will be applied to the problem of deriving Einstein’s vacuum equations (which
lead to the Schwarzschild solution) as an example. Many of the functions in CTENSR will be displayed for
the standard metric as examples.

(C2) TSETUP();
Enter the dimension of the coordinate system:
4;
Do you wish to change the coordinate names?
N;
Do you want to
1. Enter a new metric?
2. Enter a metric from a file?
3. Approximate a metric with a Taylor series?
Enter 1, 2 or 3
1;

16.2. Tensors 213

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4
1;
Row 1 Column 1: A;
Row 2 Column 2: X^2;
Row 3 Column 3: X^2*SIN(Y)^2;
Row 4 Column 4: -D;
Matrix entered.
Enter functional dependencies with the DEPENDS function or ’N’ if none
DEPENDS([A,D],X);
Do you wish to see the metric?
Y;

[A 0 0 0]
[]
[2]
[0 X 0 0]
[]
[2 2]
[0 0 X SIN (Y) 0]
[]
[0 0 0 - D]

Do you wish to see the metric inverse?
N;

[Function]TSETUP ()

A function in the CTENSR (Component Tensor Manipulation) package which automatically loads the
CTENSR package from withinMaxima (if it is not already loaded) and then prompts the user to make
use of it.

[Function]CHRISTOF (arg)

A function in the CTENSR (Component Tensor Manipulation) package. It computes the Christoffel symbols
of both kinds. Thearg determines which results are to be immediately displayed. The Christoffel symbols
of the first and second kinds are stored in the arraysLCS[i,j,k] andMCS[i,j,k] respectively and defined to be
symmetric in the first two indices. If the argument to CHRISTOF is LCS or MCS then the unique non-zero
values ofLCS[i,j,k] or MCS[i,j,k], respectively, will be displayed. If the argument is ALL then the unique
non-zero values ofLCS[i,j,k] andMCS[i,j,k] will be displayed. If the argument isFALSE then the display
of the elements will not occur. The array elementsMCS[i,j,k] are defined in such a manner that the final
index is contravariant.

[Variable]DIAGMETRIC

If DIAGMETRIC is TRUE special routines compute all geometrical objects (which contain the metric tensor
explicitly) by taking into consideration the diagonality of the metric. Reduced run times will, of course,
result. Note: this option is set automatically by TSETUP if a diagonal metric is specified.

214 Chapter 16. Advanced Packages

[variable, default: 4]DIM

DIM is the dimension of the manifold with the default 4. The commandDIM:N; will reset the dimension to
any other integral value.

[Function]EINSTEIN (dis)

EINSTEIN computes the mixed Einstein tensor after the Christoffel symbols and Ricci tensor have been ob-
tained (with the functions CHRISTOF and RICCICOM). If the argument dis is TRUE, then the non-zero val-
ues of the mixed Einstein tensorG[i,j] will be displayed where j is the contravariant index. RATEINSTEIN
default: [TRUE] if TRUE will cause the rational simplification on these components. If RATFAC[FALSE]
is TRUE then the components will also be factored.

[Function]RICCICOM (dis)

This function first computes the covariant componentsLR[i,j] of the Ricci tensor (LR is a mnemonic for
lower Ricci). Then the mixed Ricci tensor is computed using the contravariant metric tensor. If the value of
the argument to RICCICOM isTRUE, then these mixed components,RICCI[i,j] (the index i is covariant
and the indexj is contravariant), will be displayed directly. Otherwise,RICCICOM(FALSE) will simply
compute the entries of the arrayRICCI[i,j] without displaying the results.

[Function]DSCALAR (function)

applies the scalar d’Alembertian to the scalar function.

(C41) DEPENDENCIES(FIELD(R));
(D41) [FIELD(R)]
(C42) DSCALAR(FIELD);
(D43)

-M
\%E ((FIELD N - FIELD M + 2 FIELD) R + 4 FIELD)

R R R R R R R
- ---

2 R

[Function]LRICCICOM (dis)

LRICCICOM computes the covariant (symmetric) componentsLR[i,j] of the Ricci tensor. If the argument
dis is TRUE, then the non-zero components are displayed.

[Function]MOTION (dis)

MOTION computes the geodesic equations of motion for a given metric. They are stored in the arrayEM[i].
If the argumentdis is TRUE then these equations are displayed.

16.2. Tensors 215

[Variable]OMEGA

OMEGA assigns a list of coordinates to the variable. While normally defined when the function TSETUP is
called, one may redefine the coordinates with the assignmentOMEGA:[j1, j2, . . .] where theji are the new
coordinate names. A call to OMEGA will return the coordinate name list. Also see TSETUP.

[Function]RIEMANN (dis)

RIEMANN computes the Riemann curvature tensor from the given metric and the corresponding Christoffel
symbols. If dis isTRUE, the non-zero componentsR[i,j,k,l] will be displayed. All the indicated indices are
covariant. As with the Einstein tensor, various switches set by the user control the simplification of the
components of the Riemann tensor. If RATRIEMAN, defaultTRUE is TRUE then rational simplification
will be done. If RATFAC[FALSE] isTRUE then each of the components will also be factored.

[Variable]RATRIEMANN

one of the switches which controls simplification of Riemann tensors; ifTRUE, then rational simplification
will be done; ifFACRAT:TRUE then each of the components will also be factored.

[Function]RAISERIEMANN (dis)

returns the contravariant components of the Riemann curvature tensor as array elementsUR[I,J,K,L]. These
are displayed ifdis is TRUE.

[Function]RINVARIANT ()

forms the invariant obtained by contracting the tensorsR[i,j,k,l]*UR[i,j,k,l]. This object is not automatically
simplified since it can be very large.

[Function]SCURVATURE ()

returns the scalar curvature (obtained by contracting the Ricci tensor) of the Riemannian manifold with the
given metric.

[Function]TTRANSFORM (matrix)

A function in the CTENSR (Component Tensor Manipulation) package which will perform a coordinate
transformation upon an arbitrary square symmetric matrix. The user must input the functions which define
the transformation. (Formerly called TRANSFORM.)

[Function]WEYL (dis)

computes the Weyl conformal tensor. If the argumentdis is TRUE, the non-zero componentsW[I,J,K,L] will
be displayed to the user. Otherwise, these components will simply be computed and stored. If the switch
RATWEYL is set toTRUE, then the components will be rationally simplified; if FACRAT isTRUE then the
results will be factored as well.

216 Chapter 16. Advanced Packages

[Variable]RATWEYL

one of the switches controlling the simplification of components of the Weyl conformal tensor; ifTRUE,
then the components will be rationally simplified; if FACRAT is TRUE then the results will be factored as
well.

[Variable]RATEINSTEIN

if TRUE rational simplification will be performed on the non-zero components of Einstein tensors; if FA-
CRAT:TRUE then the components will also be factored.

There is a demo in the file: ‘tensor/ctenso.dm1 ’. There is a demo in the file:
‘ tensor/ctenso.dm2 ’. There is a demo in the file: ‘tensor/ctenso.dm3 ’. There is a demo in
the file: ‘tensor/ctenso.dm4 ’. There are some usage notes in the file: ‘tensor/tensor.doc ’.

16.2.2 Indicial Tensor Manipulation

The Indicial Tensor Manipulation package may be loaded byLOAD(ITENSR);, A manual for the Tensor
packages is available in ‘tensor/tensor.doc ’.

[Function]CHR1 ([i,j,k])

yields the Christoffel symbol of the first kind via the definition

(g + g - g)/2 .
ik,j jk,i ij,k

To evaluate the Christoffel symbols for a particular metric, the variable METRIC must be assigned a name
as in the example under CHR2.

[Function]CHR2 ([i,j],[k])

yields the Christoffel symbol of the second kind defined by the relation

ks
CHR2([i,j],[k]) = g (g + g - g)/2

is,j js,i ij,s

[variable, default: TRUE]ALLSYM

if TRUE then all indexed objects are assumed symmetric in all of their covariant and contravariant indices.
If FALSE then no symmetries of any kind are assumed in these indices. Derivative indices are always taken
to be symmetric.

16.2. Tensors 217

[Function]CANFORM (exp)

Simplifiesexp by renaming dummy indices and reordering all indices as dictated by symmetry conditions
imposed on them. If ALLSYM isTRUE then all indices are assumed symmetric, otherwise symmetry
information provided by DECSYM declarations will be used. The dummy indices are renamed in the same
manner as in the RENAME function. When CANFORM is applied to a large expression the calculation may
take a considerable amount of time. This time can be shortened by calling RENAME on the expression first.
Note: CANFORM may not be able to reduce an expression completely to its simplest form although it will
always return a mathematically correct result.

[Function]CANTEN (exp)

Simplifiesexp by renaming (see RENAME) and permuting dummy indices. CANTEN is restricted to sums
of tensor products in which no derivatives are present. As such it is limited and should only be used if
CANFORM is not capable of carrying out the required simplification.

[Function]CURVATURE ([i,j,k],[h])

yields the Riemann curvature tensor in terms of the Christoffel symbols of the second kind (CHR2). The
following notation is used:

h h h \%1 h
CURVATURE = - CHR2 - CHR2 CHR2 + CHR2

i j k i k,j \%1 j i k i j,k
h \%1

+ CHR2 CHR2
\%1 k i j

[Function]CONTRACT (exp)

carries out all possible contractions inexp, which may be any well-formed combination of sums and prod-
ucts. This function uses the information given to the DEFCON function. Since all tensors are considered
to be symmetric in all indices, the indices are sorted into alphabetical order. Also all dummy indices are
renamed using the symbols !1,!2,. . . to permit the expression to be simplified as much as possible by reduc-
ing equivalent terms to a canonical form. For best resultsexp should be fully expanded. RATEXPAND is
the fastest way to expand products and powers of sums if there are no variables in the denominators of the
terms. The GCD switch should beFALSE if gcd cancellations are unnecessary.

[Function]COVDIFF (exp, v1, v2, . . .)

yields the covariant derivative ofexp with respect to the variables vi in terms of the Christoffel symbols of
the second kind (CHR2). In order to evaluate these, one should useEV(exp,CHR2).

[Function]DEFCON (tensor1, tensor2, tensor3)

givestensor1 the property that the contraction of a product oftensor1 andtensor2 results intensor3 with
the appropriate indices. If only one argument,tensor1, is given, then the contraction of the product of

218 Chapter 16. Advanced Packages

tensor1 with any indexed object having the appropriate indices (say tensor) will yield an indexed object
with that name, i.e.tensor, and with a new set of indices reflecting the contractions performed. For example,
if METRIC:G, thenDEFCON(G) will implement the raising and lowering of indices through contraction
with the metric tensor. More than one DEFCON can be given for the same indexed object; the latest one
given which applies in a particular contraction will be used.

[Variable]CONTRACTIONS

is a list of those indexed objects which have been given contraction properties with DEFCON.

[Special Form]DISPCON (tensor1, tensor2, . . .)

displays the contraction properties of thetensori as were given to DEFCON.DISPCON(ALL) displays all
the contraction properties which were defined.

[Function]FLUSH (exp, tensor1, tensor2, . . .)

will set to zero, inexp, all occurrences of thetensori that have no derivative indices.

[Function]FLUSHD (exp, tensor1, tensor2, . . .)

will set to zero, inexp, all occurrences of thetensori that have derivative indices.

[Function]FLUSHND (exp, tensor, n)

will set to zero, inexp, all occurrences of the differentiated objecttensor that haven or more derivative
indices as the following example demonstrates.

(C1) SHOW(A([I],[J,R],K,R)+A([I],[J,R,S],K,R,S));
J R S J R

(D1) A + A
I,K R S I,K R

(C2) SHOW(FLUSHND(D1,A,3));
J R

(D2) A
I,K R

[Function]INDICES (exp)

returns a list of two elements. The first is a list of the free indices inexp (those that occur only once); the
second is the list of dummy indices inexp (those that occur exactly twice).

[Function]DUMMY (i1, i2, . . .)

will set each indexi1, i2, . . . to name of the form !n wheren is a positive integer. This guarantees that
dummy indices which are needed in forming expressions will not conflict with indices already in use.

16.2. Tensors 219

COUNTER default: [1] determines the numerical suffix to be used in generating the next dummy index.
The prefix is determined by the optionDUMMYX default: [!].

[variable, default: #]DUMMYX

The prefix which will be used by the DUMMY function in generating dummy indices in the Tensor package.

[variable, default: 1]COUNTER

determines the numerical suffix to be used in generating the next dummy index in the tensor package. The
prefix is determined by the option DUMMYX.

[Function]KDELTA (L1, L2)

is the generalized Kronecker delta function defined in the Tensor package withL1 the list of covariant
indices andL2 the list of contravariant indices.KDELTA([i],[j]) returns the ordinary Kronecker delta.
The commandEV(EXP,KDELTA) causes the evaluation of an expression containingKDELTA([],[]) to the
dimension of the manifold.

[Function]LC (list)

is the permutation (or Levi-Civita) tensor which yields 1 if the listlist consists of an even permutation of
integers, -1 if it consists of an odd permutation, and 0 if some indices inlist are repeated.

[Function]LORENTZ (exp)

imposes the Lorentz condition by substituting 0 for all indexed objects inexp that have a derivative index
identical to a contravariant index.

[Function]METRIC (G)

specifies the metric by assigning the variable METRIC:G; in addition, the contraction properties of the
metricG are set up by executing the commandsDEFCON(G), DEFCON(G,G,KDELTA).

[Variable]METRIC

is bound to the metric, assigned by the METRIC command.

[Special Form]REMCON (tensor1, tensor2, . . .)

removes all the contraction properties from thetensori. REMCON(ALL) removes all contraction properties
from all indexed objects.

220 Chapter 16. Advanced Packages

[Function]NTERMSG ()

gives the user a quick picture of the size of the Einstein tensor. It returns a list of pairs whose second
elements give the number of terms in the components specified by the first elements.

[Function]NTERMSRCI ()

returns a list of pairs, whose second elements give the number of terms in the RICCI component speci-
fied by the first elements. In this way, it is possible to quickly find the non-zero expressions and attempt
simplification.

[Function]MAKEBOX (exp)

will display exp in the same manner as SHOW; however, any tensor d’Alembertian occurring inexp will be
indicated using the symbol[]. For example,[]P([M],[N]) representsG([],[I,J])*P([M],[N],I,J).

[Function]SHOW (exp)

will display exp with the indexed objects in it shown having covariant indices as subscripts, contravariant
indices as superscripts. The derivative indices will be displayed as subscripts, separated from the covariant
indices by a comma.

[Function]UNDIFF (exp)

returns an expression equivalent toexp but with all derivatives of indexed objects replaced by the noun
form of the DIFF function with arguments which would yield that indexed object if the differentiation were
carried out. This is useful when it is desired to replace a differentiated indexed object with some function
definition and then carry out the differentiation by sayingEV(. . . ,DIFF).

There is a demo in the file: ‘tensor/ctenso.dm1 ’. There is a demo in the file:
‘ tensor/itenso.dm2 ’. There is a demo in the file: ‘tensor/itenso.dm3 ’. There is a demo in
the file: ‘tensor/itenso.dm4 ’. There is a demo in the file: ‘tensor/itenso.dm5 ’. There is a
demo in the file: ‘tensor/itenso.dm6 ’. There is a demo in the file: ‘tensor/itenso.dm7 ’. There
are some usage notes in the file: ‘tensor/tensor.doc ’.

16.3 Exterior Calculus

The exterior calculus of differential forms is a basic tool of differential geometry developed by Elie Cartan
and has important applications in the theory of partial differential equations. The present implementation is
due to F.B. Estabrook and H.D. Wahlquist. The program is self-explanatory and can be accessed by doing
LOAD(CARTAN);. There is a demo in the file: ‘share2/cartan.dem ’.

16.3. Exterior Calculus 221

16.4 Dirac Gamma Matrices

GAMALG is a Dirac gamma matrix algebra program which takes traces of and does manipulations on
gamma matrices inn dimensions. To load GAMALG into aMaxima, it is necessary to do:

LOAD(share/gamalg.l);
BATCHLOAD(share/gamalg.aut);

in order to properly set up the environment.

Some examples of the use of GAMALG may be executed by doingBATCH(share/gam.dem); inMaxima,
which also loads up the above GAMALG files.

16.4.1 Capabilities

1. Takes traces of products of Dirac gamma matrices in n dimensions. In 4 dimensions, it also takes
traces of products involving gamma[5] (G5). The results may have free indices.

2. Squares sums of amplitudes, involving polarized or unpolarized spinors.

3. Contracts free indices.

4. Simplifies products of gamma matrices in n dimensions.

For all manipulations, GAMALG uses the conventions of Bjorken and Drell [BD64], and takesTr(1)=4
(generalization of the spinor dimensionality is unnecessary).

Further information, especially on the algorithms used by GAMALG, may be found in [Wol79], and Caltech
preprint CALT-68-720 (June 1979). These references give some discussion of other programs available for
high energy physics calculations (including Feynman parametrization etc.).

16.4.2 Summary of GAMALG Functions

(Note: in all functions taking a string of arguments (e.g. TR), list brackets ([,]) may be included or omitted
as desired.)

BTR(list) takes the trace of the gamma matrices represented by its argument in a way that is more efficient
than TR for long traces invloving many sums of momenta [1].

CIND(mu1,. . . „muk) adds mu1 through muk to the list of contracted indices [1].

CGT(exp) converts G’s to TR’s and does them [3].

COMPDEF(vec1=list1,vec2=list2,ind1=val1,ind2=val2,vec3=. . .) defines lists as the components of vectors
and values for indices, for use by NONCOV

CON(exp) contracts all free indices in exp (including epsilon symbols) [3].

CONJ(amp) returns the conjugate of the amplitude amp [2].

COTR(exp) reduces (in n=4) products of traces with contracted indices to single traces [3].

CRUNCH(exp) simplifies untraced products of gamma matrices in exp [3].

222 Chapter 16. Advanced Packages

DFIX(exp) expands all dot products in exp [3].

EPSFIX(exp) expands all epsilon symbols in exp [3].

FLAGS() displays the values of flags and information lists.

GFIX(exp) expands sums of vectors appearing in untraced products of gamma matrices in exp [3].

GLUE3(l1,l2,l3) gives the tensor corresponding to the three-gluon vertex represented by its arguments [3].

KINDEF(dotp1=rep1, dotp2=rep2, . . .) defines kinematics substitutions dotp1=rep1,. . . , [3].

NONCOV(exp) substitutes the non-covariant components specified by COMPDEF for vectors and indices
in dot products in exp [3]

NSET(dim) sets the dimensionality of spacetime to dim [1].

SCALS(x1, . . . , xk) adds x1 through xk to the list of scalars [1].

SQ(spn1,amp,spn2) squares the amplitude amp sandwiched between the spinors spn1 and spn2 [2].

SQAM(spn1,amp1,spn2,amp2) sums over spins the amplitude squared amp1*conj(amp2) sandwiched be-
tween the spinors spn1 and spn2 [2].

TR(a1,a2,. . .) takes the trace of gamma matrices represented by its argument [1].

UNCIND(mu1,. . . ,muk) removes mu1 through muk from the list of contracted indices [1].

UNCOMPDEF(vec1,ind1,vec2,vec3,. . .) removes the components defined for its arguments [3].

UNKINDEF(dotp1, . . . , dotpk) removes simplifications defined for dot products dotp1 through dotpk [3].

UNSCALS(x1, . . . , xk) removes x1 through xk from the list of scalars [2].

Pseudofunctions
¯

D(p,q) dot product of p and q

D(p,mu) mu component of the vector p

D(mu,nu) mu, nu component of metric tensor

EPS(p,q,r,s) totally antisymmetric product of p,q,r and s

G(a1, . . . , ak) product of gamma matrices represented by a1, . . . , ak (list brackets around sets of arguments
optional)

UV(p,m) a fermion spinor with momentum p and mass m

UVS(p,m,s) a polarized fermion spinor with spin s

ZN(p,m) the numerator of a massive fermion propagator (p(slash)+m)

ZD(p,m) or ZA(p,m) the full propagator for a massive fermion ((p(slash)+m)/(d(p,p)-m*m)). [If
ZERM:TRUE then m=0 will be assumed, and ZD(p) or ZA(p) may be used.]

ZDEN(p,m) the denominator of a massive propagator (d(p,p)-m**2) suitable for VIPER generated when
VIRED:TRUE.

Flags (Default values in brackets)
¯

BORED[FALSE] if TRUE generates interest (TR0 entries and exits).

COF[FALSE] if TRUE alphabetizes CRUNCH outputs by anticommutation.

16.4. Dirac Gamma Matrices 223

DEF[TRUE] if FALSE will prevent the expansion of dot products as they are generated

DOF[TRUE] if FALSE will prevent alphabetization of dot products as they are generated

DSIM[TRUE] if FALSE prevents dot product simplifications defined by KINDEF from being applied.

EPSOF[TRUE] if FALSE will prevent alphabetization of epsilon symbols (antisymmetric products) as they
are generated.

EPSEF[TRUE] if FALSE will prevent expansion of epsilon symbols as they are generated.

KAHAF[FALSE] if TRUE will cause the Kahane algorithm to be used on traces with many contracted
indices in n=4.

MTRICK[TRUE] if TRUE invokes a more efficient algorithm for treating traces with large numbers of mas-
sive spinor propagators in 4 dimensions.

NOP[FALSE] if TRUE causes SQ to generate no primed indices (does Feynman gauge polarization sums).

NTR[FALSE] if TRUE causes SQ to generate G’s rather than TR’s

PLATU[FALSE] if TRUE uses the inefficient methods of templates for large traces.

VIRED[FALSE] if TRUE generates VIPER-compatible output.

ZERM[FALSE] if TRUE assumes all particle masses to be zero.

BORELEN determines the amount of interest generated when BORED:TRUE

METSIG is the signature of the metric used by NONCOV (default [+,-,-,-])

Information lists (initially empty)
¯

COMPS is the list of components defined by COMPDEF

I ND is the list of contracted indices (which will be uncontracted if unpaired)

KINS is the list of kinematic substitutions defined by KINDEF

NPIND is the list of indices automatically summed over by SQ (or SQAM)

SCALARS is the list of scalars

16.4.3 Doing Traces

[Function]TR (a1, a2, . . . , ak)

is the basic trace function in GAMALG. Theai can be:

1. Slashed Lorentz vectors. For example, p(slash)=gamma.p is represented by p, and p(slash)+k(slash)/2
by p+k/2. If a combination of vectors, such as x*p+q (where x is a scalar) is required then x must be
declared as a scalar using SCALS (see below).

2. Uncontracted gamma matrices, represented by their indices. These are treated just as slashed vectors.

3. Contracted pairs of gamma matrices, also represented by their indices. These indices are specified by
doing CIND(mu1,mu2, . . . , .muj); where the mui are the indices to be contracted.

4. Gamma[5], denoted by G5 (only for n=4).

224 Chapter 16. Advanced Packages

5. LHP or RHP, the left and right-handed projection operators (also only for n=4). (LHP=(1-G5)/2,
RHP=(1+G5)/2)

6. The numerator of a massive spinor propagator, denoted by ZN(p,m). This will be expanded as
p(slash)+m.

7. The complete fermion propagator, including denominator, denoted by ZD(p,m). This will be ex-
panded as (p(slash)+m)/(d(p,p)-m*m). If all particles required are massless, ZERM may be set to
true, and the m in ZN and ZD omitted.

Note that any list brackets ([,]) in the argument list of TR will be ignored. Any lists to be used in the argument
of TR may of course be given names and manipulated outside of TR (e.g REVERSEd, APPENDed to, etc.).

The output from TR is in the form of products of D(p,q) (representing the dot product of the vectors p and
q), D(p,mu) (representing the mu component of the vector p, where mu is an unpaired index), D(mu,nu)
(representing the metric tensor), EPS(p,q,r,s) (representing the totally antisymmetric product of p,q,r and s),
and scalars. Note that n is the dimensionality of spacetime. NSET(4); declares that all traces are to be done
in 4 dimensions (n=4) (see below). All D(p,q) and EPS(p,q,r,s) are generated with their arguments in alpha-
betical order, to aid simplification of expressions. (This may be prevented by setting the flags DOF:FALSE
and EPSOF:FALSE, respectively.) Also, unless DEF:FALSE and EPSEF:FALSE, all dot products and ep-
silon symbols of combinations of vectors will be expanded out as they are generated (e.g. D(p+k/2,q) –>
D(p,q)+D(k,q)/2).

BTR(a1,a2, . . . , ak) takes the trace of the gamma matrices represented by its argument in a way that is more
efficient than TR if many of the ai involve sums of vectors. (Essentially BTR computes the trace without
expanding dot products, and only after simplifying the answer does it expand the dot products.)

CIND(mu1,mu2,. . . ,muj) declares the indices mu1 through muj (which may be any atoms) to be contracted
indices. They will be contracted by TR, CRUNCH and CON. The list of contracted indices is IND. Even
if an index has been declared to be contracted by CIND, it cannot of course be contracted unless it appears
twice. If a contracted index appears more than twice, an error will be printed.

UNCIND(mu1,mu2,. . . ,muj) removes the contraction property from the indices mu1 through muj.

NSET(dim) declares that all the operations should be performed in spacetime of dimension dim. (Note that
dim must be close to 4 - GAMALG cannot deal with gamma matrices in 3 or 5 dimensions.) If NSET is
not performed, the dimensionality will be taken as n. NSET(4) will slightly restructure GAMALG so as to
be more efficient at doing traces in 4 dimensions, and to treat gamma[5] correctly. It can only be repealed
by reloading GAMALG. If n=4, then the Kahane algorithm may be invoked by settingKAHAF:TRUE. This
will only be more efficient than the algorithm usually used by GAMALG for traces with very large numbers
of contracted indices.

SCALS(x1, . . . , xk) declares x1 through xk to be scalars (rather than vectors). SCALARS
¯

is the list of
declared scalars. A variable need only be declared a scalar if it will appear in dot products, where it might
be mistaken for a vector.

UNSCALS(x1, . . . ,xk) removesx1 throughxk from the list of scalars.

16.4.4 Squaring Amplitudes

SQ(uv(pi,mi),wt1*g(a1,a2,a3, . . . , ak)+wt2*g(b1,b2, . . . , bj)+...,uv(pf,mf)) squares the amplitude

16.4. Dirac Gamma Matrices 225

{ubar(pi,mi)*a1*a2*...*ak*u(pf,mf)}*wt1
+ {ubar(pi,mi)*b1*b2*...*bj*u(pf,mf)}*wt2
+ \dots ,

where wt1, wt2, ... are the scalar weights of the various pieces of the amplitude (e.g. denominators of
propagators etc.). The ai, bi, ... can be slashed vectors, indices, numerators of propagators (ZN(q,m))
as for TR If the m are omitted from UV,then they will be assumed to be zero. Note that setting the flag
ZERM:TRUE will take all masses in uv, zn and zd as zero, and improve the efficiency of the program.

Any of the ai, bi, ... which were declared as contracted indices by CIND, but which appear only once (i.e.
uncontracted) in the amplitude (e.g. from external photons) will be replaced by the concatenation of their
name with ’prime’ in the conjugate of the amplitude, unless they appear in the list NPIND, in which case
the indices in the conjugate amplitude will be the same as those in the amplitude, and will be contracted
with them (for an external photon this corresponds to a Feynman gauge polarization sum). By setting the
flagNOP:TRUE no primes will be generated, and all indices will be contracted.

In squaring amplitudes, SQ takes UV(p,m)*conjugate(UV(p,m)) = ZN(p,m) = p(slash)+m. If UV(p,m) rep-
resents an antifermion spinor, then the second argument to UV should be minus the mass of the antifermion,
instead of simply the mass as for a fermion. With some conventions, extra overall minus signs must be
associated with antifermion propagators.

For polarized fermions, the spinors UV(p,m) are replaced by UVS(p,m,s), where s is the spin vector of the
fermion. The spin projection operator used is (1+G5*s(slash))/2.

If the flagNTR:TRUE then SQ will generate G’s (untraced products of gamma matrices) instead of TR’s.
The G’s may be evaluated as TR’s by using CGT, or may be manipulated using CRUNCH or COTR. When
indices are to be contracted between different traces (as from a Feynman gauge photon propagator between
two fermion lines), it is much more efficient to COTR G’s and then use CGT than to perform the traces and
then apply CON.

SQAM(uv(pi,mi),wt1*g(a1, . . . , ak),uv(pf,mf),wt2*g(b1,b2, . . . , bj) sums over spins the product of ampli-
tudes:

{ubar(pi,mi)*a1*...*ak*u(pf,mf)}*
conjugate{ubar(pi,mi)*b1*...*bj*u(pf,mf)} *wt1*wt2.

16.4.5 Contracting Indices

CON(exp) contracts all pairs of indices in exp which have been declared by CIND. All contractions are
performed in n dimensions so that D(mu,mu)=n. In GAMALG, the metric tensor with indices mu and
nu is represented by D(mu,nu) while the mu component of the four-vector p is represented by D(p,mu)
or D(mu,p). The dot product of two vectors p and q is represented by D(p,q). CON also performs con-
tractions involving epsilon symbols (totally antisymmetric products of four vectors in n=4) represented by
eps(a1,a2,a3,a4).CON may be used on expressions containing untraced gamma matrix strings G(p1, . . . ,
pk). If SQRED:TRUE then these will be output fromCON in a form suitable for input to SQ or SQAM.

COTR(exp) takes products of G’s in exp, assumes them to be traces, and then combines them into a single
trace by contracting indices between them, if this is possible. COTR will only work in n=4. It returns GT’s
rather than G’s, representing undone traces. These can be done using CGT.

226 Chapter 16. Advanced Packages

DFIX(exp) expands out all dot products in exp. For example, it replaces D(p+k/2,q) by D(p,q)+D(k,q)/2,
D(mu,p+q) by D(mu,p)+D(mu,q), and D(x*p+q,k) by x*D(k,p)+D(k,q), where x is a scalar declared with
SCALS. In all cases GAMALG alphabetizes the arguments to any D(a,b), mimicing the commutativity of
the dot product. This alphabetization will be prevented if DOF:FALSE. Dot products will be expanded out
automatically (rendering DFIX unnecessary) unless DEF:FALSE. Setting DEF:FALSE may well speed up
some calculations, and prevent explosion of the number of terms in intermediate expressions. In evaluating
traces, this will be done automatically if BTR, rather than TR, is used. The simplification of dot products is
controlled by the flag DSIM[TRUE]. Unless DSIM:FALSE, the substitutions defined by KINDEFs will be
applied to all dot products as they are generated.

EPSFIX(exp) expands out all epsilon symbols in exp. Any epsilon symbol with two equal arguments will
automatically be set to zero. Unless EPSOF:FALSE, the arguments to all epsilon symbols will be alphabet-
ized (with suitable signs inserted for the signature of the permutation required) as they are generated. When
EPSEF:TRUE, epsilon symbols will be expanded as they are generated.

GLUE3([p1,mu1],[p2,mu2],[p3,mu3]) returns a tensor corresponding to the momentum space part of a three-
boson vertex in Yang-Mills theories. All momenta are taken to be ingoing. The complete amplitude for the
vertex is -g*f[a,b,c] times the tensor returned, where the order of the group indices is the same as that of the
mui. The sign convention is such that a fermion-fermion-boson vertex is -i*g*T[a,[i,j]]*gamma[mu].

16.4.6 Simplifying Products of Gamma Matrices

CRUNCH(exp) simplifies all untraced products of slashed vectors and gamma matrices (represented by G’s)
in exp. It performs any contractions etc. possible in the product, and returns an expression in terms of
D(p,q)... and G(a1, . . . , aj)... where the latter represents a product of slashed vectors and gamma matrices.
If the flag COF is set to TRUE (then CRUNCH anticommutes gamma matrices until all the arguments of the
G(a1, . . . , aj) that it returns are in alphabetical order. If COF is FALSE, then the arguments of the G(a1, . . . ,
aj) will be in an order that should give the shortest result if no cancellations occurred. In n=4, the Kahane
algorithm will be used. List brackets in the arguments of any G’s will be ignored.

CGT(exp) will replace any G in exp with TR and evaluate the resulting traces.

GFIX(exp) expands sums of vectors appearing in G’s in exp.

16.4.7 Kinematic Substitutions

KINDEF(dotp1=rep1, . . . , dotpj=repj) sets up substitutions for the dot products dotp1, . . . , dotpj (e.g.
D(p,q)=s, d(p1,p1)=m**2, . . .). These will be performed when the dot products are generated unless
DSIM:FALSE. The list of substitutions is contained in KINS. New substitutions for a particular dot product
will overwrite old ones.

UNKINDEF(dotp1, . . . , dotpj) removes the substitutions for the dot products dotp1, . . . , .dotpj.

COMPDEF, UNCOMPDEF and NONCOV perform non-covariant kinematics: descriptions not yet written.

16.4.8 Technical Information

GAMALG sets theMaxima flagsDSKGC:TRUE,PARTSWITCH:TRUE,LISTARITH:FALSE. It will not
work if the last two flags are altered. The following atoms must not be bound: LHP, RHP, G5. D, G,

16.4. Dirac Gamma Matrices 227

TR must not be used at all (if they are, FREEOF will be got wrong.) Several of the functions above use
alphabetization. The “alphabetized” order may be changed by giving aliases. The arrays CONTAB and
CONTAB4 must not be altered - they contain tables used by TR and CRUNCH. Scalars declared by SCALS
have the “constant” property. GAMALG autoloads the disk files [SHARE]GAM5, GAMKAH, GAMMTR,
GAMCON and GAMSQ when the GAMALG.AUT file is loaded in.

GAMALG was originally written very quickly (in a few days) for a specific calculation. Since then it has
been revised considerably. While we have tried to test it completely, it may still have bugs.

Addendum by Leo Harten
¯

Owing to the lack of source code documentation, it is difficult if not impossible to make significant
fixes/alterations in the codes. I have endeavored to make the codes work well enough to run the ‘gam.dem’
file, and have been successful, but this does not mean that the results are correct or reliable; please use ex-
treme caution with this program. Since the source code came in the form of Lisp-save code, it was necessary
to generate theMaxima code definitions, and then start patching the code. It now works

There is a demo in the file: ‘share/gam.dem ’. There are some usage notes in the file:
‘share/gam.usg ’.

16.5 Linear Programming

[Function]HACH (a, b, m, n, l)

An implementation of Hacijan’s linear programming is available by doingLOAD(KACH);. There is a demo
in the file: ‘share1/kach.dem ’.

16.6 Dimensional Analysis

[Function]NONDIMENSIONALIZE (list of physical quantities)

The file ‘share1/dimen.mc ’ contains functions for automatic dimensional analysis.LOAD(DIMEN);
will load it up for you. Usage is of the formNONDIMENSIONALIZE (list of physical quantities).

The returned value is a sufficient list of nondimensional products of powers of the physical quantities.
A physical relation between only the given physical quantities must be expressible as a relation between
the nondimensional quantities. There are usually fewer nondimensional than physical quantities, which
reduces the number of experiments or numerical computations necessary to establish the physical relation
to a specified resolution, in comparison with the number if all but one dependent physical variable were
independently varied. Also, the absence of any given physical quantity in the output reveals that either the
quantity is irrelevant or others are necessary to describe the relation.

The program already knows an extensive number of relations between physical quantities, such as
VELOCITY=LENGTH/TIME. (CPUTIME plays the role of the customaryMaxima global variable TIME.)
The user may over-ride or supplement the prespecified relations by typing

DIMENSION(equation or list of equations);

228 Chapter 16. Advanced Packages

where each equation is of the form indeterminate=expression, where expression is a product or quotient of
powers of none or more of the indeterminates CHARGE, TEMPERATURE, LENGTH, TIME, or MASS.
To see if a relation is already established type

GET(indeterminate, ’DIMENSION);

The result of NONDIMENSIONALIZE usually depends upon the value of the global variable %PURE,
which is set to a list of none or more of the indeterminates ELECTRICPERMITTIVITYOFAVACUUM,
BOLTZMANNSCONSTANT, SPEEDOFLIGHT, PLANCKSCONSTANT, GRAVITYCONSTANT, corre-
sponding to the relation between charge and force, temperature and energy, length and time, length and
momentum, and the inverse-square law of gravitation respectively. Each included relation is used to elimi-
nate one ofCHARGE, TEMPERATURE, LENGTH, TIME, orMASS from the dimensional basis. To avoid
omission of a possibly relevant nondimensional grouping, either include the relevant constant in %PURE or
in the argument of NONDIMENSIONALIZE if the corresponding physical effect is thought to be relevant
to the problem. However, the inclusion of unnecessary constants, especially the latter three, tends to pro-
duce irrelevant or misleading dimensionless groupings, defeating the purpose of dimensional analysis. As
an extreme example, if all five constants are included in %PURE, all physical quantities are already dimen-
sionless. %PURE is initially set to’ [ELECTRICPERMITTIVITYOFVACUUM, BOLTZMANNSCON-
STANT], which is best for most engineering work. %PURE must not include any of the other 3 constants
without also including these 2. There is a demo in the file: ‘share1/dimen.dem ’. There are some usage
notes in the file: ‘share1/dimen.usg ’.

16.7 Asymptotic Analysis

A preliminary version of a program to find the asymptotic behavior of Feynman diagrams has been installed
on the SHARE1 directory. For Asymptotic Analysis functions, see ASYMPA. The source code for this
function is not yet available inMaxima.

ASYMP is a package for determining the asymptotic behavior of Feynman integrals. Given a topological
description of a Feynman diagram as a set of lines and vertices, together with information about the mass
of the virtual particle corresponding to each line and the momentum entering at each external leg, it will tell
one the leading asymptotic behavior of that graph as some sets of masses get much larger than others.

As this package is very unlikely to be of use to people who are not familiar with Feynman diagrams and
other basic aspects of perturbative quantum field theory, we will refrain from describing the basics here and
refer the interested reader to any of the standard textbooks on the subject instead.

Perhaps this is also the appropriate place to mention the limitations of the package. These are of two kinds,
those which are fundamental limitations of the formalism and methods used in the package itself, and those
which are just features which could be added easily if they are ever needed. In the first category we stress
that the bounds are obtained for individual Feynman graphs, and not for sums of them; in other words the
asymptotic behavior of a green’s function might be quite different from that of the graphs which contribute to
it, because there may be “miraculous” cancellations. Such cancellations occur in many interesting theories,
in particular gauge theories, but they are best dealt with by means of Ward identities rather than explicit
calculation. Another mathematical limitation is that the actual behavior of a graph is only bounded by the
result given – in reality the graph might have a smaller asymptotic growth: the bounds obtained are usually
fairly good, however. In the second class of limitations we should mention that (1) the package currently
deals only with boson fields, (2) allows only a trivial dependence of the vertices upon momenta and masses,

16.7. Asymptotic Analysis 229

(3) tries to compute 1/0 for IR divergent graphs [which is honest, in a way], and (4) returns INF for a UV
divergent graph [which is correct]. All of these are simple to generalize in the program, and if one need to
get around these limitations, please contact the authors. A slightly harder problem to circumvent is related
to point (4) above, namely (5) one cannot currently specify that a UV divergent graph is to be subtracted
in a certain way: part of the problem is that there are many different subtraction schemes (minimal, zero
momentum Taylor series, etc.) and how to specify which method one wants is not clear, but it would also
require a fair amount of thought to make the program renormalize automatically.

16.7.1 Simple Example

The easiest way to see how ASYMP works is to look at the simplest example, the one-loop three-point
function in (phi)**3 theory. First of all we must load the ASYMP package into aMaxima:

(C1) load("asymp")$
ASYMP: version of 11:54pm Saturday, 4 July 1981

(C2) graph1:diagram(line(a,b,1,m),line(b,c,2,m),line(c,a,3,mm),
extline(a,4,p),extline(b,5,q),extline(c,6,-p-q))$

1 Loop Diagram

(C3) bound(graph1,[[m,p,q],mm,inf]);

MM
LOG(--)

M
(D3) -------

2
MM

First of all, in line(C1) we have loaded up the FASL (compiled) version of the ASYMP package. It iden-
tifies itself by telling us the date on which it was born. We then define the desired Feynman diagram as
GRAPH1 using the DIAGRAM function. DIAGRAM takes an arbitrary number of arguments, each of
which is a pseudo-function describing a part of the graph. Currently, there are two such pseudo-functions,
LINE and EXTLINE. Logically enough LINE describes an internal line; if we typeLINE(LONDON,
PARIS, RHUBARB, 5*M[PLANCK]) we are defining a line from a vertex called LONDON to a vertex
called PARIS corresponding to a particle of mass 5*M[PLANCK]. A couple of points are to be noted, (1)
the vertices can be names, numbers, or anything one want as long as it is a valid argument to a hashed array,
(2) the factor of 5 in the mass is pointless, as numerical factors are ignored in asymptotic bounds. The
third argument, RHUBARB, is a name for the line, which is solely there for debugging purposes: internally
ASYMP will invent its own name for the line. This argument is, like rhubarb, best left by the side of the plate
and ignored. EXTLINE describes an external leg to our Feynman diagram.EXTLINE(ROME, CELERY,-
P+2*Q) says that there is an external leg attached to our graph at vertex ROME carrying momentum 2*Q-P
into the graph. It is one’s own responsibility to ensure over all momentum conservation. The second argu-
ment, CELERY, has great similarities to RHUBARB and is also best forgotten (well, it has to be there, but
it seems to serve no other useful role in life).

OK, so we have now defined our graph. DIAGRAM sets up tables of lines containing their masses etc.,
assigns internal loop-momenta, routes all momenta through the graph, and tells one the number of loops in

230 Chapter 16. Advanced Packages

the diagram. If we had been nosey and typed a ; rather than a $ at DIAGRAM, it would have returned a list
of the form[G000002653,G000005532,G000007771]. The Goo’s are internal line-names of no interest to
one, other than that they are used by later programs to index the tables set up by DIAGRAM and its cohorts.
The only point of interest is that GRAPH1 is now a list of variable names, in other words it behaves just like
any otherMaxima variable, which is not too surprising because it IS just like any otherMaxima variable.

In line (C2) we get down to the real business of the day. We use the function BOUND to find the asymptotic
behavior of GRAPH1 when the Euclidean momenta p and q and the mass m are much smaller than the mass
mm, and both are much smaller than INF (of course: the need to put in INF by hand is just a foible of the
program, so don’t forget it!). To put it another way, we set up three mass scales, which we shall call m,
mm, and INF, such that any mass of order m is asymptotically bounded by (or, in everyday terms, much less
than) any mass of order mm, and in turn mm « INF. The second argument to BOUND, therefore, is a list of
mass-scales, each of which is either a mass/momentum or a list of masses and/or momenta of the same scale.
The result of BOUND is that GRAPH1 is bounded by (an implicit constant) times log(mm/m)/mm**2, at
least for mm/m large enough. There is a demo in the file: ‘share1/asymp.dm1 ’. There is a demo in the
file: ‘share1/asymp.dm2 ’. There is a demo in the file: ‘share1/asymp.dm3 ’. There is a demo in
the file: ‘share1/asymp.dmo ’. There are some usage notes in the file: ‘share1/asymp.usg ’.

ASYMPA - Asymptotic Analysis. The file ‘share1/asympa.mc ’ contains simplification functions for
asymptotic analysis, including the big-O and little-o functions that are widely used in complexity analy-
sis and numerical analysis. DoLOAD(ASYMPA);. For asymptotic behavior of Feynman diagrams, see
ASYMP.

There are some usage notes in the file: ‘share1/asympa.usg ’.

16.8 Set Packages

Maxima has two packages for Set Theory. One usesMaxima’s list representation, meaning you can convert
easily between lists and sets. It contains commands such as UNION, INTERSECTION, COMPLEMENT,
etc. It may be accessed byLOAD(SET);. The other is the SETS package, which also contains commands
for the usual sorts of operations performed on sets, uses a different representation and is computationally
faster. It is available by doingLOAD(SETS);.

16.8.1 Set

The file ‘share2/set.lsp ’ providesMaxima with the basic primitives of set theory. For our purposes,
we define a set to be a sorted irredundant list. Thus[2,3,x,1] is not a set since it isn’t sorted and[2,3,x,x,y]
is not a set since it has a redundancy; however[1,2,3,x] and[2,3,x,y] are sets.

Here is a list of the functions provided: INTERSECT, UNION, COMPLEMENT, SETDIFFERENCE,
SYMMDIFFERENCE, POWERSET, SETIFY, SUBSET, SETP, SUBSETP, DISJOINTP. The functions
above are mostly self-explanatory, so the following brief descriptions should be sufficient:

INTERSECT (A, B) returns the intersection ofA andB.

UNION (A,B) returns the union ofA andB.

COMPLEMENT (A,B) returns the relative complement ofA in B, That is, the set of elements of B which
are not inA.

16.8. Set Packages 231

SETDIFFERENCE(A,B) returns the set of elements ofA which are not in B. Note that ×
SETDIFFERENCE(A,B) is justCOMPLEMENT(B,A).

SYMMDIFFERENCE (A, B) returns the symmetric difference ofA and B, which is equal to
UNION(SETDIFFERENCE(A, B),SETDIFFERENCE(B, A)).

POWERSET(S) returns the set of all subsets ofS.

SETIFY (L) converts the listL to a set. For exampleSETIFY([2,x,2,3,8,x]) yields[2,3,8,x].

SUBSET(A,F) returns the set of elements ofA which satisfy the conditionF. For example×
SUBSET([1,2,x,x+y,z,x+y+z],atom) yields[1,2,z]. The argumentF should be a function of one argument
which returnsTRUE orFALSE. Another example:SUBSET([1,2,7,8,9,14],evenp) yields[2,8,14].

SETP(L) returnsTRUE if L is a set,FALSE otherwise.

SUBSETP(A,B) decides whether or notA is a subset ofB, and returnsTRUE orFALSE accordingly.

DISJOINTP (A,B) decides whetherA andB are disjoint (have no common elements) and returnsTRUE or
FALSE accordingly.

Remarks:

1. We reemphasize that a set is a list. Thus the notation for both input and output is[. . .] rather than{
. . . }. We feel that this ambiguity is desirable. It allows list processing on sets and set processing on
lists without conversion.

2. However, not every list is a set. A set must satisfy two additional conditions. It must be (1) sorted
and (2) irredundant. Implied is a notion of order and a notion of equivalence. We choose order as the
fundamental notion.

[variable, default: ORDERLESSP]CANONLT

The user can specify an order by resetting the value of CANONLT. Initially, CANONLT has the value
ORDERLESSP which isMaxima’s canonical order. The value of CANONLT must be a strict total preorder
(a function of 2 arguments which returns true or false and such that the associated relation is transitive and
irreflexive). It need not be universally well-defined so long as it is well-defined for the arguments it receives.
The notion of equivalence is derived from the order notion by the familiar law of trichotomy: given objects
a,b we require that exactly one of the following holds:

1. a is less than b

2. b is less than a

3. a and b are equivalent

Note that equivalence is, in general, weaker than equality.

Consider the following example: Suppose we define a functionH by: H(N):=FOR I DO IF NOT INTE-
GERP(N/(2**I)) THEN RETURN(I-1); ThusH returns the largest positive integerE such thatn is divisible
by 2**e (n is assumed to be a positive integer).

Next define an order functionF by: F(A,B):=IS(H(A) < H(B)); For example, with this order, 9 is less than
2 and 6 is equivalent to 10.

232 Chapter 16. Advanced Packages

Next we set CANONLT by:CANONLT:f;. Then all functions in the set package will return sort and
eliminate redundancies (equivalences) using the functionf . For example,SETIFY([6, 20, 2, 9, 8); returns
[9, 2, 8].

As mentioned above the default value of CANONLT is ORDERLESSP. It follows that the default notion of
equivalence is equality.

The functions UNION and INTERSECT can take any number of arguments.

The arguments to functions in the SET package need not be sets - arbitrary lists are OK (i.e. possibly
unsorted and/or redundant). Thus, functions such as INTERSECT accept arbitrary lists but always return a
set. For example,I NTERSECT([2,3,2,y,x],[2,z,y,y]) yields[2,y].

There are some usage notes in the file: ‘share2/set.usg ’.

16.8.2 Sets

There is a fast sets package available by doingLOAD(SETS);. The set constructor is the{ " and the} . So
X:{A,B,C,D,E}; creates a set. The usual primitives UNION,INTERSECTION , SETDIFF, SYMDIFF are
defined.

SYMDIFF(A,B) = UNION(SETDIFF(A,B),
SETDIFF(B,A)) = SETDIFF(UNION(A,B),INTERSECTION(A,B))

Predicates are:ELEMENTP (x, set), EMPTYP (set), andSUBSETP(set1, set2). CARDINAL (SET) re-
turns the cardinality.

There are two mapping-like functions which are provided for sets:

PREDSET(predicate, set) returns the set of all elements ofset such that thepredicate returnsTRUE:

X:{1,2,3,4,5,6,7,8,9,10,11}
PREDSET(LAMBDA([U],IS(ABS(U-6)<3)),X); -> {5,6,7}

MAPSET(function, set) creates a set from the results of applying thefunction to the elements of theset.

ELEMENTS (SET) returns a list of the elements.

The sets are not represented as lists. The set-algebraic functions (UNION, INTERSECTION, SETDIFF,
SYMDIFF, PREDSET, CARDINAL), all operate on the internal representation of sets and as such are fast.
Things which have to be converted from the set representation to non-set are a bit slower, the things which
make sets from raw elements are slower still, however, they are somewhat faster than CONS on the average.

The SETS package is not available inMaxima. There is a demo in the file: ‘share1/sets.dmo ’. There
are some usage notes in the file: ‘share1/sets.usg ’.

16.9 Vectors

The file ‘share/vect.mc ’ contain a vector analysis package. ‘share/vect.dem ’ contains a corre-
sponding demonstration, and ‘share/vect.orth ’ contains definitions of various orthogonal curvilin-
ear coordinate systems.LOAD(VECT); will load this package for you. The vector analysis package can

16.9. Vectors 233

combine and simplify symbolic expressions including dot products and cross products, together with the
gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or prod-
ucts is under user control, as are various other expansions, including expansion into components in any
specific orthogonal coordinate systems. There is also a capability for deriving the scalar or vector potential
of a field. The package contains the following commands: VECTORSIMP, SCALEFACTORS, EXPRESS,
POTENTIAL, and VECTORPOTENTIAL.

[Function]VECTORSIMP (vectorexpression)

This function employs additional non-controversial simplifications, together with various optional expan-
sions according to the settings of the following global flags: EXPANDALL, EXPANDDOT, EXPANDDOT-
PLUS, EXPANDCROSS, EXPANDCROSSPLUS, EXPANDCROSSCROSS, EXPANDGRAD, EXPAND-
GRADPLUS, EXPANDGRADPROD, EXPANDDIV, EXPANDDIVPLUS, EXPANDDIVPROD, EX-
PANDCURL, EXPANDCURLPLUS, EXPANDCURLCURL, EXPANDLAPLACIAN, EXPANDLAPLA-
CIANPLUS, EXPANDLAPLACIANPROD. All these flags have default valueFALSE. The PLUS suffix
refers to employing additivity or distributivity. The PROD suffix refers to the expansion for an operand
that is any kind of product. EXPANDCROSSCROSS refers to replacingp (q r) with (p.r)*q-(p.q)*r, and
EXPANDCURLCURL refers to replacingCURL CURL p with GRAD DIV p + DIV GRAD p. EXPAND-
CROSS:TRUE has the same effect as EXPANDCROSSPLUS:EXPANDCROSSCROSS:TRUE, etc. Two
other flags, EXPANDPLUS and EXPANDPROD, have the same effect as setting all similarly suffixed flags
true. WhenTRUE, another flag named EXPANDLAPLACIANTODIVGRAD, replaces theLAPLACIAN
operator with the compositionDIV GRAD. All of these flags are initiallyFALSE. For convenience, all of
these flags have been declared EVFLAG.There is a demo in the file: ‘share/vect.dem ’. There are some
usage notes in the file: ‘share/vect.usg ’.

[Function]VECTORPOTENTIAL (givencurl)

Returns the vector potential of a given curl vector, in the current coordinate system. POTENTIALZE-
ROLOC has a similar role as for POTENTIAL, but the order of the left-hand sides of the equations must be
a cyclic permutation of the coordinate variables.

[variable, default: FALSE]VECT_CROSS

if TRUE allowsDIFF(X Y,T) to work where is defined in ‘share/vect ’ (where VECT_CROSS is set
to TRUE, anyway).

[Function]SCALEFACTORS (coordinatetransform)

For orthogonal curvilinear coordinates, the global variablesCOORDINATES[[X,Y,Z]], DIMENSION[3],
SF[[1,1,1]], andSFPROD[1] are set by this function invocation. Herecoordinatetransform evaluates to the
form [[expression1, expression2, . . .], indeterminate1, indeterminat2, . . .], whereindeterminate1, indeter-

minate2, etc. are the curvilinear coordinate variables and where a set of rectangular Cartesian components
is given in terms of the curvilinear coordinates byexpression1, expression2, . . .]. COORDINATES is set to
the vector[indeterminate1, indeterminate2,. . .], and DIMENSION is set to the length of this vector. SF[1],
SF[2], . . . , SF[DIMENSION] are set to the coordinate scale factors, and SFPROD is set to the product of
these scale factors. Initially, COORDINATES is [X, Y, Z], DIMENSION is 3, andSF[1] = SF[2]= SF[3]=

234 Chapter 16. Advanced Packages

SFPROD= 1, corresponding to 3-dimensional rectangular Cartesian coordinates. There are some usage
notes in the file: ‘share/vect.usg ’.

[Function]POTENTIAL (givengradient)

Returns the scalar potential of a given gradient vector, in the current coordinate system. The calculation
makes use of the global variable POTENTIALZEROLOC default: [0], which must beNONLIST, or of
the form [indeterminatej = expressionj, indeterminatek = expressionk, . . .], the former being equivalent
to the nonlist expression for all right-hand sides in the latter. The indicated right-hand sides are used as
the lower limit of integration. The success of the integrations may depend upon their values and order.
POTENTIALZEROLOC is initially set to 0.

[Function]EXPRESS (expression)

Used to expand an expression into physical components in the current coordinate system. The result uses the
noun form of any derivatives arising from expansion of the vector differential operators. To force evaluation
of these derivatives, the built-in EV function can be used together with the DIFF evflag, after using the
built-in DEPENDS function to establish any new implicit dependencies.

16.9. Vectors 235

236

BIBLIOGRAPHY

[AS64] Milton Abramowitz and Irene Stegun, editors.Handbook of Mathematical Functions. National
Bureau of Standards, Wahington, D.C., 1964.

[BD64] J. D. Bjorken and S. D. Drell.Relativistic Quantum Mechanics. McGraw-Hill, New York, 1964.

[Lew79] V. Lewis, editor.Proceedings of the 1979 MACSYMA User’s Conference, Washington, 1979.

[Wan71] P. S. Wang. Evaluation of definite integrals by symbolic manipulation. Technical report, MIT,
1971. MAC TR-92.

[Wol79] Steve Wolfram. Macsyma tools for feynman diagram calculations. In V. Lewis, editor,MACSYMA
User’s Conference, Washington, 1979.

237

238

INDEX

’, 4, 63
”, 4, 187
*, 51, 88, 143
**, 51, 88
+, 51, 88, 143
-, 51, 88, 143
., 88, 90, 149, 151
/, 51
:, 4, 29
::, 4, 29
::=, 145, 146
:=, 6, 29, 145
;, 1, 164
=, 159
?,30
$, 1, 164
%, 48, 187
%C,138
%E,8, 24, 26, 57, 61, 149
%EDISPFLAG,34, 74
%EMODE,24, 34, 49, 74, 149
%ENUMER,34, 49, 149
%E_TO_NUMLOG,26, 35, 74
%GAMMA, 7, 39, 40, 43
%I, 6, 8, 24, 44, 52, 61, 130, 131
%K1, 135, 138
%K2, 135, 138
%PHI,7, 43
%PI,6, 8, 42, 61, 149, 189
%PURE,229
%R,131
%R1,130
%R2,130
%RNUM_LIST,130, 131
^^, 95
3D, 199
68K, 177

ABS, 6, 44, 132
ABSBOXCHAR,33
ACOS,35, 188
ACOSH,35
ACOT, 35
ACOTH, 35
ACSC,35
ACSCH,35
ACTIVATE, 152, 153
ACTIVECONTEXTS,152
ADDITIVE, 149, 150
ADJOINT, 94
AERR,209
AI, 41
AIRY, 41
Airy Functions,41
ALGEBRAIC, 49, 52, 85, 149
ALGEPSILON,130
ALGEXACT, 130, 131
ALGSYS,96, 97, 127, 129–131, 209
ALIAS, 29, 162
ALIASES, 29
Aliases,29
ALL, 5, 25, 26, 88, 137, 138, 140, 151, 154, 157,

160–162, 166, 168, 180, 188
ALLBUT, 58, 160
ALLROOTS,22, 130–132
ALLSYM, 218
Alphabet,149
ALPHABETIC, 149
Analysing Expressions,60
ANALYTIC, 148
AND, 143
ANTID, 116, 120
ANTIDIFF, 120
ANTISYMMETRIC, 148–150
ANY, 5, 137, 138, 188

239

ANY_CHECK, 5
APPEND,62
APPLY, 50, 63, 65, 88, 157
APPLY1,158
APPLY2,158
APPLY_NOUNS,50
APPLYB1,158
APPROXIMATE,141
APROPOS,171
ARGS,60
Arithmetic Functions,33
ARRAY, 87, 88
ARRAYAPPLY, 87
ARRAYINFO, 87
ARRAYMAKE, 87
ARRAYS, 20, 29
Arrays,29, 87, 93, 185, 188

Declared Arrays,88
Defining Arrays,87
Hashed Arrays,87, 88
Manipulating Arrays,87

ASEC,35
ASECH,35
ASIN, 35
ASINH, 35
ASKSIGN,160
Assignment

Assignment Flags,5
ASSUME,151, 152, 160
ASSUME_POS,151
ASSUME_POS_PRED,151
ASSUMESCALAR,151
Assumptions,151
ASYMP, 105, 229–231
ASYMPA, 229, 231
Asymptotic Analysis,229
AT, 67, 125
ATAN, 35
ATANH, 35
ATOMGRAD, 14, 154
ATVALUE, 14, 29, 122, 125, 135, 136, 139, 153,

154
AUTOLOAD, 164
Autoloading,164

BACKSUBST,22
BACKTRACE, 180
Backward Differences,101

BASHINDICES,102
BATCH, 1–3, 10, 15, 163–167, 179
Batching Files,164

Indexed Batch Files,165
BATCHKILL, 165
BATCHLOAD, 163
BC2,139
Beginning and Ending Maxima,1
BERLEFACT,28
BERN,41
Bernoulli Numbers,41
BESSEL,1, 41, 45
BESSELARRAY,43
BEZOUT,84
BFLOAT, 49, 149
BFPSI0,40
BGZETA, 43
BI, 41
Bigfloat Numbers,8, 9, 23, 24, 50
BINDTEST,149
BLOCK, 2, 14–17, 19, 148
BOOLEAN, 5, 185
Boundary Conditions,125
Boundary Value Problems,138
BOX, 58
BREAK, 166, 181
Break Points and Debugging,179
BREAKUP,128
BUILDQ, 146–148
BURN, 41, 42
BZETA, 43

CABS,6
Calculus,111

Differentiation,112
Integration,116
Limits, 111
Residues,112

CANFORM,218
CANONLT, 232, 233
CANTEN, 218
CARDINAL, 233
CARG,6, 44
CATCH, 15
CAUCHYSUM, 27, 49, 102, 149
CAUCYSUM, 102
CENTERPLOT,201
CF,109, 110

240 Index

CFLENGTH,109, 110
CGAMMA, 39
CGAMMA2, 39
Change of Variable,121
CHANGEVAR, 103, 122
Characteristic Polynomials,96
CHARPOLY,93, 96
CHRISTOF,214, 215
CIND, 226
CLABELS, 160
CLOSEDFORM,136
CLOSEFILE,166, 167
COEFF,60, 61
COLLAPSE,191
COLLECTTERMS,81, 82
COLUMNVECTOR,96, 98
COMBINE, 76, 102
Command Line Flags,10
COMMUTATIVE, 148–150
COMPARE,189
Comparison Functions,33
COMPDEF,227
COMPFILE,188, 189, 191, 192
COMPILE,133, 190–192
Compiling,191

Compiler Declarations,192
COMPLEMENT,231
COMPLETE,185
COMPLEX,22, 25, 148
Complex Variables,44
Compound Statements,2
CON,226
Conditionals,13
CONJUGATE,96
CONS,63, 136, 233
CONSOLEPRIMER,172
CONSTANT,7, 14, 61, 149
Constants,6

Arithmetic Constants,6
Logical Constants,6

CONTAB, 228
CONTAB4,228
CONTENT,56
CONTEXT,15, 152
Contexts,151
Continued Fractions,109
CONTOUR,199
Control Characters,10

COORDINATES,116, 234
COS,35, 41, 73, 80, 107, 108, 122
COSH,35, 73, 122
COT,35
COTH,35
COTR,226
COUNTER,220
CPUTIME,228
CRE Form,1, 8, 23, 48, 89, 95, 113, 187

Canonical Rational Expressions,51
Converting To and From CRE form,51
Expanding CRE Expressions,77
Operations on CRE Expressions,53
Rational Expression Flags,54
Substituting in CRE Expressions,69

CRUNCH,226, 228
CSC,35
CSCH,35
CURRENT_LET_RULE_PACKAGE,155, 156
CURSORDISP,11

DADJOINT, 137
DAI, 41
Data Type Coercion,9
Data Types,6
DBI, 41
DBLINT, 119
DBLINT_X, 119
DBLINT_Y, 119
DCADRE,116, 207–209
DEACTIVATE, 152
DEBUG,180
Debugging,179
DEBUGMODE,180
Declarations,148
DECLARE,8, 9, 29, 47, 48, 50, 61, 73, 144, 145,

148, 149, 153, 161, 162
DECREASING,148
DEFAULT_LET_RULE_PACKAGE, 29, 155,

156
DEFCON,218, 219
DEFINE_VARIABLE, 5
Defining

Defining Functional Dependencies,114, 116
Defining Functions,6
Defining Macros,145
Defining Matrices,91
Defining Operators,143

Index 241

Defining Simplification Rules,154
Defining Variables,4

DEFMATCH, 29, 154, 156, 157
DEFRULE,29, 154, 157
DEFTAYLOR, 105
DEL, 112
DELTA, 124
DEMO, 3, 163, 166, 172
Demoing Files,166
DEMOIVRE, 24, 34, 35, 49, 74, 149
DENOM, 56
DEPENDENCIES,14, 29, 115, 116, 123
DEPENDS,29, 114–116, 123, 235
DEPTRAN,137
DERIVABBREV, 114
DERIVDEGREE,62
DERIVLIST, 50
DERIVSUBST,68
DESCRIBE,5, 29, 171
DESOL,138
DESOLVE,135, 139, 140
DETERMINANT, 84, 93–95
Determinants,89, 93
DETOUT,49, 88, 94, 95, 149
DIAGMETRIC, 214
DIAGRAM, 230
DIFF, 50, 53, 112–115, 221, 235
Differentiation,50, 112

Defining Gradients,114
Differentiating Tensors,116
Differentiation Flags,113
Total Differential,112

DIFFSOL,136, 138
DIM, 215
DIMENSION, 116, 234
Dimensional Analysis,228
Dirac Delta Function,124
Dirac Gamma Matrices,222
DIRECTION,182
Directories,168
DISJOINTP,231, 232
DISP,19, 20
DISPFLAG,14
DISPFORM,60
DISPFUN,146, 166, 187
DISPLACE,147
DISPLAY, 3, 6, 17, 19, 20, 147
DISPLAYEDIT, 174

Displaying Expressions,19
Display of Expansion,77
Display of Exponentials,24
Display of Factoring,28
Display of Logarithms,25
Display of Numbers,23
Display of Products,27
Display of Simplification,27
Display of Sums,27
Display of Trig Functions,26
Flags Effecting the Displayed Form,21
Ordering of the Display,28

DISPTERMS,58
DLABELS, 160
DO, 16–19
Do Loops,16
DOALLMXOPS, 88, 90, 93
DOMAIN, 25, 132
DOMXEXPT, 88
DOMXMXOPS,88
DONTFACTOR,28, 83
DOSCMXOPS,88, 93
DOSCMXPLUS,88
DOT0NSCSIMP,91
DOT0SIMP,91
DOT1SIMP,91
DOTSCRULES,49, 149
DPART,58, 60
DUMMY, 220
DUMMYX, 220

Editing,172
Expression Editor,173
Full Screen Editing,173
Line Editing,172

EEZ,85
EIGENVALUES,96–99
Eigenvalues and Eigenvectors,96

Eigenvalue Flags,97
Functions in the Eigenvalue Package,98

EIGENVECTORS,97–99
EINSTEIN,215
ELABELS, 160
ELEMENTP,233
ELEMENTS,233
EMPTYP,233
END, 59, 70
ENDCONS,63

242 Index

Entering Commands,1
ENTIER,9
EQUAL, 159
EQUALSCALE,199
ERF,119, 122
ERRCATCH,15, 178
ERREXP,178
ERREXP1,178
ERREXP2,178
ERREXP3,178
ERRINTSCE,120
ERROR,178, 179, 186
Error Handling,178
ERROR_SIZE,178, 179
ERROR_SYMS,178, 179
ERRORCATCH,182
ERRORFUN,179
EV, 15, 24, 26, 47–50, 67, 76, 93, 149, 235
EVAL, 48, 50
Evaluation,47

Evaluation Flags,49
EVEN, 148, 159
EVENFUN,148
EVFLAG, 47, 49, 149, 234
EVFUN, 48, 49, 149
Example Command,171
EXP,122, 171
EXPAND, 22, 76–78, 147, 171
EXPANDALL, 234
EXPANDCROSS,234
EXPANDCROSSCROSS,234
EXPANDCROSSPLUS,234
EXPANDCURL,234
EXPANDCURLCURL,234
EXPANDCURLPLUS,234
EXPANDDIV, 234
EXPANDDIVPLUS,234
EXPANDDIVPROD,234
EXPANDDOT,234
EXPANDDOTPLUS,234
EXPANDGRAD,234
EXPANDGRADPLUS,234
EXPANDGRADPROD,234
Expanding Expressions,76

Controlled Expansions,80
Expand Flags,77
Expanding CRE Expressions,77
Partial Expansion,78

Trig Expand Flags,80
Trigonometric Expansions,80

EXPANDLAPLACIAN, 234
EXPANDLAPLACIANPLUS, 234
EXPANDLAPLACIANPROD,234
EXPANDLAPLACIANTODIVGRAD, 234
EXPANDPLUS,234
EXPANDPROD,234
EXPANDWRT,77
EXPANDWRT_DENOM,77
EXPANDWRT_FACTORED,77
EXPON,22
Exponential Functions,34, 73
EXPONENTIALIZE, 26, 49, 80, 149, 171
EXPOP,22
EXPR,188
EXPRESS,234
EXPTDISPFLAG,34, 60, 74
EXPTISOLATE,49, 149
EXPTSUBST,34
Exterior Calculus,221
EZ, 85
EZGCD,86

FACEXPTEN,82
FACRAT, 216, 217
FACSUM,80–82
FACSUM_COMBINE,81
FACTCOMB,38, 74
FACTENEXPAND,82
FACTLIM, 39
FACTOR,49, 66, 81–85, 98, 128, 130, 132, 149
FACTORFACEXPTEN,82
FACTORFACSUM,82
FACTORFLAG,28, 49, 149
Factorial and Gamma Functions,38

Binomials and Generalized Factorials,39
Factorials,38, 74
Gamma and Related Functions,39
Polygamma Functions,40
Polylogarithm Functions,40

Factoring Expressions,82
Factor Flags,83

FACTORSUM,83
FACTS,152
FALSE,147, 188
FASSAVE,164, 169, 191
Fast Fourier Transforms,211

Index 243

FAST_IMSL_ROMBERG,207
FASTTIMES,84
FEATUREP,148
FEATURES,148
Features,148, 158, 177
FFT,44, 211
FIB, 43
Fibonacci Numbers,43
FIBTOPHI,7
FILE_SEARCH,163
FILE_TYPES,168
Files

Deleting Files,167
Operating on Files,167
Printing Files,167

FILLARRAY, 87, 88, 211
FIRST,55, 68, 140, 197
FIRSTKIND, 140
FIRSTKINDSERIES,140, 141
FIX, 9
FIXNUM, 185, 188
FLAG, 141
FLOAT, 47–50, 149, 185, 188, 193
FLOAT2BF,9
FLOATDEFUNK, 119, 190, 191
Floating Point Numbers,7, 8, 23, 25

Underflow,24
FLONUM, 204
FOOBAR,2
FOR,16, 18, 19, 68, 192
FORGET,152
FORTRAN,167, 203
Fortran Code,85, 203
FORTSPACES,203
FPPREC,9, 23, 43
FPPRINTPREC,23
FRANZ, 177
FREDSERIES,140
FREEOF,62, 150, 228
FROM,18
FULLMAP, 65, 68
FULLRATSIMP, 72
FULLRATSUBST,69
FUNCTION,14, 161, 182
FUNCTIONS,20, 29, 146, 160, 164, 166, 168,

186
Functions,6, 29

Removing a Function Definition,161

functions

, 4, 38
”, 4, 187
’, 4, 63
**, 4, 51, 88
*, 4, 51, 88, 143
+, 4, 51, 88, 143
-, 4, 51, 88, 143
., 4, 88, 90, 149, 151
/, 4, 51
::=, 145, 146
::, 4, 29
:=, 6, 29, 145, 192
:, 4, 29
;, 1, 164
<=, 13, 33
<, 13, 33
=, 4, 13, 159
>=, 13, 33
>, 13, 33
?,30
ABS, 6, 33, 44, 132
ACOSH,35, 37
ACOS,35, 36, 188
ACOTH, 35, 38
ACOT, 35, 36
ACSCH,35, 37
ACSC,35, 36
ACTIVATE, 152, 153
ADDCOL, 94
ADDROW, 94
ADJOINT, 94
AIRY, 41
AI, 41
ALARMCLOCK, 31
ALGSYS,96, 97, 127, 129–131, 209
ALIAS, 29, 162
ALLROOTS,22, 130–132
AND, 13, 143
ANTIDIFF, 120
ANTID, 116, 120
APPENDFILE,166
APPEND,62
APPLY1,157, 158
APPLY2,158
APPLYB1,158
APPLY_NOUNS,50

244 Index

APPLY, 50, 63, 65, 88, 157
APROPOS,171
ARGS,60
ARRAYAPPLY, 87, 88
ARRAYINFO, 87, 88
ARRAYMAKE, 87
ARRAY, 87, 88
ASECH,35, 38
ASEC,35, 36
ASINH, 35, 37
ASIN, 35
ASKINTEGER,159
ASKSIGN,160
ASSUME,151, 152, 160
ASYMPA, 229, 231
ASYMP, 229–231
ATAN2, 36
ATANH, 35, 37
ATAN, 35, 36
ATOM, 7
ATVALUE, 29, 122, 125, 135, 136, 139, 153,

154
AT, 67, 125
AUGCOEFMATRIX, 94
BASHINDICES,102, 103
BATCHLOAD, 163, 165
BATCH, 1–3, 10, 15, 163–167, 179
BATCON, 165
BC2,139
BERNPOLY,42
BERN,41
BESSEL,1, 41, 43, 45
BETA, 39
BFFAC,38
BFLOATP,8
BFLOAT, 9, 49, 149
BFPSI0,40
BFPSI,40
BFZETA, 42
BGZETA, 43
BHZETA, 43
BINOMIAL, 39
BI, 41
BLOCK, 2, 14–17, 19, 148, 192
BOTHCOEF,60
BOX, 58
BREAK, 166, 179
BUILDQ, 146–148

BURN, 41, 42
BZETA, 43
CABS,6, 33
CANFORM,217, 218
CANTEN, 218
CARDINAL, 233
CARG,6, 44
CATCH, 15
CBFAC,38
CFDISREP,109
CFEXPAND,109
CF,109, 110
CGAMMA2, 39
CGAMMA, 39
CHANGEVAR, 103, 121, 122
CHARPOLY,93, 96
CHR1,217
CHR2,217
CHRISTOF,214, 215
CIND, 226
CLEARSCREEN,30
CLOSEFILE,166, 167
COEFF,60, 61
COEFMATRIX, 94
COLLAPSE,191
COLLECTTERMS,81, 82
COLUMNVECTOR,96, 98
COL, 93
COMBINE, 76, 102
COMPARE,189
COMPDEF,227
COMPFILE,188, 189, 191, 192
COMPILE_LISP_FILE,191
COMPILE,133, 190–192
COMPLEMENT,231
CONCAT,63
CONJUGATE,96, 98
CONSOLEPRIMER,172
CONSTANTP,8
CONS,63, 136, 233
CONTENT,56, 86
CONTRACT,218
CON,226
COPYLIST,63
COPYMATRIX, 92
COSH,35, 37, 73, 122
COS,35, 41, 73, 80, 107, 108, 122
COTH,35, 37

Index 245

COTR,226
COT,35, 36
COVDIFF,218
CRUNCH,226, 228
CSCH,35, 37
CSC,35
CURVATURE,218
DADJOINT, 137
DAI, 41
DBI, 41
DBLINT, 119
DCADRE,116, 207–209
DEACTIVATE, 152, 153
DEBUGMODE,180
DEBUGPRINTMODE,180
DEBUG,180
DECLARE,8, 9, 29, 47, 48, 50, 61, 73, 144,

145, 148, 149, 153, 161, 162
DEFCON,218, 219
DEFINE_VARIABLE, 4, 5
DEFINE,6
DEFINT, 118
DEFMATCH, 29, 154, 156, 157
DEFRULE,29, 154, 157
DEFTAYLOR, 105
DELETE,63
DELFILE, 167
DELTA, 124
DEL, 112
DEMOIVRE, 24
DEMO, 3, 163, 166, 172
DENOM, 55, 56
DEPENDENCIES,115
DEPENDS,29, 114–116, 123, 235
DEPTRAN,137
DERIVDEGREE,62, 113
DESCRIBE,5, 29, 171
DESOLVE,135, 139, 140
DETERMINANT, 84, 93–95
DIAGMATRIX, 92
DIAGRAM, 230
DIFFSOL,136
DIFF, 53, 112–115, 221
DISJOINTP,231, 232
DISOLATE, 57
DISPCON,219
DISPFORM,20, 60
DISPFUN,20, 146, 166, 187

DISPLAYEDIT, 174
DISPLAY, 3, 6, 17, 19, 20, 147
DISPRULE,157
DISPTERMS,57, 58
DISP,19, 20
DISTRIB, 78
DIVIDE, 84
DIVSUM, 45
DO, 16–19, 192
DPART,58–60
DSCALAR, 215
DUMMY, 219, 220
ECHELON,94
EIGENVALUES,96–99
EIGENVECTORS,96–99
EINSTEIN,215
ELEMENTP,233
ELEMENTS,233
EMATRIX, 92
EMPTYP,233
ENDCONS,63
ENTERMATRIX, 92
ENTIER,9
EQUAL, 13, 159
ERF,43, 119, 122
ERRCATCH,15, 178
ERRORMSG,179
ERROR,178, 186
EULER,43
EVENP,8
EV, 15, 24, 26, 47–50, 67, 76, 93, 149, 235
EXAMPLE, 171
EXPANDWRT_FACTORED,77
EXPANDWRT,76, 77
EXPAND, 22, 76–78, 171
EXPONENTIALIZE, 26, 171
EXPRESS,234, 235
EXPT,34
EXP,34, 122, 171
EZGCD,86
FACEXPTEN,82
FACSUM,80–82
FACTCOMB,38, 74
FACTENEXPAND,82
FACTORFACEXPTEN,82
FACTORFACSUM,81, 82
FACTORIAL, 38
FACTOROUT,82

246 Index

FACTORSUM,82, 83
FACTOR,49, 66, 81–85, 98, 128, 130, 132,

149
FACTS,152
FASSAVE,164, 168, 169, 191
FASTTIMES,84
FAST_IMSL_ROMBERG,207
FEATUREP,148, 158
FFT,44, 211
FIBTOPHI,7, 43
FIB, 43
FILENAME_MERGE,167
FILE_SEARCH,163
FILE_TYPE,168
FILLARRAY, 87, 88, 211
FIRSTKINDSERIES,141
FIRST,55, 68
FIX, 9
FLOATDEFUNK, 119, 190, 191, 193
FLOATNUMP, 8
FLOAT, 9, 185, 193
FLUSHD,219
FLUSHND,219
FLUSH,219
FORGET,152, 160
FORTRAN,167, 203
FOR,16, 18, 19, 68, 192
FREEOF,61, 62, 150, 228
FROM,18
FULLMAPL, 65
FULLMAP, 65, 68
FULLRATSIMP, 72
FULLRATSUBST,69
FUNCSOLVE,127
FUNDEF,6
FUNMAKE, 6, 146
GAMALG, 222, 228
GAMMA, 39, 75
GAUSS,45
GCD,85, 127
GENDIFF,113
GENFACT,39, 113
GENMATRIX, 91
GETCHAR,30
GET,153
GFACTORSUM,83
GFACTOR,82, 83
GO,14, 17, 193

GRADEF,29, 41, 114, 115, 154
GRAMSCHMIDT, 96, 98
GRAPH2,195, 196, 199
GRAPH3D,195, 196
GRAPH,195, 196, 199
GRIND, 20, 21, 146, 147, 167
HACH, 228
HIPOW,62
HORNER,85
IC1, 138
IC2, 139
IEQN, 140, 141
IFT, 44, 211, 212
IF, 13, 158
ILT, 123
IMAGPART, 6, 9, 44, 56
IMSL_ROMBERG,207
INDEX_FILE_DIM, 165
INDICES,219
INDTRAN, 137
INFIX, 143, 144
INNERPRODUCT,96, 98
INPART, 21, 58, 59, 68, 70
INRT, 34
INTEGERP,8
INTEGRATE,115–118, 150, 151, 203
INTERPOLATE,133, 134, 193
INTERSECTION,231, 233
INTERSECT,231, 233
INTOPOIS,107
INTOSUM, 76, 102
INTSCE,120
INVARIANT, 137
INVERT, 94, 95
IN, 19, 68
ISOLATE, 57
ISQRT,34
IS, 158, 159
KDELTA, 220
KILLCONTEXT, 152, 153
KILL, 144, 152, 160, 161, 165
LABELS, 2
LAMBDA, 15, 64, 67, 89, 192
LAPLACE, 115, 122–124
LAST, 55, 68
LCM, 86
LC, 220
LDEFINT, 117, 118

Index 247

LDISPLAY, 17, 20
LDISP,20
LENGTH, 60, 68
LETRULES,155
LETSIMP,155, 156
LET, 155, 156, 161
LHS, 55
LIMIT, 111, 117, 118, 150
LINEAR, 120
LINSOLVE, 22, 123, 127, 129, 209
LISPDEBUGMODE,180
LISTARRAY, 87
LISTFILES,168
LISTOFVARS,61, 62
LISTP,7
LI, 40
LOADFILE, 163, 164, 167–169, 187
LOAD, 163, 164
LOCAL, 14, 15
LOGARC,26
LOGCGAMMA2, 39
LOGCONTRACT,49, 74, 133
LOGOUT,179
LOG, 9, 25, 26, 35, 81, 107, 118, 122, 188
LOPOW,62
LORENTZ,220
LPART, 58, 59
LRATSUBST,67, 69
LRICCICOM, 215
MACROEXPAND1,147
MACROEXPAND,147
MAKEBOX, 221
MAKEGAMMA, 38, 39, 75
MAKELIST, 63
MAKE_INDEX_FILE, 165
MAPATOM, 66, 67
MAPLIST, 65, 68
MAPSET,233
MAP_OVER_INDEX_FILE,165
MAP, 63–65, 68
MATCHDECLARE, 29, 153–157
MATCHFIX, 143, 144
MATRIXMAP, 95
MATRIXP, 7
MATRIX, 91
MATTRACE, 93
MAX, 33
MEMBER, 64

METRIC, 220
MEVAL, 188, 190
MINFACTORIAL, 38, 74, 75
MIN, 33
MODEDECLARE,185
MODE_DECLARE, 185–187, 190, 192,

193, 207
MODE_IDENTITY, 185
MOD, 84, 85
MOTION, 215
MULTIGRAPH, 195, 196, 199
MULTTHRU, 78, 79
NARY, 144, 145
NCEXPT,88
NCHARPOLY,93, 96
NDIFFQ,209
NEUMANN, 141
NEWCONTEXT,152
NEWDET,93
NEWTON,134
NEXTLAYERFACTOR,82
NEXT, 18
NICEINDICES,102, 103
NOFIX, 144
NONCOV,227
NONDIMENSIONALIZE, 228, 229
NONSCALARP,8, 151
NONZEROANDFREEOF,120
NORMALFORM, 137
NOT, 13, 143
NOUNIFY, 50
NROOTS,132
NTERMSG,220
NTERMSRCI,221
NTERMS,60
NTHROOT,132
NUMBERP,7
NUMERVAL, 5
NUMFACTOR,56
NUM, 55
NUSUM, 101
NZETAI, 43
NZETAR, 43
NZETA, 43
ODDP,8
ODE2,135, 136, 138, 139
ODE,135, 137, 138
OPEN_INDEX_FILE,165

248 Index

OPTIMIZE, 190, 191, 193
OPTIONS,29
ORDERGREATP,28
ORDERGREAT,28, 29, 162
ORDERLESSP,28, 64, 232, 233
ORDERLESS,28, 29, 162
OR,13, 143
OUTOFPOIS,107, 108
PADE,107
PARAMPLOT2,195, 198, 199, 201
PARAMPLOT,195
PARTFRAC,64, 79
PARTITION, 62
PART,20, 21, 58, 59, 68–70
PAUSE,31
PERMANENT,93
PICKAPART,56, 68, 130
PLAYBACK, 2, 3, 21, 166, 167
PLOG,35
PLOT2,191, 195, 197–201
PLOT3D,195, 198–200
PLOT,195, 196
POISDIFF,108
POISEXPT,108
POISINT,108
POISMAP,108
POISPLUS,108
POISSIMP,73, 108
POISSUBST,108
POISTIMES,108
POISTRIM,109
POLARFORM,6, 44, 49
POLARTORECT,44, 211
POLYDECOMP,85, 128
POLYSIGN,34
POLY_DISCRIMINANT, 132
POSTFIX,143, 144
POTENTIAL, 234, 235
POWERSERIES,11, 104
POWERSET,231, 232
POWERS,62
PREDSET,233
PREFIX,143, 144
PRIMEP,8
PRIMER,172
PRIME,45
PRINTFILE,20, 167
PRINTPOIS,108

PRINTPROPS,154
PRINT,20
PRODUCT,103
PROPERTIES,153
PROPVARS,153
PSI,40
PUT,153
QLISTFILES,168
QPUT,153
QUANC8,116, 119, 206, 207
QUIT, 1, 179
QUNIT, 45
QUOTIENT,84
RADCAN, 49, 73, 128, 130, 149
RAISERIEMANN, 216
RANDOM, 45
RANK, 92
RATCOEF,60, 61
RATDENOM, 55
RATDIFF, 53, 113
RATDISREP,52
RATEXPAND, 49, 71, 76–78, 149, 218
RATNUMER, 55
RATNUMP, 8
RATP,8
RATSIMP, 49, 51, 71, 72, 75, 77, 85, 133,

149, 159
RATSUBST,67, 69
RATVARS, 51, 53, 54, 71, 81, 84, 187
RATWEIGHT, 53, 54
RAT, 51, 72, 131, 187
READONLY, 19
READ_NTH_OBJECT,165
READ, 19
REALPART,6, 9, 44, 56
REALROOTS,22, 97, 130–132
RECTFORM,6, 44, 49
RECTTOPOLAR,44, 211
REMAINDER, 84
REMARRAY, 87, 88, 161
REMBOX, 58
REMCON,220
REMFUNCTION,161
REMLET, 161
REMOVE,115, 144, 161
REMRULE,157, 161
REMVALUE, 161
REM, 161

Index 249

RENAMEFILE, 167
RENAME, 102, 103, 218
RESET,30
RESIDUE,112
RESTORE,169
REST,55, 68
RESULTANT,84
RETURN,14–16, 18, 19
REVEAL, 56, 68, 130, 173
REVERSE,64
REVERT2,106
REVERT,106
RHS,55
RICCICOM,215
RICSOL,135
RIEMANN, 216
RINVARIANT, 216
RISCH,118, 119
RNCOMBINE,76, 102
ROMBERG,116, 193, 203–207
ROOTSCONTRACT,132, 133
ROW,93
SAVE, 3, 149, 163, 164, 168, 169, 191, 192
SCALARP,8
SCALEFACTORS,234
SCANMAP,65, 66
SCHMIDT, 135
SCHWARTZIAN, 137
SCSIMP,71
SCURVATURE,216
SECH,35, 37
SEC,35, 73
SERIES,136–138
SETDIFFERENCE,231, 232
SETDIFF,233
SETELMX, 92, 93
SETIFY,231, 232
SETP,231, 232
SETUP_AUTOLOAD,1, 164
SHOWRATVARS,54
SHOW,221
SIGNUM, 34
SIGN,159
SIMILARITYTRANSFORM, 98
SINH, 35, 37, 73, 122
SIN, 35, 36, 41, 73, 80, 107, 108, 122, 143
SOLVE, 2, 10, 14, 22, 48, 96, 97, 123, 127–

131, 137

SORT,64
SPECINT,43, 120
SQFR,132
SQRT,9, 23, 34, 132, 188
SQ,226
SSTATUS,177
STATUS,177
STEP,16, 18
STORE,163, 169
STRINGOUT,3, 21, 85, 146, 165–167
STRING,3, 21, 167
SUBLIST,66
SUBLIS,66, 67
SUBMATRIX, 94
SUBSETP,231–233
SUBSET,231, 232
SUBSTINPART,58, 68, 70
SUBSTITUTE,67
SUBSTPART,58, 60, 67–70, 146
SUBST,67–69, 148
SUBVARP,9
SUMCONTRACT,76, 102
SUM, 63, 101–103, 105, 150, 192
SUPCONTEXT,152
SYMBOLP,7
SYMDIFF, 233
SYMMDIFFERENCE,231, 232
Syntax,90
TANH, 35, 37
TAN, 35, 73
TAYLORINFO, 105
TAYLORP, 9
TAYLOR_SIMPLIFIER,106
TAYLOR, 104–107, 140
TAYTORAT, 106
TELLRAT, 52, 53
TELLSIMPAFTER,29, 154, 157
TELLSIMP, 29, 154, 157
THROW,15
THRU, 16
TIMEDATE, 183
TIMER_INFO,182
TIMER, 182
TIME, 178
TLDEFINT, 118
TLIMIT, 111
TOBREAK, 181
TOPLEVEL,180

250 Index

TOTALDISREP,52
TOTIENT, 45
TO_LISP,30
TRACE_OPTIONS,181
TRACE,181, 182
TRANSFORM,137
TRANSLATE_FILE,5, 187–189
TRANSLATE, 133, 164, 186–188, 190, 192,

204
TRANSPOSE,95
TRIANGULARIZE, 95
TRIGEXPAND,35, 49, 80, 149
TRIGREDUCE,35, 49, 73, 149
TRIGSIMP,73
TRUNC,106
TR_WARNINGS_GET,190
TR, 224, 228
TSETUP,214, 216
TTRANSFORM,216
UCOS,73
UNARY, 143
UNCOMPDEF,227
UNDIFF, 221
UNION, 231, 233
UNITEIGENVECTORS,98, 99
UNITVECTOR,96, 99
UNKNOWN, 7
UNLESS,16
UNORDER,28
UNSUM, 101
UNTELLRAT, 52
UNTRACE,181
USIN, 73
VECTORPOTENTIAL,234
VECTORSIMP,234
VERBIFY, 50
WEYL, 216
WHILE, 16
WRITEFILE, 10, 11, 166–169
XTHRU, 75, 102
ZEROEQUIV,159
ZEROMATRIX, 92
ZETA, 42
ZRPOLY,209
#, 13, 33
$, 1, 164
%TH, 2
^^, 95

Fundamental Concepts,1
FUNDEF,6
FUNMAKE, 146

GAMALG, 222, 228
GAMMA, 39, 75
GAMMALIM, 39
GCD,85, 127, 218
GENDIFF,113
GENERAL,188
GENFACT,113
GENINDEX, 102
GENSUMNUM,103
GFACTOR,83
GLOBAL, 152, 153
Global Variables,4
GLOBALSOLVE, 129
GO,14, 17, 193
GRADEF,29, 41, 114, 115, 154
GRADEFS,29
Gradients,114
Gram Schmidt Orthogonalization,98
GRAMSCHMIDT, 96, 98
GRAPH,195, 196, 199
GRAPH2,195, 196, 199
GRAPH3D,195
Graphing

2D Graphing,199
Character Graphing,196

Greatest Common Divisors,85
GRIND, 3, 21, 146, 147, 167

HALFANGLES, 49, 80, 149
Help,171
HERMITIANMATRIX, 98
HIPOW,62
HORNER,85
Horner’s Rule,85

IC1, 138
IC2, 139
IEQN, 141
IEQNPRINT,141
IER, 209
IF, 13, 158
IFT, 44, 211
ILT, 123
IMAGINARY, 148
IMAGPART, 6, 9, 44, 56

Index 251

IMSL Routines,207
IMSL_ROMBERG,207
IMSLVERBOSE,208
IN, 19, 68
INCHAR, 2
INCOMPLETE,141
INCONSISTENT,127, 151
INCREASING,148
IND, 111
INDEX_FILE_DIM, 165
Indices,239
INDTRAN, 137
INF, 27, 104, 107, 111, 117, 132
INFEVAL, 49, 50, 149
INFINITY, 111
INFIX, 143, 144
INFLAG, 55, 60, 65, 68, 70
INFO, 181
INFOLISTS,146, 153, 160, 168, 171
Infolists,29, 146, 148, 153
INITIAL, 152, 153
Initial File, 1
Initial Value Problems,138
INNERPRODUCT,96, 98
INPART, 21, 58, 68, 70
INPUT, 166
Input and Output,163
INTEGER,148, 159, 198, 200
Integers,7
Integral Equations,123, 140
INTEGRATE,115–118, 150, 151, 203
Integration,116
Internal Representation of Expressions,59
INTERPOLATE,133, 134, 193
Interpolation,133
INTERSECT,231, 233
INTERSECTION,231, 233
INTFACLIM, 28, 83
INTFACTOR,138
INTOSUM, 76, 102
INTPOLABS,133, 134
INTPOLERROR,133, 134
INTPOLREL,133, 134
INTSCE,120
INVARIANT, 137
INVERT, 94
IRRATIONAL, 148
IS, 158, 159

ISOLATE, 57
ISOLATE_WRT_TIMES,49, 149
Isolating and Revealing Expressions,56

with Boxes,58
ITEM, 182
Iteration,16

KEEPFLOAT,49, 78, 149
KILL, 144, 152, 160, 161, 165
KILLCONTEXT, 152, 153
Knowledge Database,143

Adding to the Database,143
Deleting From the Database,160
Querying the Database,158
Renaming Elements in the Database,162

KNOWNEIGVALS, 97
KNOWNEIGVECTS,97

LABELS, 2, 29, 30, 160
Labels,10, 29, 166
LAMBDA, 15, 64, 67, 89
LAPLACE, 115, 123, 124
Laplace Transforms,120, 122

Specifying Boundary Conditions,125
LASSOCIATIVE, 149, 150
LAST, 55, 68, 197
LDEFINT, 117, 118
LDISPLAY, 17
Least Common Multiples,86
LEFTMATRIX, 98
LENGTH, 60, 68
LET, 155, 156, 161
LET_RULE_PACKAGES,29, 156
LETRAT, 49, 149, 155
LETRULES,155
LETSIMP,155, 156
LEVEL, 182
LIMIT, 111, 117, 118, 150
Limits, 111
LIMSUBST, 111
LINEAR, 120, 138, 150
Linear Algebra,87
Linear Equations,130
Linear Programming,228
LINECHAR, 2
LINEDISP,10
LINEL, 30
LINLOG, 197

252 Index

LINSOLVE, 22, 123, 127, 129, 209
Lisp, 30, 180
LISP_PRINT,181
LISPDEBUGMODE,180
LISTARITH, 49, 88, 109, 149
LISTARRAY, 87
LISTDUMMYVARS, 62
LISTEIGVALS, 97
LISTEIGVECTS,97
LISTOFVARS,61, 62
Lists,27

Manipulating Lists,62
Sorting Lists,64

LMXCHAR, 88, 89
LOAD, 163, 164
LOADFILE, 163, 164, 167–169, 187
Loading Files,163
LOCAL, 14, 15
Local Blocks and Variables,14
LOG, 9, 25, 26, 81, 107, 118, 122, 188, 197
LOGABS,49, 118, 149
LOGARC,49, 149
Logarithm Functions,35, 73, 118
LOGCGAMMA2, 39
LOGCONCOEFFP,74
LOGCONTRACT,49, 74, 133
LOGEXPAND,35, 49, 74, 149
Logical Operators,13
LOGLIN, 197
LOGNEGINT,6, 35, 49, 74, 149
LOGNUMER,35, 49, 74, 149
LOGOUT,179
LOGSIMP,35, 74
LONG-FILENAMES,177
LOPOW,62
LPART, 58
LRATSUBST,67, 69
LRICCICOM, 215

M1PBRANCH,49, 149
MACROEXPANSION,147
MACROS,29, 185, 188
Macros,29, 189
MAINVAR, 28, 149
MAKEGAMMA, 38, 39
MAKELIST, 63
Manipulating Expressions,47
MAP, 63–65, 68

MAPATOM, 67
MAPERROR,64
MAPLIST, 68
Mapping Functions,64
MAPSET,233
MATCHDECLARE, 14, 29, 153–156
MATCHFIX, 143, 144
Mathematical Functions,33
Matrices,7, 8, 65

Defining Matrices,91
Defining Special Matrices,92
Inverting,95
Manipulating Matrices,93
Matrices Flags,89
Matrix Information,92
Operating on Matrices,94
Similarity Transforms,98
Similarity Transform,98

MAXNEGEX, 47, 76
MAXPOSEX,22, 47, 76
MAXPRIME, 45
MAXTAYORDER, 104
METHOD, 136, 138
METRIC, 217, 220
MEVAL, 188, 190
MEXPRS,188
MINF, 6, 111, 117, 132
MINFACTORIAL, 38, 74
MINUS, 111
MLEXPRS,188
MOD, 84, 85
MODE_DECLARE, 161, 185–187, 190, 192,

193, 207
MODE_IDENTITY, 185
MODEDECLARE,185
Modes,5, 186

Mode Declarations,185
MODULUS, 85
MOTION, 215
MULTIGRAPH, 195, 199
MULTIPLICATIVE, 150
MULTIPLICITIES, 132
MULTTHRU, 78, 79
MYOPTIONS,29

NARY, 144, 145
NCHARPOLY,93, 96
NDIFFQ,209

Index 253

NEG,117, 159, 160
NEUMANN, 140, 141
NEWCONTEXT,152
NEWFAC,28
NEWTON,134
NEXT, 18
NEXTLAYERFACTOR,81, 82
NICEINDICES,102, 103
NOEVAL, 48, 49
NOFIX, 144
Non-Commutative Operations,4, 88, 90
NONCOV,227
NONDIAGONALIZABLE, 97, 98
NONDIMENSIONALIZE, 228, 229
NONE,141
NONINTEGER,148
NONLIN, 138
NONLIN1, 138
NONSCALAR,14, 149
NONSCALARP,151
NONSCALARS,89
NONZEROANDFREEOF,120
NOPRINT,181
NORMALFORM, 137
NOT, 143
NOT3D,198–200
Notational Conventions,1

File Naming Conventions,2
NOUN, 29, 149, 162
Noun and Verb Forms,50
NOUNS,50
NPIND, 226
NTERMS,141
NUM, 55
NUMBER, 185
Number Theory Functions,45
NUMER, 5, 7, 24, 25, 48–50, 149, 197
NUMER_PBRANCH,49, 149
Numerical Integration,203

Newton-Coates Integration,206
Romberg Integration,203

NUSUM, 101
NZ, 159
NZETAI, 43
NZETAR, 43

ODD, 148, 159
ODDFUN,148

ODE,135, 137, 138
ODE2,135–139
ODEINDEX, 138
OMEGA, 213, 216
OP,161
Operating System,183
OPERATOR,161
Operators,143

Inequality,33
Logical Operators,13

OPTIMIZE, 190, 191, 193
Optimizing,190
OPTIONS,29
Options,29, 30
OR,143
ORDERGREAT,28, 29, 162
Ordering of Variables,28, 53
ORDERLESS,28, 29, 162
ORDERLESSP,64, 232, 233
Ordinary Differential Equations,135

ODE Options,137
OUTATIVE, 76, 150
OUTCHAR,2
OUTOFPOIS,108

PADE,107
Pade Approximates,107
PAGEPAUSE,11
PARAMPLOT,195
PARAMPLOT2,195, 198, 199, 201
PART,20, 21, 58, 59, 68–70
PARTFRAC,64, 79
Partial Fractions,79
PARTSWITCH,70
Pattern Matching,156
Permanents,93
PERSPECTIVE,200
PFEFORMAT,76
PICKAPART,68, 130
PIECE,70
PLAYBACK, 3, 21, 166, 167
PLOT,195, 196
PLOT2,191, 195, 198–201
PLOT3D,195, 198, 200
PLOTNUM, 197, 199
PLOTNUM1,199
Plotting

2D Plotting,197

254 Index

3D Plotting,199
Character Plotting Flags,196
Character Plotting,195

PLUS,111, 234
PN,159
PNZ,159
POISSIMP,73
Poisson Series,1, 107
POISSUBST,108
POISTRIM,109
POLAR,197
POLARFORM,6, 44, 49
POLARTORECT,44, 211
POLYDECOMP,128
POLYFACTOR,131
Polynomials,84
PORTABLE,177
POS,117, 159, 160
POSFUN,148, 150
POSTFIX,143, 144
POTENTIAL, 234
POTENTIALZEROLOC,234, 235
Power Series,22, 104
POWERSERIES,11, 104
POWERSET,231, 232
PRED,48–50, 149
PREDERROR,158, 187
Predicates

Data Type Predicates,7
Numerical Predicates,8

PREDSET,233
PREFIX,143, 144
PREVFIB,43
PRIME,45
PRIMER,172
Primer,172
PRINT,20
PRINTFILE,20
Printing Files,167
PRINTPROPS,154
PROD,234
PRODHACK,103
PRODUCT,103
Products,103
Program Flow,13
Programming Constructs,13
Programming Environment,171
PROGRAMMODE,49, 128, 149

Properties,14, 29, 146, 153, 161
PROPS,29, 153, 186
PRS,85
PSI,40
PUT,153

QLISTFILES,168
QUANC8,116, 119, 206, 207
QUANC8_ABSERR,206
QUANC8_ERREST,206
QUANC8_FLAG,206
QUANC8_RELERR,206
QUIT, 179

RADCAN, 49, 73, 128, 130, 149
RADEXPAND, 25, 34, 49, 74, 132, 149
Random Numbers,45
RANK, 92
RASSOCIATIVE,149, 150
RAT, 51, 72, 131, 187
RATALGDENOM, 49, 52, 149
RATCOEF,60, 61
RATDIFF, 53, 113
RATDISREP,52
RATEINSTEIN,215
RATEPSILON,24, 51
RATEXPAND, 49, 71, 76–78, 149, 218
RATFAC, 49, 51, 54, 89, 149, 215, 216
RATIONAL, 148, 185
Rational Numbers,7, 8, 23, 24, 50
RATMX, 49, 88, 93–95, 149
RATRIEMAN, 216
RATSIMP, 49, 51, 71, 72, 75, 77, 85, 133, 149,

159
RATSIMPEXPONS,49, 149
RATSUBST,67, 69
RATVARS, 51, 53, 54, 71, 81, 84, 187
RATWEIGHT, 54
RATWEIGHTS,54
RATWEYL, 216
RATWTLVL, 53
READ, 19
Reading Input,19
REAL, 25, 132, 148
REALONLY, 130
REALPART,6, 9, 44, 56
REALROOTS,22, 97, 130–132
Recalling Previous Expressions,2

Index 255

RECTFORM,6, 44, 49
RECTTOPOLAR,211
RED,84, 85
REDUNDANT, 151
REMARRAY, 87, 161
REMFUNCTION,161
REMLET, 161
REMOVE,115, 144, 161
REMRULE,161
REMVALUE, 161
RENAME, 102, 103, 218
Representation of Expressions

External Representation,20
Residues,112
REST,55, 68
RESULTANT,84
RETURN,14, 16, 18, 19
REVEAL, 68, 130, 173
REVERSE,64
REVERT,106
REVERT2,106
Reviewing Options,29
RICCATI, 138
RICCICOM,215
RICSOL,135
RIEMANN, 216
RIGHTMATRIX, 98
RISCH,118, 119
Risch Algorithm,116, 118
RMXCHAR, 88, 89
RNCOMBINE,76, 102
ROMBERG,116, 193, 204–207
ROMBERG_AERR,209
ROMBERG_RERR,208, 209
ROMBERGABS,204, 205
ROMBERGIT,204–206
ROMBERGMIN,204, 205, 207
ROMBERGTOL,204–206
Roots of Polynomials,131
ROOTSCONMODE,133
ROOTSCONTRACT,34, 132, 133
RULES,29, 154
Rules,29, 154, 161

Applying Rules,157
Defining Simplification Rules,154
Pattern Matching Rules,156
Rule Packages,155
Substitution Rules,155

SAME, 197
SAVE, 3, 149, 163, 164, 168, 169, 191, 192
SAVEDEF,186
SAVEFACTORS,28
Saving and Restoring,168
SCALAR, 9, 149
SCALARMATRIX, 88
SCALEFACTORS,234
SCALS,228
SCANMAP,66
SCHMIDT, 135
SCHWARTZIAN, 137
SEC,35, 73
SECH,35
SECONDKIND,140
Selecting Parts of Expressions,55
Selecting Sub Expressions,58
SERIES,136–138
Series,101

Continued Fractions,109
SETCHECK,5, 181
SETCHECKBREAK,181
SETDIFF,233
SETDIFFERENCE,231, 232
SETELMX, 92
SETIFY,231, 232
SETP,231, 232
Sets,231, 233
SETUP_AUTOLOAD,1, 164
SETVAL, 181
SFPROD,234
SHOW,221
SHOWTIME,178
SIGNUM, 34
Similarity Transforms,98
SIMILARITYTRANSFORM, 98
SIMP,21, 47–50, 149, 186
Simplifying Expressions,71

Combining Sums of Quotients,75
Simplifying CRE Expressions,71
Simplifying Factorials,74
Simplifying Logarithms and Exponentials,

73
Simplifying Trig Expressions,73

SIMPSUM,27, 49, 101, 102, 149
SIN, 35, 41, 73, 80, 107, 108, 122, 143
SINGULAR, 127
SINH, 35, 73, 122

256 Index

SOLFAC,138
SOLVE, 2, 10, 14, 22, 48, 96, 97, 123, 127–131,

137
SOLVE_INCONSISTENT_ERROR,127
SOLVEHYPER,137
Solving,127

Ordinary Differential Equations,135
Solve Flags,128
Solving Expressions,127
Solving Linear Equations,129
Solving Simultaneous Equations,130

Sorting,64
SPARSE,88, 93
SPECIAL,143
Special Functions,41, 43, 120

Airy Functions,41
Bessel Functions,43
Elliptic Functions,42
Error Function,43, 119
Zeta Functions,42

SPECINT,43
SPLICE,148
SPMOD,85
SQ,226
SQFR,132
SQRT,9, 23, 132, 188
SQRTDISPFLAG,34
STEP,16, 18
STORE,163, 169
STRING,3, 21, 167, 177
STRINGOUT,3, 21, 85, 146, 165–167
SUBLIS,66, 67
SUBRES,84, 85
SUBSET,231, 232
SUBSETP,231–233
SUBST,67–69, 148
SUBSTINPART,58, 68, 70
SUBSTITUTE,67
Substituting Expressions,67

Partial Substitutions,69
Substituting in CRE Expressions,69
Substitution Flags,68
Substitution Rules,155

SUBSTPART,58, 60, 67, 68, 70, 146
SUM, 63, 101–103, 105, 150, 192
SUMCONTRACT,76, 102
SUMEXPAND,27, 49, 102, 149
SUMFORM,136

SUMHACK, 102
Sums and Products,101, 103

Indefinite Summation,101
Operations on Sums and Products,103
Products,103
Sums,27

SUMSPLITFACT,38
SUN,177
SUPCONTEXT,152
SUPER,25
SYMDIFF, 233
SYMMDIFFERENCE,231, 232
SYMMETRIC, 148–150
Syntax,3, 13, 89
System Functions,177
System Status,177
SYSTEMS,177

TAN, 35, 73
TANH, 35
TAYLOR, 104–107, 140
Taylor Series,1, 9, 51, 104, 107, 111

Taylor Series Flags,106
Taylor Series Operations,106

TAYLOR_LOGEXPAND,105, 107
TAYLORDEPTH,105, 106
TELLRAT, 52, 53
TELLSIMP, 29, 154, 157
TELLSIMPAFTER,29, 154, 157
Tensors,54, 213

Component Tensor Manipulation,213
Differentiating Tensors,116
Indicial Tensor Manipulation,217

THROW,15
Throw and Catch,15
THRU, 16
TIME, 228
Timing Expressions,178
TLIMSWITCH, 111, 118
TOBREAK, 181
TOTALDISREP,52
TOTALTIME, 3
TR, 228
TR_ARRAY_AS_REF,189
TR_FUNCTION_CALL_DEFAULT,189
TR_NUMER,189
TR_OUTPUT_FILE_DEFAULT,187
TR_SEMICOMPILE,189

Index 257

TR_WARN_FEXPR,189
TR_WARN_MEVAL, 189
TR_WARN_MODE,189
TR_WARN_UNDECLARED,189
TR_WARN_UNDEFINED_VARIABLE,189
TRACE,181, 182
TRACE_SAFETY,183
Tracing,181
Transcendental Functions,34
TRANSCOMPILE,189
TRANSFORM,137
TRANSFUN,161
TRANSLATE, 133, 164, 187, 188, 190, 192, 204
TRANSLATE_FILE,5, 188, 189
Translation,186

Translation Flags,187
TRANSPOSE,89
Trig Functions,26, 35, 73

Display of Trig Functions,26
Hyperbolic Trig Functions,37
Inverse Hyperbolic Trig Functions,37
Inverse Trig Functions,36
Trigonometric Expansions,80

TRIGEXPAND,26, 35, 49, 80, 149
TRIGEXPANDPLUS,26, 80
TRIGEXPANDTIMES,26, 80
TRIGINVERSES,80
TRIGREDUCE,35, 49, 73, 149
TRIGSIGN,26, 35, 80
TRYLIST, 136
TSETUP,214, 216

UCOS,73
UNARY, 143
UNCOMPDEF,227
UND, 111
UNION, 231, 233
UNITEIGENVECTORS,98, 99
UNITVECTOR,96, 99
UNIX, 177
UNLABELED, 58
UNLESS,16
UNORDER,28
UNTELLRAT, 52
UNTRACE,181
USIN, 73
Utility Functions,30

VALUE, 14
VALUE_CHECK, 5
VALUES, 29, 160, 161, 164, 166, 168
Variables,29, 162
variables

3D, 199, 200
68K, 177
ABCONVTEST,117
ABSBOXCHAR,11, 33
ACTIVECONTEXTS,152
ADDITIVE, 149, 150
AERR,209
ALGEBRAIC, 27, 49, 52, 85, 149
ALGEPSILON,130, 131
ALGEXACT, 130, 131
ALIASES, 29, 162
ALLBUT, 58, 160
ALLSYM, 217, 218
ALL, 5, 25, 26, 88, 137, 138, 140, 151, 154,

157, 160–162, 166, 168, 180, 188
ALPHABETIC, 149
ANALYTIC, 148
ANTISYMMETRIC, 148–150
ANY_CHECK, 5
ANY, 5, 137, 138, 188
APPROXIMATE,141
ARRAYS, 20, 29, 87
ASKEXP,160
ASSUMESCALAR,151
ASSUME_POS_PRED,151
ASSUME_POS,151
ASYMP, 105
ATOMGRAD, 14, 114, 154
ATVALUE, 14
AUTOLOAD, 164
BACKSUBST,22, 129
BACKTRACE, 180
BATCHCOUNT,165
BATCHKILL, 165
BERLEFACT,28, 83
BESSELARRAY,43
BEZOUT,84
BFTORAT,24
BFTRUNC,24
BINDTEST,149
BOOLEAN, 5, 185
BOTHCASES,10
BOXCHAR, 58

258 Index

BREAKUP,128
BREAK, 181
CANONLT, 232, 233
CAUCHYSUM, 27, 49, 102, 149
CAUCYSUM, 102
CENTERPLOT,201
CFLENGTH,109, 110
CLABELS, 160
CLOSEDFORM,136
COMMUTATIVE, 148–150
COMPFILE,188
COMPGRIND,192
COMPLETE,185
COMPLEX,22, 25, 148
CONSTANT,7, 14, 61, 149
CONTAB4,228
CONTAB, 228
CONTEXTS,151
CONTEXT,15, 152
CONTOUR,199, 200
CONTRACTIONS,219
COORDINATES,116, 234
COUNTER,220
CPUTIME,228
CURRENT_LET_RULE_PACKAGE, 155,

156
CURSORDISP,11
CURSOR,172
DBLINT_X, 119
DBLINT_Y, 119
DEBUGMODE,180
DECREASING,148
DEFAULT_LET_RULE_PACKAGE, 29,

155, 156
DEMOIVRE, 24, 34, 35, 49, 74, 149
DEPENDENCIES,14, 29, 115, 116, 123
DERIVABBREV, 113, 114
DERIVLIST, 50
DERIVSUBST,68
DESOL,138
DETOUT,49, 88, 93–95, 149
DIAGMETRIC, 214
DIFFSOL,138
DIFF, 50, 235
DIMENSION, 116, 234
DIM, 214, 215
DIRECTION,182
DISPFLAG,14

DISPLACE,147
DISPLAY2D, 21
DISPLAY_FORMAT_INTERNAL,21
DLABELS, 160
DOALLMXOPS, 88–90, 93
DOMAIN, 22, 25, 132
DOMXEXPT, 88, 89
DOMXMXOPS,88, 90
DOMXNCTIMES, 90
DONTFACTOR,28, 83
DOSCMXOPS,88, 90, 93
DOSCMXPLUS,88, 90
DOT0NSCSIMP,90, 91
DOT0SIMP,90, 91
DOT1SIMP,90, 91
DOTASSOC,90
DOTCONSTRULES,90
DOTDISTRIB,91
DOTEXPTSIMP,91
DOTIDENT, 91
DOTSCRULES,49, 91, 149
DOVARD_VIEWPORT,201
DUMMYX, 220
EEZ,85
ELABELS, 160
END, 59, 70
EQUALSCALE,199
ERFFLAG,119
ERREXP1,178
ERREXP2,178
ERREXP3,178
ERREXP,178
ERRINTSCE,120
ERRORCATCH,182
ERRORFUN,179
ERROR_SIZE,178, 179
ERROR_SYMS,178, 179
ERROR,178, 179
EVAL, 48, 50
EVENFUN,148
EVEN, 148, 159
EVFLAG, 47, 49, 149, 234
EVFUN, 48, 49, 149
EXPANDALL, 234
EXPANDCROSSCROSS,234
EXPANDCROSSPLUS,234
EXPANDCROSS,234
EXPANDCURLCURL,234

Index 259

EXPANDCURLPLUS,234
EXPANDCURL,234
EXPANDDIVPLUS,234
EXPANDDIVPROD,234
EXPANDDIV, 234
EXPANDDOTPLUS,234
EXPANDDOT,234
EXPANDGRADPLUS,234
EXPANDGRADPROD,234
EXPANDGRAD,234
EXPANDLAPLACIANPLUS, 234
EXPANDLAPLACIANPROD,234
EXPANDLAPLACIANTODIVGRAD, 234
EXPANDLAPLACIAN, 234
EXPANDPLUS,234
EXPANDPROD,234
EXPANDWRT_DENOM,77
EXPAND, 76, 147
EXPONENTIALIZE, 26, 49, 80, 149
EXPON,22
EXPOP,22
EXPR,188
EXPTDISPFLAG,25, 34, 60, 74
EXPTISOLATE,49, 57, 149
EXPTSUBST,34, 68
EZ, 85
FACRAT, 216, 217
FACSUM_COMBINE,81
FACTLIM, 38, 39
FACTORFLAG,28, 49, 83, 149
FALSE,6, 147, 188
FEATURES,148
FILE_SEARCH,163
FILE_TYPES,168
FIRSTKINDSERIES,140
FIRSTKIND, 140
FIRST,140, 197
FIXNUM, 185, 188
FLAG, 141
FLOAT2BF,9, 23
FLOAT, 47–50, 149, 185, 188
FLONUM, 204
FOOBAR,2
FORTINDENT,203
FORTSPACES,203
FPPREC,9, 23, 43
FPPRINTPREC,23
FRANZ, 177

FREDSERIES,140
FUNCTIONS,6, 20, 29, 146, 160, 164, 166,

168, 186
FUNCTION,14, 161, 182
GAMMALIM, 39
GCD,85, 218
GENERAL,188
GENINDEX, 102
GENSUMNUM,102, 103
GLOBALSOLVE, 128, 129
GLOBAL, 152, 153
GRADEFS,29, 114
GRIND, 3, 21
HALFANGLES, 26, 49, 80, 149
HERMETIANMATRIX, 97
HERMITIANMATRIX, 98
IBASE, 23
IEQNPRINT,141
IER, 209
IMAGINARY, 148
IMSLVERBOSE,208
INCHAR, 2, 11
INCOMPLETE,141
INCONSISTENT,127, 151
INCREASING,148
IND, 111
INFEVAL, 49, 50, 149
INFINITY, 6, 111
INFLAG, 55, 60, 65, 68, 70
INFOLISTS,29, 146, 153, 160, 168, 171
INFO, 181
INF, 6, 27, 104, 107, 111, 117, 132
INITIAL, 152, 153
INPUT, 166
INTEGER,148, 159, 198, 200
INTEGRATION_CONSTANT_COUNTER,

118
INTERPOLABS,134
INTERPOLERROR,134
INTERPOLREL,134
INTFACLIM, 28, 83
INTFACTOR,138
INTPOLABS,133, 134
INTPOLERROR,133, 134
INTPOLREL,133, 134
IRRATIONAL, 148
ISOLATE_WRT_TIMES,49, 57, 149
ITEM, 182

260 Index

KEEPFLOAT,23, 49, 78, 149
KNOWNEIGVALS, 97
KNOWNEIGVECTS,97
LABELS, 2, 10, 29, 30, 160
LASSOCIATIVE, 149, 150
LASTTIME, 178
LAST, 197
LEFTMATRIX, 98
LETRAT, 49, 149, 155
LET_RULE_PACKAGES,29, 156
LEVEL, 182
LHOSPITALLIM, 111
LIMSUBST, 111
LINEAR, 138, 150
LINECHAR, 2, 11
LINEDISP,10
LINEL, 10, 30
LINENUM, 10
LINLOG, 197
LINSOLVEWARN, 129
LINSOLVE_PARAMS,129
LISP_PRINT,181
LISTARITH, 27, 49, 88, 109, 149
LISTCONSTVARS,61
LISTDUMMYVARS, 61, 62
LISTEIGENVALS, 97
LISTEIGVALS, 97
LISTEIGVECTS,97
LMXCHAR, 88, 89
LOADFILE, 164
LOADPRINT, 164
LOGABS,49, 118, 149
LOGARC,26, 49, 149
LOGCONCOEFFP,74
LOGEXPAND,25, 35, 49, 74, 149
LOGLIN, 197
LOGNEGINT,6, 25, 35, 49, 74, 149
LOGNUMER,25, 35, 49, 74, 149
LOGSIMP,25, 35, 74
LOG, 197
LONG-FILENAMES,177
M1PBRANCH,44, 49, 149
MACROEXPANSION,146, 147
MACROS,29, 146, 185, 188
MAINVAR, 28, 149
MAPERROR,64
MATCHDECLARE, 14
MATRIX_ELEMENT_ADD, 89

MATRIX_ELEMENT_MULT, 89
MATRIX_ELEMENT_TRANSPOSE,89
MAXAPPLYDEPTH, 158
MAXAPPLYHEIGHT, 158
MAXNEGEX, 47, 76, 77
MAXPOSEX,22, 47, 76, 77
MAXPRIME, 45
MAXPSIFRACDENOM,40
MAXPSIFRACNUM, 40
MAXPSINEGINT, 40
MAXPSIPOSINT,40
MAXTAYDEPTH, 106
MAXTAYORDER, 104, 106
METHOD, 136, 138
METRIC, 217, 220
MEXPRS,188
MINF, 6, 111, 117, 132
MINUS, 111
MLEXPRS,188
MODE_CHECKP,186
MODE_CHECK_ERRORP,186
MODE_CHECK_WARNP,186
MODE_DECLARE,161
MODULUS, 85
MOD, 84
MOREWAIT, 11
MULTIPLICATIVE, 150
MULTIPLICITIES, 97, 132
MYOPTIONS,29
NEGDISTRIB,21
NEGSUMDISPFLAG,21
NEG,117, 159, 160
NEUMANN, 140
NEWFAC,28, 83
NEXTLAYERFACTOR,81
NICEINDICESPREF,103
NOEVAL, 48, 49
NOLABELS, 10
NONDIAGONALIZABLE, 97, 98
NONDIAGONALIZEABLE, 97
NONDIMENSIONALIZE, 229
NONE,141
NONINTEGER,148
NONLIN1, 138
NONLIN, 138
NONSCALARS,89
NONSCALAR,14, 149
NOPRINT,181

Index 261

NOT3D,198–200
NOUNDISP,22
NOUNS,50
NOUN, 29, 149, 162
NPIND, 226
NTERMS,141
NUMBER, 185
NUMER_PBRANCH,49, 149
NUMER, 5, 7, 24, 25, 48–50, 149, 197
NZ, 159
OBASE,23
ODDFUN,148
ODD, 148, 159
ODE2,137
ODEINDEX, 138
OMEGA, 213, 215, 216
OPERATOR,161
OPSUBST,68
OPTIMPREFIX,191
OPTIONSET,30
OPTIONS,30
OP,161
OUTATIVE, 76, 150
OUTCHAR,2, 11
PACKAGEFILE,164
PAGEPAUSE,11
PARSEWINDOW,179
PARTSWITCH,59, 70
PERSPECTIVE,200
PFEFORMAT,24, 76
PIECE,59, 70
PLOTBELL, 200
PLOTBOTMAR,200
PLOTLFTMAR, 201
PLOTNUM1,199
PLOTNUM, 197, 199, 201
PLOT,196
PLUS,111, 234
PNZ,159
PN,159
POISLIM, 109
POISTRIM,109
POLAR,197
POLYFACTOR,131
PORTABLE,177
POSFUN,148, 150
POS,117, 159, 160
POTENTIALZEROLOC,234, 235

POWERDISP,22
PREDERROR,158, 187
PRED,48–50, 149
PREFIX,144
PREVFIB,43
PRODHACK,27, 103
PROD,234
PROGRAMMODE,22, 49, 128, 149
PROMPT,166
PROPS,29, 153, 186
PRS,85
PSEXPAND,78
QUANC8_ABSERR,206
QUANC8_ERREST,206
QUANC8_FLAG,206
QUANC8_RELERR,206
RADEXPAND, 25, 34, 49, 74, 132, 149
RADSUBSTFLAG,69
RASSOCIATIVE,149, 150
RATALGDENOM, 49, 52, 54, 149
RATDENOMDIVIDE, 77
RATEINSTEIN,215, 217
RATEPSILON,23, 24, 51
RATEXPAND, 77
RATFAC, 49, 51, 54, 89, 149, 215, 216
RATIONAL, 148, 185
RATMX, 49, 88, 89, 93–95, 149
RATPRINT,23
RATRIEMANN, 216
RATRIEMAN, 216
RATSIMPEXPONS,49, 72, 149
RATVARS, 53
RATWEIGHTS,54
RATWEYL, 216, 217
RATWTLVL, 53, 54
REALONLY, 130, 131
REAL, 25, 132, 148
REDUNDANT, 151
RED,84, 85
REFCHECK,5
RESULTANT,84
REVERSE,200
RICCATI, 138
RIGHTMATRIX, 98
RMXCHAR, 88, 89
ROMBERGABS,204, 205
ROMBERGIT,204–206
ROMBERGMIN,204–207

262 Index

ROMBERGTOL,204–206
ROMBERG_AERR,208, 209
ROMBERG_RERR,208, 209
ROOTSCONMODE,132, 133
ROOTSCONTRACT,34
ROOTSEPSILON,132
RULES,29, 154
SAME, 197
SAVEDEF,186, 187
SAVEFACTORS,28, 83
SCALARMATRIX, 88
SCALAR, 9, 149
SCALS,228
SECONDKIND,140
SERIES,137
SETCHECKBREAK,181
SETCHECK,5, 181
SETVAL, 181
SFPROD,234
SHOWTIME,178
SIMPSUM,27, 49, 101, 102, 149
SIMP,21, 47–50, 149, 186
SINGULAR, 127
SOLFAC,138
SOLVEDECOMPOSES,128
SOLVEEXPLICIT,128
SOLVEFACTORS,128
SOLVEHYPER,137
SOLVENULLWARN, 128
SOLVERADCAN,128
SOLVETRIGWARN,128
SOLVE_INCONSISTENT_ERROR, 127,

129
SPARSE,88, 93
SPECIAL,143
SPLICE,148
SPMOD,85
SQRTDISPFLAG,23, 34
STARDISP,10
STRING,177
SUBLIS_APPLY_LAMBDA, 67
SUBLIS,67
SUBRES,84, 85
SUMEXPAND,27, 49, 102, 149
SUMFORM,136
SUMHACK, 27, 102
SUMSPLITFACT,38, 74
SUN,177

SUPER,25
SYMMETRIC, 148–150
SYSTEMS,177
TAYLORDEPTH,105, 106
TAYLOR_LOGEXPAND,105–107
TAYLOR_ORDER_COEFFICIENTS,107
TAYLOR_TRUNCATE_POLYNOMIALS,

107
TIME, 228
TLIMSWITCH, 111, 118
TOTALTIME, 3
TRACE_BREAK_ARG,183
TRACE_MAX_INDENT, 183
TRACE_SAFETY,183
TRANSBIND, 187
TRANSCOMPILE,187, 189
TRANSFUN,161
TRANSLATE, 187, 188
TRANSPOSE,89
TRANSRUN,187
TRIGEXPANDPLUS,26, 80
TRIGEXPANDTIMES,26, 80
TRIGEXPAND,26, 49, 80, 149
TRIGINVERSES,26, 80
TRIGSIGN,26, 35, 80
TRUE,6
TRYLIST, 136
TR_ARRAY_AS_REF,188, 189
TR_BOUND_FUNCTION_APPLYP,188
TR_FILE_TTY_MESSAGESP,188
TR_FLOAT_CAN_BRANCH_COMPLEX,

188
TR_FUNCTION_CALL_DEFAULT, 188,

189
TR_GEN_TAGS,189
TR_NUMER,189
TR_OPTIMIZE_MAX_LOOP,189
TR_OUTPUT_FILE_DEFAULT,187, 189
TR_PREDICATE_BRAIN_DAMAGE,189
TR_SEMICOMPILE,189
TR_STATE_VARS,189
TR_TRUE_NAME_OF_FILE_BEING_TRANSLATED,

189
TR_VERSION,189
TR_WARN_BAD_FUNCTION_CALLS,

190
TR_WARN_FEXPR,189, 190
TR_WARN_MEVAL, 189, 190

Index 263

TR_WARN_MODE,189, 190
TR_WARN_UNDECLARED,189, 190
TR_WARN_UNDEFINED_VARIABLE,

189, 190
TR_WINDY, 190
TTYOFF,10
UNDECLAREDWARN,188
UND, 111
UNIX, 177
UNLABELED, 58
VALUES, 29, 160, 161, 164, 166, 168
VALUE_CHECK, 5
VALUE, 14
VECT_CROSS,234
VERBOSE,11, 104
VERSION,177
VIEWPT, 200–202
WHITTAKER, 137
XAXIS, 196
YAXIS, 196
YP, 138
ZEROBERN,41
ZERO,117, 159, 160
ZETA%PI,42
ZUNDERFLOW,24
%C,138
%EDISPFLAG,24, 34, 74
%EMODE,24, 34, 49, 74, 149
%ENUMER,24, 34, 49, 149
%E_TO_NUMLOG,25, 26, 35, 74
%E,6, 8, 24, 26, 57, 61, 149
%GAMMA, 7, 39, 40, 43
%I, 6, 8, 24, 44, 52, 61, 130, 131
%K1, 135, 138
%K2, 135, 138
%PHI,7, 43
%PI,6, 8, 42, 61, 149, 189
%PURE,229
%R1,130
%R2,130
%RNUM_LIST,130, 131
%R,131
%%,2
%, 2, 48, 187

VECT_CROSS,234
VECTORPOTENTIAL,234
Vectors,233
VECTORSIMP,234

VERBOSE,104
VIEWPT, 200–202

WHILE, 16
WHITTAKER, 137
WRITEFILE, 10, 11, 166–169
Writing to Files,166

XTHRU, 75, 102

YP, 138

ZERO,117, 159, 160
Zeta Function,42
ZRPOLY,209

264 Index

	Fundamental Concepts
	Beginning and Ending Maxima
	Entering Commands
	Recalling Previous Expressions

	Reader Syntax
	Defining Variables
	Defining Functions

	Data Types
	Constants
	Data Type Predicates
	Numerical Predicates
	Data Type Coercion
	Control Characters

	Command Line Flags

	Programming Constructs
	Program Flow
	Conditionals
	Local Blocks and Variables
	Throw and Catch
	Iteration

	Reading Input
	Displaying Expressions
	Flags Effecting the Displayed Form
	Display of Numbers
	Display of Exponentials
	Display of Logarithms
	Display of Trig Functions
	Display of Sums
	Display of Products
	Display of Simplification
	Display of Factoring
	Display of Expansion

	Ordering of the Display
	Reviewing Options
	Accessing the Underlying Lisp
	Utility Functions

	Mathematical Functions
	Comparison Functions
	Arithmetic Functions
	Transcendental Functions
	Exponential Functions
	Logarithm Functions
	Trig Functions

	Factorial and Gamma Functions
	Factorials
	Binomials and Generalized Factorials
	Gamma and Related Functions

	Special Functions
	Airy Functions
	Bernoulli Numbers
	Elliptic Functions
	Zeta Functions
	Miscellaneous Special Functions

	Complex Variables
	Number Theory Functions

	Manipulating Expressions
	Evaluation
	Evaluation Flags
	Noun and Verb Forms

	Canonical Rational Expressions
	Converting To and From CRE form
	Operations on CRE Expressions
	Rational Expression Flags

	Selecting Parts of Expressions
	Selecting Top Level Expressions
	Isolating and Revealing Expressions
	Selecting Sub Expressions
	Analysing Expressions

	Manipulating Lists
	Sorting Lists

	Mapping Functions
	Substituting Expressions
	Substitution Flags
	Substituting in CRE Expressions
	Partial Substitutions

	Simplifying Expanding and Factoring
	Simplifying Expressions
	Simplifying CRE Expressions
	Simplifying Trig Expressions
	Simplifying Logarithms and Exponentials
	Simplifying Factorials
	Combining Sums of Quotients

	Expanding Expressions
	Expand Flags
	Expanding CRE Expressions
	Partial Expansion
	Partial Fractions
	Trigonometric Expansions
	Controlled Expansions

	Factoring Expressions
	Factor Flags

	Manipulating Polynomials
	Greatest Common Divisors

	Linear Algebra
	Arrays
	Defining Arrays
	Manipulating Arrays

	Basic Matrix Operations
	Matrices Flags
	Non-Commutative Operations

	Defining Matrices
	Defining Special Matrices

	Matrix Information
	Manipulating Matrices
	Operating on Matrices
	Characteristic Polynomials
	Eigenvalues and Eigenvectors

	Series
	Sums and Products
	Sums
	Products
	Operations on Sums and Products

	Power Series
	Taylor Series
	Taylor Series Operations
	Taylor Series Flags

	Pade Approximates
	Poisson Series
	Continued Fractions

	Calculus
	Limits
	Residues
	Differentiation
	Differentiation Flags
	Defining Gradients
	Defining Functional Dependencies
	Differentiating Tensors

	Integration
	Change of Variable
	Laplace Transforms
	Specifying Boundary Conditions

	Solving
	Solving Expressions
	Solve Flags

	Solving Linear Equations
	Solving Simultaneous Equations
	Algsys Flags

	Roots of Polynomials
	Interpolation
	Interpolation Flags

	Solving Ordinary Differential Equations
	First Order Equations
	Second Order Equations

	Integral Equations

	Maxima Knowledge Database
	Adding to the Database
	Defining Operators
	Defining Macros
	Declarations
	Assumptions
	Contexts
	Properties
	Rules

	Querying the Database
	Deleting From the Database
	Renaming Elements in the Database

	Input and Output
	Loading Files
	Autoloading

	Batching Files
	Indexed Batch Files

	Demoing Files
	Writing to Files
	Operating on Files
	Directories
	File Defaults
	Saving and Restoring

	Programming Environment
	On-Line Help
	Apropos
	Describe
	Example
	Primer

	Editing
	Line Editing
	Full Screen Editing
	Expression Editor

	System Functions
	System Status
	Timing the Evaluation of Expressions

	Error Handling
	Break Points and Debugging
	Tracing
	Tracing Flags

	Operating System

	Translation and Compiling
	Mode Declarations
	Mode Declaration Flags

	Translation
	Translation Flags
	Optimizing

	Compiling
	Compiler Declarations

	Plotting and Graphing
	Character Plotting
	Character Plotting Flags

	Character Graphing
	2D Plotting
	2D Graphing
	3D Plotting
	Plotting Flags

	Numeric Interface
	Generating Fortran Code
	Numerical Integration
	Romberg Integration
	Newton-Coates Integration

	IMSL Routines

	Advanced Packages
	Fast Fourier Transforms
	Tensors
	Component Tensor Manipulation
	Indicial Tensor Manipulation

	Exterior Calculus
	Dirac Gamma Matrices
	Capabilities
	Summary of GAMALG Functions
	Doing Traces
	Squaring Amplitudes
	Contracting Indices
	Simplifying Products of Gamma Matrices
	Kinematic Substitutions
	Technical Information

	Linear Programming
	Dimensional Analysis
	Asymptotic Analysis
	Simple Example

	Set Packages
	Set
	Sets

	Vectors

	Index

