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4.4 Multidimensional Itô processes . . . . . . . . . . . . . . . . . . 60
4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Quadratic variation and the Doob–Meyer decomposition . . . 63

5 Stochastic differential equations 65
5.1 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . 65
5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 General Markov processes 71
6.1 Transition probabilities and Chapman–Kolmogorov equations 71
6.2 Infinitesimal generator . . . . . . . . . . . . . . . . . . . . . . 74



6.3 Kolmogorov equations . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Diffusion processes . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Brownian motion and PDEs 83
7.1 Harmonic functions and the Dirichlet problem . . . . . . . . . 83
7.2 Feynman–Kac formula . . . . . . . . . . . . . . . . . . . . . . 86



1 Discrete time martingales

First part of discrete time martingales are mainly from Durrett [3].

1.1 Regular conditional probabilities

This is from Durrett [3].
Let G ⊂ A be a sub-σ-algebra, and consider for A ∈ A the conditional

probabilities P(A|G) = E[IA|G]. Since 0 ≤ IA ≤ 1,

P(A|G) ∈ [0, 1] a.s. (1)

Furthermore, for disjoint Ai ∈ A, i = 1, 2, . . ., we have

P(∪∞i=1Ai|G) =
∞∑
i=1

P(Ai|G) a.s. (2)

Therefore, P(·|G) behaves as a probability measure. However, both (1) and
(2) hold almost surely. That is, there is an exceptional set NA, which is a
P-null set, P(NA) = 0, such that (1) holds for ω 6∈ NA. The P-null set NA

may depend on A. In general, a σ-algebra has more than countable infinitely
many sets (indeed, it is either finite, or at least continuum). Thus these null
set may pile up to a large set. The same problem appears in (2). Under some
general conditions we can guarantee that the bad points cannot pile up.

Let (Ω,A,P) be a probability space, X : Ω → S a random element in
(S,S), and G be a sub-σ-algebra of A. The regular conditional distribution
for X given G is a function µ : Ω× S → [0, 1] such that

(i) for each A ∈ A fix, P(X ∈ A|G)(ω) = µ(ω,A) a.s.;

(ii) Almost surely A 7→ µ(ω,A) is a probability measure on (S,S).

If S = Ω and X is the identity map, µ is a regular conditional probability.
A measurable space (S,S) is nice, if there is a 1-1 map φ : S → R such

that φ, φ−1 are measurable. If S is a Borel subset of a complete separable
metric space, and S are the Borel sets, then (S,S) is nice.

Theorem 1. Regular conditional distribution exist if (S,S) is nice.

Proof. We prove only in the special case (S,S) = (R,B(R)). The general
case is almost identical, with some technical difficulties.
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Consider the conditional probabilities P(X ≤ q|G), q ∈ Q. For each
q ∈ Q there is P-null set Nq, such that P(X ≤ q|G)(ω) ∈ [0, 1] for ω 6∈ Nq.
Similarly, for each q < r there exists a P-null set Nq,r such that for each
ω 6∈ Nq,r

P(X ≤ q|G)(ω) ≤ P(X ≤ r|G)(ω).

Set
N = ∪q∈QNq ∪ ∪q<r∈QNq,r.

Then P(N) = 0 and P(X ≤ q|G)(ω) ∈ [0, 1], and it is nondecreasing in
q ∈ Q for ω 6∈ N . Let

G(x, ω) = inf{P(X ≤ q|G)(ω) : q > x}.

If ω 6∈ N then G(x, ω) is a distribution function in x.
Furthermore, since P(X ≤ qn|G) ↓ P(X ≤ x|G) as qn ↓ x we see that

G(x, ω) = P(X ≤ x|G)(ω) a.s.

Taking G = σ(Y ), we see that P(X ∈ A|G) is a measurable function of
Y , for each A. This can be done also simultaneously, as above.

Theorem 2. Let X, Y be random elements in the nice space (S,S), and let
G = σ(Y ). Then there exists µ : S × S → [0, 1] such that

(i) for each A ∈ S, µ(Y (ω), A) = P(X ∈ A|Y )(ω) a.s.

(ii) almost surely A 7→ µ(Y (ω), A) is a probability measure on (S,S).

Proof. The proof is similar to the previous one. Again assume (S,S) =
(R,B(R)).

As above, we can find random variables G(q, ω) nondecreasing in q outside
of P-null set N , such that G(q, ω) = P(X ≤ q|Y )(ω), a.s., q ∈ Q. Since the
latter is σ(Y )-measurable, G(q, ω) = H(q, Y (ω)). Choosing

F (x, y) = inf{H(q, y) : q > x},

we can show that F (x, Y (ω)) = P(X ≤ x|Y )(ω). This defines a measure,
since F (·, y) is nondecreasing.

Existence of regular conditional distribution allows us to compute condi-
tional expectations simultaneously, and also shows the connection to usual
expectation.
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Theorem 3. Let µ be a regular conditional distribution for X given G. Let
f : S → R measurable with E|f(X)| <∞. Then

E[f(X)|G] =

∫
f(x)µ(ω, dx) a.s.

Proof. The result holds for indicators, by definition. Linearity and monotone
convergence implies the statement, as usual.

1.2 Martingales: definition, properties

Let (Ω,A,P) be a probability space. A filtration is an increasing sequence of
sub-σ-algebras F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . .. A sequence of random variables
(Xn)n is adapted to the filtration (Fn) if Xn is Fn-measurable. The sequence
(Xn,Fn) is a martingale, or (Xn) is martingale with respect to (Fn), if

(i) E|Xn| <∞;

(ii) (Xn) is adapted;

(iii) E[Xn+1|Fn] = Xn.

For a submartingale (supermartingale) conditions (i) and (ii) hold, and (iii)
hold with ≥ (≤).

If the filtration is not specified then (Xn) is martingale meant as it is mar-
tingale with respect to the natural filtration (Fn), where Fn = σ(X1, . . . , Xn).

Clearly, if (Xn) is a submartingale then (−Xn) is a supermartingale,
therefore it is enough to prove statements for submartingales.

Example 1. Let X,X1, . . . iid random variables with EX = 0, and put
Sn = X1 + . . .+Xn. Then (Sn) is a martingale. If EX2 <∞ then (S2

n) is a
submartingale.

If X,X1, . . . are iid nonnegative random variables, EX = 1, then (Rn)n
is a martingale, where Rn =

∏n
i=1Xi.

Proposition 1. If (Xn) is a submartingale then E[Xn|Fm] ≥ Xm for any
n > m. Equality holds for martingales.

Proposition 2. (i) Let (Xn,Fn) be a martingale and ϕ be a convex function
such that E|ϕ(Xn)| <∞. Then ϕ(Xn) is a martingale.

(ii) Let (Xn,Fn) be a submartingale and ϕ be a nondecreasing convex
function such that E|ϕ(Xn)| <∞. Then ϕ(Xn) is a submartingale.
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Proof. It follows from Jensen’s inequality.

Corollary 1. If (Xn) is a submartingale then ((Xn−a)+) is a submartingale.
If (Xn) is a supermartingale then (Xn ∧ a)n is a supermartingale.

1.3 Martingale convergence theorem

A sequence (Hn) is predictable if Hn is Fn−1-measurable. Let (Hn) be pre-
dictable and (Xn) be adapted. Then

(H ·X)n =
n∑
k=1

Hm(Xm −Xm−1).

Note that this is a discrete stochastic integral.

Theorem 4. Let (Xn) be a submartingale and (Hn) be predictable, nonneg-
ative, and bounded. Then (H ·X)n is a submartingale.

Proof. Follows from the submartingale property.

An integer valued random variable τ is a stopping time, if {τ = n} ∈ Fn.

Corollary 2. Let τ be a stopping time, and (Xn) a submartingale. Then
(Xτ∧n) is a submartingale.

Proof. Let Hn = I(τ ≥ n). Then (Hn) is predictable, thus ((H · X)n =
Xτ∧n −X0)n is a submartingale.

Let (Xn) be a submartingale, a < b. Let τ0 = −1, and

τ2k−1 = min{m > τ2k−2 : Xm ≤ a},
τ2k = min{m > τ2k−1 : Xm ≥ b}.

Then τk’s are stopping times. So

Hm =

{
1, if τ2k−1 < m ≤ τ2k for some k,

0, otherwise.
(3)

is predictable. By definition X(τ2k−1) ≤ a and X(τ2k) ≥ b, thus between
τ2k−1 and τ2k the process (Xn) crosses the strip [a, b]. This is an upcrossing.
Let Un = max{k : τ2k ≤ n} is the number of upcrossings up to time n.
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Lemma 1 (Upcrossing lemma). Let (Xn) be a submartingale, a < b. Then

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+.

Proof. Define Yn = a+ (Xn− a)+. This is a submartingale, which upcrosses
[a, b] the same number of times as (Xn) does. Recalling the definition of
H from (3) we have (b − a)Un ≤ (H · Y )n. Indeed, each upcrossing has
at least b − a contribution, and the last incomplete one has a nonnegative
contribution (because of changing X to Y ).

Let Kn = 1−Hn. Since Yn − Y0 = (H · Y )n + (K · Y )n, and

E(K · Y )n ≥ E(K · Y )0 = 0,

we have
E(H · Y )n ≤ E(Yn − Y0),

and the result follows.

A consequence of the previous lemma we obtain the following.

Theorem 5 (Martingale convergence theorem). Let (Xn) be a submartingale
with sup EX+

n < ∞. Then limn→∞Xn converges almost surely to a X with
E|X| <∞.

Proof. Fix a < b. Since (X − a)+ ≤ X+ + |a| we have

EUn ≤
|a|+ EX+

n

b− a
.

Let U = limn→∞ Un. Clearly, Un is nondecreasing, so the limit exists. By the
assumptions EU <∞, in particular U is finite almost surely. This holds for
any a < b, the set

A = ∪a,b∈Q{lim inf Xn < a < b < lim supXn}

has probability 0. If ω 6∈ A then limXn(ω) exists. By Fatou, EX∗ ≤
lim inf EX+

n <∞, so X is finite a.s. Furthermore,

EX−n = EX+
n − EXn ≤ EX+

n − EX0,

which implies

EX− ≤ lim inf
n→∞

EX−n ≤ sup EX+
n − EX0 <∞.
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1.4 Doob’s decomposition

A submartingale is informally a stochastically increasing sequence. It can be
decomposed to a martingale part, which corresponds to a fair game, and a
predictable almost surely nondecreasing part.

Theorem 6 (Doob’s decomposition). Let (Xn) be a submartingale. There
exists a unique martingale (Mn), and a predictable nondecreasing sequence
(An), with A0 = 0 such that Xn = Mn + An.

Proof. Existence. Under the stated properties

E[Xn|Fn−1] = Mn−1 + An = Xn−1 − An−1 + An.

Therefore, we must have

An =
n∑
k=1

E[Xn −Xn−1|Fn−1],

and Mn = Xn − An. It is easy to see that this indeed works.
Uniqueness follows easily.

1.5 Doob’s maximal inequality

This part is mainly from Csörgő [2].
Our first optional stopping theorem is the following.

Theorem 7. Let (Xn)n be a submartingale and let N be a bounded stopping
time, i.e. N ≤ k a.s. for some k ∈ N. Then

EX0 ≤ EXN ≤ EXk.

Proof. We proved that the stopped process (Xn∧N)n is submartingale, thus

EX0 = EXN∧0 ≤ EXN∧k = EXN .

For the other direction, put Kn = I(N < n) = I(N ≤ n − 1). Then Kn is
Fn−1-measurable, so (Kn)n is predictable. Therefore (K ·X)n is submartin-
gale, where

(K ·X)n =
n∑
i=1

I(N ≤ i− 1)(Xi −Xi−1) = Xn −XN∧n.
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That is
EXk − EXN = E(K ·X)k ≥ E(K ·X)0 = 0.

An easy consequence is Doob’s maximal inequality.

Theorem 8 (Doob’s maximal inequality). Let (Xk,Fk)k be a submartingale,
and put

Mn = max
1≤k≤n

Xk.

Then for any x > 0

xP(Mn ≥ x) ≤
∫
{Mn≥x}

XndP ≤ EX+
n ,

where a+ = max{a, 0}.

Proof. The second inequality is obvious.
Let N = min{min{k : Xk ≥ x, k = 1, 2, . . . , n}, n}. Then N is a bounded

stopping time. Since XN ≥ x on {Mn ≥ x}

xP{Mn ≥ x} ≤
∫
{Mn≥x}

XNdP.

By Theorem 7 EXN ≤ EXn, and XN = Xn on the event {Mn < x}, thus∫
{Mn≥x}

XNdP ≤
∫
{Mn≥x}

XndP,

proving the statement.

We obtain a new proof for Kolmogorov’s maximal inequality.

Example 2 (Kolmogorov’s maximal inequality). Let ξ, ξ1, . . . be indepen-
dent random variables with Eξi = 0, and Eξ2

i = σ2
i <∞. Then Xn =

∑n
i=1 ξi

is a martingale with respect to the natural filtration. Therefore (X2
n)n is a

submartingale and

P

(
max

1≤k≤n
|Xk| ≥ x

)
= P

(
max

1≤k≤n
X2
k ≥ x2

)
≤ x−2EX2

n = x−2

n∑
i=1

σ2
i .
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For an infinite sequence we obtain the following.

Corollary 3. If (Xk,Fk) is a submartingale and x > 0, then

P(sup
n
Xn ≥ x) ≤ 1

x
sup
n

EX+
n .

Proof. Follows from the previous result combined with the monotone con-
vergence theorem.

Exercise 1. Prove the corollary.

For the Lp version we need a lemma.

Lemma 2. Let X, Y be nonnegative random variables such that

P(X ≥ x) ≤ 1

x

∫
{X≥x}

Y dP, x > 0.

Then for any p > 1

EXp ≤
(

p

p− 1

)p
EY p.

Proof. Note the for a nonnegative random variable X

EXp =

∫ ∞
0

pxp−1[1− F (x)]dx,

where F (x) = P(X ≤ x) is the distribution function of X. Indeed,

EXp =

∫
Ω

XpdP =

∫
Ω

∫ ∞
0

I(x < X(ω))pxp−1dxdP(ω)

=

∫ ∞
0

pxp−1[1− F (x)]dx.
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The result follows using Hölder’s inequality as

EXp =

∫ ∞
0

pxp−1[1− F (x)]dx

≤
∫ ∞

0

pxp−1 1

x

∫
{X≥x}

Y (ω)dP(ω) dx

=

∫ ∞
0

∫
Ω

pxp−2I(X(ω) ≥ x)Y (ω)dP(ω)dx

=

∫
Ω

Y (ω)

(∫ X(ω)

0

pxp−2dx

)
dP(ω)

=

∫
Ω

Y Xp−1 p

p− 1
dP

≤ p

p− 1
(EY p)1/p (EX(p−1)q

)1/q

=
p

p− 1
(EY p)1/p (EXp)1/q ,

where p and q are conjugate exponents, i.e. 1/p+ 1/q = 1.

Theorem 9 (Lp maximal inequality). (i) Let (Xk)
n
k=1 be a nonnegative sub-

martingale and p ∈ (1,∞). Then

E max{Xp
1 , . . . , X

p
n} ≤

(
p

p− 1

)p
EXp

n.

(ii) Let (Xk)
∞
k=1 be a nonnegative submartingale and p ∈ (1,∞). Then

E sup
n∈N

Xp
n ≤

(
p

p− 1

)p
sup
n∈N

EXp
n.

Proof. Statement (i) follows from Doob’s maximal inequality and Lemma 2.
(ii) follows from (i) and the monotone convergence theorem as

E sup
n
Xp
n = lim

n→∞
E max

1≤k≤n
Xp
k

≤ lim inf
n→∞

(
p

p− 1

)p
EXp

n

≤
(

p

p− 1

)p
sup
n

EXp
n.
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1.6 Optional stopping theorem

Let (Ω,F ,P) be a probability measure and (Fn)n a filtration on it. Recall
that a random variable τ : Ω→ N is stopping time, if {τ ≤ n} ∈ Fn for each
n ∈ N.

We already used the following simple observation.

Proposition 3. The following are equivalent.

(i) τ is stopping time;

(ii) {τ > n} ∈ Fn for each n ∈ N;

(iii) {τ = n} ∈ Fn for each n ∈ N.

Exercise 2. Prove this result.

Let τ be a stopping time. The σ-algebra of the events prior to τ , or short
pre-τ -sigma algebra is defined as

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, n = 1, 2, . . .}. (4)

It is easy to see that Fτ is indeed a σ-algebra. Clearly, Ω ∈ Fτ , and if
A ∈ Fτ , then

Ac ∩ {τ ≤ n} = (Ω−A)∩ {τ ≤ n} = {τ ≤ n}− (A∩ {τ ≤ n}) ∈ Fn, n ∈ N.

Finally, if A1, A2, . . . ∈ Fτ , then

(∪∞k=1Ak) ∩ {τ ≤ n} = ∪∞k=1(Ak ∩ {τ ≤ n}) ∈ Fn

for any n = 1, 2, . . ..

Exercise 3. Show that if τ ≡ k for some k ∈ N then Fτ = Fk, so the
notation is consistent.

Some simple properties are summarized in the next statement.

Lemma 3. Let σ, τ be stopping times.

(i) τ is Fτ -measurable.

(ii) σ ∧ τ = min(σ, τ) and σ ∨ τ = max(σ, τ) are stopping times.

(iii) If σ ≤ τ , then Fσ ⊂ Fτ .

(iv) If (Xn)n is an adapted sequence then Xτ is Fτ -measurable.
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Theorem 10 (Optional stopping theorem, Doob). Let (Xn)n be a super-
martingale, and σ ≤ τ stopping times such that

E(|Xσ|) <∞ , E(|Xτ |) <∞ (5)

and

lim inf
n→∞

∫
{τ>n}

|Xn| dP = 0. (6)

Then E(Xτ |Fσ) ≤ Xσ almost surely.
Furthermore, if (Xn)n is martingale then E(Xτ |Fσ) = Xσ.

Clearly, conditions (5) and (6) hold if the stopping times are bounded.

Proof. Since Xσ is Fσ-measurable, Xσ = E(Xσ|Fσ), therefore it is enough to
show that

E(Xτ −Xσ|Fσ) ≤ 0.

This is the same as∫
A

(Xτ −Xσ) dP ≤ 0 for all A ∈ Fσ. (7)

First assume that τ is bounded, that is τ ≤ m for some m. For any
A ∈ Fσ

A ∩ {σ < k ≤ τ} = A ∩ {σ ≤ k − 1} ∩ {τ > k − 1} ∈ Fk−1 , k ≥ 2,

thus ∫
A

(Xτ −Xσ) dP

=

∫
A

( τ∑
k=σ+1

(Xk −Xk−1)

)
dP

=

∫
A

( m∑
k=2

I(σ < k ≤ τ)(Xk −Xk−1)

)
dP

=
m∑
k=2

∫
A∩{σ<k≤τ}

(Xk −Xk−1) dP

=
m∑
k=2

∫
A∩{σ<k≤τ}

E(Xk −Xk−1|Fk−1) dP ≤ 0,
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proving (7).
Consider the general case. For any n we can write∫

A

(Xτ −Xσ)dP

=

∫
A

(Xτ∧n −Xσ∧n)dP +

∫
A

(Xτ −Xτ∧n)dP−
∫
A

(Xσ −Xσ∧n)dP.

On the event {σ ≥ n} we have Xτ∧n = Xn = Xσ∧n, therefore∫
A

(Xτ∧n −Xσ∧n)dP =

∫
A∩{σ<n}

(Xτ∧n −Xσ∧n)dP ≤ 0 , n ∈ N, (8)

where the inequality follows from the previous case.
By condition (6) there exists a sequence nk →∞ such that

lim
k→∞

∫
{τ>nk}

|Xnk | dP = 0.

It is enough to show that on this subsequence the second and third terms in
decomposition (8) tends to 0. For the second term∣∣∣∣ ∫

A

(Xτ −Xτ∧nk)dP

∣∣∣∣ =

∣∣∣∣ ∫
A∩{τ>nk}

(Xτ −Xτ∧nk)dP

∣∣∣∣
≤
∫
A∩{τ>nk}

(|Xτ |+ |Xnk |)dP

≤
∫
{τ>nk}

|Xτ | dP +

∫
{τ>nk}

|Xnk | dP.

Similarly, for the third term∣∣∣∣ ∫
A

(Xσ −Xσ∧nk)dP

∣∣∣∣ =

∣∣∣∣ ∫
A∩{σ>nk}

(Xσ −Xnk)dP

∣∣∣∣
≤
∫
{σ>nk}

|Xσ| dP +

∫
{τ>nk}

|Xnk | dP.

Using (5) both upper bounds tend to 0.

Corollary 4. Assume that (Xn) is (super-, sub-) martingale, τ is a stopping
time, E(|Xτ |) <∞ and (6) holds. Then
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(i) E(Xτ |F1) ≤ X1 and E(Xτ ) ≤ E(X1) for supermartingales;

(ii) E(Xτ |F1) ≥ X1 and E(Xτ ) ≥ E(X1) for submartingales;

(iii) E(Xτ |F1) = X1 and E(Xτ ) = E(X1) for martingales.

Some conditions are needed for the optional stopping to hold.

Example 3 (Simple symmetric random walk). Let ξ, ξ1, ξ2, . . . are iid random
variables with P(ξ = ±1) = 1/2. Let S0 = 1 and Sn = Sn−1 + ξn. Then (Sn)
is martingale. Let τ = min{n : Sn = 0}. Then τ is a stopping time and the
martingale (Sτ∧n)n tends to 0 a.s. The optional stopping does not hold as
Sτ ≡ 0 a.s., while S0 = 1. Clearly, condition (6) does not hold.

Theorem 11 (Wald identity). Let X,X1, X2, . . . be iid random variables
with EX = µ ∈ R, and let τ be a stopping time with E(τ) < ∞. Put
Sn = X1 + · · ·+Xn, n ∈ N. Then E(Sτ ) = µE(τ).

Proof. First assume X ≥ 0. We have

E(Sτ ) = E

( ∞∑
k=1

I(τ ≥ k)Xk

)
=
∞∑
k=1

E(I(τ ≥ k)Xk)

=
∞∑
k=1

EI(τ ≥ k)E(Xk)

= µ
∞∑
k=1

P(τ ≥ k)

= µE(τ).

To see the general case consider the decomposition Sτ = S
(+)
τ −S(−)

τ where

S(+)
τ =

∞∑
k=1

X+
k I(τ ≥ k)

and

S(−)
τ =

∞∑
k=1

X−k I(τ ≥ k).
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As a simple application of the optional stopping problem we consider the
gambler’s ruin problem. There is an elementary but longer way to derive
these formulas.

Example 4 (Gambler’s ruin). LetX,X1, X2, . . . be iid random variables such
that P(X = 1) = p = 1−P(X = −1), 0 < p < 1, and put Sn = X1+· · ·+Xn,
n ∈ N. Fix a, b ∈ N and let

τ = τa,b(p) = inf{n : Sn ≥ b or Sn ≤ −a},

with the convention inf ∅ =∞. Let (Fn) be the natural filtration, i.e. Fn =
σ(X1, . . . , Xn), n ∈ N.

It is easy to show that P(τ <∞) = 1, and τ is a stopping time. Further-
more, |Sτ | ≤ max(a, b), in particular E|Sτ | <∞ and

lim inf
n→∞

∫
{τ>n}

|Sn| dP ≤ lim inf
n→∞

max(a, b)P(τ > n) = 0.

First assume that p = 1/2. Then EX = 0 and (Sn) is a martingale.
Therefore, by the optional stopping theorem

0 = ES0 = ESτ = −aP(Sτ = −a) + bP(Sτ = b)

= −a(1−P(Sτ = b)) + bP(Sτ = b).

Thus

P(Sτ = b) =
a

a+ b
and P(Sτ = −a) =

b

a+ b
.

Using that (S2
n − n) is a martingale, we can determine Eτ . Since

0 = E(S2
0 − 0) = E(S2

τ − τ)

we obtain

Eτ = ES2
τ = a2P(Sτ = −a) + b2P(Sτ = b) = a2 b

a+ b
+ b2 a

a+ b
= ab.

The case p 6= 1/2 is different. Introduce

Zn = sSn =
n∏
k=1

sXk

14



with s = (1− p)/p = 1/r. Then (Zn) is a martingale and

Zτ = sbI(Sn = b) + s−aI(Sn = −a) ≤ sb + s−a,

thus EZτ <∞ and

lim inf
n→∞

∫
{τ>n}

|Zn| dP ≤ (sb + s−a) lim inf
n→∞

P{τ > n} = 0.

Again, by the optional sampling theorem

s−aP(Sτ = −a) + sb (1−P(Sτ = −a))

= s−aP(Sτ = −a) + sbP(Sτ = b)

= E(sSτ ) = E(Zτ )

= E(Z1) = E(sX) = 1.

Rearranging we obtain

P(Sτ = −a) =
1− sb

s−a − sb
rb

rb
=

rb − 1

ra+b − 1
=

1− rb

1− ra+b
.

To obtain Eτ , using the Wald identity

ESτ = (2p− 1)Eτ,

from which

Eτ =
1

2p− 1
ESτ =

1

2p− 1
[−aP(Sτ = −a) + bP(Sτ = b)] .

Exercise 4. Show that τ <∞ a.s.

2 Continuous time martingales

2.1 Definitions and simple properties

This part is from Karatzas and Shreve [5].
Let (Ω,F ,P) be a probability space and (Ft)t≥0 a filtration, i.e. an in-

creasing sequence of σ-algebras. The time horizon is either finite or infinite,
t ∈ [0, T ] or t ∈ [0,∞).

In what follows we always assume that the filtration satisfies the usual
conditions :

15



(i) F0 contains the P-null sets;

(ii) (Ft)t is right-continuous, i.e. ∩s>tFs =: Ft+ = Ft.
Let (Xt) and (Yt) be stochastic processes. The process Y is a modification

of X if Xt = Yt a.s. for any fix t, i.e. P(Xt = Yt) = 1 for each t ≥ 0. The
processes X and Y are indistinguishable if their sample path are the same
almost surely, i.e.

P(Xt = Yt, t ≥ 0) = 1.

They have the same finite dimensional distributions if for all 0 ≤ t1 < t2 <
. . . < tn <∞ and A ∈ B(Rn)

P ((Xt1 , . . . , Xtn) ∈ A) = P ((Yt1 , . . . , Ytn) ∈ A) .

Example 5. Let U be uniform(0, 1), and Xt ≡ 0, t ∈ [0, 1], and Yt = I(U =
t). Then Y is a modification of X, but they are not indistinguishable, since

P(Xt = Yt, t ≥ 0) = 0.

The process (Xt)t is adapted to the filtration (Ft)t, if Xt is Ft-measurable
for each t ≥ 0. The process (Xt,Ft)t is a martingale if

(i) (Xt)t is adapted to (Ft)t;
(ii) E|Xt| <∞ for all t ≥ 0;

(iii) E[Xt|Fs] = Xs a.s. for all t ≥ s.

It is sub- or supermartingale if (i) and (ii) holds, and (iii) holds with ≥ or ≤
instead of =.

A random variable τ : Ω → [0,∞) is a stopping time if {τ ≤ t} ∈ Ft.
The σ-algebra of the events prior to τ , or pre-τ -σ-algebra is

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

Exercise 5. Show that Fτ is indeed a σ-algebra.

The next result is obvious, but very useful.

Proposition 4. Let (Xt,Ft) be a (sub-, super-) martingale. Then for any
sequence 0 ≤ t0 < t1 < . . . < tN < ∞ the process (Xtn ,Ftn)Nn=0 is a discrete
time martingale.

Lemma 4. Let σ, τ be stopping times.
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(i) τ is Fτ -measurable.

(ii) If τ ≡ t then Fτ = Ft.
(iii) σ ∧ τ = min(σ, τ) and σ ∨ τ = max(σ, τ) are stopping times.

(iv) If σ ≤ τ , then Fσ ⊂ Fτ .

(v) If (Xt)t is right-continuous and adapted then Xτ is Fτ -measurable.

Exercise 6. Prove the lemma.

Remark 1. In continuous time the technical details are trickier.
The process (Xt)t is adapted to (Ft)t, if Xt is Ft-measurable, and it is

progressively measurable with respect to (Ft)t, if for all t ≥ 0 and A ∈ B(Rd)

{(s, ω) : s ≤ t, Xs(ω) ∈ A} ∈ B([0, t])⊗Ft,

where B stands for the Borel sets, and ⊗ is the product σ-algebra. In what
follows we always need progressive measurability, adaptedness is not enough.

The next statement says that the situation is not too bad.

Proposition 5. If (Xt)t is right continuous and adapted, then it is progressively
measurable.

Example 6 (Poisson process). A Poisson process with intensity λ > 0 is
an adapted integer valued RCLL (right continuous with left limits) process
N = (Nt,Ft)t≥0 such that

(i) N has independent increments, that is Nt − Ns is independent of Fs
for any s < t,

(ii) N0 = 0 a.s.,

(iii) Nt −Ns ∼ Poisson(λ(t− s)).

Exercise 7. Show that (Nt − λt) is martingale.

Proposition 6. Let (Xt) be a martingale, and ϕ a convex function such that
E|ϕ(Xt)| <∞ for all t ≥ 0. Then (ϕ(Xt)) is submartingale.

Furthermore if (Xt) is a submartingale and ϕ nondecreasing and convex
that E|ϕ(Xt)| <∞ for all t ≥ 0, then (ϕ(Xt)) is a submartingale.

Example 7 (Wiener process). The Wiener process or standard Brownian
motion is an adapted process W = (Wt,Ft)t≥0 such that

17



(i) W has independent increments, that is Wt −Ws is independent of Fs
for any s < t,

(ii) W0 = 0 a.s.,

(iii) Wt −Ws ∼ N(0, t− s),
(iv) Wt has continuous sample path.

Exercise 8. Show that (Wt) and (W 2
t − t) are martingales.

2.2 Martingale convergence theorem

Consider an adapted stochastic process (Xt)t≥0. Fix a < b, and a finite set
F ⊂ [0,∞). Let UF denote the number of upcrossings of the interval [a, b]
by the restricted process (Xt)t∈F . Formally, let τ0 = 0, and

τ2k−1 = min{t ∈ F : t ≥ τ2k−2, Xt < a},
τ2k = min{t ∈ F : t ≥ τ2k−1, Xt > b}.

The number of upcrossings on F is

UF (a, b) = UF = max{k : τ2k <∞}.

We can extend the definition of infinite sets I ⊂ [0,∞) as

UI = sup{UF : F ⊂ I, F finite}.

We have the upcrossing inequality.

Theorem 12 (Upcrossing inequality). Let (Xt) be a right-continuous sub-
martingale. For any a < b and 0 ≤ S ≤ T <∞

(b− a)EU[S,T ] ≤ E(XT − a)+ − E(XS − a)+.

Proof. Consider an enumeration of the countable set Q ∩ [S, T ] as

Q ∩ [S, T ] = {q1, q2, . . .},

and let Fn = {q1, . . . , qn} ∪ {s, t}. Then (Xt,Ft)t∈Fn is a discrete time sub-
martingale, therefore, by the upcrossing inequality

(b− a)EUFn ≤ E(XT − a)+ − E(XS − a)+.
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Since Fn is increasing, UFn is increasing, and by the right-continuity of (Xt)

lim
n→∞

UFn = U[S,T ] a.s.

In particular, U[S,T ] is measurable, and by the monotone convergence theorem
the result follows.

Theorem 13 (Martingale convergence theorem). Let (Xt) be a right-continuous
submartingale such that

sup
t≥0

E(X+
t ) <∞.

Then limt→∞Xt = X exists a.s. and E|X| <∞.

Proof. By the upcrossing inequality and the monotone convergence theorem
for any a < b

EU[0,∞)(a, b) ≤
supt≥0 EX+

t + |a|
b− a

.

Therefore, for any a < b the upcrossings U[0,∞)(a, b) are a.s. finite. Thus
almost surely the upcrossings are finite for all a < b rationals, implying the
existence of the limit.

The integrability of the limit follows from Fatou’s lemma.

Exercise 9. Let (Xt) be a right-continuous nonnegative submartingale. Show
that the following are equivalent:

(i) (Xt) is uniformly integrable;

(ii) converges in L1;

(iii) converges a.s. to an integrable random variableX∞, such that (Xt)t∈[0,∞]

is a submartingale.

2.3 Inequalities

Theorem 14 (Doob’s maximal inequality). Let (Xt) be a right-continuous
submartingale.

(i) For any 0 < S < T <∞, x > 0

xP( sup
S≤t≤T

Xt ≥ x) ≤ EX+
T .
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(ii) If (Xt) is nonnegative and p > 1 then

E

(
sup
S≤t≤T

Xt

)p
≤
(

p

p− 1

)p
EXp

T .

Proof. (i): Let Fn be as above. Then (Xt,Ft)t∈Fn is a discrete time martin-
gale. Therefore, by Doob’s maximal inequality

yP

(
sup
t∈Fn

Xt > y

)
≤ EX+

T .

Right-continuity implies{
sup
S≤t≤T

Xt > y

}
= ∪∞n=1

{
sup
t∈Fn

Xt > y

}
,

and the union is increasing. Letting n→∞

yP

(
sup
S≤t≤T

Xt > y

)
≤ EX+

T .

Letting y ↑ x the result follows.
Part (ii) follows as in the discrete time case.

Exercise 10. Let N be a Poisson process with intensity λ > 0. Show that
for any c > 0

lim sup
t→∞

P

(
sup

0≤s≤t
(Ns − λs) ≥ c

√
λt

)
≤ 1

c
√

2π
,

and

lim sup
t→∞

P

(
inf

0≤s≤t
(Ns − λs) ≤ −c

√
λt

)
≤ 1

c
√

2π
.

Show that for any 0 < S < T <∞

E sup
S≤t≤T

(
Nt

t
− λ
)2

≤ 4Tλ

S2
.

Corollary 5. Let N be a Poisson process with intensity λ > 0. Then

lim
t→∞

Nt

t
= λ a.s.
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Proof. By Chebyshev’s inequality

P
(∣∣t−1Nt − λ

∣∣ > ε
)
≤ Var(Nt)

t2ε2
=

λ

ε2t
.

By the first Borel–Cantelli-lemma almost surely

lim
n→∞

N2n

2n
= λ.

So on a subsequence we are done. In between we have

P

(
sup

2n≤t≤2n+1

∣∣t−1Nt − λ
∣∣ > ε

)
≤

E
(
sup2n≤t≤2n+1 |t−1Nt − λ|

)2

ε2

≤ 4 2n+1λ

22nε2
= 2−n

8λ

ε2
.

Applying Borel–Cantelli again, we are done.

2.4 Optional stopping

Let (Xt,Ft)t∈[0,∞) be a right-continuous submartingale. It has a last element
X∞, if X∞ is measurable with respect to the σ-algebra F∞ = σ (∪t≥0Ft),
E|X∞| <∞ and for all t ≥ 0 E[X∞|Ft] ≥ Xt a.s.

If we work on the finite time horizon [0, T ], T <∞, then the submartin-
gale (Xt)t∈[0,T ] has a last element XT (by definition!).

Theorem 15 (Optional stopping). Let (Xt,Ft)t≥0 be a right-continuous sub-
martingale with last element X∞. Let σ ≤ τ be stopping times. Then

E[Xτ |Fσ] ≥ Xσ a.s.

Proof. Assume that τ is bounded, i.e. τ ≤ K. Let

σn(ω) = k/2n, if σ(ω) ∈ [(k − 1)/2n, k/2n),

and define τn similarly. Then σn and τn are stopping times, and σn ≤ τn. We
can apply the optional stopping theorem for the submartingale (Xk/2n ,Fk/2n),
and stopping times σn, τn. Then

E[Xτn|Fσn ] ≥ Xσn ,
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that is for A ∈ Fσn ∫
A

XτndP ≥
∫
A

XσndP.

Since σn ≥ σ for each n, Fσn ⊃ Fσ. Therefore, for A ∈ Fσ∫
A

XτndP ≥
∫
A

XσndP.

By the right-continuity Xτn → Xτ and Xσn → Xσ a.s. This combined with
the uniform integrability implies∫

A

XτdP ≥
∫
A

XσdP,

proving the result.

Exercise 11. Prove that σn, τn are indeed stopping times.

2.5 Doob-Meyer decomposition

The Doob-Meyer decomposition is the continuous time analogue of the Doob’s
decomposition of submartingales. While the latter is basically trivial, the
Doob-Meyer decomposition is highly nontrivial, and needs further assump-
tions.

Recall that a class D of random variables are uniformly integrable, if for
any ε > 0 there exists K > 0 such that for all X ∈ D∫

|X|>K
|X|dP < ε.

Put
Sa = {τ : τ stopping time , τ ≤ a}.

The adapted process (Xt) belongs to the class DL is for any a > 0 the class
{Xτ}τ∈Sa of random variables is uniformly integrable.

Theorem 16 (Doob-Meyer decomposition). Let the filtration Ft satisfy the
usual conditions, and let (Xt)t be a right-continuous submartingale in DL.
Then there exist (Mt) and (At) such that (Mt) is a martingale, (At) is an
adapted nondecreasing right-continuous process with A0 ≡ 0, and

Xt = Mt + At, t ≥ 0.

Furthermore, the decomposition is unique.
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Example 8. If (Nt) is a Poisson process with intensity λ > 0, then it is a
submartingale. Its Doob-Meyer decomposition is

Nt = (Nt − λt) + λt.

If (Wt) is a standard Brownian motion, then (W 2
t ) is a submartingale and

its Doob-Meyer decomposition is

W 2
t = (W 2

t − t) + t.

3 Wiener process

This part is from Karatzas and Shreve [5].

3.1 First properties and existence

Let (Ω,A,P) be a probability space. Then W = (Wt,Ft)t≥0 is a Wiener
process or standard Brownian motion if

(W1) W0 = 0 a.s.,

(W2) W has independent increments, that is Wt −Ws is independent of Fs
for any s < t,

(W3) Wt −Ws ∼ N(0, t− s),
(W4) Wt has continuous sample path.

Exercise 12. Show that (W2) and (W3) with s = 0 (i.e. Wt ∼ N(0, t))
implies (W3).

Proposition 7. (i) E(Wt) = 0 for all t.

(ii) Cov(Ws,Wt) = E(WsWt) = min(s, t) =: s ∧ t, s, t ≥ 0.

(iii) For any k ∈ N and 0 ≤ t1 < · · · < tk, the random vector (Wt1 , . . . ,Wtk)
has a multivariate normal distribution with mean 0 and covariance

Σ = Σt1,...,tk =


t1 t1 · · · t1
t1 t2 · · · t2
...

...
. . .

...
t1 t2 · · · tk

 .
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Proof. Part (i) and (ii) are trivial. For part (iii) note that by the independent
increment property the components of

X = (Wt1 ,Wt2 −Wt1 , . . . ,Wtk −Wtk−1
)>

are independent normal random variables. Therefore X is a multivariate
normal. Since

(Wt1 , . . . ,Wtk)
> = AX,

the statement follows from the fact that a linear transformation of a multi-
variate normal is normal with covariance matrix ACov(X)A>.

Let (Xt) be a stochastic process with finite second moment. Then m(t) =
EXt is the mean value and r(s, t) = Cov(Xs, Xt) = E([Xs − m(s)][Xt −
m(t)]) , is the covariance function.

Clearly r is symmetric, and nonnegative definite, i.e.

k∑
j=1

k∑
`=1

cjc` r(tj, t`) ≥ 0 , k ∈ N , t1, . . . , tk ∈ T , c1, . . . , ck ∈ R .

Definition 1. The stochastic process (Xt) is a Gaussian process with mean
function m(t) and covariance function r(t, s) if for any k ∈ N and t1, . . . , tk
the random vector (Xt1 , . . . , Xtk) has multivariate normal distribution with
mean (m(t1), . . . ,m(tk)) and covariance (r(tj, t`))

k
j, `=1.

A simple, but not very interesting example to a Gaussian process is Xt =
a(t)Z + b(t), where Z ∼ N(0, 1).

We proved that the Wiener process (Wt) is a Gaussian process with mean
m(t) ≡ 0 and covariance function r(s, t) = min(s, t). This could be the
definition of the Wiener process.

Proposition 8. Let (Wt) be a continuous Gaussian process with mean 0 and
covariance function r(s, t) = min(s, t). Then (Wt) is a Wiener process.

Exercise 13. Prove the statement.

Exercise 14. Let (W (t)) be SBM. Show that

(i) W1(t) = W (c+ t)−W (c), t ≥ 0;

(ii) W2(t) =
√
cW (t/c), t ≥ 0;

(iii) W3(t) = tW (1/t)
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are SBM.

Kolmogorov’s consistency theorem yields the the existence of Gaussian
processes.

Theorem 17. Let T ⊂ R, and let m(t) be an arbitrary function and r(s, t) a
nonnegative definite function. Then there exists a Gaussian process (Xt)t∈T
with mean function m and covariance function r.

Therefore, apart from continuity, we have a Wiener process. That is, we
have a probability space (R[0,∞),B[0,∞),P) and a stochastic process (W̃t(ω) =
ωt)t≥0, which satisfies (W1)–(W3).

Let C = C[0,∞) be the space of continuous function on [0,∞). We have

to show that P(W̃ ∈ C) = 1. The problem is that C does not belong to the
product σ-algebra B[0,∞). Indeed, it can be shown that

B[0,∞) = ∪{π−1
K (BK) : K ⊂ [0,∞), K countable}.

Therefore, if C ∈ B[0,∞), then C = π−1
K (BK) for some countable K ⊂ [0,∞).

But continuity cannot be determined from the values of the function on a
countable set. Similarly,{

ω ∈ R[0,∞) : sup
0≤t≤1

ωt ≤ x
}
, x ∈ R ,

is not B[0,∞)-measurable, so we cannot define supt∈[0,1] W̃t.
Thus the setup in Kolmogorov’s consistency theorem cannot deal with

continuous processes. We need a different approach.
Recall that Y is a modification ofX ifXt = Yt a.s. for any fix t, i.e. P(Xt =

Yt) = 1 for each t ≥ 0.

Theorem 18 (Kolmogorov continuity theorem). Let (Xt)t∈[0,T ] be a stochas-
tic process on (Ω,A,P), such that for some positive constants α, β, C

E|Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T.

Then X has a continuous modification X̃ which is Hölder continuous with
exponent γ for every γ ∈ (0, β/α), that is for some h(ω) a.s. positive random
variable and δ > 0

P

(
ω : sup

0<t−s<h(ω)

X̃t(ω)− X̃s(ω)

|t− s|γ
≤ δ

)
= 1.
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Proof. We can assume that T = 1. By Chebyshev

P(|Xt −Xs| > ε) ≤ ε−αE|Xt −Xs|α ≤ Cε−α|t− s|1+β,

in particular Xt → Xs in probability as t→ s. Fix γ ∈ (0, β/α). Then

P

(
max

1≤k≤2n
|Xk2−n −X(k−1)2−n| > 2−γn

)
≤ 2nP

(
|Xk2−n −X(k−1)2−n| > 2−γn

)
≤ 2nC2−αγn2−n(1+β)

= C2−n(β−αγ).

By the first Borel–Cantelli lemma with probability 1 only finitely many of
the events

max
1≤k≤2n

|Xk2−n −X(k−1)2−n| > 2−γn

occur. That is, there is a set Ω0 with P(Ω0) = 1, and a threshold n0(ω)
(depending on ω!) such that for ω ∈ Ω0

max
1≤k≤2n

|Xk2−n −X(k−1)2−n| ≤ 2−γn, n ≥ n0(ω).

Fix ω ∈ Ω0. Put Dn = {k2−n : k = 0, 1, . . . , 2n}, and D = ∪nDn. Then for
n ≥ n0(ω) and m > n induction gives that

|Xt(ω)−Xs(ω)| ≤ 2
m∑

j=n+1

2−γj, t, s ∈ Dm, |t− s| ≤ 2−n.

This implies that (Xt(ω))t∈D is uniformly continuous in t ∈ D. Indeed, for
any t, s ∈ D with 0 < t − s < h(ω) = 2−n0(ω) there is an n ≥ n0 such that
2−n−1 ≤ t− s < 2−n, thus

|Xt(ω)−Xs(ω)| ≤ 2
∞∑

j=n+1

2−γj = 2−γ(n+1) 2

1− 2−γ
≤ |t− s|γ 2

1− 2−γ
.

Informally, we proved that (Xt) behaves regularly on D. We define X̃. If

ω 6∈ Ω0 let X̃(ω) = 0, (or anything). If ω ∈ Ω0 and t ∈ D let X̃t(ω) = Xt(ω),
while if t 6∈ D choose a sequence sn ∈ D such that sn → t and let

X̃t(ω) = lim
n→∞

Xsn(ω).
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By the uniform continuity and the Cauchy criteria the limit on the right-hand
side exist.

The a.s. uniqueness of the stochastic limit together with the stochastic
continuity of X implies that X̃ is a modification of X.

Exercise 15 (Random fields). A random field is a collection of random
variables indexed by a partially ordered set. Let (Xt)t∈[0,T ]d be a random
field satisfying

E|Xt −Xs|α ≤ C‖t− s‖d+β,

for some positive constants. Show that there exists a continuous modification
X̃ which is Hölder continuous with exponent γ for every γ ∈ (0, β/α), that
is for some h(ω) a.s. positive random variable and δ > 0

P

(
ω : sup

0<‖t−s‖<h(ω)

X̃t(ω)− X̃s(ω)

‖t− s‖γ
≤ δ

)
= 1.

Exercise 16. Show that if Wt −Ws ∼ N(0, t− s) then for any n > 0

E|Wt −Ws|2n = Cn|t− s|n,

where Cn = E|Z|n, Z ∼ N(0, 1).

Corollary 6. Wiener process exists.

Proof. We need only the continuity part. The condition of Kolmogorov con-
tinuity theorem holds with α = 2n and β = n− 1 for any n > 1. Thus there
exists a continuous modification on [0, N ], for any N ∈ N. Necessarily, XN1

and XN2 agrees a.s. for any fix t ∈ [0, N1 ∧ N2], which allows us to extend
the process to [0,∞).

In fact, we proved that the Wiener process is locally γ-Hölder continuous
for any γ < 1/2.

Exercise 17. Let (Nt) be a Poisson process with intensity 1. Compute the
order E|Nt−Ns|α for t− s small. (Thus the condition in the continuity the-
orem holds for β = 0. Well, of course, Poisson processes are not continuous.)

More generally, we obtain a result on continuity of Gaussian processes.
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Theorem 19. Let (Xt) be a Gaussian process with continuous mean function
m, and covariance function r. If there exist positive constants δ, C such that
for all s, t

r(t, t)− 2r(s, t) + r(s, s) ≤ C|t− s|δ,
then (Xt) has a continuous modification which is locally γ-Hölder continuous
for any γ ∈ (0, δ/2).

Proof. Subtracting the mean function we may and do assume that m(t) ≡ 0.
Simply

Var(Xt −Xs) = r(t, t)− 2r(s, t) + r(s, s) = σ2(s, t),

therefore
E|Xt −Xs|α = E|Z|ασ(s, t)α,

with Z ∼ N(0, 1). Thus

E|Xt −Xs|α ≤ C|t− s|δα/2,

which implies that the condition of the continuity theorem holds with α > 0,
β = δα/2− 1. Letting α→∞ the result follows.

Exercise 18 (Fractional Brownian motion). Fractional Brownian motion
with Hurst index H ∈ (0, 1) is a Gaussian process (B(t)) with mean function
m(t) ≡ 0 and covariance function

r(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
.

Note that H = 1/2 corresponds to the usual Brownian motion.

(i) Show that it is self-similar, i.e. B(at) ∼ aHB(t).

(ii) Show that it has stationary increments: B(t)−B(s) ∼ B(t− s).
(iii) Prove that a continuous modification exists, which is γ-Hölder for any

γ < H. (That is H is the ‘roughness parameter’: for small H the
process strongly oscillates, while for H close to 1 the paths are almost
smooth.)

(iv) Are the increments independent?

Exercise 19. Let (Xt)t∈[0,1] be a continuous Gaussian process with mean 0

and covariance function r(s, t). Show that Y =
∫ 1

0
Xtdt ∼ N(0, σ2), where

σ2 =

∫ 1

0

∫ 1

0

r(s, t) ds dt .
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Show that Yt =
∫ t

0
Xsds is a Gaussian process. Determine its covariance

function.

A version of the continuity theorem is the following.

Theorem 20. Let T ⊂ R finite or infinite interval, and (Xt)t∈T a stochastic
process such that for δ > 0 small enough

P (|Xt −Xs| ≥ g(δ)) ≤ h(δ) whenever |s− t| < δ , s, t ∈ T,

where g and h are continuous function such that

∞∑
n=1

g
(
2−n
)
<∞ ,

∞∑
n=1

2nh
(
2−n
)
<∞ ,

Then X has a continuous modification.

Recall that

ϕ(x) =
1√
2π
e−

x2

2

is the standard normal density function, and

Φ(x) =

∫ x

−∞
ϕ(y)dy

is the standard normal distribution function.

Lemma 5. For any x > 0(
1

x
− 1

x3

)
ϕ(x) ≤ 1− Φ(x) ≤ 1

x
ϕ(x)

and

lim
x→∞

1− Φ(x)
1
x
ϕ(x)

= 1.

Proof. The first follows from integrating the inequality(
1− 3

y4

)
ϕ(y) ≤ ϕ(y) ≤

(
1 +

1

y2

)
ϕ(y),

on (x,∞). The second is immediate from the first.
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Using Theorem 20 we obtain a better criteria for continuity.

Corollary 7. Let T ⊂ R be a finite or infinite interval and let (Xt)t∈T be a
Gaussian process with continuous mean function m, and covariance function
r such that for δ small enough

sup
|s−t|≤δ

(r(t, t)− 2r(s, t) + r(s, s)) ≤ C (− log δ)−3(1+α)

for some C > 0, α > 0. Then (Xt) has a continuous modification.

3.2 The space C[0,∞)

As SBM is continuous, its natural space is the space of continuous functions.
Instead of a collection of random variables a stochastic process (Wt) can be
understood as a random element of a function space.

Recall that ρ is a metric if on S

(i) ρ ≥ 0, ρ(ω1, ω2) = 0 iff ω1 = ω2;

(ii) symmetric;

(iii) the triangle inequality holds, i.e.

ρ(ω1, ω2) ≤ ρ(ω1, ω3) + ρ(ω2, ω3).

Then (S, ρ) is a metric space.
The sequence (xn) is Cauchy if for each ε > 0 there exist n0(ε) such that

ρ(xm, xn) ≤ ε for all m,n ≥ n0. The space (S, ρ) is complete if every Cauchy
sequence converges. A set A ⊂ S is dense, if for any x ∈ S there exists a
sequence (xn) ⊂ A such that xn → x. The space (S, ρ) is separable if there
exists a countable dense subset.

Let C[0,∞) denote the space of continuous real functions on [0,∞) with
metric

ρ(ω1, ω2) =
∞∑
n=1

1

2n
max
t∈[0,n]

(|ω1(t)− ω2(t)| ∧ 1) .

Proposition 9. ρ is a metric, and (C[0,∞), ρ) is a complete separable metric
space.
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Proof. It is clear that ρ is a metric. Fix a Cauchy sequence (xn). For any
fix N ∈ N the limit limn→∞ xn(t) = x∞(t) exists for t ∈ [0, N ], and it is
continuous. Thus x∞ exists and continuous.

To find a countable dense subset consider functions which are 0 for t ≥ n,
and it is rational at k/n for k = 0, 1, . . . , n2 − 1.

If (S, ρ) is a metric space we can define open sets. The σ-algebra generated
by open sets is the Borel-σ-algebra B(S). With this (S,B(S)) is a measurable
space.

If (Ω,A,P) is a probability space and (S,B(S)) is a measurable space
then a measurable X : Ω→ S is a random variable / random element in S.
It induces a probability measure P ◦X−1 on S as

P ◦X−1(B) = P(X ∈ B) = P({ω : X(ω) ∈ B}).

Let (Pn) be a sequence of probability measure on (S,B(S)) and P another
measure on it. Then Pn converges weakly to P , Pn

w→ P , if

lim
n→∞

∫
S

f(s)dPn(s) =

∫
S

f(s)dP (s)

for every continuous real function f . Note that the limit measure is neces-
sarily a probability measure.

Let Xn and X be random elements in S, defined possibly on different
probability spaces. The sequence (Xn) converges in distribution to X if the
corresponding induced measures converge weakly. Equivalently,

Ef(Xn)→ Ef(X)

for all continuous and bounded f .
Assume that Xn → X in distribution. For any 0 ≤ t1 < . . . < tk consider

the projection πt1,...,tk : C[0,∞)→ Rk

πt1,...,tk(ω) = (ω(t1), . . . , ω(tk)) .

This is clearly continuous. For a continuous bounded function f : Rk → R
the composite function f(πt1,...,tk) is bounded and continuous. Therefore, by
the definition of convergence in distribution

Ef(πt1,...,tk(Xn))→ Ef(πt1,...,tk(X))
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that is
Ef(Xn(t1), . . . , Xn(tk))→ Ef(X(t1), . . . , X(tk)).

That is, for any 0 ≤ t1 < . . . < tk

(Xn(t1), . . . , Xn(tk))
D−→ (X(t1), . . . , X(tk)).

This means that the finite dimensional distributions converge.
We proved the following.

Proposition 10. If (Xn) converges in distribution to X then all finite di-
mensional distributions converge.

The converse is not true in general.

Example 9. Let

Xn(t) = ntI[0,(2n)−1](t) + (1− nt)I((2n)−1,n−1](t), t ≥ 0.

Then all finite dimensional distributions converge to the corresponding finite
dimensional distributions of X ≡ 0. However, convergence as a process does
not hold.

In what follows we try to understand what goes wrong in the example
above, and state a converse of the Proposition above.

A family of probability measures Π on (S,B(S)) is tight if for every ε > 0
there exists a compact set K ⊂ S such that P (K) ≥ 1−ε for all P ∈ Π. The
family Π is relatively compact if each sequence of elements from Π contains
a convergent subsequence. A family of random elements is tight (relatively
compact) if the family of induced measures is tight (relatively compact).

Theorem 21 (Prohorov). Let Π be a family of probability measures on a
complete separable metric space S. Then Π is tight if and only if it is relatively
compact.

The modulus of continuity plays an important role in characterization of
tightness on C. Fix T > 0 and δ > 0, and let ω ∈ C[0,∞). The modulus of
continuity on [0, T ]

mT (ω, δ) = max {|ω(s)− ω(t)| : |s− t| ≤ δ, 0 ≤ s, t ≤ T} .

Exercise 20. Show that mT is continuous in ω ∈ C[0,∞) under the metric
ρ, is nondecreasing in δ, and limδ↓0m

T (ω, δ) = 0 for each ω ∈ C[0, T ).
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Theorem 22 (Arselà–Ascoli). A set A ⊂ C[0,∞) has compact closure if
and only if the following two conditions hold:

(i) supω∈A |ω(0)| <∞;

(ii) for every T > 0
lim
δ↓0

sup
ω∈A

mT (ω, δ) = 0.

Now we can characterize tightness of probability measures.

Theorem 23. A sequence (Pn) of probability measures on (C[0,∞),B) is
tight if and only if the following two conditions hold:

(i) limλ↑∞ supn≥1 Pn(ω : |ω(0)| > λ) = 0;

(ii) for all T > 0 and ε > 0

lim
δ↓0

sup
n≥1

Pn(ω : mT (ω, δ) > ε) = 0.

Theorem 24. Let (Xn) be a tight sequence of continuous processes such that
its finite dimensional distributions converge. Then the sequence of induced
measures (Pn) converge weakly to a measure P such that the coordinate map-
ping Wt(ω) = ωt on C[0,∞) satisfies

(Xn(t1), . . . , Xn(tk))
D−→ (W (t1), . . . ,W (tk)) ,

for any 0 ≤ t1 < . . . < tk <∞, k ≥ 1.

Proof. Tightness is the same as relative compactness. Therefore, every sub-
sequence contains a further convergent subsequence. Because of the con-
vergence of finite dimensional distributions any two limit measure has the
same finite dimensional distributions. But finite dimensional distributions
determine the measure.

3.3 Donsker theorem

Let ξ, ξ1, ξ2, . . . be iid random variables with Eξ = 0, Eξ2 = σ2 ∈ (0,∞), and
let Sn =

∑n
i=1 ξi denote the partial sum. Define the continuous time process

(Yt)t≥0 as
Yt = Sbtc + (t− btc)ξbtc+1,
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where c·c stands for the usual integer part. For n ∈ N define the scaled
process

X
(n)
t =

1

σ
√
n
Ynt, t ≥ 0.

Then X
(n)
t −X

(n)
s for s, t ∈ N/n is independent of σ(ξ1, . . . , ξsn), and by the

CLT its distribution tends to N(0, t− s).

Theorem 25 (Invariance principle of Donsker). Let Pn denote the measure
on (C[0,∞),B(C[0,∞))) induced by X(n). Then Pn converges weakly to a
measure P?. Under P? the coordinate mapping Wt(ω) = ω(t), ω ∈ C[0,∞)
is SBM.

Proof. According to Theorem 24 we have to show that (X(n)) is tight and
the finite dimensional distributions converge to those of a SBM.

To prove tightness we have to show that the conditions of Theorem 23
hold for Pn. This can be done by proving some maximal inequalities. We
skip this part.

We prove the convergence of finite dimensional distributions. Fix d ∈ N
and 0 ≤ t1 < . . . < td <∞. We have to show that(

X
(n)
t1 , . . . , X

(n)
td

)
D−→ (Wt1 , . . . ,Wtd) .

To ease notation let d = 2 and (t1, t2) = (s, t). We want to show that

(X(n)
s , X

(n)
t )

D−→ (Ws,Wt) .

By the definition of X(n)∥∥∥∥(X(n)
s , X

(n)
t )− 1

σ
√
n

(Sbsnc, Sbtnc)

∥∥∥∥ P−→ 0,

therefore it is enough to show that

1

σ
√
n

(Sbsnc, Sbtnc)
D−→ (Ws,Wt) .

By Lévy’s CLT

1

σ
√
n

(Sbsnc, Sbtnc − Sbsnc)
D−→ (
√
sZ,
√
t− sZ ′),

34



Figure 1: Simulation of 3 independent SBM

where Z,Z ′ are independent N(0, 1). Therefore

1

σ
√
n

(Sbsnc, Sbtnc)
D−→ (
√
sZ,
√
sZ +

√
t− sZ ′) D= (Ws,Wt),

as claimed.

In the proof above we used the following simple statements.

Exercise 21. Let (Xn) be a sequence of random elements in the metric
space (S1, ρ1) converging in distribution to X. Let ϕ : S1 → S2 be continu-
ous, where (S2, ρ2) is another metric space. Show that ϕ(Xn) converges in
distribution to ϕ(X).

Exercise 22. Let (Xn), (Yn) be random elements in the separable metric
space (S, ρ) defined on the same probability space. Show that if Xn converges
in distribution to X and ρ(Xn, Yn) → 0 in probability then Yn converges in
distribution to X.

As a consequence of Donsker’s invariance principle we obtain limit result
for the path of random walks. Let us restrict to the interval [0, 1] and con-
sider the space C[0, 1] with the supremum norm. Consider the continuous
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functional
f : C[0, 1]→ R; ω 7→ max

t∈[0,1]
ω(t).

Since X(n) → W in distribution (in C[0, 1]) we have that f(X(n)) → f(W )
in distribution (in R!). That is

P(max
t∈[0,1]

X
(n)
t ≤ x)→ P(max

t∈[0,1]
Wt ≤ x),

for each x ∈ R (well, only for continuity point of the limit, but it is continu-
ous). By the definition of X(n) we can rewrite the RHS to get

P

(
max
k≤n

Sk ≤
√
nσx

)
→ P(max

t∈[0,1]
Wt ≤ x).

Next we determine the LHS. Using the reflection principle

P

(
max
t∈[0,1]

Wt > x

)
= P

(
max
t∈[0,1]

Wt > x, W1 > x

)
+ P

(
max
t∈[0,1]

Wt > x, W1 < x

)
= 2P

(
max
t∈[0,1]

Wt > x, W1 > x

)
= 2P (W1 > x) = 2 (1− Φ(x)) .

Summarizing

lim
n→∞

P

(
max
k≤n

Sk ≤
√
nσx

)
= 2Φ(x)− 1.

3.4 Markov property

Assume that we have a SBM (Wt) and we know everything up to time s.
Conditioned on that information, what is the distribution of Wt, t > s?

Formally, (Wt,Ft) is a SBM, and we are interested in the conditional
probabilities

P(Wt ∈ A|Fs).
Since Wt = Ws + Wt − Ws, where Ws is Fs-measurable and Wt − Ws is
independent of Fs, we obtain

P(Wt ∈ A|Fs) = P(Wt ∈ A|Ws) = PWs(Wt−s ∈ A),
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where Px(Wu ∈ A) = P(Wu ∈ A|W0 = x), that is under Px W is a SBM
starting at x. That is knowing the whole past up to s gives no more infor-
mation than knowing only Ws. This is the Markov property.

To make the previous argument formal we need the following.

Exercise 23. Let (Ω,A,P) be a probability space, G ⊂ A a sub-σ-algebra,
and X, Y random variables such that X is independent of G and Y is G-
measurable. Then

P(X + Y ∈ A|G) = P(X + Y ∈ A|Y ) P− a.s.

and
P(X + Y ∈ A|Y = y) = P(X + y ∈ A) PY −1 − a.s.

For the latter note that for some σ(Y )/B(R)-measurable h

P(X + Y ∈ A|Y ) = h(Y ).

So the latter statement claims that h(y) = P(X + y ∈ A) a.s. with respect
to the induced measure PY −1.

A (d-dimensional) adapted process (Xt) is Markov process with initial
distribution µ if

(i) P(X0 ∈ A) = µ(A);

(ii) P(Xt+s ∈ A|Fs) = P(Xt+s ∈ A|Xs), for all A and t, s > 0.

Sometimes it is more convenient to work with various initial distribu-
tions. A Markov family is an adapted process (Xt) together with a family of
probability measures (Px) such that

(i) Px(X0 = x) = 1;

(ii) Px(Xt+s ∈ A|Fs) = Px(Xt+s ∈ A|Xs);

(iii) Px(Xt+s ∈ A|Xs = y) = Py(Xt ∈ A) PxX
−1
s -a.s.

For a given ω ∈ Ω denote Xs+· the function Xs+t, that is we shift the
path by s. The property in the definition of Markov process easily extends
to path.

Proposition 11. For a Markov family for any F ∈ B(R[0,∞))

(i) Px(Xs+· ∈ F |Fs) = Px(Xs+· ∈ F |Xs);

(ii) Px(Xs+· ∈ F |Xs = y) = Py(X· ∈ F ) PxX
−1
s -a.s.
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The proof goes by the usual technical machinery. The sets F satisfying
the above properties forms a λ-system and it contains the finite dimensional
cylinders.

Markov property states that the process restarts at fixed times t. Some-
times we need to restart the process at stopping times τ . This property is
the strong Markov property.

A (d-dimensional) adapted process (Xt) is strong Markov process with
initial distribution µ if

(i) P(X0 ∈ A) = µ(A);

(ii) P(Xτ+t ∈ A|Fτ ) = P(Xt ∈ A|Xτ ), for all A and stopping time τ .

Similarly, a strong Markov family is an adapted process (Xt) together with
a family of probability measures Px such that

(i) Px(X0 = x) = 1;

(ii) Px(Xτ+t ∈ A|Fτ ) = Px(Xτ+t ∈ A|Xτ ) for all A and stopping time τ ;

(iii) Px(Xτ+t ∈ A|Xτ = y) = Py(Xt ∈ A) PxX
−1
τ -a.s. for all A and stopping

time τ ;

Proposition 12. For a strong Markov family for any F ∈ B((R)[0,∞))

(i) Px(Xτ+· ∈ F |Fτ ) = Px(Xτ+· ∈ F |Xτ );

(ii) Px(Xτ+· ∈ F |Xτ = x) = Px(X· ∈ F ) PxX
−1
τ -a.s.

We proved that SBM is Markov. In fact, it is strong Markov.

Theorem 26. SBM is a strong Markov process.

3.5 Path properties

Theorem 27. Almost surely the sample path of a SBM is not monotone in
any interval.

Proof. Let

A = {ω : W (·, ω) is monotone on some interval} .

Clearly
A = ∪r,s∈Q {ω : W (·, ω) is monotone on [r, s]} .
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Since this is a countable union it is enough to prove that each event has
probability zero. To ease notation choose r = 0, s = 1, and put

B = {ω : W (·, ω) is nondecreasing on [0, 1]} .

We have

B = ∩∞n=1 {ω : W ((i+ 1)/n, ω) ≥ W (i/n, ω), i = 0, 1, . . . , n− 1} =: ∩∞n=1Bn.

By the independent increment property

P(Bn) =
n−1∏
i=0

P(W ((i+ 1)/n) ≥ W (i/n)) = 2−n,

which implies that P(B) = 0 as claimed.

For any interval [a, b] let Πn = {a = t0 < t1 < . . . < tn = b} a partition
with mesh

‖Πn‖ = max{ti − ti−1 : i = 1, 2, . . . , n}.

We determine the quadratic variation of the Wiener process.

Theorem 28. Let Πn = {a = t0 < t1 < . . . < tn = b}, n = 1, 2, . . ., a
sequence of partitions of [a, b] such that ‖Πn‖ → 0. Then

n∑
i=1

(Wti −Wti−1
)2 L2

−→ b− a.

Proof. Assume that [a, b] = [0, 1]. We have to show that

E

(
n∑
i=1

(Wti −Wti−1
)2 − 1

)2

−→ 0.

Using 1 =
∑n

i=1(ti − ti−1) we have

E

(
n∑
i=1

(Wti −Wti−1
)2 − 1

)2

=

n∑
i,j=1

E
([

(Wti −Wti−1
)2 − (ti − ti−1)

] [
(Wtj −Wtj−1

)2 − (tj − tj−1)
])
.

(9)
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If i 6= j then Wti −Wti−1
and Wtj −Wtj−1

are independent. Therefore

E
[
(Wti −Wti−1

)2 − (ti − ti−1)
]

= 0,

so the mixed products in (9) are 0. Using that Wt −Ws ∼ N(0, t − s) we
obtain

E

(
n∑
i=1

(Wti −Wti−1
)2 − 1

)2

=
n∑
i=1

E
[
(Wti −Wti−1

)2 − (ti − ti−1)
]2

=
n∑
i=1

(ti − ti−1)2E

[(
Wti −Wti−1√
ti − ti−1

)2

− 1

]2

= E(Z2 − 1)2

n∑
i=1

(ti − ti−1)2,

where Z ∼ N(0, 1). Since

n∑
i=1

(ti − ti−1)2 ≤ ‖Πn‖
n∑
i=1

(ti − ti−1) = ‖Πn‖ → 0,

the proof is ready.

Under some extra conditions a.s. convergence hold. Recall that in gen-
eral neither L2 convergence nor a.s. convergence implies the other. More-
over, L2 convergence implies a.s. convergence on a subsequence. However, if∑∞

n=1 ‖Πn‖ <∞ then the Borel–Cantelli lemma implies a.s. convergence.

Exercise 24. Let Πn = {a = t0 < t1 < . . . < tn = b}, n = 1, 2, . . ., a
sequence of partitions of [a, b] such that

∑∞
n=1 ‖Πn‖ <∞. Then a.s.

n∑
i=1

(Wti −Wti−1
)2−→b− a.

Corollary 8. Let (Πn) be a sequence of partitions of the interval [a, b] such
that

∑∞
n=1 ‖Πn‖ <∞. Then

∑n
i=1 |Wti −Wti−1

| → ∞ a.s.

Proof. Clearly,

n∑
i=1

(Wti −Wti−1
)2 ≤ sup

1≤i≤n
|Wti −Wti−1

|
n∑
i=1

|Wti −Wti−1
|.
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The left-hand side converges to b − a a.s. on a subsequence. On the right-
hand side the first factor goes to 0 a.s. by the continuity of the Wiener pro-
cess. (Recall that continuous function is uniformly continuous on compacts.)
Therefore the second term necessarily tends to infinity.

We proved that the sample path of W are Hölder continuous with expo-
nent < 1/2, and that the sample path are not of bounded variation. These
results suggest that the trajectories are quite irregular. In fact, they are
a.s. nowhere differentiable.

Theorem 29 (Paley, Wiener, Zygmund (1933)). Almost surely the path
W (·, ω) is nowhere differentiable.

Proof. For n, k ∈ N consider

Xnk = max
{ ∣∣W (

k2−n
)
−W

(
(k − 1)2−n

)∣∣ , ∣∣W (
(k + 1)2−n

)
−W

(
k2−n

)∣∣ ,∣∣W (
(k + 2)2−n

)
−W

(
(k + 1)2−n

)∣∣ }.
Using the independent increment property and the scale invariance

P(Xnk ≤ ε) = (P(|W (1/2n)| ≤ ε))3 ≤
(
2 · 2n/2ε

)3
.

Putting Yn = min1≤ k≤n2n Xnk we obtained

P(Yn ≤ ε) ≤
n2n∑
k=1

P(Xnk ≤ ε) < n 2n
(
2 · 2n/2 ε

)3
.

Introduce the event

A = {ω : W (· , ω) is somewhere differentiable}.

If ω ∈ A then there exist t = t(ω) such that W ′(t, ω) = D(ω) ∈ R. Thus

lim
s→t

∣∣∣∣W (s, ω)−W (t, ω)

s− t

∣∣∣∣ = |D(ω)| <∞ .

Therefore there exists δ(ω) = δ(ω, t) > 0 such that for |s− t| < δ(ω)

|W (s, ω)−W (t, ω)| ≤ (|D(ω)|+ 1)|s− t| .
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Let n0(ω) = n0(ω, t) so large that

2−n0(ω) <
δ(ω)

2
, n0(ω) ≥ max{4(|D(ω)|+ 1), t+ 1}.

Fix n ≥ n0(ω) and let
k(ω)

2n
≤ t <

k(ω) + 1

2n
.

Then

max

{∣∣∣∣t− j

2n

∣∣∣∣ : j = k(ω)− 1, k(ω), k(ω) + 1, k(ω) + 2

}
≤ 2

2n
< δ(ω) ,

thus

Xn, k(ω)(ω) ≤ max

{∣∣∣∣W( j

2n
, ω

)
−W (t, ω)

∣∣∣∣+

∣∣∣∣W(j − 1

2n
, ω

)
−W (t, ω)

∣∣∣∣}
≤ 2
(
|D(ω)|+ 1

) 2

2n
= 4

(
|D(ω)|+ 1

)
1

2n
≤ n

2n
,

where the max is taken on the set j ∈ {k(ω), k(ω) + 1, k(ω) + 2}.
Since k(ω) ≤ n 2n, we obtained

Yn(ω) = min
1≤k≤n2n

Xnk(ω) ≤ n/2n.

Thus ω ∈ A implies ω ∈ An = {ω : Yn(ω) ≤ n/2n} for all n ≥ n0(ω) so

ω ∈ lim inf
n→∞

An = ∪∞n=1 ∩∞m=n Am

= {ω : ω ∈ Ak except finitely many k}.

That is A ⊂ B := lim infn→∞An. Using the Fatou lemma

P(B) ≤ lim inf
n→∞

P(An) ≤ lim inf
n→∞

P
(
Yn ≤

n

2n

)
≤ lim inf

n→∞
n 2n

(
2 · 2n/2 n

2n

)3

= 0.

So A ⊂ B and P(B) = 0 as claimed.
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Note that we don’t claim that A ∈ A. Now we see the usefulness of the
usual conditions. The usual conditions include that F0 contains the null-sets
of A.

Let
Z(ω) = {t : W (t, ω) = 0}

denote the set of zeros. Let λ be the Lebesgue measure. By Fubini

Eλ(Z) =

∫
Ω

λ(Z(ω))P(dω)

=

∫
Ω

∫
R

I(W (t, ω) = 0) dtP(dω)

=

∫
R

P(W (t, ω) = 0)dt = 0.

Since λ(Z) ≥ 0 this implies λ(Z) = 0 a.s.

Theorem 30 (Khinchin, 1933). For almost every ω

lim sup
t↓0

Wt(ω)√
2t log log 1/t

= 1 and lim inf
t↓0

Wt(ω)√
2t log log 1/t

= −1,

and

lim sup
t→∞

Wt(ω)√
2t log log t

= 1 and lim inf
t→∞

Wt(ω)√
2t log log t

= −1.

Proof. By symmetry it is enough to prove the limsup results, and since
(tW1/t) is SBM it is enough to prove at 0.

Let

Xt = exp

{
λWt −

λ2

2
t

}
.

This is a martingale, therefore by the maximal inequality

P

(
max
s∈[0,t]

(
Ws −

λ

2
s

)
≥ β

)
= P

(
max
s∈[0,t]

Xs ≥ eλβ
)
≤ e−λβ.

Put h(t) =
√

2t log log(1/t). Fix θ, δ ∈ (0, 1). Choose λ = (1 + δ)θ−nh(θn),
β = h(θn)/2, and t = θn. Then

P

(
max
s∈[0,t]

(
Ws −

λ

2
s

)
≥ β

)
≤ e−λβ = (n log 1/θ)−(1+δ) .
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This is summable, therefore by the Borel–Cantelli lemma there exists N(ω),
and Ωδ,θ with P(Ωδ,θ) = 1 such that

max
s∈[0,θn]

(
Ws −

1 + δ

2
sθ−nh(θn)

)
≤ 1

2
h(θn) for n ≥ N(ω).

Thus for t ∈ (θn+1, θn]

Wt(ω) ≤ max
s∈[0,θn]

Ws(ω) ≤ (1 + δ/2)h(θn) ≤ (1 + δ/2) θ−1/2 h(t).

Therefore for n ≥ N(ω)

sup
t∈(θn+1,θn]

Wt(ω)

h(t)
≤ (1 + δ/2) θ−1/2,

which implies as n→∞

lim sup
t↓0

Wt(ω)

h(t)
≤ (1 + δ/2) θ−1/2.

Letting δ ↓ 0 and θ ↑ 1 through rationals we obtain

lim sup
t↓0

Wt(ω)

h(t)
≤ 1. (10)

For the opposite direction we need the second Borel–Cantelli lemma,
which requires independence. Fix θ ∈ (0, 1) and let

An = {Wθn −Wθn+1 ≥
√

1− θh(θn)}.

Putting x =
√

2 log n+ 2 log log 1/θ

P(An) = P

(
Wθn −Wθn+1√
θn − θn+1

≥ x

)
≥ Cx−1e−

x2

2 ≥ C ′
1

n
√

log n
,

where we use Lemma 5. The lower bound is a divergent series in n, therefore
the event An occur infinitely often. On the other hand by (10) (for −Wt)

−Wθn+1 ≤ 2h(θn+1) ≤ 4θ1/2h(θn)

44



for all n ≥ N(ω). Therefore whenever An occur

Wθn(ω)

h(θn)
≥
√

1− θ − 4
√
θ.

Letting n→∞ we have

lim sup
t↓0

Wt

h(t)
≥
√

1− θ − 4
√
θ,

and the result follows by letting θ ↓ 0.

Exercise 25. Show that if W is SBM then for any λ

Xt = exp

{
λWt −

λ2

2
t

}
is a martingale.

4 Stochastic integral

This part is from Karatzas and Shreve [5], in a rather simplified way. Stochas-
tic integration is only worked out in detail with respect to SBM, and not with
respect to a continuous martingales. A lot of technical detailes are omitted.

Here we define the integration with respect to the Brownian motion. Note
that SBM is not of bounded variation, therefore we cannot define the integral
pathwise. This is the major difficulty in the theory.

4.1 Integration of simple processes

In what follows we work on [0, T ], for T <∞. Let (Wt,Ft) be SBM.
The process (Xt) is a simple process, if

Xt(ω) = ξ0(ω)I{0}(t) +
n−1∑
i=1

ξi(ω)I(ti,ti+1](t),

where 0 = t0 < t1 < . . . < tn = T is a partition of [0, T ], and ξi is Fti-
measurable.

That is (Xt(ω)) is a step function for each ω ∈ Ω, where the step sizes
are random. Note that ξi is measurable with respect to the σ-algebra corre-
sponding to the left end point of the interval.
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Exercise 26. Show that a simple process is adapted.

The definition of the integral of simple processes is straightforward. Let
k be such that t ∈ (tk, tk+1]. Then

It(X) =

∫ t

0

XsdWs =
k−1∑
i=0

ξi(Wti+1
−Wti) + ξk(Wt −Wtk), t ∈ [0, T ].

Note that we defined the process for each t ∈ [0, T ].

Theorem 31. Let X, Y be simple processes with square integrable coeffi-
cients.

(i) It(X) is a continuous martingale, I0(X) = 0 a.s.

(ii) For t > s

E

[(∫ t

s

XudWu

)2 ∣∣∣Fs] = E

[∫ t

s

X2
udu
∣∣∣Fs] ;

in particular EIt(X)2 = E
∫ t

0
X2
udu.

(iii) The integral is linear, that is

I(αX + βY ) = αI(X) + βI(Y ), α, β ∈ R.

(iv) E sup0≤t≤T

(∫ t
0
XudWu

)2

≤ 4E
∫ T

0
X2
udu.

Proof. (iii) is clear. (iv) follows from Doob’s maximal inequality.
(i) The continuity is obvious and I0(X) = 0. We prove that (It) is mar-

tingale. Let s < t and s ∈ (tk, tk+1], t ∈ (tm, tm+1]. Then∫ t

0

XudWu =
k−1∑
i=0

ξi(Wti+1
−Wti) + ξk(Ws −Wtk)

+ ξk(Wtk+1
−Ws) +

m−1∑
i=k+1

ξi(Wti+1
−Wti) + ξm(Wt −Wtm).

By the tower rule

E[ξi(Wti+1
−Wti)|Fs] = E

[
E[ξi(Wti+1

−Wti)|Fti ]|Fs
]

= E
[
ξiE[Wti+1

−Wti |Fti ]|Fs
]

= E[ξi · 0|Fs] = 0.
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The first and last term can be handled similarly.
(ii) We showed that∫ t

s

XudWu = ξk(Wtk+1
−Ws) +

m−1∑
i=k+1

ξi(Wti+1
−Wti) + ξm(Wt −Wtm).

Taking square and conditional expectation we end up with sum of terms

E[ξi(Wti+1
−Wti)ξj(Wtj+1

−Wtj)|Fs]

We show that this equals 0, whenever i 6= j. Indeed,

E[ξi(Wti+1
−Wti)ξj(Wtj+1

−Wtj)|Fs]
= E

[
E[ξi(Wti+1

−Wti)ξj(Wtj+1
−Wtj)|Ftj ]|Fs

]
= 0.

Therefore

E

[(∫ t

s

XudWu

)2

|Fs

]

= E

[
ξ2
k(Wtk+1

−Ws)
2 +

m−1∑
i=k+1

ξ2
i (Wti+1

−Wti)
2 + ξ2

m(Wt −Wtm)2|Fs

]
.

By the tower rule again

E[ξ2
i (Wti+1

−Wti)
2|Fs] = E

[
E[ξ2

i (Wti+1
−Wti)

2|Fti ]Fs
]

= E[ξ2
i (ti+1 − ti)|Fs]

= E

[∫ ti+1

ti

X2
udu|Fs

]
.

Summing we obtain the result.

4.2 Extending the definition

The idea is the following. We defined the integral for simple processes.
Adapted processes can be approximated by simple processes, so we can de-
fine the integral of adapted process as a limit and hope for the best. This
was the method at the definition of both Riemann and Lebesgue integral.

Let

H =

{
(Xt) : Ft-adapted and E

∫ T

0

X2
udu <∞

}
.

We extend the definition to the class H.
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Lemma 6. Let (Xt) ∈ H. There exists a sequence of simple processes
{(Xn

t )}n such that

lim
n→∞

E

∫ T

0

(Xs −Xn
s )2 ds = 0.

Proof. We only prove in the special case when X is bounded and continuous.
Let

Xn
t (ω) = X0(ω)I{0}(t) +

2n−1∑
k=0

X kT
2n

(ω)I
( kT
2n
,
(k+1)T

2n
]
(t).

These are simple processes. Since continuous function is uniformly continu-
ous on compacts, almost surely∫ T

0

|Xn
u −Xu|2 dt→ 0.

Lebesgue’s dominated convergence gives the proof.

Let X ∈ H and {Xn}n given in the lemma. By Theorem 31 (iv)

E sup
t∈[0,T ]

(∫ t

0

(Xn
u −Xm

u )dWu

)2

≤ 4E

∫ T

0

(Xn
u −Xm

u )2du.

The right-hand side tends to 0 by the lemma above, therefore the left-hand
side too. Thus there exists a sequence {nk} such that

E sup
t∈[0,T ]

(∫ t

0

(Xnk+1
u −Xnk

u )dWu

)2

≤ 2−k. (11)

The first Borel–Cantelli lemma implies

I(Xnk)→ I(X), uniformly on [0, T ]-n a.s.

As I(Xnk) is continuous, so is I(X). We have to show that I(X) does not
depend on the subsequence. In (11) letting m→∞

E sup
t∈[0,T ]

(It(X)− It(Xn))2 ≤ 4E

∫ T

0

(Xu −Xn
u )2du,

so I(X) does not depend on the subsequence.
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Next we show that I(X) is martingale, i.e. for any s < t

E[It(X)|Fs] = Is(X).

For any n

‖E[It(X)|Fs]− Is(X)‖L2 ≤ ‖E[It(X)− It(Xn)|Fs]‖L2

+ ‖E[It(X
n)− Is(Xn)|Fs]‖L2 + ‖Is(Xn)− Is(X)‖L2 ,

where ‖X‖L2 =
√

EX2. The second term on the RHS equals 0, since I(Xn)
is martingale, while the first and third term can be arbitrarily small. So
I(X) is indeed a martingale.

Summarizing, for X ∈ H we defined the stochastic integral

It(X) =

∫ t

0

XudWu

and showed that it satisfies the properties of Theorem 31.
We note that the definition of the integral can be further extended from

H to the larger class

H′ =

{
(Xt) : Ft-adapted and

∫ T

0

X2
u du <∞ a.s.

}
such that Theorem 31 remains true.

Example 10 (Approximation of
∫ t

0
WsdWs). Fix ε ∈ [0, 1] and consider

Sε(Π) =
n−1∑
i=0

(
εWti+1

+ (1− ε)Wti

) (
Wti+1

−Wti

)
.

We prove that

lim
‖Π‖→0

Sε(Π)
L2

=
1

2
W 2
t +

(
ε− 1

2

)
t. (12)

We know that (W 2
t − t) is martingale, thus the limit above is martingale

iff ε = 0, which corresponds to the definition of Itô stochastic integral. There
are other stochastic integrals: ε = 1/2 corresponds to the Fisk–Stratonovich
integral, and ε = 1 corresponds to the backward Itô integral.

By (12) ∫ t

0

WsdWs =
W 2
t − t
2

.
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Next we prove (12). Since

εWti+1
+ (1− ε)Wti =

Wti+1
+Wti

2
+

(
ε− 1

2

)(
Wti+1

−Wti

)
,

we have to determine the limits

n−1∑
i=0

(Wti+1
−Wti)

2,

n−1∑
i=0

(W 2
ti+1
−W 2

ti
).

The first is exactly the quadratic variation of SBM, therefore converges to t
in L2, while the second is a telescopic sum, giving W 2

t .

Example 11. Let X be simple process and W SBM. Let

ζst (X) =

∫ t

s

XudWu −
1

2

∫ t

s

X2
udu, ζt = ζ0

t .

We show that (Yt = eζt) is martingale.
Since X is simple, we have

Xt = ξ0I{0}(t) +
n−1∑
i=0

ξiI(ti,ti+1](t),

where ξi is Fti-measurable. Thus if s ∈ (tk, tk+1], t ∈ (tm, tm+1], then

ζst = ξk(Wtk+1
−Ws)−

ξ2
k

2
(tk+1 − s) +

m−1∑
i=k+1

[
ξi(Wti+1

−Wti)−
ξ2
i

2
(ti+1 − ti)

]
+ ξm(Wt −Wtm)− ξ2

m

2
(t− tm).

(13)

Since ζs is Fs-measurable we obtain

E[eζt |Fs] = eζsE[eζ
s
t |Fs].

We only have to show that

E[eζ
s
t |Fs] = 1.
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This can be done by a repeated application of the tower rule. In (13) all
terms but the last are Ftm-measurable and

E

[
exp

{
ξm(Wt −Wtm)− ξ2

m

2
(t− tm)

}
|Ftm

]
= e−

ξ2m
2

(t−tm)E [exp{ξm(Wt −Wtm)}|Ftm ] .

In the exponent of the RHS ξm is Ftm-measurable and Wt−Wtm is indepen-
dent of Ftm , therefore (by the next exercise) ξm can be handled as a constant.
We have

EeλZ = e
λ2

2 ,

therefore

E [exp{ξm(Wt −Wtm)}|Ftm ] = e
ξ2m
2

(t−tm).

Summarizing

E

[
exp{ξm(Wt −Wtm)− ξ2

m

2
(t− tm)}|Ftm

]
= 1.

Applying repeatedly the tower rule first to the σ-algebra Ftm−1 , then to Ftm−2 ,
. . ., we obtain that each factor equals 1.

Using the Itô formula we show that Y is martingale for more general
processes and it satisfies a certain stochastic differential equation.

Exercise 27. Let X, Y be random variables, X is G-measurable, and Y is
independent of G. Then

E[h(X, Y )|G] =

∫
h(X, y)dF (y),

where F (y) = P(Y ≤ y) is the distribution function of Y .

4.3 Itô’s formula

Let (Ω,F ,P) be a probability space, (Ft) a filtration, and (Wt) SBM for this
filtration. Then (Xt) is Itô process if

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdWs, (14)

where
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• X0 F0-measurable;

• K,H are Ft-adapted processes;

•
∫ T

0
|Ku|du <∞,

∫ T
0
H2
sds <∞ a.s.

The part
∫ t

0
Ksds is the bounded variation part of the process, while∫ t

0
HsdWs is the martingale part.

Lemma 7. If Mt =
∫ t

0
Ksds is a continuous martingale and

∫ T
0
|Ks|ds <∞

almost surely then Mt ≡ 0.

Proof. Assume that
∫ T

0
|Ks|ds ≤ C for some C < ∞. Then for a sequence

of partitions (Πn = {0 = t0 < t1 < . . . < tn = T}) of [0, T ]

E
n−1∑
i=0

(Mti+1
−Mti)

2 ≤ E sup
0≤i≤n−1

|Mti+1
−Mti |

∫ T

0

|Ks|ds

≤ CE sup
0≤i≤n−1

|Mti+1
−Mti | → 0,

as ‖Πn‖ → 0. We used that continuous function is uniformly continuous on
compacts and Lebesgue’s dominated convergence can be used because of the
boundedness.

Furthermore,

E(Mt −Ms)
2 = EM2

t + EM2
s − 2E (E[MtMs|Fs])

= EM2
t − EM2

s ,

for s < t, thus

E
n−1∑
i=0

(Mti+1
−Mti)

2 = E(M2
t −M2

0 ) = EM2
t .

Therefore EM2
t = 0 for all t, and the statement follows.

Corollary 9. Representation (14) is unique.

Proof. Indeed, if∫ t

0

Ksds+

∫ t

0

HsdWs =

∫ t

0

Lsds+

∫ t

0

GsdWs,
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then ∫ t

0

(Ks − Ls)ds =

∫ t

0

(Gs −Hs)dWs.

The RHS is a continuous martingale, therefore by the previous lemma it has
to be constant 0.

In what follows we use the notation

dXt = Ktdt+HtdWt.

Theorem 32 (Itô formula (1944)). Let Xt = X0 +
∫ t

0
Ksds +

∫ t
0
HsdWs be

an Itô process and f ∈ C2. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)H
2
sds.

That is (f(Xt)) is an Itô process too, with representation (14)

f(Xt) = f(X0) +

∫ t

0

(
f ′(Xs)Ks +

1

2
f ′′(Xs)H

2
s

)
ds+

∫ t

0

f ′(Xs)HsdWs.

Example 12. We already calculated the stochastic integral
∫
WsdWs in

Example 10. Now we determine it again.
The SBM as an Itô process can be represented with Ks ≡ 0, Hs ≡ 1. Let

f(x) = x2. Then

W 2
t = W 2

0 +

∫ t

0

2WsdWs +
1

2

∫ t

0

2ds.

From this we obtain ∫ t

0

WsdWs =
W 2
t − t
2

.

We see immediately that W 2
t − t is martingale.

Proof. We only prove under the following extra assumptions: f is compactly
supported; sups,ω |Ks(ω)| < K, sups,ω |Hs(ω)| < K for some K < ∞. (This
is not an essential restriction.)
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Take Π = {0 = t0 < t1 < . . . < tm = T}. Using the Taylor formula

f(Xt)− f(X0) =
m∑
k=1

[
f(Xtk)− f(Xtk−1

)
]

=
m∑
k=1

f ′(Xtk−1
)(Xtk −Xtk−1

) +
1

2

m∑
k=1

f ′′(ηk)(Xtk −Xtk−1
)2

=
m∑
k=1

f ′(Xtk−1
)

∫ tk

tk−1

Ksds+
m∑
k=1

f ′(Xtk−1
)

∫ tk

tk−1

HsdWs

+
1

2

m∑
k=1

f ′′(ηk)(Xtk −Xtk−1
)2

= I1 + I2 + I3,

where ηk(ω) is between Xtk−1
(ω) and Xtk(ω).

It is easy to handle I1. As f ′ and Xt are continuous

I1 =
m∑
k=1

f ′(Xtk−1
)

∫ tk

tk−1

Ksds −→
∫ t

0

f ′(Xs)Ksds a.s., (15)

as ‖Π‖ → 0.
Rewrite I2 as

I2 =
m∑
k=1

f ′(Xtk−1
)

∫ tk

tk−1

HsdWs =

∫ t

0

m∑
k=1

f ′(Xtk−1
)I(tk−1,tk](s)HsdWs.

As ‖Π‖ → 0

E

∫ t

0

(
f ′(Xs)Hs −

m∑
k=1

f ′(Xtk−1
)I(tk−1,tk](s)Hs

)2

ds→ 0.

Indeed, for any ω ∈ Ω fix the integrand is bounded and by continuity goes to
0, therefore the dominated Lebesgue convergence theorem applies. Theorem
31 (ii) implies

I2 =

∫ t

0

m∑
k=1

f ′(Xtk−1
)I(tk−1,tk](s)HsdWs

L2

−→
∫ t

0

f ′(Xs)HsdWs. (16)
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Next comes I3, the difficult part. We have to show that

I3 →
1

2

∫ t

0

f ′′(Xs)H
2
sds.

Write

(Xtk −Xtk−1
)2 =

(∫ tk

tk−1

Ksds+

∫ tk

tk−1

HsdWs

)2

=

(∫ tk

tk−1

Ksds

)2

+ 2

∫ tk

tk−1

Ksds ·
∫ tk

tk−1

HsdWs

+

(∫ tk

tk−1

HsdWs

)2

.

We show that the contribution of the first two terms is negligible to the whole
sum. For the first∣∣∣∣∣∣

m∑
k=1

f ′′(ηk)

(∫ tk

tk−1

Ksds

)2
∣∣∣∣∣∣ ≤ ‖f ′′‖∞ ·K2

m∑
k=1

(tk − tk−1)2 → 0 a.s. (17)

To handle the second introduce Mt =
∫ t

0
HsdWs. Then∣∣∣∣∣

m∑
k=1

f ′′(ηk)

∫ tk

tk−1

Ksds ·
∫ tk

tk−1

HsdWs

∣∣∣∣∣
≤ ‖f ′′‖∞ ·K sup

1≤k≤m
|Mtk −Mtk−1

| ·
m∑
k=1

(tk − tk−1)

= ‖f ′′‖∞ ·K t sup
1≤k≤m

|Mtk −Mtk−1
| → 0, a.s.,

(18)

since Mt =
∫ t

0
HsdWs is a continuous martingale.

We have to deal with the sum

m∑
k=1

f ′′(ηk)

(∫ tk

tk−1

HsdWs

)2

.
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First we change ηk to Xtk−1
. Taking the difference

m∑
k=1

[f ′′(ηk)− f ′′(Xtk−1
)](Mtk −Mtk−1

)2

≤ sup
1≤k≤m

|f ′′(ηk)− f ′′(Xtk−1
)| ·

m∑
k=1

(Mtk −Mtk−1
)2.

By the Cauchy–Schwarz inequality∣∣∣∣∣E
m∑
k=1

[f ′′(ηk)− f ′′(Xtk−1
)](Mtk −Mtk−1

)2

∣∣∣∣∣
≤
√

E sup
1≤k≤m

(f ′′(ηk)− f ′′(Xtk−1
))2

√√√√E

(
m∑
k=1

(Mtk −Mtk−1
)2

)2

.

(19)

The first term tends to 0 because (Xt) is continuous and f ′′ is bounded. The
second is bounded by the following lemma.

Lemma 8. Let (Mt) be a continuous bounded martingale on [0, t], that is
sups,ω |Ms(ω)| ≤ K, and let Π = {0 = t0 < t1 < . . . < tm = t} be a partition.
Then

E

(
m∑
i=1

(Mti −Mti−1
)2

)2

≤ 6K4.

Proof. Expanding the square

E

(
m∑
i=1

(Mti −Mti−1
)2

)2

=
m∑
i=1

E(Mti −Mti−1
)4 +

∑
i 6=j

E(Mti −Mti−1
)2(Mtj −Mtj−1

)2.

Using several times that

E[(Mt −Ms)
2|Fs] = E[M2

t −M2
s |Fs], s < t,
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we obtain ∑
i 6=j

E(Mti −Mti−1
)2(Mtj −Mtj−1

)2

= 2
m−1∑
i=1

m∑
j=i+1

E(Mti −Mti−1
)2(Mtj −Mtj−1

)2

= 2
m−1∑
i=1

m∑
j=i+1

E
[
E[(Mti −Mti−1

)2(Mtj −Mtj−1
)2|Ftj−1

]
]

= 2
m−1∑
i=1

m∑
j=i+1

E(Mti −Mti−1
)2(M2

tj
−M2

tj−1
)

= 2
m−1∑
i=1

E(Mti −Mti−1
)2(M2

t −M2
ti

)

≤ 2K2

m−1∑
i=1

E(Mti −Mti−1
)2

= 2K2

m−1∑
i=1

E(M2
ti
−M2

ti−1
) ≤ 2K4.

While, for the sum of 4th powers

m∑
i=1

E(Mti −Mti−1
)4 ≤ 4K2E

m∑
i=1

E(Mti −Mti−1
)2

= 4K2E(M2
t −M2

0 ) ≤ 4K4.

Summarizing from I3 we have the sum

m∑
k=1

f ′′(Xtk−1
)(Mtk −Mtk−1

)2.

We claim that

m∑
k=1

f ′′(Xtk−1
)(Mtk −Mtk−1

)2 L1

−→
∫ t

0

f ′′(Xs)H
2
sds. (20)
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Since X and f ′′ are continuous

m∑
k=1

f ′′(Xtk−1
)

∫ tk

tk−1

H2
sds→

∫ t

0

f ′′(Xs)H
2
sds a.s.

Thus it is enough to show that

m∑
k=1

f ′′(Xtk−1
)

(
(Mtk −Mtk−1

)2 −
∫ tk

tk−1

H2
sds

)
L2

−→ 0.

Theorem 31 (ii) implies

E
[
(Mtk −Mtk−1

)2|Ftk−1

]
= E

(∫ tk

tk−1

Hs dWs

)2

|Ftk−1


= E

[∫ tk

tk−1

H2
s ds|Ftk−1

]
,

so in

E

(
m∑
k=1

f ′′(Xtk−1
)

(
(Mtk −Mtk−1

)2 −
∫ tk

tk−1

H2
sds

))2

the expectation of the mixed term is 0. Thus this equals

= E
m∑
k=1

f ′′(Xtk−1
)2

(
(Mtk −Mtk−1

)2 −
∫ tk

tk−1

H2
sds

)2

≤ ‖f‖2
∞

[
E

m∑
k=1

(Mtk −Mtk−1
)4 + 2E

m∑
k=1

(Mtk −Mtk−1
)2

∫ tk

tk−1

H2
sds

+ E
m∑
k=1

(∫ tk

tk−1

H2
sds

)2 ]
≤ ‖f‖2

∞

[
E

m∑
k=1

(Mtk −Mtk−1
)4 + 2K2tE sup

1≤k≤m
(Mtk −Mtk−1

)2 +K4t‖Π‖
]
.
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The second and third term tend to 0, and for the first

E
m∑
k=1

(Mtk −Mtk−1
)4 ≤ E

[
m∑
k=1

(Mtk −Mtk−1
)2 · sup

1≤k≤m
|Mtk −Mtk−1

|2
]

≤

√√√√E

[
m∑
k=1

(Mtk −Mtk−1
)2

]2√
E sup

1≤k≤m
|Mtk −Mtk−1

|4

≤
√

6K2
√

E sup
1≤k≤m

|Mtk −Mtk−1
|4 → 0.

Summarizing we obtained L1, L2 and almost sure convergence in (15)–
(20). Since everything is bounded, L1 convergence follows in each case, that
is

f(Xt)− f(X0) =
m∑
k=1

[f(Xtk)− f(Xtk−1
)]

L1

−→
∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)H
2
sds.

Convergence in L1 implies a.s. convergence on a subsequence. As both sides
are continuous we obtained that the two process are indistinguishable.

Example 13 (Continuation of Example 11). Let

ζst =

∫ t

s

XudWu −
1

2

∫ t

s

X2
udu, ζt = ζ0

t ,

where Xt is an adapted process. Then Zt = eζt satisfies the stochastic differ-
ential equation

Zt = 1 +

∫ t

0

ZsXsdWs,

or with a common notation

dZt = ZtXtdWt, Z0 = 1.

Writing ζ as an Itô process

ζt =

∫ t

0

−1

2
X2
udu+

∫ t

0

XudWu.
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Using Itô’s formula with f(x) = ex

Zt = eζt = 1 +

∫ t

0

eζsdζs +
1

2

∫ t

0

eζsX2
sds

= 1 +

∫ t

0

eζs
(
−1

2
X2
sds+XsdWs

)
+

1

2

∫ t

0

eζsX2
sds

= 1 +

∫ t

0

eζsXsdWs

= 1 +

∫ t

0

ZsXsdWs,

as claimed. We see that Zt is martingale.

Exercise 28. Let ζt be as above. Show that Yt = e−ζt satisfies the SDE

dYt = YtX
2
t dt−XtYtdWt, Y0 = 1.

Similarly, one can show a more general version, where f depends on the
time variable t.

Theorem 33 (More general Itô formula). Let Xt be an Itô process and f ∈
C1,2. Then

f(t,Xt) = f(0, X0) +

∫ t

0

∂

∂s
f(s,Xs)ds+

∫ t

0

∂

∂x
f(s,Xs)dXs

+
1

2

∫ t

0

∂2

∂x2
f(s,Xs)H

2
sds.

4.4 Multidimensional Itô processes

Let W = (W 1,W 2, . . . ,W r) be an r-dimensional SBM, that is its component
are iid SBM’s. Then (Xt) is a d-dimensional Itô process, if

X i
t = X i

0 +

∫ t

0

Ki
sds+

r∑
j=1

∫ t

0

H i,j
s dW j

s , (21)

where
∫ T

0
|Ki

s|ds < ∞,
∫ T

0
(H i,j

s )2ds < ∞ a.s., and Ki, H i,j are Ft-adapted,
i = 1, 2, . . . , d, j = 1, 2, . . . , r.

60



Theorem 34 (Multidimensional Itô formula). Let (Xt) be a multidimen-
sional Itô process and f : R1+d → R, f ∈ C1,2. Then

f(t,X1
t , . . . , X

d
t ) = f(0, X1

0 , . . . , X
d
0 ) +

∫ t

0

∂

∂s
f(s,X1

s , . . . , X
d
s ) ds

+
d∑
i=1

∫ t

0

∂

∂xi
f(s,X1

s , . . . , X
d
s ) dX i

s

+
1

2

d∑
i,j=1

∫ t

0

∂2

∂xi∂xj
f(s,X1

s , . . . , X
d
s )

r∑
k=1

H i,k
s Hj,k

s ds.

4.5 Applications

Example 14 (Integration by parts I). Let (X, Y ) be a two-dimensional Itô
process with representation

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dWs

Yt = Y0 +

∫ t

0

Ls ds+

∫ t

0

Gs dWs,

where K,L,H,G are as usual. Then∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

YsdXs −
∫ t

0

HsGsds.

Note that in the deterministic integration by parts formula the last term
is missing.

For the proof apply Itô’s formula for (X, Y ) and f(x, y) = xy. Then

r = 1, d = 2, K1
s = Ks, K

2
s = Ls, H

1,1
s = Hs, H

2,1
s = Gs.

Since ∂f
∂x

= y, ∂f
∂y

= x, ∂2f
∂2x

= ∂2f
∂2y

= 0, and ∂2f
∂x∂y

= ∂2f
∂y∂x

= 1, we obtain

XtYt = X0Y0 +

∫ t

0

YsdXs +

∫ t

0

XsdYs +
1

2
2

∫ t

0

HsGsds,

as claimed.
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Example 15 (Integration by parts II). To change a bit let W̃ be another
SBM independent of W and (X, Y )

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dWs

Yt = Y0 +

∫ t

0

Ls ds+

∫ t

0

Gs dW̃s.

Then ∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

YsdXs.

The proof is the same but here d = r = 2, and no extra term appears.

Example 16 (Geometric Brownian motion). Let µ ∈ R, σ > 0. Solve the
SDE

dXt = µXtdt+ σXtdWt. (22)

We have

Xt = X0 +

∫ t

0

µXsds+

∫ t

0

σXsdWs.

Applying Itô’s formula with f(x) = log x

logXt = logX0 +

∫ t

0

1

Xs

(µXsds+ σXsdWs) +
1

2

∫ t

0

− 1

X2
s

σ2X2
sds

= logX0 + σWt +

(
µ− σ2

2

)
t.

Thus

Xt = X0 · e
σWt+

(
µ−σ

2

2

)
t
. (23)

This is martingale iff µ = 0.
Note that log x is not defined at 0, so the proof is not complete. It only

gives us a potential solution.

Exercise 29. Show that Xt in (23) is indeed a solution to the SDE (22).

A more constructive solution is to apply Itô’s formula with a general
f , and then choose f to obtain a simple equation. With f(x) = log x the
integrand in the martingale part is constant.

Exercise 30. Show that Y (t) = et/2 cosWt is martingale.
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Exercise 31. Show that∫ t

0

W 2
s dWs =

1

3
W 3
t −

∫ t

0

Wsds,

and ∫ t

0

W 3
s dWs =

1

4
W 4
t −

3

2

∫ t

0

W 2
s ds.

Exercise 32. Let W = (W 1, . . . ,W r) be an r-dimensional SBM, r ≥ 2, and
let

Rt =

√√√√ r∑
i=1

(W i
t )

2.

Show that R satisfies the SDE

dRt =
r − 1

2Rt

dt+
r∑
i=1

W i
t

Rt

dW i
t .

This is the Bessel equation and R is the Bessel process.

4.6 Quadratic variation and the Doob–Meyer decom-
position

We proved that

E

[(∫ t

s

XudWu

)2 ∣∣Fs] = E

[∫ t

s

X2
u du

∣∣Fs] ,
which means that the process(∫ t

0

Xu dWu

)2

−
∫ t

0

X2
u du (24)

is a continuous martingale. In the decomposition(∫ t

0

XudWu

)2

=

∫ t

0

X2
u du+

(∫ t

0

XudWu

)2

−
∫ t

0

X2
u du

the first term is an increasing process and the second term is a martingale,
that is we obtained the Doob–Meyer decomposition of It(X)2.
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On the other hand, at the proof of Itô’s formula we showed (see (20))
that

n∑
i=1

(∫ ti

ti−1

XudWu

)2
L1

−→
∫ t

0

X2
udu, as ‖Πn‖ → 0.

The left-hand side is exactly the quadratic variation process of the martingale
It(X).

Summarizing, we proved the following.

Theorem 35. For any Itô process Xt, the quadratic variation of It(X) and
the increasing process in the Doob–Meyer decomposition of It(X)2 are the
same.

This result holds in a more general setup.
Let (Xt) be a (continuous) square integrable martingale, X ∈M2 (or X ∈

Mc
2). Then X2

t is a submartingale, so by the Doob–Meyer decomposition
there exists a unique (up to indistinguishibility) adapted increasing process
At, such that A0 = 0 a.s. and X2

t −At is a martingale. The process 〈X〉t = At
is the quadratic variation of X.

With this notation, Theorem 35 states that〈∫ ·
0

XudWu

〉
t

= 〈I(X)〉t =

∫ t

0

X2
u du.

Without proof we mention that Theorem 35 holds not only for Itô pro-
cesses but for continuous square integrable martingales.

Theorem 36. Let X ∈Mc
2. For partition Π of [0, t] we have

V
(2)
t (Π) :=

n∑
k=1

(Xtk −Xtk−1
)2 P−→ 〈X〉t as ‖Π‖ → 0.

For square integrable martingales X, Y the crossvariation process of X
and Y is

〈X, Y 〉t =
1

4
(〈X + Y 〉t − 〈X − Y 〉t) .

The processes X and Y are orthogonal if 〈X, Y 〉t = 0 a.s. for any t.

Exercise 33. Show that if X, Y ∈M2, then XY − 〈X, Y 〉 is a martingale.
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One can define stochastic integral with respect to more general processes.
The process (Xt) is a continuous semimartingale if

Xt = Mt + At,

where Mt is a continuous martingale and At is of bounded variation, and
both are adapted. As in Lemma 7 it can be shown that this decomposition
is essentially unique.

We can define stochastic integral with respect to semimartingales. Indeed,
integral with respect to At can be defined pathwise, since A is of bounded
variation, and integration with respect to continuous Mt can be defined sim-
ilarly as for SBM.

The following version of Itô’s formula holds.

Theorem 37 (Itô formula for semimartingales). Let Xt = Mt + At be a
continuous semimartingale, and let f ∈ C2. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈M〉s.

5 Stochastic differential equations

5.1 Existence and uniqueness

We define the strong solution of SDEs and obtain existence and uniqueness
results.

The followings are given:

• probability space (Ω,A,P);

• with a filtration (Ft)t∈[0,T ];

• a d-dimensional SBM Wt = (W 1
t , . . . ,W

r
t ) with respect to the filtration

(Ft);
• measurable functions f : Rd × [0, T ]→ Rd, σ : Rd × [0, T ]→ Rd×r;

• F0-measurable rv ξ : Ω→ Rd .

The (d-dimensional) process (Xt) is strong solution to the SDE

dXt = f(Xt, t) dt+ σ(Xt, t) dWt,

X0 = ξ,
(25)
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if
∫ t

0
f(Xs, s)ds are

∫ t
0
σ(Xs, s)dWs well-defined for all t ∈ [0, T ] and the

integral version of (25) holds, i.e.

Xt = ξ +

∫ t

0

f(Xs, s) ds+

∫ t

0

σ(Xs, s) dWs, for all t ∈ [0, T ] a.s.

Written coordinatewise

X i
t = ξi +

∫ t

0

f i(Xs, s) ds+

∫ t

0

r∑
j=1

σi,j(Xs, s) dW j
s , i = 1, 2, . . . , d.

It is important to emphasize that with strong solutions not only the SDE
(25) is given, but the driving SBM, the initial condition (not just distribu-
tion!) ξ and the filtration.

For d-dimensional vectors |x| =
√
x2

1 + . . .+ x2
d stands for the usual Eu-

clidean norm, and for a matrix σ ∈ Rd×r, define |σ| =
√∑

i,j σ
2
ij,

Theorem 38. Assume that for the functions in (25) the following hold:

|f(x, t)− f(y, t)|+ |σ(x, t)− σ(y, t)| ≤ K|x− y|,
|f(x, t)|2 + |σ(x, t)|2 ≤ K0(1 + |x|2),

E|ξ|2 <∞.

Then (25) has a unique strong solution X, and

E sup
0≤t≤T

|Xt|2 ≤ C(1 + E|ξ|2).

Proof. We only prove for d = r = 1. The general case is similar, but nota-
tionally messy.

Recall the following statement from the theory of ordinary differential
equations.

Lemma 9 (Gronwall–Bellman). Let α, β be integrable functions for which

α(t) ≤ β(t) +H

∫ t

a

α(s) ds, t ∈ [a, b],

for some H ≥ 0. Then

α(t) ≤ β(t) +H

∫ t

a

eH(t−s)β(s) ds.
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Uniqueness. Let Xt, Yt be solutions. Then

Xt − Yt =

∫ t

0

(f(Xs, s)− f(Ys, s)) ds+

∫ t

0

(σ(Xs, s)− σ(Ys, s)) dWs.

Since (a + b)2 ≤ 2a2 + 2b2, by Theorem 31 (ii) and the Cauchy–Schwarz
inequality

E(Xt − Yt)2 ≤ 2 E

(∫ t

0

(f(Xs, s)− f(Ys, s))ds

)2

+ 2 E

∫ t

0

(σ(Xs, s)− σ(Ys, s))
2ds

≤ 2(T + 1)K2

∫ t

0

E(Xs − Ys)2 ds.

With the notation ϕ(t) = E(Xt − Yt)2 we obtained

ϕ(t) ≤ 2(T + 1)K2

∫ t

0

ϕ(s) ds.

By the Gronwall–Bellman lemma ϕ(t) ≡ 0, i.e. Xt = Yt a.s. Since Xt − Yt is
continuous, the two processes are indistinguishable, meaning

P(Xt = Yt, ∀t ∈ [0, T ]) = 1.

Thus the uniqueness is proved.
Existence. Sketch. The proof goes similarly as the proof of the Picard–
Lindelöf theorem for ODEs. We do Picard iteration. Let X

(0)
t ≡ ξ, and if

X
(n)
t is given, let

X
(n+1)
t = ξ +

∫ t

0

f(X(n)
s , s)ds+

∫ t

0

σ(X(n)
s , s)dWs.

Write

X
(n+1)
t −X(n)

t =

∫ t

0

(
f(X(n)

s , s)− f(X(n−1)
s , s)

)
ds

+

∫ t

0

(
σ(X(n)

s , s)− σ(X(n−1)
s , s)

)
dWs

=: B
(n)
t +M

(n)
t .
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By Doob’s maximal inequality, as in the proof of uniqueness

E

(
sup
s∈[0,t]

(M (n)
s )2

)
≤ 4E

∫ t

0

(
σ(X(n)

s , s)− σ(X(n−1)
s , s)

)2
ds

≤ 4K2

∫ t

0

E(X(n)
s −X(n−1)

s )2 ds.

On the other hand, by Cauchy–Schwarz

E

(
sup
s∈[0,t]

(B(n)
s )2

)
≤ tK2 E

∫ t

0

(
X(n)
s −X(n−1)

s

)2
ds.

This implies

E

(
sup
s∈[0,t]

(X(n+1)
s −X(n)

s )2

)
≤ L

∫ t

0

E(X(n)
s −X(n−1)

s )2ds,

with L = 2(T + 4)K2. Iterating and changing the order of integration

E

(
sup
s∈[0,t]

(X(n+1)
s −X(n)

s )2

)
≤ L

∫ t

0

E(X(n)
s −X(n−1)

s )2 ds

≤ L2

∫ t

0

∫ s

0

E(X(n−1)
u −X(n−2)

u )2 du ds

≤ L2

∫ t

0

(t− s)E(X(n−1)
s −X(n−2)

s )2 ds.

Continuing, and using the assumption on ξ we obtain

E

(
sup
s∈[0,t]

(X(n+1)
s −X(n)

s )2

)

≤ Ln
∫ t

0

(t− s)n−1

(n− 1)!
E(X1

s − ξ)2 ds ≤ C
(LT )n

n!
.

By Chebyshev

∞∑
n=1

P

(
sup

0≤t≤T
|X(n+1)

t −Xn
t | > n−2

)
≤

∞∑
n=1

C ′n4 (LT )n

n!
<∞.
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Therefore, applying the first Borel–Cantelli lemma the infinite sum

∞∑
n=0

(X
(n+1)
t −Xn

t )

converges a.s. Clearly the sum is a solution to the SDE (25).

5.2 Examples

Most of the examples and exercises are from Evans [4].

Example 17. Let g be a continuous function, and consider the SDE{
dXt = g(t)XtdWt

X0 = 1.

Show that the unique solution is

Xt = exp

{
−1

2

∫ t

0

g(s)2ds+

∫ t

0

g(s)dWs

}
.

The uniqueness follows from Theorem 38, assuming g is nice enough. To
check that Xt is indeed a solution, we use Itô’s formula. Let

Yt = −1

2

∫ t

0

g(s)2ds+

∫ t

0

g(s)dWs.

With f(x) = ex, we have

Xt = eYt = 1 +

∫ t

0

eYsdYs +
1

2

∫ t

0

eYsg2(s)ds

= 1 +

∫ t

0

Xsg(s)dWs,

as claimed.

Exercise 34. Let f and g be continuous functions, and consider the SDE{
dXt = f(t)Xtdt+ g(t)XtdWt

X0 = 1.

Show that the unique solution is

Xt = exp

{∫ t

0

[
f(s)− 1

2
g(s)2

]
ds+

∫ t

0

g(s)dWs

}
.
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Exercise 35 (Brownian bridge). Show that

Bt = (1− t)
∫ t

0

1

1− s
dWs

is the unique solution of the SDE{
dBt = − Bt

1−tdt+ dWt

B0 = 0.

Calculate the mean and covariance function of B.

A mean zero Gaussian process Bt on [0, 1] is called Brownian bridge if its
covariance function is

Cov(Bs, Bt) = min(s, t)− st.

Exercise 36. Show that if W is SBM then Bt = Wt − tW1 is Brownian
bridge.

Exercise 37. Solve the SDE{
dXt = −1

2
e−2Xtdt+ e−XtdWt

X(0) = 0

and show that it explodes in a finite random time. Hint: Look for a solution
Xt = u(Wt).

Exercise 38. Solve the SDE

dXt = −Xtdt+ e−tdWt.

Exercise 39. Show that (Xt, Yt) = (cosWt, sinWt) is a solution to the SDE{
dXt = −1

2
Xtdt− YtdWt

dYt = −1
2
Ytdt+XtdWt.

Show that
√
X2
t + Y 2

t is a constant for any solution (X, Y )!
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Exercise 40. Solve the SDE{
dXt = dt+ dW

(1)
t

dYt = XtdW
(2)
t ,

where W (1) and W (2) are independent SBMs.

Exercise 41. Solve the SDE{
dXt = Ytdt+ dW

(1)
t

dYt = Xtdt+ dW
(2)
t ,

where W (1) and W (2) are independent SBMs.

6 General Markov processes

This part is from Breiman [1].

6.1 Transition probabilities and Chapman–Kolmogorov
equations

The process (Xt) is a Markov process, if for each Borel set B ∈ B(R), and
t, τR

P(Xt+τ ∈ B|Xs, s ≤ t) = P(Xt+τ ∈ B|Xt).

Choosing natural filtration Ft = σ(Xs, s ≤ t), the definition is the same
as in Subsection 3.4

Since regular conditional distributions exist, we may choose the proba-
bilities

pt2,t1(B|x) = P(Xt2 ∈ B|Xt1 = x), t2 > t1, B ∈ B,

such that

• for x fixed, pt2,t1(·|x) is a probability measure;

• for B ∈ B fixed, pt2,t1(B|·) is measurable.

These probabilities are the transition probabilities of the Markov process
(Xt).
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Let τ < s < t, B ∈ B. By the tower rule, the Markov property, and the
properties of regular conditional distribution

P(Xt ∈ B|Xτ ) = E [P(Xt ∈ B|Xτ , Xs)|Xτ ]

= E [P(Xt ∈ B|Xs)|Xτ ]

= E [h(Xs)|Xτ ]

=

∫
h(y)dP(Xs ∈ dy|Xτ )

=

∫
P(Xt ∈ B|Xs = y)P (Xs ∈ dy|Xτ )

=

∫
R
pt,s(B|y)ps,τ (dy|Xτ ).

That is

pt,τ (B|x) =

∫
pt,s(B|y)ps,τ (dy|x).

We proved the following.

Theorem 39 (Chapman–Kolmogorov equations). The transition probabili-
ties of a Markov process satisfies the equations

pt,τ (B|x) =

∫
pt,s(B|y)ps,τ (dy|x), τ < s < t,B ∈ B. (26)

The expression pt,τ (B|x) is the probability that starting from x in time τ
we end up in B at time t. Consider any s between τ and t. The distribution
of Xs given Xτ = x is ps,τ (·|x), that is the probability being in y is ps,τ (dy|x).
Therefore, the Chapman–Kolmogorov equation is the law of total probability
plus Markov property.

We are cheating again a bit. What we proved is that (26) holds for fixed
τ < s < t almost surely with respect to the probability P(Xτ ∈ ·). Indeed,
in the proof we calculated conditional probabilities, where each equality is
only an almost sure equality. In what follows we assume that (26) holds for
every x.

The Markov process (Xt) is stationary if the transition probabilities de-
pend only on the time increment, i.e. pt,τ (B|x) = pt−τ (B|x). Then pt(B|x) =
pt,0(B|x), and the Chapman–Kolmogorov equations simplify to

pt+s(B|x) =

∫
pt(B|y)ps(dy|x). (27)
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Assume that (Xt) is stochastically continuous at 0, that is

Xt
P−→ X0, t→ 0.

If (Xt) starts at x then its distribution is denoted by Px, and the corre-
sponding expectation is Ex, that is

Px(Xt ∈ B) = P(Xt ∈ B|X0 = x), Exf(Xt) = E [f(Xt)|X0 = x] .

Example 18 (Poisson process). Let Nt be a standard Poisson process. Then
Nt −Ns ∼ Poisson(t− s), so

Px(Nt = x+ k) = pt({x+ k}|x) =
tk

k!
e−t,

or, what is the same

pt(B|x) =
∑

k:x+k∈B

tk

k!
e−t.

The Chapman–Kolmogorov equation (27) become

pt+s({k}|0) =
∞∑
`=0

pt({k}|`)ps({`}|0),

which is just a reformulation of the fact that the sum of two independent
Poisson random variables is Poisson, and the parameter is the sum of the
parameters.

Example 19 (Wiener process). Let Wt be SBM. Then

pt(B|x) = Px(Wt ∈ B) = P0(x+Wt ∈ B) = P0(Wt ∈ B − x)

=

∫
B−x

1√
2πt

e−
y2

2t dy

=

∫
B

1√
2πt

e−
(y−x)2

2t dy.

That is pt(B|x) is absolutely continuous with transition density pt(dy|x) =
ρt(y|x)dy

ρt(y|x) =
1√
2πt

e−
(y−x)2

2t .
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The Chapman–Kolmogorov equation (27) become

pt+s(B|x) =

∫
R
pt(B|y)ρs(y|x)dy,

or for the densities

ρt+s(z|x) =

∫
R
ρt(z|y)ρs(y|x)dy.

This is a reformulation of the fact that the sum of independent normals is
normal. Recall the convolution formula for densities.

6.2 Infinitesimal generator

The infinitesimal generator of X an operator defined by

f 7→ Sf : Sf(x) = lim
t→0+

1

t
Ex [f(Xt)− f(x)] , (28)

whenever the limit exists. Its domain is denoted by D(S).
We determine the infinitesimal generator of the Poisson process and the

Wiener process.

Example 20 (Poisson process). Let (Nt) be a Poisson process with intensity
1, and let f be a bounded measurable function. By definition Nt − N0 ∼
Poisson(t), thus

Exf(Nt) =
∞∑
k=0

tk

k!
e−tf(k + x).

Since f is bounded the sum is finite, and as t ↓ 0

Exf(Nt) = f(x)e−t + f(x+ 1)te−t +O(t2).

Thus

Sf(x) = lim
t→0

1

t
Ex [f(Nt)− f(x)]

= lim
t→0

(
f(x)

e−t − 1

t
+ f(x+ 1)e−t

)
= f(x+ 1)− f(x).

The limit exists for any bounded measurable function.
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Example 21 (Wiener process). Let (Wt) be SBM and f ∈ C2
c twice continu-

ously differentiable function with compact support. Using Taylor expansion

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) + o(h2),

and since E0Wt = 0, E0W
2
t = t, we have

Exf(Wt) = E0f(x+Wt)

= E0

[
f(x) +Wtf

′(x) +
W 2
t

2
f ′′(x) + o(W 2

t )

]
= f(x) +

t

2
f ′′(x) + o(t).

Thus

Sf(x) = lim
t→0

1

t
Ex [f(Wt)− f(x)] =

f ′′(x)

2
.

We see that C2
c ⊂ D(S).

6.3 Kolmogorov equations

Backward. Let t > 0 fix, B ∈ B(R), τ > 0 small. By the tower rule and
the Markov property

P(Xt+τ ∈ B|X0 = x) = E [P(Xt+τ ∈ B|Xτ )|X0 = x] .

With the notation ϕt(x) = pt(B|x)

ϕt+τ (x) = Exϕt(Xτ ),

which reads as

1

τ
[ϕt+τ (x)− ϕt(x)] =

1

τ
Ex [ϕt(Xτ )− ϕt(x)] .

Letting τ tend to 0, we obtain

∂

∂t
ϕt(x) = (Sϕt) (x).

Substituting back the definition of ϕ, we obtain Kolmogorov’s backward equa-
tion

∂

∂t
pt(B|x) = (Spt(B|·)) (x). (29)
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Forward. Let t > 0 fix, f ∈ D(S). By the tower rule and the Markov
property

Exf(Xt+τ ) = Ex [Ex[f(Xt+τ )|Xt]] ,

which can be rewritten as∫
f(y)pt+τ (dy|x) =

∫ ∫
f(z)pτ (dz|y)pt(dy|x) =

∫
Eyf(Xτ )pt(dy|x).

Subtracting

Exf(Xt) =

∫
f(y)pt(dy|x)

and dividing by τ∫
f(y)

pt+τ (dy|x)− pt(dy|x)

τ
=

∫
1

τ
[Eyf(Xτ )− f(y)] pt(dy|x).

Letting τ ↓ 0 ∫
f(y)

∂

∂t
pt(dy|x) =

∫
(Sf)(y)pt(dy|x). (30)

The adjoint of the operator S is an operator S∗ on the space of measures
such that ∫

(Sf)(y)µ(dy) =

∫
f(y)(S∗µ)(dy).

If this holds for sufficiently many f and µ, then it is unique.
Using the definition of adjoint in (30)∫

f(y)
∂

∂t
pt(dy|x) =

∫
f(y) (S∗pt(·|x)) (dy),

from which we get Kolmogorov’s forward equation

∂

∂t
pt(B|x) = (S∗pt(·|x)) (B). (31)

Remark 2. The derivation of the forward equation is rather intuitive. What
kind of space is the domain D(S), and how the adjoint operator defined?
Furthermore, in (30)) we differentiated a family of measures with respect to
t. If the measure are absolutely continuous, i.e.

pt(dy|x) = ρt(y|x)dy,
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then

lim
τ→0

ρt+τ (y|x)− ρt(y|x)

τ
=

∂

∂t
ρt(y|x).

In general, both for the backward and for the forward equations extra
conditions are needed. As it can be guessed from the derivation, for the
forward equation more restrictive conditions are needed.

The importance of the Kolmogorov equations (29) and (31) is that from
infinitesimal conditions (from the generator S) one can determine the evolu-
tion of the whole process, that is the transition probabilities. In most of the
cases the solution cannot be determined explicitly, only by simulation.

Example 22 (Poisson process). Let (Nt) be a Poisson process with intensity
1. We proved that

(Sf)(x) = f(x+ 1)− f(x).

Therefore, the backward equation reads as

∂

∂t
pt(B|x) = pt(B|x+ 1)− pt(B|x). (32)

For the forward equation we determine the adjoint of S. We need an S∗µ
such that ∫

[f(x+ 1)− f(x)]µ(dx) =

∫
f(x)(S∗µ)(dx).

From this form we can guess that

S∗µ(A) = µ(A− 1)− µ(A),

should work, where A − 1 = {a − 1 : a ∈ A}. This indeed holds, therefore
the forward equation reads as

∂

∂t
pt(B|x) = pt(B − 1|x)− pt(B|x).

The initial condition in both cases is

p0(B|x) = δx(B) =

{
1, if x ∈ B,
0, otherwise.

In this special case we can solve the equation (32). Let x = 0 and
B = {0}. Since the process have only upwards jumps pt({0}|1) = 0,

d

dt
pt({0}|0) = −pt({0}|0),
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which together with the initial condition p0 = 1 gives

pt({0}|0) = e−t.

Now B = {1} gives

d

dt
pt({1}|0) = e−t − pt({1}|0).

Multiplying by et

d

dt

(
etpt({1}|0)

)
= 1,

which with the initial condition p0({1}|0) = 0 gives

pt({1}|0) = te−t.

In general, induction gives that

pt({k}|0) =
tk

k!
e−t.

Example 23 (Wiener process). Let (Wt) be SBM. Since (Sf)(x) = f ′′(x)/2,
the backward equation is

∂

∂t
pt(B|x) =

1

2

∂2

∂x2
pt(B|x).

For the density pt(dy|x) = ρt(y|x)dy we get

∂

∂t
ρt(y|x) =

1

2

∂2

∂x2
ρt(y|x).

This is the heat equation.
For the forward equation we need again the adjoint of S. Let µ be ab-

solutely continuous with respect to the Lebesgue measure, µ(dy) = g(y)dy,
and let f ∈ C2

c . Integration by parts twice gives∫
f ′′(y)g(y)dy =

∫
f(y)g′′(y)dy.

That is (S∗µ)(dy) = 1
2
g′′(y)dy. The forward equation is

∂

∂t
pt(y|x)dy =

1

2

∂2

∂y2
pt(y|x)dy,
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which for the densities gives

∂

∂t
ρt(y|x) =

1

2

∂2

∂y2
ρt(y|x),

again the heat equation.
Recall that the fundamental solution to the heat equation

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x)

is

F (t, x) =
1√
2πt

e−
x2

2t ,

which is exactly the transition density of the SBM.

6.4 Diffusion processes

Diffusions can be handled as solution to SDEs. We showed that under gen-
eral conditions unique strong solution to SDEs exists, implying the existence
of diffusion processes. This is the probabilistic approach due to Lévy and
Itô. Another more analytical approach to such processes was applied by
Kolmogorov and Feller. They treated diffusions as general Markov processes
and using tools from the theory of partial differential equations, they showed
that under suitable conditions the Kolmogorov backward and forward equa-
tions have a unique solution. Then the existence of a desired Markov process
follows from Kolmogorov’s consistency theorem, and the continuity property
of the process can be treated by Kolmogorov’s continuity theorem (Theorem
18). Here we look a bit into the latter approach.

A diffusion process locally behaves as a Wiener process, in the sense that
it satisfies the SDE

dYt = µ(Yt)dt+ σ(Yt)dWt.

That is, for h > 0

∆Yt = Yt+h − Yt =

∫ t+h

t

µ(Ys)ds+

∫ t+h

t

σ(Ys)dWs

≈ hµ(Yt) + σ(Yt)(Wt+h −Wt),
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thus

E [∆Yt|Yt = y] = µ(y)h+ o(h),

E
[
(∆Yt)

2|Yt = y
]

= σ2(y)h+ o(h).

A diffusion process (Yt) is a continuous Markov process satisfying as h ↓ 0

(i) P(|∆Yt| > ε|Yt = y) = o(h);

(ii) E (∆εYt|Yt = y) = µ(y)h+ o(h);

(iii) E ((∆εYt)
2|Yt = y) = σ2(y)h+ o(h),

where ∆Yt = Yt+h − Yt, and

∆εYt =

{
∆Yt, if |∆Yt| ≤ ε,

0, otherwise.

The definition determines the infinitesimal generator of the process. For
f ∈ C2

Exf(Yt) = Ex

[
f(x) + (Yt − x)f ′(x) + (Yt − x)2f

′′(x)

2
+ o((Yt − x)2)

]
= f(x) + tµ(x)f ′(x) + tσ2(x)

f ′′(x)

2
+ o(t).

Therefore,

(Sf)(x) = lim
t→0

1

t
Ex [f(Yt)− f(x)] = µ(x)f ′(x) + σ2(x)

f ′′(x)

2
.

Kolmogorov backward equation is

∂

∂t
pt(y|x) = µ(x)

∂

∂x
pt(y|x) +

σ2(x)

2

∂2

∂x2
pt(y|x).

For the forward equation we need the adjoint of S. This can be de-
termined as for the SBM. Let ρt(y|x) denote the density of the process,
i.e. pt(dy|x) = ρt(y|x)dy. Let µ(dy) = g(y)dy. If f has compact support
then in the integration by parts formula the increment disappears and we
get ∫

(Sf)(y)g(y)dy =

∫ [
µ(y)f ′(y) +

σ2(y)

2
f ′′(y)

]
g(y)dy

=

∫
f(y)

[
− d

dy
(µ(y)g(y)) +

1

2

d2

dy2

(
σ2(y)g(y)

)]
dy.
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Thus

(S∗pt(·|x)) (dy) =

[
− d

dy
(µ(y)ρt(y|x)) +

1

2

d2

dy2

(
σ2(y)ρt(y|x)

)]
dy,

and the forward equation is

∂

∂t
ρt(y|x) = − ∂

∂y
(µ(y)ρt(y|x)) +

1

2

∂2

∂y2

(
σ2(y)ρt(y|x)

)
.

Example 24 (Ornstein–Uhlenbeck process). Consider the Langevin equation

dYt = −µYt dt+ σ dWt,

where µ > 0, σ > 0, and Y0 is independent of σ(Ws : s ≥ 0).
The solution of the homogeneous equation is e−µt. Taking the derivative

of eµtYt we obtain

d
(
eµtYt

)
= eµt dYt + µ eµtYt dt = eµt σ dWt,

which gives

Yt = e−µt
(
Y0 +

∫ t

0

eµs σ dWs

)
.

This is the Ornstein–Uhlenbeck process. The integral of a deterministic func-
tion with respect to SBM is Gaussian, thus

Yt − e−µtY0

is normal with mean and variance

EYt = e−µt EY0,

EY 2
t = e−2µt EY 2

0 + e−2µt

∫ t

0

σ2 e2µs ds = e−2µt EY 2
0 +

σ2

2µ
(1− e−2µt).

We see that as t→∞

Yt
D−→ N(0, σ2/(2µ)).

Taking the limit for the initial distribution Y0 we see that (Yt) is Gaussian
and

Yt ∼ N

(
0,
σ2

2µ

)
.
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Next we determine the covariance function of Y . Since

Yt = e−µt
(
Y0 +

∫ t

0

σ eµu dWu

)
we get

Yt − e−µ(t−s)Ys = e−µt
∫ t

s

σ eµu dWu, t > s, (33)

which is independent of σ(Wu : u ≤ s) σ. Therefore,

Cov(Yt, Ys) = EYtYs = E
(
Yt − e−µ(t−s)Ys + e−µ(t−s)Ys

)
Ys

= e−µ(t−s) EY 2
s =

σ2

2µ
e−µ(t−s),

which depends only on t− s. That is (Yt) is stationary.
Using formula (33) for A ∈ B(R)

P(Yt ∈ A|Yu : u ≤ s, Ys = x)

= P(Yt − e−µ(t−s)Ys ∈ A− e−µ(t−s)x|Yu : u ≤ s, Ys = x)

= P(Yt − e−µ(t−s)Ys ∈ A− e−µ(t−s)x).

The variable Yt − e−µ(t−s)Ys is mean zero Gaussian with variance

E
(
Yt − e−µ(t−s)Ys

)2
= e−2µt

∫ t

s

σ2e2µudu =
σ2

2µ

(
1− e−2µ(t−s)) .

Substituting s = 0

pt(·|x) ∼ N

(
e−µtx,

σ2

2µ

(
1− e−2µt

))
,

that is, the transition density

ρt(y|x) =

√
µ

πσ2(1− e−2µt)
exp

{
−µ(y − e−µtx)2

σ2(1− e−2µt)

}
.

We proved that (Yt) is a continuous stationary Markov process. It can be
shown that this characterizes the OU process.

Finally, we spell out the Kolmogorov equations. The backward is

∂

∂t
ρt(y|x) = −µx ∂

∂x
ρt(y|x) +

σ2

2

∂2

∂x2
ρt(y|x),
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which is called Fokker–Planck equation. The forward is

∂

∂t
ρt(y|x) = − ∂

∂y
(−µyρt(y|x)) +

σ2

2

∂2

∂y2
ρt(y|x).

It is important to emphasize that in general explicit formulas for the tran-
sition densities cannot be obtained. For simulation results the Kolmogorov
equations are important, because solutions can be approximated numerically.

7 Brownian motion and PDEs

This part is from Karatzas and Shreve [5].
We showed that the infinitesimal generator of the SBM is the Laplacian

operator ∆. Furthermore the transition density of SBM is the fundamental
solution to the heat equation. These facts already show the intrinsic connec-
tion between Brownian motion and partial differential equations. Here we
spell out this connection a bit more.

7.1 Harmonic functions and the Dirichlet problem

Let D be an open subset of Rd. Let W be a d-dimensional standard Brownian
motion, and let

τD = inf{t ≥ 0 : Wt ∈ Dc}
the first exit time from D. Let Br be the open ball centered at the origin, Vr
its volume and Sr its surface. The normalized surface measure on Br is µr

µr(dx) = P0(WτBr
∈ dx).

Then ∫
Br

f(x)dx =

∫ r

0

Sρ

∫
∂Bρ

f(x)µρ(dx)dρ. (34)

A function u is harmonic in D if

∆u =
d∑
i=1

∂2

∂x2
i

u = 0

in D. A function u : D → R satisfies the mean-value property, if for every
a ∈ D and r > 0 such that a+Br ⊂ D,

u(a) =

∫
∂Br

u(a+ x)µr(dx).
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We know that u is harmonic if and only if it satisfies the mean-value
property. We give a simple proof to one direction using Itô formula.

Proposition 13. If u is harmonic in D, then it satisfies the mean-value
property there.

Proof. By Itô’s formula

u(Wt∧τa+Br ) = u(W0) +
d∑
i=1

∫ t∧τa+Br

0

∂u

∂xi
(Ws)dW

(i)
s +

1

2

∫ t∧τa+Br

0

∆u(Ws)ds.

Taking expectation Ea and letting t→∞

Eau(Wτa+Br
) = u(a),

as stated.

Let D be an open set of Rd and f : ∂D → R be a continuous function.
Consider the Dirichlet problem

∆u = 0, in D,

u = f, on ∂D.
(35)

A solution to the Dirichlet problem is a continuous function u : D → R which
satisfies the equation above.

Then one can guess that

u(x) = Exf(WτD) (36)

should be a solution, provided that the expectation exists.
Indeed, the boundary condition holds by the definition of τD. Using the

strong Markov property

u(a) = Eaf(WτD) = Ea

[
Ea[f(WτD)|Fτa+Br ]

]
= Eau(Wτa+Br

) =

∫
∂Br

u(a+ x)µr(dx),

that is the mean-value property holds, which means that u is indeed har-
monic.

We proved the following.
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Proposition 14. If u in (36) is well-defined then it is harmonic.

The proof of Proposition 13 shows in fact uniqueness.

Proposition 15. If f is bounded and Pa(τD < ∞) = 1 for all a ∈ D, then
any bounded solution to (35) has the form (36).

Proof. Consider a bounded solution u. By Itô’s formula

u(Wt∧τD) = u(W0) +
d∑
i=1

∫ t∧τa+Br

0

∂u

∂xi
(Ws)dW

(i)
s .

Taking expectation Ea and letting t→∞

Eau(WτD) = u(a),

as stated.

Note that a solution to the Dirichlet problem (35) is necessarily contin-
uous. Therefore, we need conditions characterizing the points a ∈ ∂D for
which

lim
x→a,x∈D

Exf(WτD) = f(a) (37)

holds for any bounded measurable function, which is continuous at a.
Define the stopping time σD = inf{t > 0 : Wt ∈ Dc}. Note the >

compared to ≥ in τD. A point a ∈ ∂D is regular for D is Pa(σD = 0) = 1.
Without proof we state the result on regularity.

Theorem 40. Let d ≥ 2 and fix a ∈ ∂D. The following are equivalent:

(i) (37) holds for every bounded, measurable function which continuous at
a;

(ii) a is regular for D;

(iii) for all ε > 0 we have

lim
x→a,x∈D

Px(τD > ε) = 0.

For d = 1 every point of ∂D is regular. The Dirichlet problem is always
solvable, the solution is piecewise linear. For d ≥ 2 consider the punctured
unit ball D = {x ∈ Rd : 0 < ‖x‖ < 1}. Clearly, the origin is irregular for D.
For any x ∈ D the SBM exits D on its outer boundary, therefore we do not
see the value of f at 0. For this D the Dirichlet problem has a solution only
if f(0) = ũ(0), where ũ is the solution for B1.
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7.2 Feynman–Kac formula

Consider the heat equation
∂u

∂t
=

1

2
∆u, (38)

with initial condition u(0, x) = f(x).
The fundamental solution to the heat equation is in fact the transition

probabilities of the d-dimensional SBM

ρt(y|x) =
1

(2πt)d/2
e−
‖x−y‖2

2t .

Under some growth condition on f , the unique solution to (38) has the
form

u(t, x) = Exf(Wt) =

∫
f(y)ρt(y|x)dy.

The probabilistic representation of the solution to certain PDEs holds in a
more general setup.

Consider the equation

− ∂v

∂t
+ kv =

1

2
∆v + g on [0, T )× Rd,

v(T, x) = f(x), x ∈ Rd,
(39)

where f : Rd → R, k : Rd → [0,∞), and g : [0, T ]× Rd → R.

Theorem 41 (Feynman–Kac formula). Assume that (39) has a solution and

max
0≤t≤T

|v(t, x)|+ max
0≤t≤T

|g(t, x)| ≤ Kea‖x‖
2

, ∀x ∈ Rd,

for some constant K > 0, 0 < a < 1/(2Td). Then v admits the stochastic
representation

v(t, x) = Ex

[
f(WT−t)e

−
∫ T−t
0 k(Ws)ds +

∫ T−t

0

g(t+ θ,Wθ)e
−
∫ θ
0 k(Ws)dsdθ

]
.

Proof. Consider the case d = 1. The general case is the same. Fix t. Let

Xθ = v(t+ θ,Wθ)

Yθ = e−
∫ θ
0 k(Ws)ds.
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Then, by Itô’s formula

dXθ =
∂

∂t
v(t+ θ,Wθ)dθ +

∂

∂x
v(t+ θ,Wθ)dWθ +

1

2
∆v(t+ θ,Wθ)dθ.

and, using also (39)

d(XθYθ) = XθdYθ + YθdXθ

= −g(t+ θ,Wθ)e
−
∫ θ
0 k(Ws)dsdθ +

∂

∂x
v(t+ θ,Wθ)dWθ.

Taking expectation Ex and integrating on [0, T − t], and using the terminal
condition we obtain the desired form.

As a consequence we obtain the representation of the solution to the
parabolic equation

∂u

∂t
u+ ku =

1

2
∆u+ g, t ∈ (0,∞), x ∈ Rd,

u(0, x) = f(x), x ∈ Rd,
(40)

where k : Rd → [0,∞), g : (0,∞)× Rd → R, f : Rd → R.

Corollary 10. Assume that f, k, and g are continuous, u : [0,∞)×Rd → R
is continuous, on (0,∞) × Rd it is C1,2, and satisfies (40). Further assume
that for each T > 0 there exist K > 0 and 0 < a < 1/(2Td) such that

max
0≤t≤T

|u(t, x)|+ max
0≤t≤T

|g(t, x)| ≤ Kea‖x‖
2

, ∀x ∈ Rd.

Then u admits the stochastic representation

u(t, x) = Exf(Wt)e
−
∫ t
0 k(Ws)ds +

∫ t

0

g(t− θ,Wθ)e
−
∫ θ
0 k(Ws)dsdθ.

Proof. Fix T > 0 and consider the PDE (39) with gv,T (t, x) = g(T − t, x).
Then vT (t, x) = u(T − t, x) satisfies the conditions of Theorem 41 with gv,T
instead of g. Therefore vT has a Feynman–Kac representation, which, rewrit-
ing to u gives the statement.
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