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Péter Kevei

December 6, 2021



Contents

1 Introduction 1
1.1 Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Put–call parity . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Portfolio, claim, and hedging in discrete time 4
2.1 Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Strategies in a more general market . . . . . . . . . . . . . . . 6

2.2.1 Dividend . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Consumption and investment . . . . . . . . . . . . . . 6
2.2.3 Transaction costs . . . . . . . . . . . . . . . . . . . . . 6

2.3 Claim and hedging . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Binomial market . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 One-step market . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 N -step market . . . . . . . . . . . . . . . . . . . . . . 8

3 Arbitrage and pricing in discrete time 9
3.1 Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Martingale measures . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 EMM in binomial markets . . . . . . . . . . . . . . . . 11
3.2.2 Pricing with EMM . . . . . . . . . . . . . . . . . . . . 12

3.3 General one-step market . . . . . . . . . . . . . . . . . . . . . 14
3.4 Complete markets . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Proof of the difficult part of Theorem 2 . . . . . . . . . . . . . 20
3.6 Proof of the difficult part of Theorem 6 . . . . . . . . . . . . . 22

4 Girsanov’s theorem in discrete time 23
4.1 Second proof of the difficult part of Theorem 2 . . . . . . . . . 23
4.2 ARCH processes . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Pricing and hedging European options 28
5.1 Complete markets . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Homogeneous binomial market – CRR formula . . . . . . . . . 29
5.3 Incomplete markets . . . . . . . . . . . . . . . . . . . . . . . . 30



6 American options 30
6.1 Optimal stopping problems . . . . . . . . . . . . . . . . . . . . 31
6.2 Pricing American options . . . . . . . . . . . . . . . . . . . . . 33
6.3 American vs. European options . . . . . . . . . . . . . . . . . 35

7 Stochastic integration 37
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Figure 1: Payoff of a forward

1 Introduction

These notes are based on the Hungarian lecture notes by Gáll and Pap [2],
on Shiryaev’s monograph [3], and on Elliott and Kopp [1].

There are two type of financial instruments: the basic financial units and
their derivatives.

Underlying:

• bond: risk-free asset, basically money. Its price is deterministic Bt;

• stock: risky asset. Its price is a random, modeled by a stochastic
process St = (S1

t , . . . , S
d
t ).

Derivatives are bets on the underlying. They are used to share or reduce
risk. Here we consider forward contracts and options.

1.1 Forward

A forward contract is an agreement to buy or sell an asset (stock) for a price
previously agreed K in the future time T .

From the buyers point of view, at time T his wealth is ST − K, that is
the payoff function is f(s) = s−K.

We want to determine the fair price of this contract, and to understand
the meaning of ’fair’. Assume B0 = 1.
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Seller’s point of view: At time 0, we can buy a stock for S0. Then at time
T selling a stock for K and paying back the loan S0 ·BT , we have K−S0BT .
Therefore,

K ≥ S0BT .

Buyer’s point of view: At time 0, we sell a stock for S0. At time T we
pay K for a stock, and the our wealth is S0BT −K. Thus,

K ≤ S0BT .

We see that the fair price has to be K = S0BT . Otherwise, either the
seller or the buyer would have a strategy providing riskless profit (arbitrage).

Example 1. Let S0 = 40, Bt = ert, r = 0.1 being the annual interest, T = 1
year. What is the fair price of this forward, and what is the value of the
contract after half a year if S0.5 = 45?

The forward price at time 0 is

K = S0B1 = 40 · e0.1 = 44.2.

At time t = 0.5 the forward price

K2 = S0.5B0.5 = 45 · e
1
2

0.1 = 47.3.

Thus the current value of the contract

e−
1
2
r(47.3− 44.2) = 2.9.

1.2 Options

An option is right to do something but not an obligation. European option
can be executed only at the expiration date, while American options can be
executed at any time.

The writer of a European call option agrees to sell a stock for a previously
agreed price K. Clearly, the buyer of this option will not use his right if
ST < K. The payoff function for the buyer is f(s) = (s−K)+

In case of a put option the writer agrees to buy a stock for K. The payoff
function of the buyer

2
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1.3 Put–call parity

The aim of the course is to determine the fair price of an option, and under-
stand the fairness. However, there is a simple relation between call and put
prices regardless of the underlying market model.

Let CK be the fair price of the call, and PK be the fair price of the put,
both with strike price K. Then, from the payoff functions it is easy to see
that having put, a stock, and −1 call results at the expiration date (regardless
of the stock price) a wealth K. That is, after discounting

K

BT

= P + S0 − C.

This is the put-call parity.

2 Portfolio, claim, and hedging in discrete

time

Let (Ω,F ,P) be a probability space. In the discrete time case we always
assume (if not stated otherwise) that Ω is finite, and P({ω}) > 0 for each
ω ∈ Ω. We assume that transactions are made only at the time instants
0, 1, . . . , N . Let (Fn)n=0,1,...,N be a filtration, an increasing sequence of σ-
algebras, such that F0 = {∅,Ω}, FN = F . Assume that there are d risky
assets and a bond. The price of the risky asset i at time is Sin, an Fn-
measurable random variable, and the bond price at time n is Bn.

2.1 Portfolio

An investment portfolio (strategy) is πn = (βn, γn), where βn ∈ R represents
the amount of bonds in the portfolio at time n, while γn = (γ1

n, . . . , γ
d
n) ∈ Rd,

where γin represents the amount of type-i stock at time n. The random vari-
ables (βn, γn) are Fn−1-measurable, which means the investor has to decide
at time n − 1 how to invest on time n. That is the sequence (βn, γn) is
predictable. For simplicity

γnSn =
d∑
i=1

γinS
i
n.
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The wealth of the investor at time n under the strategy π is

Xπ
n = βnBn + γnSn.

This is the value process of the investment portfolio.
A strategy is self-financing (SF) if the investor does not take out money

from, and does not invest money to the portfolio after time 0. That is π is
self-financing if

Xπ
n−1 = βnBn−1 + γnSn−1 for all n.

For a sequence an put ∆an = an − an−1.
{lemma:SF}

Lemma 1. The following are equivalent:

(i) π is SF;

(ii) ∆Xπ
n = βn∆Bn + γn∆Sn;

(iii) Bn−1∆βn + Sn−1∆γn = 0.

Proof. We have

∆Xn = Xn −Xn−1

= βnBn − βn−1Bn−1 + γnSn − γn−1Sn−1

= βn(Bn −Bn−1) + (βn − βn−1)Bn−1 + γn(Sn − Sn−1) + (γn − γn−1)Sn−1

= βn∆Bn + ∆βnBn−1 + γn∆Sn + ∆γnSn−1,

and the equivalence follows.

In what follows, unless otherwise stated all the strategies are meant to be
SF.

We can decompose the value process as

Xπ
n = Xπ

n−1 + ∆Xπ
n = . . .

= Xπ
0 +

n∑
i=1

(βi∆Bi + γi∆Si)

=: Xπ
0 +Gπ

n,

where Gπ
n is the gain process. So the value of the strategy is the initial

investment plus the gain.

5



2.2 Strategies in a more general market

Previously, we assumed that there are no transaction cost (market is fric-
tionless), shares pay no dividend, and apart from time 0, there is neither
investment, nor consumption. Here we see how to handle this.

2.2.1 Dividend

Assume that stock-i pays a dividend δin = Di
n − Di

n−1 ≥ 0 at n, where δin,
and Di

n are adapted processes. Then the change in the value process is

∆Xπ
n = βn∆Bn + γn(∆Sn + δn),

and the value of the portfolio

Xπ
n = βnBn + γn(Sn + δn).

Then, π is self-financing portfolio if

Bn−1∆βn + Sn−1∆γn = δn−1γn−1.

Indeed, the dividend obtained in time n− 1 is reinvested in the portfolio.

2.2.2 Consumption and investment

The consumption and investment can be included as well. Let (Cn), (In)
be adapted nondecreasing random sequences with C0 = I0 = 0. Then, if an
investor takes out ∆Cn and invests ∆In then

∆Xπ
n = βn∆Bn + γn∆Sn + ∆In −∆Cn

Xπ
n = βnBn + γnSn.

2.2.3 Transaction costs

If ∆γn > 0 then we buy share, and pay an extra cost λ, that is we pay
(1 + λ)Sn−1∆γn. While if ∆γn < 0 we sell, and paying transaction cost
means receiving less money, say −(1 − µ)Sn−1∆γn. Then an SF strategy
satisfies (see (iii) in Lemma 1)

Bn−1∆βn + (1 + λ)Sn−1∆γnI(∆γn > 0) + (1− µ)Sn−1∆γnI(∆γn < 0) = 0.
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2.3 Claim and hedging

Let fN be a nonnegative random variable, which is the payoff function, or
obligation, or contingent claim. A strategy π is an upper (x, fN)-hedge, if
P-almost surely

Xπ
0 = x, Xπ

N ≥ fN .

It is a lower (x, fN)-hedge, if a.s.

Xπ
0 = x, Xπ

N ≤ fN .

The hedge is perfect if = holds a.s.
Put

C∗(fN) = inf{x : ∃ upper (x, fN)-hedge },

and similarly

C∗(fN) = sup{x : ∃ lower (x, fN)-hedge }.

For the class of upper (x, fN)-hedge strategies put H∗(x, fN ,P), and for the
lower H∗(x, fN ,P).

{lemma:hedge}
Lemma 2. For any payoff function fN there exists an x such that there is
an upper (x, fN)-hedge.

Proof. Put

x =
B0

BN

max
ω∈Ω
|fN(ω)|.

Then the (trivial) strategy πn ≡ ( x
B0
, 0) (start with enough money and don’t

do anything) is an upper hedge.

2.4 Binomial market
{ss:bin}

2.4.1 One-step market

Consider a one-step binomial market with d = 1 stock. That is Ω = {0, 1},
F0 = {∅,Ω}, F1 = F = 2Ω. Assume that P({0}) ∈ (0, 1). The bond price
B1 = (1 + r)B0, that is r > −1 is the interest rate, and for some a < b,
S1 = (1 + ρ)S0, ρ ∈ {a, b}. Say, ρ(1) = b, ρ(0) = a. Let f be a payoff, that
is f(0) = f0, f(1) = f1. We construct a perfect hedge.
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Using the strategy π1 = (β1, γ1) we want that

Xπ
1 = β1B1 + γ1S1 = f a.s.

Since there are only two possibilities, a.s. means

β1B0(1 + r) + γ1S0(1 + a) = f0

β1B0(1 + r) + γ1S0(1 + b) = f1.

Solving the linear system

γ1 =
1

S0

f1 − f0

b− a
, β1 =

f1 − (1 + b)f1−f0

b−a

B0(1 + r)
.

This is deterministic, so F0-measurable, as it should be. The initial cost of
this strategy is

Xπ
0 = B0β1 + S0γ1 =

1

1 + r

(
r − a
b− a

f1 +
b− r
b− a

f0.

)
If a < r < b this can be written as

Xπ
0 =

1

1 + r
EQf,

with the probability measure Q({0}) = (b−r)/(b−a), Q({1}) = (r−a)/(b−
a).

This shows that the ’fair’ price of the payoff is EQf/(1 + r). Note that
this does not depend on the probability measure P.

2.4.2 N-step market

Assume we have only one stock, d = 1. For the bond Bn = (1 + rn)Bn−1,
and for the share Sn = (1 + ρn)Sn−1, where ρn ∈ {an, bn}.

Exercise 1. Give a concrete construction of the probability space and the
filtration!

Solution 1. Let

Ω = {0, 1}N = {ω = (ω1, . . . , ωN) : ωi ∈ {0, 1}}.
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S0

S1 = s↑

S1 = s↓

S2 = s↑↑, f = f ↑↑

S2 = s↑↓, f = f ↑↓

S2 = s↓↑, f = f ↓↑

S2 = s↓↓, f = f ↓↓

Figure 4: 2-step binary market as 3 1-step binary market

Define the random variables ρn : Ω→ {an, bn} as

ρn(ω) =

{
an, if ωn = 0,

bn, if ωn = 1.

For the filtration let Fn = σ(ρ1, . . . , ρn), i.e. the natural filtration generated
by the variables ρ1, . . . , ρn.

Consider any payoff function fN . A perfect hedge can be constructed
recursively, using the simple one-step market. Indeed, a two-step model can
be seen as 3 one-step markets.

3 Arbitrage and pricing in discrete time

3.1 Arbitrage

A SF strategy π is an arbitrage strategy if

• Xπ
0 = 0;

• Xπ
n ≥ 0 for all n = 0, 1, . . . , N ;

• P(Xπ
N > 0) > 0.

That is, using the strategy π with 0 money we have riskless profit.
If the second assumption only holds for n = N then π is a weak arbitrage

strategy. According to the following if weak arbitrage strategy exists, then
also arbitrage strategy exists.
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{lemma:arbitrage}
Lemma 3. Assume that π is a weak arbitrage strategy. Then there exists an
arbitrage strategy π′.

Proof. If Xπ
n ≥ 0 a.s. for all n, then we are ready. Otherwise, there exists

m < N such that P(Xπ
m < 0) > 0, and Xπ

n ≥ 0 for any n ≥ m+ 1. Let

Am = {Xm < 0} ∈ Fm.

Consider the strategy

β′n = IAmIn>m

(
βn −

Xm

Bm

)
, γ′n = IAmIn>mγn.

It is easy to check that this strategy is predictable, SF, and arbitrage strategy.
Indeed,

(i) predictable: for n ≤ m this is clear, since β′n = 0 and γ′n = 0, while for
n > m Am is Fm-measurable and thus Fn−1-measurable as well, and
βn, γn are Fn−1-measurable by the assumption.

(ii) SF: for n ≤ m this is again clear. For n = m+ 1

Bm∆β′m+1+Sm∆γ′m+1 = IAm (Bmβm+1(ω)−Xπ
m(ω) + Smγm+1(ω)) = 0,

since π is SF. For n > m + 1 we have ∆β′n = IAm∆βn, and ∆γ′n =
IAm∆γn, and the result follows, using again that π is SF.

(iii) arbitrage: we have

Xπ′

n = IAmIn>m

(
βnBn + γnSn −

Xπ
mBn

Bm

)
,

where the sum of the first two terms in the bracket is nonnegative by
the definition of m and the last is strictly negative on Am, which proves
the statement.

Exercise 2. Assume that a < b < r in the one-step binomial model. Give
an arbitrage strategy.

Assume that an < bn < rn for some n in the N -step binomial model.
Give an arbitrage strategy.
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3.2 Martingale measures

A probability measure Q is called equivalent martingale measure (EMM) if
P ∼ Q and (Sin/Bn,Fn) is a Q-martingale for each i = 1, 2, . . . , d.

3.2.1 EMM in binomial markets

In a one-step binomial market the martingale property is easy to check.
Indeed, (Si/Bi)i=0,1 is a martingale iff

EQ

[
S1

B1

∣∣∣∣F0

]
=
S0

B0

.

We have

EQ

[
S1

B1

∣∣∣∣F0

]
= EQ

S1

B1

= Q(ρ = a)
(1 + a)S0

(1 + r)B0

+ (1−Q(ρ = a))
(1 + b)S0

(1 + r)B0

=
S0

B0

.

Solving the equation we obtain that

Q(ρ = a) =
b− r
b− a

, and Q(ρ = b) =
r − a
b− a

.

That is Q({0}) = (b − r)/(b − a), Q({1}) = (r − a)/(b − a). This is the
probability measure Q we obtained at pricing.

Let us see the general N -step model. Then

Sn =
n∏
i=1

(1 + ρi)S0,

thus the martingale property reads as

EQ

[
Sn
Bn

∣∣∣∣Fn−1

]
=
Sn−1

Bn−1

n = 0, 1, . . . N.

Using the properties of conditional expectation we have

EQ

[
Sn
Bn

∣∣∣∣Fn−1

]
=
Sn−1

Bn−1

1

1 + rn
EQ[1 + ρn|Fn−1].
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Therefore Sn/Bn is a Q-martingale iff

EQ[ρn|Fn−1] = rn.

This condition exactly tells that under the new measure Q the risky asset
behaves as the bond on average. Using that ρn ∈ {an, bn}, we obtain as
above

Q(ρn = an|Fn−1) =
bn − rn
bn − an

, and Q(ρn = bn|Fn−1) =
rn − an
bn − an

.

Note the conditioning on Fn−1 gives a constant, meaning that ρn is indepen-
dent of Fn−1 under the measure Q.

We obtained the following.
{thm:binom-EMM}

Theorem 1. In the binomial market if an < rn < bn for each n then there
exists a unique EMM Q given by the formulas above. Moreover, under Q the
random variables ρ1, . . . , ρN are independent.

In the proof we used the following simple result.

Exercise 3. Assume that Y ∈ {a, b} and

P(Y = a|F) = p a.s.

Show that Y is independent of F .

Note that the original measure P is irrelevant.
In the special case of the homogeneous binomial market we get that

Q(SN = S0(1 + b)k(1 + a)N−k) =

(
N

k

)
qk(1− q)N−k, k = 0, 1, . . . , N.

3.2.2 Pricing with EMM
{prop:Xbar-mtg}

Proposition 1. If Q is an EMM then (X
π

n = Xπ
n/Bn)n is a Q-martingale

for any SF strategy π.

12



Proof. Easily follows from the SF property. Indeed, using that βn, γn are
Fn−1-measurable

EQ

[
Xπ
n

Bn

∣∣∣∣Fn−1

]
= EQ

[
βn + γn

Sn
Bn

∣∣∣∣Fn−1

]
= βn + γnEQ

[
Sn
Bn

∣∣∣∣Fn−1

]
= βn + γn

Sn−1

Bn−1

=
βnBn−1 + γnSn−1

Bn−1

=
Xπ
n−1

Bn−1

,

where the last equality follow from the self-financing property.

The following main result is the first fundamental theorem of asset pricing.
{thm:emm-arb}

Theorem 2. There exists an EMM if and only if the market is arbitrage-free.

Proof. Let Q be an EMM and π be any strategy with Xπ
0 = 0. Then, by the

previous statement

EQ
Xπ
N

BN

= EQ
Xπ

0

B0

= 0.

Thus XN ≥ 0 P-a.s., then also Q-a.s., which implies XN ≡ 0 Q-a.s., thus
P-a.s.

We prove the converse later.

Assume that fN is a replicable payoff, i.e. there is a prefect hedge π. This
means that

Xπ
N = fN a.s.

Then the fair price for fN is the initial cost of the portfolio, Xπ
0 = x. By the

martingale property

EQ
fN
BN

= EQ
Xπ
N

BN

mtg
= EQ

Xπ
0

B0

=
x

B0

.

That is, the fair price x for a replicable payoff fN is

x =
B0

BN

EQf.

13



In particular, it also follows that for a replicable f , the value EQf is the
same for any EMM Q.

Summarizing, we proved the following:
{thm:pricing}

Theorem 3. Consider an arbitrage-free market and let f be a replicable
payoff. Then the fair price of f is

C(f) = C∗ = C∗ =
B0

BN

EQf,

where Q is any EMM.

3.3 General one-step market
Assume that B1 = B0(1 + r) with a deterministic interest rate r > −1 and

S1 = S0(1 + ρ),

where ρ > −1 is a random variable, the unique source of randomness in the model. Let

F (x) = P(ρ ≤ x), x ∈ R,

be the distribution function of ρ. Then F induces a probability measure (denoted by P) on the Borel sets
of (−1,∞) (or R). If F is concentrated on {a, b} then we get back the previous one-step binomial model.

Assume without loss of generality that B0 = 1. Consider a payoff function f : R → R as a function
of the stock price S1. A strategy π is an upper hedge if

β(1 + r) + γS0(1 + ρ) ≥ f(S0(1 + ρ)) a.s. (1) {eq:1step-hedge}

A probability measure on (R,B) is Q is EMM if P ∼ Q (meaning that P is absolutely continuous to Q
(P(A) = 0 whenever Q(A) = 0) and conversely) if and only if Sn/Bn is Q-martingale, that is

EQ
S1

B1
=
S0

B0
.

This means
EQρ = r.

That is a probability measure Q which is equivalent to P is EMM iff∫
R
ρdQ(ρ) = r.

Taking expectation with respect to the EMM Q

β(1 + r) + S0γ(1 + r) ≥ EQf(S0(1 + ρ)).

For the initial cost β + γS0 we have

β + γS0 ≥ EQ
f(S0(1 + ρ))

1 + r
.

14
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Figure 5: Bounding the upper price C∗

For the class of EMM’s put

P(P) = {Q : Q probability measure ,Q ∼ P, (Sn/Bn)n is Q-martingale}.

Then

C∗(f) = inf{β + γS0 : (β, γ) is an upper hedge}

≥ sup
Q∈P(P)

EQ
f(S0(1 + ρ))

1 + r
.

(2) {eq:onestep-C*lower}

Similarly, for the lower price

C∗(f) = sup{β + γS0 : (β, γ) is a lower hedge}

≤ inf
Q∈P(P)

EQ
f(S0(1 + ρ))

1 + r
.

(3) {eq:onestep-C_*upper}

Assume now that ρ ∈ [a, b] for some −1 ≤ a < b <∞. To ease notation put

f(x) = f(S0(1 + x)), x ∈ [a, b], (4) {eq:onestep-f}

and assume that f is convex and continuous on [a, b]. By convexity,

f(x) ≤
f(b)− f(a)

b− a
(1 + x) +

(1 + b)f(a)− (1 + a)f(b)

b− a
=: µS0(1 + x) + ν.

(5) {eq:conv-ineq}
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Indeed, the left-hand side is a linear function equals to f(a) at a, and f(b) at b. Introduce the strategy,

π∗ = (β∗, γ∗) :=

(
ν

1 + r
, µ

)
.

Then, by (5)

Xπ∗
1 = ν + µS0(1 + ρ) ≥ f(ρ),

that is, π∗ is an upper hedge. Therefore,

C∗(f) = inf
πupper hedge

Xπ
0 ≤ β∗ + S0γ

∗ =
ν

1 + r
+ µS0. (6) {eq:C*lower}

Assumption (weak limit): In the set P(P) there exists a sequence Pn, such that Pn converges
weakly to a measure Q∗ supported on {a, b}. Since

EPnρ = r,

the equality holds for the limit
EQ∗ρ = r.

Since Q∗ is supported on {a, b}

EQ∗ρ = Q∗({a})a+ (1−Q∗({a}))b = r,

implying (as in the binomial market setup) that

Q∗({a}) =
b− r
b− a

, Q∗({b}) =
r − a
b− a

.

Note that Q∗ is, in general, not equivalent to P. In fact, it is only equivalent in the binomial market
setup.

By the convergence of Pn (here we use the continuity of f)

sup
Q∈P(P)

EQ
f(ρ)

1 + r
≥ lim
n→∞

EPn
f(ρ)

1 + r

= EQ∗
f(ρ)

1 + r

= Q∗({a})
f(a)

1 + r
+ (1−Q∗({a}))

f(b)

1 + r

= β∗ + γ∗S0 ≥ C∗(f).

Combining with (6) we obtained the following.

Theorem 4. Assume that the payoff function is convex and continuous on [a, b], and that the weak limit
assumption holds. Then

C∗(f) = sup
Q∈P(P)

EQ
f(ρ)

1 + r
=
b− r
b− a

f(a)

1 + r
+
r − a
b− a

f(b)

1 + r
,

and the supremum is attained on the measure Q∗.

Exercise 4. Let ρ be uniform random variable on [a, b]. Show that the weak limit property holds.
Construct Pn explicitly!

Try to weaken the condition on the distribution of ρ.
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Figure 6: Bounding the lower price C∗

Let’s see the lower price C∗(f). Assume again that f in (4) is continuous and convex. Then

f(ρ) ≥ f(r) + (ρ− r)λ(r), (7) {eq:onestep-convex-lower}
for some λ(r). Here λ(r) = f ′(r) if f is smooth, but this is not assumed.

If Q ∈ P(P) then taking expectation in (7) and noting that EQρ = r we have

inf
Q∈P(P)

EQf(ρ) ≥ f(r).

Consider the strategy

β∗ =
f(r)

1 + r
− λ(r), γ∗ =

λ(r)

S0
.

Then, by (7), the value at 1

Xπ∗
1 = β∗(1 + r) + γ∗S0(1 + ρ) = f(r) + (ρ− r)λ(r) ≤ f(ρ),

that is (β∗, γ∗) is a lower hedge.
Assumption (weak limit-2): In the set P(P) there exists a sequence Pn, such that Pn converges

weakly to a measure Q∗ concentrated at r.
Again note that Q∗ does not belong to P(P), as it is not equivalent to any nondegenerate measure.
Then by the continuity

inf
Q∈P(P)

EQ
f(ρ)

1 + r
≤ lim
n→∞

EPn
f(ρ)

1 + r

=
f(r)

1 + r
= β∗ + S0γ∗

≤ sup{β + γS0 : (β, γ) lower hedge } = C∗.

Combined with (2) we obtain the following.
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Theorem 5. Let f be a convex continuous function on [a, b], and assume that the weak limit-2 assumption
holds. Then

C∗(f) = inf
Q∈P(P)

EQ
f(ρ)

1 + r
=

f(r)

1 + r
,

and the infimum is attained at the measure Q∗.

3.4 Complete markets

We proved that if EMM exists then we have the fair price for any replicable
payoff. A market is complete if any payoff is replicable.

We have seen in Theorem 3 that on a complete arbitrage-free market any
payoff f has a unique well-defined fair price B0EQf/BN .

In section 2.4 we showed that a binomial market is complete.
The second fundamental theorem of asset pricing is the following.

{thm:complete-market}
Theorem 6. Consider an arbitrage-free market with EMM Q. Then the
following are equivalent:

(i) the market is complete;

(ii) Q is the unique EMM;

(iii) for any Q-martingale (Mn) there exists a predictable sequence γn such
that Mn can be represented as

Mn = M0 +
n∑
k=1

γk

(
Sk
Bk

− Sk−1

Bk−1

)
= M0 +

n∑
k=1

d∑
i=1

γik

(
Sik
Bk

−
Sik−1

Bk−1

)
.

Proof. We prove again the easy parts (i)⇒ (ii), and (iii)⇔ (i), and postpone
the difficult (ii) ⇒ (i) implication later.

(i) ⇒ (ii): Assume that Q1 and Q2 are EMM’s. Consider any A ∈ F .
We show that Q1(A) = Q2(A) implying the uniqueness. Let π be a perfect
hedge to f = IA. Then Xπ

n/Bn is both Q1 and Q2 martingale, so

Q1(A) = EQ1f = EQ1X
π
N = BNEQ1

Xπ
N

BN

= BN
Xπ

0

B0

= . . . = Q2(A).

(i)⇒ (iii): Consider a Q-martingale Mn. There exists a strategy πn such
that a.s.

Xπ
N = BNMN .

18



Using that both Mn and Xπ
n/Bn are martingales

Mn = EQ[MN |Fn] = EQ

[
Xπ
N

BN

|Fn
]

=
Xπ
n

Bn

= βn + γn
Sn
Bn

.

Thus, using that π is SF

Mn −Mn−1 = ∆βn + γn
Sn
Bn

− γn−1
Sn−1

Bn−1

= γn

(
Sn
Bn

− Sn−1

Bn−1

)
+

1

Bn−1

(Bn−1∆βn + Sn−1∆γn)

= γn

(
Sn
Bn

− Sn−1

Bn−1

)
,

as claimed.
(iii) ⇒ (i): Consider a payoff f . We are looking for a strategy π such

that Xπ
N = f Q-a.s. We know that (Xπ

n/Bn)n is a martingale, so this should
be (Mn). Now the following choice is clear: let

Mn = EQ

[
f

BN

|Fn
]
.

Then Mn is a martingale, therefore by the assumption

Mn = M0 +
n∑
k=1

γk∆
Sk
Bk

.

Let

βn = Mn − γn
Sn
Bn

,

and consider the strategy πn = (βn, γn). To see that this is indeed a strategy
we have to show that it is predictable and SF. The sequence γn is predictable
by the assumption (iii), and βn is predictable because all the terms in Mn

are Fn−1-measurable except γnSn/Bn, which is subtracted. To see that it is
SF note that

Bn−1∆βn + Sn−1∆γn

= Bn−1

(
Mn −Mn−1 − γn

Sn
Bn

+ γn−1
Sn−1

Bn−1

)
+ Sn−1∆γn

= Bn−1

(
γn∆

Sn
Bn

− γn
Sn
Bn

+ γn−1
Sn−1

Bn−1

)
+ Sn−1∆γn = 0,
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showing that π is SF. It is clearly a perfect hedge since

Xπ
N = βNBN + γNSN = BNMN = f,

as claimed.

3.5 Proof of the difficult part of Theorem 2

Here we use strongly that Ω is finite, and let |Ω| = k.
Assume that there is no arbitrage strategy. Let

V0 = {X : Ω→ R r.v. |∃π : Xπ
0 = 0 and Xπ

N = X},

and
V1 = {X : Ω→ R r.v. |X ≥ 0,EX ≥ 1}.

We identify a random variable X : Ω → R with a vector in Rk, as X ↔
(X(ω1), . . . , X(ωk)). Clearly, V0 is a linear subspace and V1 is convex set in
Rk.

Since there is no arbitrage strategy, V0∩V1 = ∅. Therefore, by the Kreps–
Yan theorem, there exists a linear functional ` : Rk → R such that `|V0 ≡ 0
and `(v1) > 0 for all v1 ∈ V1. A linear function in Rk (in any Hilbert space)
is a inner product, thus there exists q ∈ Rk such that

`(v) = 〈v, q〉.

Define the random variables

Xi(ωj) = δi,j
1

P({ωi})
.

Then Xi ≥ 0 and EXi = 1, so Xi ∈ V1. Furthermore

`(Xi) =
qi

P({ωi})
> 0,

implying qi > 0 for any i. Define the probability measure Q as

Q({ωi}) =
qi∑k
i=1 qi

.

It is clear that Q ∼ P. We have to check that (Sn/Bn) is a Q-martingale.
First we need a lemma.
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Lemma 4. Let (Xn)Nn=1 be an adapted process. If for any stopping time
τ : Ω→ {0, . . . , N}

EXτ = EX0,

then (Xn) is martingale.

Proof. We show that Xn = E[XN |Fn], which implies that X is martingale.
Let A ∈ Fn and consider the stopping time

τA(ω) =

{
n, ω ∈ A,
N, otherwise.

This is indeed a stopping time, since {τA ≤ k} = ∅ for k < n, and A for
k ≥ n, which is Fk-measurable. Then, by the assumption

EX0 = EXτA = EXnI(A) + EXNI(Ac).

With A = ∅ we see that EX0 = EXN , implying

EXnI(A) = EXNI(A).

This exactly means that
Xn = E[XN |Fn],

as claimed.

We show that (Sn/Bn) satisfies the condition of the lemma above. Let τ
be a stopping time and define the strategy

βn =
Sτ
Bτ

I(τ ≤ n− 1)− S0

B0

, γn = I(τ > n− 1).

Since {τ < n} = {τ ≤ n − 1} ∈ Fn−1, the sequence (βn, γn) is predictable.
Furthermore,

Bn−1∆βn + Sn−1∆γn =
Sτ
Bτ

Bn−1I(τ = n− 1)− Sn−1I(τ = n− 1) = 0,

so it is SF. Finally,

Xπ
0 = −S0

B0

B0 + S0 = 0,
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Figure 7: Choice of y

so Xπ
N ∈ V0. Therefore

0 = EQX
π
N = EQβNBN + γNSN

EQ

((
Sτ
Bτ

I(τ ≤ N − 1)− S0

B0

)
BN +

Sτ
Bτ

I(τ = N)BN

)
= BNEQ

(
Sτ
Bτ

− S0

B0

)
.

That is (Sn/Bn) is indeed a Q-martingale.

3.6 Proof of the difficult part of Theorem 6

Here we prove the implication (ii) ⇒ (i).
We use the notation of the previous proof. Let

V2 = {X : Ω→ R r.v. |EQX = 0}.

Then V2 is a linear subspace in Rk and we have seen in the previous proof
that V0 ⊂ V2. We claim that equality holds.

Assume first that this is indeed true. Then for any claim X the centered
version X − EQX ∈ V2 = V0, meaning that there is a perfect hedge. Thus
the market is complete. So we only have to show that V0 = V2.

Assume on the contrary that V0 6= V2. Then there is an y ∈ V2, which is
orthogonal to V0. Since qi > 0 (see the previous proof) for all i = 1, . . . , k,
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we may choose ε > 0 small enough such that

q′i = qi − εyi > 0 for all i.

As both q and y are orthogonal to V0, q′ is also orthogonal. Define the
measure

Q′({ωi}) =
q′i∑k
i=1 q

′
i

.

Exactly as in the previous proof we can show that Q′ is EMM. The uniqueness
of the EMM implies

q′i∑k
i=1 q

′
i

=
qi∑k
i=1 qi

,

that is, using also the definition of q′,

q = αq′ = αq − αεy,

with α =
∑
qi/
∑
q′i. Thus

(1− α)q = −αεy.

But y and q are orthogonal, which is a contradiction. The proof is complete.

4 Girsanov’s theorem in discrete time

4.1 Second proof of the difficult part of Theorem 2
Assume that d = 1 and first consider the one-step model with B0 = B1 = 1. The stock price S0 is known,
and the only randomness here is S1.

Exercise 5. The no arbitrage assumption (in this simple market) is equivalent to

P(∆S1 > 0)P(∆S1 < 0) > 0.

Furthermore, (Sn) is Q-martingale if
EQS1 = S0.

Therefore we have to construct a measure Q such that EQ∆S1 = 0. This is done in the following lemma.

Lemma 5. Let X be a random variable on (R,B(R),P) such that P(X > 0)P(X < 0) > 0. Then there
exists a probability measure Q ∼ P such that EQX = 0. Furthermore, for any a ∈ R

EQe
aX <∞.
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Proof. Define the probability measure

P1(dx) = ce−x
2
F (dx),

where F (x) = P(X ≤ x) and c−1 =
∫
R e
−x2F (dx). That is

P1(A) =

∫
A
ce−x

2
F (dx).

Then P1 is equivalent to F . (Recall that µ is absolute continuous with respect to ν, µ � ν if µ(A) = 0
whenever ν(A) = 0. And µ and ν are equivalent, µ ∼ ν, if µ� ν and ν � µ.) Let

ϕ(a) = EP1e
aX =

∫
R
eaxP1(dx) = c

∫
R
eax−x

2
F (dx).

Clearly, ϕ(a) < ∞ for any a as the function eax−x
2

is bounded on R. Note that ϕ is convex, because
ϕ′′ > 0. Put

Za(x) =
eax

ϕ(a)
.

Then
Qa(dx) = Za(x)P1(dx)

is a probability measure for any a, and Qa ∼ P1 ∼ F . Again, this means

Qa(A) =

∫
A
Za(x)P1(dx) =

c

ϕ(a)

∫
A
eax−x

2
F (dx).

Let
ϕ∗ = inf

a∈R
ϕ(a).

Since P1(X > 0) > 0 and P1(X < 0) > 0 we obtain that

lim
a→±∞

ϕ(a) =∞.

Therefore, the infimum is attained, i.e. there is a∗ such that ϕ(a∗) = ϕ∗. Then ϕ′(a∗) = 0, thus

0 = ϕ′(a∗) = EP1
Xea∗X = ϕ(a∗)EP1

X
ea∗X

ϕ(a∗)
= ϕ(a∗)EQa∗X.

Thus the measure Qa∗ works.

Exercise 6. Prove rigorously that
lim

a→±∞
ϕ(a) =∞.

Exercise 7. Let X ∼ N(µ, σ2). Determine the measure constructed above explicitly.

Next we extend the previous lemma for a general N -step market.

Exercise 8. The no arbitrage assumption implies that for any n a.s.

P(∆Sn > 0|Fn−1)P(∆Sn < 0|Fn−1) > 0.
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As a preliminary result we have to understand how to compute conditional expectation under different
measures.

{lemma:condexp-measurechange}
Lemma 6. Let (Ω,F , (Fn)n=0,1,...,N ,P) a filtered probability space, and Z a nonnegative random vari-
able EPZ = 1. Define the new probability measure Q as

dQ = ZdP,

that is

Q(A) =

∫
A
ZdP.

Put Zn = EP[Z|Fn]. For any adapted process (Xn)

Zn−1EQ[Xn|Fn−1] = EP[XnZn|Fn−1].

Proof. Both sides are Fn−1-measurable. We have to prove that for any A ∈ Fn−1∫
A
Zn−1EQ[Xn|Fn−1]dP =

∫
A
XnZndP. (8) {eq:cemlemma-0}

First note that
EP[ZXn|Fn] = XnEP[Z|Fn] = XnZn. (9) {eq:cemlemma-1}

Therefore, for an Fn−1-measurable Y

EP[Zn−1Y |Fn−1] = YEP[Z|Fn−1],

implying for any A ∈ Fn−1 that

∫
A
Zn−1Y dP =

∫
A
YEP[Z|Fn−1]dP

=

∫
A
EP[ZY |Fn−1]dP =

∫
A
Y ZdP.

Choosing Y = EQ[Xn|Fn−1] we obtain

∫
A
Zn−1EQ[Xn|Fn−1]dP =

∫
A
EQ[Xn|Fn−1]ZdP

=

∫
A
EQ[Xn|Fn−1]dQ definition of Q

=

∫
A
XndQ conditional exp.

=

∫
A
XnZdP definition of Q

=

∫
A
XnZndP, by (9)

which is (8).

As a simple but useful corollary we obtain the following.

{cor:p-q-mtg}
Corollary 1. The adapted process (Xn) is Q-martingale if and only if (XnZn) is P-martingale.
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{lemma:existence-emm}
Lemma 7. Let (Xn)Nn=1 be an adapted process, and assume that

P(Xn > 0|Fn−1)P(Xn < 0|Fn−1) > 0.

Then there exists a probabilty measure Q ∼ P such that (Xn) is a Q-martingale difference.

Proof. First let

P1(dω) = c exp

{
−

N∑
i=0

X2
i (ω)

}
P(dω),

where c is the normalizing factor, i.e.

c−1 =

∫
Ω

exp

{
−

N∑
i=0

X2
i

}
dP = E exp

{
−

N∑
i=0

X2
i

}
.

This means that for A ∈ F

P1(A) = c

∫
A

exp

{
−

N∑
i=0

X2
i

}
dP.

Let
ϕn(a) = EP1

[eaXn |Fn−1].

Note that this is an Fn−1-measurable random variable. As in the proof of the previous lemma there is a
unique finite an (random!) such that the infimum of ϕn is attained at an. Since ϕn is Fn−1-measurable
so is an.

Let Z0 = 1, and recursively

Zn = Zn−1
eanXn

EP1
[eanXn |Fn−1]

.

Then (Zn) is a P1-martingale, since
EP1

[Zn|Fn−1] = Zn−1.

Then the probability measure
Q(dω) = ZN (ω)P1(dω)

works. Indeed,

EQ[Xn|Fn−1] =
1

Zn−1
EP1

[ZnXn|Fn−1] by Lemma 6

=
1

Zn−1

Zn−1

EP1 [eanXn |Fn−1]
EP1

[Xne
anXn |Fn−1] definition

=
1

EP1
[eanXn |Fn−1]

· 0 = 0. choice of an

Exercise 9. Show that an is Fn−1-measurable.

Now we can return to the proof of Theorem 2. The existence of the martingale measure follows from
the previous lemma applied to Xn = ∆Sn.
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4.2 ARCH processes
Autoregressive conditional heteroscedasticity (ARCH) models were introduced by Robert Engle in 1982
to model log-returns. In 2003 he obtained Nobel prize in economics for this model. The novelty in these
models is the stochastic volatility term.

Let

Rn = log
Sn

Sn−1

denote the log-return of the stock, and assume that

Rn = µn +
√
β + λR2

n−1ξn,

where ξn’s are iid N(0, 1) random variables. Then (Rn) is an ARCH(1) process. That is conditionally on
Fn−1 the log-return Rn is Gaussian with mean µn, and variance β + λR2

n−1. Write σn = β + λR2
n−1.

Then for Sn we obtain

Sn = Sn−1e
Rn = S0 exp

{
n∑
k=1

(
µk +

√
β + λR2

k−1ξk

)}

= S0 exp

{
n∑
k=1

(µk + σkξk)

}
.

In what follows we only assume that µn and σn are Fn−1-measurable, i.e. the sequence (µn, σn)n is
predictable, and (ξn) is adapted, ξn is independent of Fn−1, and N(0, 1) distributed. Put hn = µn+σnξn.
For simplicity we assume that Bn ≡ 1.

We construct a measure Q such that (Sn) is a Q-martingale. Let

ZN =

N∏
n=1

zn :=

N∏
n=1

eanhn

EP[eanhn |Fn−1]
,

where

an = −
µn

σ2
n

−
1

2
. (10) {eq:disc-girs-0}

Introduce the new measure Q as
dQ = ZNdP,

and let Zn = EP[ZN |Fn] =
∏n
i=1 zi.

By Corollary 1, to show that Sn is Q-martingale we have to show that SnZn is a P-martingale. We
have

EP[SnZn|Fn−1] = Sn−1Zn−1
EP[ehn(1+an)|Fn−1]

EP[eanhn |Fn−1]
.

Therefore we have to check that

EP[ehn(1+an)|Fn−1] = EP[eanhn |Fn−1]. (11) {eq:disc-girs-1}

Recall that for a standard normal ξ

Eetξ = e
t2

2 ,

thus

Eeµ+σξ = eµ+σ2

2 .

Since an in (11) is Fn−1-measurable and given Fn−1 the variable hn is Gaussian N(µn, σ2
n), we obtain

EP[ehn(1+an)|Fn−1] = eµn(1+an)+
σ2n(1+an)2

2 ,
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and

EP[ehnan |Fn−1] = eµnan+
σ2na

2
n

2 ,

By the choice of an in (10)

µn(1 + an) +
σ2
n(1 + an)2

2
= µnan +

σ2
na

2
n

2
.

Indeed, by (10)

µn + σ2
n

(
1

2
+ an

)
= 0.

That is, (11) holds.
We proved the following.

Theorem 7 (Discrete Girsanov’s theorem). Let (µn, σn)n be a predictable sequence and assume that the
stock prices are given by

Sn = e
∑n
k=1(µk+σkξk),

where (ξn)n is a adapted sequence of N(0, 1) random variables, ξn is independent of Fn−1. Further, let
Bn ≡ 1. Then, under the new measure

dQ = ZNdP

(Sn) is a martingale.

5 Pricing and hedging European options

In this section we summarize our findings on pricing and hedging, and con-
sider some special cases in detail.

5.1 Complete markets

Consider an arbitrage-free complete market. The fair price of the contingent
claim fN is

C(fN) = inf{x : ∃π,Xπ
0 = x, Xπ

N = fN}.

Then, by Theorems 2 and 6 there exists a unique EMM Q. Since (Xπ
n/Bn)

is Q-martingale

EQ
fN
BN

= EQ
Xπ
N

BN

= EQ
x

B0

=
x

B0

,

therefore

C(fN) = x =
B0

BN

EQfN .

Note that x is independent of the hedge π itself, that is for different hedges
the initial value is the same.
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For a hedge we need to know not only the fair price C, but also the
strategy π itself. For the given claim fN consider the martingale

Mn = EQ

[
fN
BN

∣∣∣∣Fn] .
By Theorem 6 there exists a representation

Mn = M0 +
n∑
k=1

γk∆
Sk
Bk

,

with a predictable sequence (γn). Let

βn = Mn −
γnSn
Bn

.

We proved that π = (βn, γn)n is an SF strategy and is a perfect hedge for
fN .

Summarizing, we obtained the following.

Theorem 8. In an arbitrary arbitrage-free complete market the price of the
contingent claim fN is

C(fN) = B0EQ
fN
BN

.

Moreover, there exists a strategy π which is a perfect hedge of fN , i.e.

Xπ
N = fN ,

where (βn, γn) are given above. The value process is determined by

Xπ
n = BnEQ

[
fN
BN

∣∣∣∣Fn] .
5.2 Homogeneous binomial market – CRR formula

Consider a homogeneous binomial N -step market with a < r < b. That is

Bn = (1 + r)n, Sn = S0

n∏
k=1

(1 + ρk),
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where ρk ∈ {a, b}. We proved that this market is arbitrage-free and complete,
and the unique EMM is given by

Q(ρi = a) =
b− r
b− a

,

and ρi’s are independent. If the claim fN only depends on the final price SN ,
and not on the whole trajectory, i.e.

fN(ω) = fN(SN(ω)),

then the pricing formula simplifies, and we obtain the Cox–Ross-Rubinstein
formula:

C(fN) =
1

(1 + r)N

N∑
k=0

fN(S0(1 + b)k(1 + a)N−k)

(
N

k

)
qk(1− q)N−k,

where q = r−a
b−a .

5.3 Incomplete markets

We assume that the market is arbitrage-free, but there are various EMM’s.
Let P(P) be the set of EMM’s.

In incomplete markets there are contingent claims which are not repli-
cable, that is, there is no perfect hedge. The upper price of a claim fN
is

C∗(fN) = inf{x : π, Xπ
0 = x, Xπ

N ≥ fN}.

We proved the following result in a one-step market. Without a proof we
state the general version.

Theorem 9. The upper price of the claim fN in an arbitrage-free incomplete
market is given by

C∗(fN) = sup
Q∈P(P)

B0EQ
fN
BN

.

6 American options

While European options can be exercised only at the terminal date N , Ameri-
can options can be exercised at any time. Formally, instead of a fixed random
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payoff function fN , a sequence of payoffs (fn)n=0,1,...,N is given, where fn is
Fn-measurable, i.e. (fn)n is adapted to (Fn)n. So fn is the random payoff
if the option is exercised at time n. Clearly, the exercise time has to be a
stopping time.

6.1 Optimal stopping problems

Consider a probability space with a filtration (Ω,F , (Fn)n=0,1,...,N ,P), and
let

MN
n = {τ : τ is a stopping time, τ ∈ {n, . . . , N}}.

To ease notation we suppress N in the upper index. Consider a sequence
of nonnegative adapted random variables (Xn)n, and define by backward
induction its Snell-envelope (Zn)n as follows. We are interested in the value

ZN = XN , Zn = max{Xn,E[Zn+1|Fn]}, n < N.

For a stopping time τ the stopped process is denoted by Zτ , i.e.

Zτ
n = Zτ∧n,

where a ∧ b = min{a, b}.

Proposition 2. Let (Zn) be the Snell-envelope of (Xn) with Xn ≥ 0 a.s.

(i) Z is the smallest supermartingale dominating X.

(ii) The random variable τ ∗ = min{n : Zn = Xn} is a stopping time and
the stopped process Zn∧τ∗ = Zτ∗

n is martingale.

Proof. From the definition it is clear that Z is supermartingale and dominates
X. Let Y be another supermartingale dominating X. Then YN ≥ XN = ZN .
Assuming that Yn ≥ Zn we have

Yn−1 ≥ max{E[Yn|Fn−1], Xn−1} ≥ max{E[Zn|Fn−1], Xn−1} = Zn−1.

Thus the minimality follows.
To see that τ ∗ is stopping time note that

{τ ∗ = n} = ∩n−1
k=0{Zk > Xk} ∩ {Zn = Xn}.

For the last assertion note that

Zτ∗

n − Zτ∗

n−1 = I(τ ∗ ≥ n)(Zn − Zn−1).
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On the event {τ ∗ ≥ n} we have Zn−1 = E[Zn|Fn−1] therefore

E[I(τ ∗ ≥ n)(Zn − Zn−1)|Fn−1] = 0.

A stopping time σ is optimal if

EXσ = sup
τ∈M0

EXτ .

Proposition 3. The stopping time τ ∗ is optimal for X, and

Z0 = EXτ∗ = sup
τ∈M0

EXτ .

Proof. Since Zτ∗ is martingale

Z0 = Zτ∗

0 = EZτ∗

N = EZτ∗ = EXτ∗ .

On the other hand for any stopping time τ the process Zτ is supermartingale
(by Doob’s optional sampling), thus

Z0 = EZτ
0 ≥ EZτ ≥ EXτ .

Proposition 4. The stopping time σ is optimal iff the following two condi-
tions hold.

(i) Zσ = Xσ;

(ii) Zσ is martingale.

Proof. If (i) and (ii) hold than σ is optimal. This follows exactly as the
optimality of τ ∗.

Conversely, assume that σ is optimal. We have seen that supτ EXτ = Z0

thus
Z0 = EXσ ≤ EZσ,

by the dominance of Z. By Doob’s optional stopping theorem Zσ is super-
martingale, therefore EZσ ≤ Z0, implying that

EXσ = EZσ.
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Since Zn ≥ Xn this implies Xσ = Zσ a.s., proving (i).
By the optimality EZσ = Z0, while the supermartingale property implies

Z0 ≥ EZσ∧n ≥ EZσ.

Thus
EZσ∧n = EZσ = EE[Zσ|Fn].

Furthermore, by Doob’s optional stopping

Zσ∧n ≥ E[Zσ|Fn],

implying Zσ∧n = E[Zσ|Fn]. Thus (Zσ
n) is indeed a martingale.

6.2 Pricing American options

Let us return to our pricing problem. Assume that we have an arbitrage-free
complete market, that is the EMM Q is unique. Let (fn)n=0,...,N be the payoff
of an American option. A hedging strategy now has to fulfill the conditions

Xπ
n ≥ fn, n = 0, 1, . . . , N,

as the option can be exercised at any time. A hedge is minimal, if for a
stopping time τ ∗ we have Xπ

τ∗ = fτ∗ .
By Doob’s optional stopping (Xπ

0 /B0, X
π
τ /Bτ ) is martingale for any stop-

ping time τ , i.e.
x

B0

= EQ
Xπ

0

B0

= EQ
Xπ
τ

Bτ

≥ EQ
fτ
Bτ

.

Therefore the initial cost of the hedge is at least

x ≥ B0 sup
τ∈MN

0

EQ
fτ
Bτ

.

At time N we need
Xπ
N ≥ fN .

At time N − 1 the holder either exercise the option or continues to time N ,
(in that case we discount the price), therefore

Xπ
N−1 ≥ max

{
fN−1,

BN−1

BN

EQ[fN |FN−1]

}
.
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Dividing by BN−1

Xπ
N−1

BN−1

≥ max

{
fN−1

BN−1

,EQ

[
fN
BN

∣∣∣∣FN−1

]}
.

Thus, we see the connection with the Snell-envelope.
For a hedging strategy π we have that

(i) (Xπ
n/Bn)n is a Q-martingale (since Q is EMM and π is SF), and

(ii) (Xπ
n/Bn) dominates (fn/Bn) (since π is a hedge).

Therefore, the value process of a hedge is larger than the Snell-envelope of
(fn/Bn), i.e.

Xπ
n

Bn

≥ Zn, n = 0, 1, . . . , N, (12) {eq:di-american-1}

where (Zn) is the Snell-envelope of (fn/Bn). The Snell-envelope (Zn) is
a supermartingale, therefore by the Doob-decomposition (that’s stated for
submartingale, but multiply by −1) we have

Zn = Mn − An, n = 0, 1, . . . , N, (13) {eq:di-american-2}

where Mn is a Q-martingale, and (An) is an increasing predictable sequence,
A0 = 0. Comparing (12) and (13) we see that for n ≤ τ ∗

Xπ
n

Bn

≥Mn.

On the other hand, the market is complete, which implies (see the easy parts
of the proof of Theorem 6) that there exists a strategy π such that

Xπ
n

Bn

= Mn, n = 0, 1, . . . , N.

This is a minimal hedging strategy with initial cost

x

B0

=
Xπ

0

B0

= M0 = Z0.

{thm:price-di-american}
Theorem 10. Consider an aribtrage-free complete market with unique EMM
Q. Let (fn) be the nonnegative payoff sequence of an American option. Let
(Zn) be the Snell-envelope of the discounted payoff sequence (fn/Bn). The
fair price for this option is

C = B0Z0 = B0 sup
τ∈MN

0

EQ
fτ
Bτ

= B0EQ
fτ∗

Bτ∗
,
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where τ ∗ is an (not unique in general) optimal exercise time given by

τ ∗ = min

{
n :

fn
Bn

= Zn

}
.

Furthermore, there exists a SF strategy π which is an optimal hedge with
initial cost C and

Xπ
τ∗ =

fτ∗

Bτ∗
.

6.3 American vs. European options

Clearly, an American option with payoff sequence (fn)n=0,1,...,N worth at least
as a European option with payoff fN . However, in some cases the fair prices
are equal.

Consider an American call option with strike price K, that is

fn = f(Sn) = (Sn −K)+.

Assume that the deterministic sequence (Bn) is nondecreasing (i.e. the inter-
est rate is nonnegative). Let (Zn) denote the Snell envelope of (fn/Bn), that
is

ZN =
fN
BN

, Zn = max

{
fn
Bn

,E [Zn+1|Fn]

}
, n = 0, 1, . . . , N − 1.

Using that (Sn/Bn) is a Q-martingale, by Jensen’s inequality

fN−1

BN−1

=
(SN−1 −K)+

BN−1

=

(
SN−1

BN−1

− K

BN−1

)
+

≤ EQ

[(
SN
BN

− K

BN−1

)
+

∣∣∣∣FN−1

]
Jensen’s inequality

≤ EQ

[(
SN
BN

− K

BN

)
+

∣∣∣∣FN−1

]
by BN ≥ BN−1

= EQ

[
(SN −K)+

BN

∣∣∣∣FN−1

]
= EQ[ZN |FN−1].
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This means that at time N − 1 it is always good to hold the option and
continue to step N .

An induction argument shows that at any time it is better to hold the
option. Indeed, assume for some n

fn
Bn

≤ EQ[Zn+1|Fn].

We just proved this for n = N − 1. The same way as above we have

fn−1

Bn−1

=
(Sn−1 −K)+

Bn−1

=

(
Sn−1

Bn−1

− K

Bn−1

)
+

≤ EQ

[(
Sn
Bn

− K

Bn−1

)
+

∣∣∣∣Fn−1

]
Jensen’s inequality

≤ EQ

[(
Sn
Bn

− K

Bn

)
+

∣∣∣∣Fn−1

]
by Bn ≥ Bn−1

= EQ

[
(Sn −K)+

Bn

∣∣∣∣Fn−1

]
= EQ

[
fn
Bn

∣∣∣∣Fn−1

]
≤ EQ

[
EQ[Zn+1|Fn]

∣∣Fn−1

]
induction

≤ EQ[Zn|Fn−1] Z supermartingale

Thus τ ∗ ≡ N is an optimal stopping time, which means that no matter what
happens, we wait until the end. Then the American option behaves as the
European, so the prices are equal.

Theorem 11. Assume that the market is arbitrage free and complete, and
the interest rate is nonnegative. Then the price of a European call option
equals to the price of the American call option.
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7 Stochastic integration

7.1 Lévy characterization

One can define stochastic integral with respect to more general processes.
The process (Xt) is a continuous semimartingale if

Xt = Mt + At,

where Mt is a continuous martingale and At is of bounded variation, and
both are adapted.

We can define stochastic integral with respect to semimartingales. Indeed,
integral with respect to At can be defined pathwise, since A is of bounded
variation, and integration with respect to continuous Mt can be defined sim-
ilarly as for SBM.

We recall Itô’s formula.

Theorem 12 (Itô formula for semimartingales). Let Xt = Mt + At be a
continuous semimartingale, and let f ∈ C2. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈M〉s.

We have seen that if Wt is SBM, then it Wt is a continuous martingale,
and W 2

t − t is a martingale. It turns out that this characterizes SBM.

Theorem 13 (Lévy’s characterization of SBM). Let Mt be a continuous
martingale, such that M0 = 0, and M2

t − t is martingale. Then Mt is SBM.

Proof. We determine the conditional characteristic function of Mt with re-
spect to Fs, t > s. Apply Itô with f(x) = eiux, where u ∈ R is arbitrary but
fixed. Since f ′(x) = iueiux, f ′′(x) = −u2eiux, and by assumption 〈M〉t = t,
therefore

eiuMt − eiuMs =

∫ t

s

iueiuMvdMv +
1

2

∫ t

s

(−u2)eiuMvdv.

Let A ∈ Fs arbitrary. Multiplying by e−iuMs , and integrating on A we get

E
[
eiu(Mt−Ms)IA

]
= P(A)− u2

2

∫ t

s

E
[
eiu(Mv−Ms)IA

]
dv.
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With A and s fixed, define

gA,s(t) = g(t) = E
[
eiu(Mt−Ms)IA

]
.

With this notation

g(t) = P(A)− u2

2

∫ t

s

g(v)dv.

Differentiating we obtain

g′(t) = −u
2

2
g(t), g(s) = P(A).

Therefore, the solution

g(t) = P(A) · e−
u2

2
(t−s).

This holds for any A ∈ Fs, which means that

E
[
eiu(Mt−Ms)|Fs

]
= e−

u2

2
(t−s)

for u ∈ R. That is the increment Mt − Ms is independent of Fs, and it
is Gaussian with mean 0 and variance (t − s). Since it is continuous, it is
SBM.

Note that the continuity assumption is important. Indeed, if Nt is a
Poisson process with intensity 1, then both (Nt − t) and (Nt − t)2 − t are
martingales.

7.2 Girsanov’s theorem

Let (Ω,A,P) be a probability space, and (Ft) a filtration. Let Q be another
probability measure on (Ω,A), which is absolute continuous with respect to
P, i.e. Q� P. Let M∞ denote the Radon–Nikodym-derivative,

M∞ =
dQ

dP
,

that is

Q(A) =

∫
A

M∞dP.
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In what follows, we have more (usually 2) probability measures, therefore
we put in the lower index of E the corresponding measure. That is EPX =∫

Ω
XdP, and EQX =

∫
Ω
XdQ. Note that the notion of martingale does

depend on the underlying measure. Therefore, we have P-martingale, and
Q-martingale.

Define the P-martingale

Mt = EP[M∞|Ft].
{lemma:p-q-mtg}

Lemma 8. The adapted process (Xt) is Q-martingale if and only if (MtXt)
is P-martingale.

Proof. Since
EP[M∞Xt|Ft] = XtMt,

for each A ∈ Ft ∫
A

XtM∞dP =

∫
A

XtMtdP.

Therefore, if A ∈ Fs ⊂ Ft, then∫
A

XtdQ =

∫
A

XtM∞dP =

∫
A

XtMtdP∫
A

XsdQ =

∫
A

XsM∞dP =

∫
A

XsMsdP.

Then (Xt) is Q-martingale if the left-hand sides are equal for each A ∈ Fs,
s < t, which is obviously equivalent to the equality of the right-hand sides,
which means that (MtXt) is P-martingale.

Let

ζst =

∫ t

s

θudWu −
1

2

∫ t

s

θ2
udu, ζt = ζ0

t ,

where θt is adapted. Then Zt = eζt satisfies the SDE

Zt = 1 +

∫ t

0

ZsXsdWs. (14) {eq:Gir-sde}

We use this formula in the proof of Girsanov’s theorem. We can write the
SDE above as

dZt = ZtXtdWt, Z0 = 1.
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Indeed, rewriting ζ as an Itô process

ζt =

∫ t

0

−1

2
θ2
udu+

∫ t

0

θudWu.

Using the Itô formula with f(x) = ex, we obtain

Zt = eζt = 1 +

∫ t

0

eζsdζs +
1

2

∫ t

0

eζsθ2
sds

= 1 +

∫ t

0

eζs
(
−1

2
θ2
sds+XsdWs

)
+

1

2

∫ t

0

eζsθ2
sds

= 1 +

∫ t

0

eζsθsdWs

= 1 +

∫ t

0

ZsθsdWs,

as claimed. We also see that Zt is a martingale.

Exercise 10. Let ζt as above. Prove that Yt = e−ζt satisfies the SDE

dYt = Ytθ
2
t dt− θtYtdWt, Y0 = 1.

{thm:Girsanov}
Theorem 14 (Girsanov’s theorem). Let (θt) be an adapted process, such that∫ T

0
θ2
sds <∞ a.s., and assume that

Λt = exp

{
−
∫ t

0

θsdWs −
1

2

∫ t

0

θ2
sds

}
(15) {eq:Lambda}

is P-martingale, where (Wt) is P-SBM. Define Qθ = Q

dQθ

dP

∣∣∣∣
FT

= ΛT .

Then W̃t = Wt +
∫ t

0
θsds is Q-SBM.

Remark 1. We have seen above that Λt is martingale. In fact, in general it is
only local martingale, and we need integrability conditions. These technical
assumptions are omitted.
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Proof. First we show that Q is indeed a probability measure. By (14)

Λt = 1−
∫ t

0

ΛsθsdWs,

which is martingale, so
EPΛT = EPΛ0 = 1.

Since ΛT > 0 we see that Q is probability measure.
Next we show that W̃ satisfies the conditions of the Lévy characterization.
The continuity is clear, since W is SBM and Q� P. By Lemma 8 (W̃t)

is Q-martingale iff (W̃tΛt) is P-martingale. We apply the Itô formula with
f(x, y) = xy and the Itô process

W̃t =

∫ t

0

θsds+

∫ t

0

1dWs

Λt = 1−
∫ t

0

ΛsθsdWs.

Then

ΛtW̃t =

∫ t

0

W̃sdΛs +

∫ t

0

ΛsdW̃s +

∫ t

0

−Λsθsds

= −
∫ t

0

W̃sΛsθsdWs +

∫ t

0

Λs (θsds+ dWs)−
∫ t

0

Λsθsds

=

∫ t

0

Λs(1− θsW̃s)dWs,

which is P-martingale. Thus (W̃t) is Q-martingale.

Next we show that (W̃ 2
t − t) is Q-martingale. Again, by Itô’s formula

with f(x) = x2

W̃ 2
t = 2

∫ t

0

W̃sdW̃s +
1

2

∫ t

0

2dt,

from which

W̃ 2
t − t = 2

∫ t

0

W̃s (θsds+ dWs) .

Therefore

Λt(W̃
2
t − t) =

∫ t

0

Λs2W̃s (θsds+ dWs) +

∫ t

0

(W̃ 2
s − s)dΛs −

∫ t

0

Λsθs2W̃sds

=

∫ t

0

[
2ΛsW̃s − (W̃ 2

s − s)Λsθs

]
dWs,
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which is P-martingale. Thus (W̃ 2
t − t) is Q-martingale, and the proof is

complete.

Finally, we state without proof (and precise statement) the martingale
representation theorem.

{thm:martingale-repr}
Theorem 15 (Martingale representation theorem). Let (Wt) SBM on (Ω,A,P),
and let (Ft) the generated filtration, together with the P-zero sets. If (Mt) is
continuous square integrable martingale with M0 = 0 a.s., then there exists
an adapted (Yt) such that

Mt =

∫ t

0

YsdWs.

8 Continuous time markets in general

The general notations are the same as in the discrete time setup.
In what follows, we work on the finite time horizon [0, T ], T < ∞. Let

(Ω,A,P) be a probability space, and (Ft) a filtration. There are two financial
instruments on the market, the bond, which is the riskless asset, and the
stock, which is the risky asset. The price process of the bond is given by the
deterministic process (Bt = ert), r ∈ R being the continuous interest rate,
while the price process of the stock is (St), which is nonnegative, adapted to
(Ft). Furthermore, we assume that (St) is an Itô process.

A strategy / portfolio is a process (πt = (βt, γt)), where the components
are adapted and ∫ T

0

|βt|dt <∞,
∫ T

0

γ2
t dt <∞, a.s.

The process βt represents the amount of bonds at time t, while γt is the
amount of stock. Both processes are real valued (short selling is possible).

The value of the portfolio (π) at t is

Xπ
t = βtBt + γtSt. (16) {eq:ertekfoly}

Recall that in discrete time an equivalent formulation of self-financing
portfolio is

Xn+1 −Xn = βn+1(Bn+1 −Bn) + γn+1(Sn+1 − Sn).
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The continuous time analogue of the above is the SDE

dXπ
t = βtdBt + γtdSt.

The strategy (πt = (βt, γt)) is self-financing (SF) if it satisfies the SDE

dXπ
t = βtdBt + γtdSt. (17) {eq:onfin}

In what follows all strategies are SF unless otherwise stated.
The discounted processes are defined as (St = StB0/Bt) and (X

π

t =
Xπ
t B0/Bt).

{all:onfin-ekv}
Proposition 5. A strategy (πt = (βt, γt)) is SF iff

X
π

t = Xπ
0 +

∫ t

0

γsdSs, t ∈ [0, T ].

Proof. Assume that π is SF. Then, by Itô’s formula

dX
π

t = d
(
e−rtXπ

t

)
= −re−rtXπ

t dt+ e−rtdXt

= −re−rt(βtert + γtSt)dt+ e−rt
(
βtde

rt + γtdSt
)

= −re−rtγtStdt+ e−rtγtdSt

= γtd
(
e−rtSt

)
,

as claimed.
For the reverse direction, we have

dX
π

t = γtdSt.

Since Xπ
t = βte

rt + γtSt, so

dX
π

t = −re−rtXπ
t dt+ e−rtdXπ

t = −e−rtβtdBt − re−rtγtStdt+ e−rtdXπ
t .

The right-hand side

γtdSt = −re−rtγtStdt+ γte
−rtdSt.

The equality of the sides gives

dXπ
t = βtdBt + γtdSt,

which is the definition of SF.
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An SF strategy π is arbitrage, if Xπ
0 = 0 a.s., XT ≥ 0 a.s., and P(Xπ

T >
0) > 0. The market is arbitrage free if there exists no arbitrage strategy.

A probability measure Q is equivalent martingale measure (EMM) if P ∼
Q (that is P� Q and Q� P), and (St) is Q-martingale.

We have seen in the discrete time setup that the existence of EMM is
equivalent to the arbitrage free property. One of the implications is rather
simple in the continuous time setup. Assume that Q is EMM, and let π
be an (SF) strategy. By Proposition 5 the discounted value process has the
representation

X
π

t = Xπ
0 +

∫ t

0

γsdSs.

Since (St) is Q-martingale, and X
π

t is a stochastic integral with respect to
S, we see that (X

π

t ) is Q-martingale. (Recall the discrete time analogue of
this statement.) Therefore

EQX
π

T = EQX
π
0 .

Since P ∼ Q, Xπ
0 = 0, Xπ

T ≥ 0 P-a.s., implies Q-a.s. Then EQX
π

T =
EQX

π
0 = 0, from which Xπ

T ≡ 0 Q-a.s., and so P-a.s.
We proved the following.

Theorem 16. Assume that on the market (Ω,A,P, (St), (Bt = ert), (Ft))
there exists EMM. Then the market is arbitrage free.

9 Black–Scholes model

In a special model we explicitly construct the EMM via Girsanov’s theorem,
and compute the fair price of a payoff. In particular, we prove the Nobel-
prize winner Black–Scholes pricing formula, which gives the fair price of a
European call option.

9.1 The model

Fix r > 0, µ ∈ R and σ > 0. Let (Ω,A,P) be a probability space, (Wt) SBM
on [0, T ], T < ∞, and Ft be the generated filtration. The bond and stock
price in the Black–Scholes-model is given by

dBt = rBt dt, B0 = 1,

dSt = µSt dt+ σSt dWt, S0 = S0.,
(18) {eq:black-shcholes}
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From the form of St we immediately see that St is a martingale if and
only if µ = 0.

The bond price is simply Bt = ert.
Writing St as an Itô process

St = S0 +

∫ t

0

µSsds+

∫ t

0

σSsdWs.

Applying Itô with f(x) = log x

logSt = logS0 +

∫ t

0

1

Ss
(µSsds+ σSsdWs) +

1

2

∫ t

0

− 1

S2
s

σ2S2
sds

= logS0 + σWt +

(
µ− σ2

2

)
t.

From which

St = S0 · e
σWt+

(
µ−σ

2

2

)
t
. (19) {eq:exp-BM}

This is the exponential Brownian motion.
Note that the proof is not complete, because the logarithm is not smooth

at 0. The argument above only helps to find out the solution. (A more
constructive approach is to apply Itô with a general f , and then choose f to
obtain a solvable equation.)

Exercise 11. Prove that (19) is indeed a solution.

9.2 Equivalent martingale measure and the fair price

As an application of Girsanov’s theorem, we construct a new measure, such
that St is a martingale under this measure.

By (18)

dSt = St ((µ− r)dt+ σdWt) = StσdW̃ µ
t , (20) {eq:tildeS}

where

W̃ µ
t = Wt +

µ− r
σ

t. (21) {eq:tildeW}

Therefore, we need a measure Q such that the process W̃ µ
t is Q-SBM.

Then, by (20) (St) is Q-martingale.
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Let θt ≡ θ = µ−r
σ

, and

dQ

dP

∣∣∣∣
FT

= ΛT = exp

{
−
∫ T

0

θdWs −
1

2

∫ T

0

θ2ds

}
= e−θWT− θ

2T
2 .

By Girsanov’s theorem (Theorem 14) the shifted process (W̃ µ
t ) is Q-SBM,

thus (St) is Q-martingale. Since ΛT > 0 a.s., P ∼ Q, therefore Q is EMM.
By (20)

St = S0 · eσW̃
µ
t −

σ2

2
t. (22) {eq:S-mu}

Next, we determine the fair price of a claim fT , for which Ef 2
T <∞. Let

Nt = EQ

[
e−rTfT |Ft

]
, 0 ≤ t ≤ T.

By the martingale representation theorem (Theorem 15) there exists an
adapted process Yt, such that

Nt = N0 +

∫ t

0

YsdW̃
µ
s , (23) {eq:N-def}

where N0 = EQe
−rTfT . Define the strategy πt = (βt, γt) as

βt = Nt −
Yt
σ
, γt =

Yte
rt

σSt
.

Lemma 9. The strategy (πt = (βt, γt)) is self-financing and X
π

t = Nt.

Proof. By the definition

Xπ
t = βtBt + γtSt =

(
Nt −

Yt
σ

)
ert +

Yt
σ
ert = ertNt,

i.e. X
π

t = Nt.
In order to show that π is SF, by Proposition 5 we need that dX

π

t = γtdSt.
By (23)

dX
π

t = dNt = YtdW̃
µ
t ,

while (20) gives

γtdSt = γtStσdW̃ µ
t = YtdW̃

µ
t .
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Since
Xπ
T = erTNT = erTEPµ

[
e−rTfT |FT

]
= fT ,

π is a perfect hedge for fT , and Xπ
0 = N0 = EQe

−rTfT . Therefore, we proved
the following.

{thm:bs-price}
Theorem 17. In the Black–Scholes model the fair price of the contingent
claim fT is

CT (fT ) = EQe
−rTfT .

Furthermore, πt = (βt, γt),

βt = Nt −
Yt
σ
, γt =

Yte
rt

σSt
,

is a perfect hedge, where Nt = EQ[e−rTfT |Ft], and Nt = N0 +
∫ t

0
YsdW̃

µ
s .

9.3 Black–Scholes formula

The famous Black–Scholes formula gives the fair price of a European call
option. In this case the payoff function is fT = (ST −K)+, where K is the
strike price. By Theorem 17, the fair price is

CT (K) = EQ

(
e−rT (ST −K)+

)
.

By (22)

ST = S0e
rT eσW̃

µ
T−

σ2

2
T ,

where W̃ µ
T ∼ N(0, T ) under Q. Therefore, writing Z for a standard normal

CT (K) = EQ

(
e−rT (ST −K)+

)
= EQ

(
S0e

σW̃µ
T−

σ2

2
T − e−rTK

)
+

= E
(
S0e

σ
√
TZ−σ

2

2
T − e−rTK

)
+

=
1√
2π

∫ ∞
γ

(
S0e

σ
√
Tx−σ

2

2
T − e−rTK

)
e−

x2

2 dx

= S0
1√
2π

∫ ∞
γ

e−
(x−σ

√
T )2

2 dx− e−rTK(1− Φ(γ))

= S0

(
1− Φ(γ − σ

√
T )
)
− e−rTK(1− Φ(γ)),

(24) {eq:BS-calc}
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where

γ =
1

σ
√
T

[
log

K

S0

+

(
σ2

2
− r
)
T

]
.

The pricing formula

CT (K) = S0

(
1− Φ(γ − σ

√
T )
)
− e−rTK(1− Φ(γ))

is the Black–Scholes formula, which was published by Fischer Black and
Myron Scholes in 1973. The underlying theory was generalized later by
Merton. In 1997, Scholes and Merton received the Nobel prize for this (Black
died in 1995).

9.4 From CRR to Black–Scholes

Here we derive the Black–Scholes formula as the limit of the discrete CRR
pricing formula. This part is based on [1], section 2.6.

Consider the continuous model on [0, T ]. Let r > 0 be the continuous
interest rate and σ > 0 the volatility. In the approximating discrete model
choose, for N fixed

0 = τ0 < τ1 < . . . < τN = T, τi =
i

N
T

Put h = T/N . The parameters of the N -step homogeneous binomial market
are rN , aN , and bN . The price of the bond and stock is denoted by BN

τi
and

SNτi , respectively.
Choose

rN = r
T

N
= rh, log

1 + bN
1 + rN

= σ
√
h, log

1 + aN
1 + rN

= −σ
√
h. (25) {eq:rab-choice}

It is easy to show that this implies

BN
τ tN
T

= (1 + rN)b
tN
T
c → ert = Bt,

which in fact suggests the choice of rN . Similar, but more complicated cal-
culations gives that with the choice above VarSNτN converges.

In the homogeneous binomial model the EMM was given by the upwards
step probability

p∗N =
rN − aN
bN − aN

.
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Under the EMM

SNτN = S0(1 + bN)YN (1 + aN)N−YN = S0

(
1 + bN
1 + aN

)YN
(1 + aN)N , (26) {eq:crrS_N}

where YN ∼ Binomial(N, p∗N).
The CRR pricing formula gives

CN(K) = E∗N
(SNτN −K)+

BN
τN

. (27) {eq:crr-ar}

By the central limit theorem (Lindeberg–Feller theorem)

YN −Np∗N√
Np∗N(1− p∗N)

D−→ N(0, 1), N →∞, (28) {eq:Y_N-conv}

whenever 0 < lim infN→∞ p
∗
N ≤ lim supN→∞ p

∗
N < 1. Simple calculation gives

that limN→∞ p
∗
N = 1/2, so (28) holds. Rewriting (26)(

1 + bN
1 + aN

)YN
(1 + aN)N = exp

{
YN log

1 + bN
1 + aN

+N log(1 + aN)

}
= exp

{
YN −Np∗N√
Np∗N(1− p∗N)

√
Np∗N(1− p∗N) log

1 + bN
1 + aN

+N

(
p∗N log

1 + bN
1 + aN

+ log(1 + aN)

)}
.

By (28) we need to determine the limits

lim
N→∞

√
Np∗N(1− p∗N) log

1 + bN
1 + aN

, and lim
N→∞

N

(
p∗N log

1 + bN
1 + aN

+ log(1 + aN)

)
.

Taylor expansion and (25) gives

1 + bN = eσ
√
h(1 + rN) =

(
1 + σ

√
h+

σ2

2
h+O(h3/2)

)
(1 + rh)

= 1 + σ
√
h+

(
σ2

2
+ r

)
h+O(h3/2),

thus

bN = σ
√
h+

(
σ2

2
+ r

)
h+O(h3/2).

49



Similarly,

aN = −σ
√
h+

(
σ2

2
+ r

)
h+O(h3/2).

From this

p∗N =
rN − aN
bN − aN

=
σ
√
h− σ2

2
h+O(h3/2)

2σ
√
h+O(h3/2)

=
1

2 +O(h)
− σ
√
h+O(h)

4 +O(h)

=
1

2
− σ

4

√
h+O(h).

Substituting back, and using the second order expansion log(1 + x) = x −
x2/2 +O(x3), x→ 0, we obtain

lim
N→∞

√
Np∗N(1− p∗N) log

1 + bN
1 + aN

= lim
N→∞

√
p∗N(1− p∗N)2σ

√
T = σ

√
T ,

and

lim
N→∞

N

(
p∗N log

1 + bN
1 + aN

+ log(1 + aN)

)
= lim

N→∞
N

([
1

2
− σ

4

√
T

N
+O(N−1)

]
2σ

√
T

N
− σ

√
T

N
+ r

T

N
+O(N−3/2)

)

=

(
r − σ2

2

)
T.

Substituting back into (27)

lim
N→∞

CN(K) = e−rTE∗
(
S0e

σ
√
TZ+T

(
r−σ

2

2

)
−K

)
+

= E∗
(
S0e

σ
√
TZ−σ

2

2
T − e−rTK

)
+
,

which is exactly the second line in (24).
In fact, we need the convergence of moments, that is, uniform integrabil-

ity. That can be done with a little more work, but the details are skipped.
It is important to note that not only the price convergence, but the whole
process (SNτi ) converges to the exponential Brownian motion. This follows
from Donsker’s theorem.
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10 Interest rate models

10.1 The general setup

In what follows we are interested in options on bonds instead of stocks.
Therefore, we assume that the stock price Bt is also random. The bond price
is given by

Bt = exp

{∫ t

0

rudu

}
, (29) {eq:bond}

where rt, the interest rate is an adapted stochastic process. The time interval
is [0, T ]. The stock price is given by

St = S0 +

∫ t

0

µ(u)Sudu+

∫ t

0

σuSudWu, (30) {eq:stock}

with some adapted process µ and σ. Note that the bond price Bt is a stochas-
tic process too, but it is much smoother than the stock price St, as it is the
exponential of the Lebesgue integral of a stochastic process. In particular,
the path of Bt are of bounded variation, while the path of St are not. (Re-
call that an Itô process is of bounded variation if and only if the stochastic
integral part vanishes.)

We want to find an equivalent martingale measure. For the discounted
stock price St = St/Bt

d
St
Bt

= d
(
Ste
−
∫ t
0 rudu

)
= e−

∫ t
0 rudSt + St(−rt)e−

∫ t
0 rududt

= St ((µt − rt)dt+ σtdWt)

= StσtdW̃t,

where

W̃t =

∫ t

0

θsds+Wt,

with θs = µs−rs
σs

. Applying Girsanov’s theorem W̃t is SBM under the measure
Qθ, where

dQθ

dP
= exp

{
−
∫ T

0

θsdWs −
1

2

∫ T

0

θ2
sds

}
.
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Therefore, under Qθ the discounted stock price St is a martingale, i.e. Qθ is
an equivalent martingale measure.

We are not interested in the specific form of the underlying risky asset
(St) in (30), but we assume that there exists a unique equivalent martingale
measure (that is (St/Bt) is martingale). This will be the only measure on
the probability space, therefore it is denoted by P (instead of Qθ).

Formally, let (Ω,A, (Ft),P) be a filtered probability space, (ru) an adapted
stochastic process, and (Bt) is given by (29). We assume that the risky as-
set (St) is an adapted stochastic process, such that (St/Bt)t is a martingale
under P, and P is the unique such measure.

A zero coupon bond (elemi kötvény) maturing at time T is a claim that
pays 1 at time T . Its value at time t ∈ [0, T ] is denoted by P (t, T ), 0 ≤ t ≤
T ≤ T .

From the pricing theorem we see that the fair price of the zero coupon
bond at time 0 is

P (0, T ) = E

[
1

BT

]
,

thus at time 0 ≤ t ≤ T

P (t, T ) = BtE

[
1

BT

∣∣∣Ft] = E

[
exp

{
−
∫ T

t

rudu

} ∣∣∣Ft] . (31) {eq:P(tT)}

A term structure model (hozamgörbe modell) is a mathematical model for
the prices P (t, T ).

We are interested in pricing bond options. The fair price at time 0 of a
European call option with strike price K at expiry date T1 for a zero coupon
bound with expiry date T2, where T2 > T1, is given by

Ee−
∫ T1
0 rudu (P (T1, T2)−K)+ . (32) {eq:bond-calleu}

10.2 Short rate diffusion models

In short rate diffusion models the interest rate rt is given as a solution of a
stochastic differential equation.

10.2.1 Ornstein–Uhlenbeck process

Consider the Langevin equation

dYt = −µYt dt+ σ dWt,
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where µ > 0, σ > 0, and Y0 is independent of σ(Ws : s ≥ 0).
The solution of the homogeneous equation is e−µt. Taking the derivative

of eµtYt we obtain

d
(
eµtYt

)
= eµt dYt + µ eµtYt dt = eµt σ dWt,

which gives

Yt = e−µt
(
Y0 +

∫ t

0

eµs σ dWs

)
.

This is the Ornstein–Uhlenbeck process. The integral of a deterministic func-
tion with respect to SBM is Gaussian, thus

Yt − e−µtY0

is normal with mean and variance

EYt = e−µt EY0,

EY 2
t = e−2µt EY 2

0 + e−2µt

∫ t

0

σ2 e2µs ds = e−2µt EY 2
0 +

σ2

2µ
(1− e−2µt).

We see that as t→∞

Yt
D−→ N(0, σ2/(2µ)).

Taking the limit for the initial distribution Y0 we see that (Yt) is Gaussian
and

Yt ∼ N

(
0,
σ2

2µ

)
.

Next we determine the covariance function of Y . Since

Yt = e−µt
(
Y0 +

∫ t

0

σ eµu dWu

)
we get

Yt − e−µ(t−s)Ys = e−µt
∫ t

s

σ eµu dWu, t > s, (33) {eq:ou-fgt}

which is independent of σ(Wu : u ≤ s) σ. Therefore,

Cov(Yt, Ys) = EYtYs = E
(
Yt − e−µ(t−s)Ys + e−µ(t−s)Ys

)
Ys

= e−µ(t−s) EY 2
s =

σ2

2µ
e−µ(t−s),
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which depends only on t− s. That is (Yt) is stationary.
Using formula (33) for A ∈ B(R)

P(Yt ∈ A|Yu : u ≤ s, Ys = x)

= P(Yt − e−µ(t−s)Ys ∈ A− e−µ(t−s)x|Yu : u ≤ s, Ys = x)

= P(Yt − e−µ(t−s)Ys ∈ A− e−µ(t−s)x).

The variable Yt − e−µ(t−s)Ys is mean zero Gaussian with variance

E
(
Yt − e−µ(t−s)Ys

)2
= e−2µt

∫ t

s

σ2e2µudu =
σ2

2µ

(
1− e−2µ(t−s)) .

Substituting s = 0

pt(·|x) ∼ N

(
e−µtx,

σ2

2µ

(
1− e−2µt

))
,

that is, the transition density

ρt(y|x) =

√
µ

πσ2(1− e−2µt)
exp

{
−µ(y − e−µtx)2

σ2(1− e−2µt)

}
.

We proved that (Yt) is a continuous stationary Markov process. It can be
shown that this characterizes the OU process.

Finally, we spell out the Kolmogorov equations. The backward is

∂

∂t
ρt(y|x) = −µx ∂

∂x
ρt(y|x) +

σ2

2

∂2

∂x2
ρt(y|x),

which is called Fokker–Planck equation. The forward is

∂

∂t
ρt(y|x) = − ∂

∂y
(−µyρt(y|x)) +

σ2

2

∂2

∂y2
ρt(y|x).

10.2.2 Vasicek model

For r0, a, b, σ given positive numbers let rt is given by the stochastic differ-
ential equation

drt = a(b− rt)dt+ σdWt, (34) {eq:vasicek}
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where Wt is a standard Brownian motion. Thus rt is a translated Ornstein–
Uhlenbeck process. Indeed, Xt = rt − b satisfies

dXt = drt = −aXtdt+ σdWt,

thus

Xt = e−at
(
X0 +

∫ t

0

easσdWs

)
,

from which

rt = b+ e−at
(
r0 − b+

∫ t

0

easσdWs

)
.

Thus rt is normally distributed for any fixed t with mean

Ert = b+ e−at(r0 − b)

and variance

Var(rt) =
σ2

2a
(1− e−2at).

This implies that rt can take arbitrarily large negative values, which is not
very realistic.

Now we determine the distribution of P (t, T ). By (31)

P (t, T ) = E

[
exp

{
−
∫ T

t

rudu

} ∣∣∣Ft]
= e−b(T−t)E

[
exp

{
−
∫ T

t

Xudu

} ∣∣∣Ft] ,
where Xt = rt − b as above. Since Xt is a Markov process, we have that

P (t, T ) = e−b(T−t)E exp

{
−
∫ T−t

0

X̃udu

}
, (35) {eq:vasicek-pt}

where X̃ is the solution to the Langevin equation

dX̃s = −aX̃s + σdWs, X̃0 = x0 = rt − b. (36) {eq:vasicek-initial}

Therefore, we need to determine the distribution of∫ t

0

X̃udu.
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We have seen that (Xu) is a continuous Gaussian process, therefore its inte-

gral is Gaussian too. Since EX̃u = e−atx0, we have

E

∫ t

0

X̃udu = x0

∫ t

0

e−audu =
x0

a
(1− e−at).

Furthermore, for t ≥ s

Cov(X̃t, X̃s) = Ee−at
∫ t

0

σeaudWue
−as
∫ s

0

σeaudWu

= σ2e−a(t+s)E

(∫ s

0

eaudWu

)2

= σ2e−a(t+s)

∫ s

0

e2audu

=
σ2

2a
e−a(t+s)

(
e2as − 1

)
.

Therefore

Var

(∫ t

0

X̃udu

)
= Cov

(∫ t

0

X̃udu,

∫ t

0

X̃udu

)
= E

∫ t

0

(X̃u − EX̃u)dv

∫ t

0

(X̃v − EX̃v)dv

=

∫ t

0

∫ t

0

E(X̃u − EX̃u)(X̃v − EX̃v)dudv

=

∫ t

0

∫ t

0

Cov(X̃u, X̃v)dudv

= 2

∫ t

0

∫ v

0

Cov(X̃u, X̃v)dudv

= 2

∫ t

0

∫ v

0

σ2

2a
e−a(u+v)

(
e2au − 1

)
dudv

=
σ2

2a3

(
at− 3 + 4e−at − e−2at

)
.

Thus we have the expectation and variance of the Gaussian random variable∫ t
0
X̃udu. Since Eet(aZ+b) = ea

2t2/2+bt for Z ∼ N(0, 1), we have

E exp

{∫ t

0

X̃udu

}
= exp

{
−x0

a
(1− e−at) +

σ2

4a3

(
at− 3 + 4e−at − e−2at

)}
.
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Substituting back into (35) and using the initial condition (36), we obtain

P (t, T ) = exp
{
− b(T − t)− rt − b

a
(1− e−a(T−t))

+
σ2

4a3

(
a(T − t)− 3 + 4e−a(T−t) − e−2a(T−t))}.

The fair price of a European call option with strike price K at T1 for a
zero coupon bond with expiry T2 > T1 is

C(K;T1, T2) = Ee−
∫ T1
0 rtdt (P (T1, T2)−K)+ . (37) {eq:vasicek-eucall}

Since P (T1, T2) is determined by rT1 , to evaluate the latter integral we need

the joint distribution of
∫ T1

0
rtdt and rT1 . They are jointly Gaussian, and

their covariance is

Cov

(∫ t

0

rudu, rt

)
=

∫ t

0

Cov(ru, rt)du

=

∫ t

0

σ2

2a
e−a(t+u)(e2au − 1)du

=
σ2

2a2
(1− 2e−at + e−2at).

Therefore, the fair price in (37) is

C(K; , T1, T2)

= Ee−U

(
exp

{
− b(T2 − T1)− V − b

a
(1− e−a(T2−T1))

+
σ2

4a3

(
a(T2 − T1)− 3 + 4e−a(T2−T1) − e−2a(T2−T1)

)}
−K

)
+

,

where (U, V ) is a two dimensional normal random vector with covariance
matrix (

σ2

2a3

(
aT1 − 3 + 4e−aT1 − e−2aT1

)
σ2

2a2 (1− 2e−aT1 + e−2aT1)
σ2

2a2 (1− 2e−aT1 + e−2aT1) σ2

2a
(1− e−2aT1).

)
The main point here is that there exists an explicit formula, which can

be computed numerically easily.
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10.2.3 Hull–White model

This is a simple generalization of the Vasicek model, where we allow the pa-
rameters to be time dependent. Assume that for some deterministic functions
a, b, and σ

drt = (a(t)− b(t)rt)dt+ σ(t)dWt, r0 = r0 > 0. (38) {eq:HW}

Then the solution is

r(t) = e−β(t)

(
r0 +

∫ t

0

eβ(u)a(u)du+

∫ t

0

eβ(u)σ(u)dWu

)
.

where β(t) =
∫ t

0
b(u)du.

10.2.4 Cox–Ingersoll–Ross model

In the Vasicek and the Hull–White model the distribution of rt is normal
for any t, therefore it can take any large negative number, which is not so
realistic. In the following model rt is nonnegative.

First consider n independent Ornstein–Uhlenbeck processes, that is

dXi(t) = −1

2
αXi(t)dt+

σ

2
dWi(t), i = 1, 2, . . . , n,

where W1, . . . ,Wn are independent standard Brownian motions. Then

Xi(t) = e−
α
2
t

(
Xi(0) +

σ

2

∫ t

0

e
α
2
sdWi(s)

)
.

Put
rt = X2

1 (t) + . . .+X2
n(t).

Using the multivariate version of Itô’s formula

drt =
n∑
i=1

2Xi(t)dXi(t) +
n∑
i=1

σ2

4
dt

= −αrtdt+ σ

n∑
i=1

Xi(t)dWi(t) +
nσ2

4
dt

=

(
nσ2

4
− αrt

)
dt+ σ

√
rt

n∑
i=1

Xi(t)√
rt

dWi(t).
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The process

Wt =
n∑
i=1

∫ t

0

Xi(u)
√
ru

dWi(u)

is a continuous martingale, such that

W 2
t = 2

∫ t

0

WudWu +
n∑
i=1

∫ t

0

Xi(u)2

ru
du

= 2

∫ t

0

WudWu + t,

which means that W 2
t − t is a martingale too. Therefore, by Lévy’s charac-

terization of the Wiener process we obtain that Wt is a SBM. Substituting
back we have

drt =

(
nσ2

4
− αrt

)
dt+ σ

√
rtdWt

with Wt SBM. This is the definition of the Cox–Ingersoll–Ross (CIR) process.
The CIR process with parameters a > 0, b > 0, σ > 0 is the solution of

the stochastic differential equation

drt = (a− brt)dt+ σ
√
rtdWt. (39)

Note that existence and uniqueness result for SDE’s does not apply here,
because the function

√
x is not Lipschitz at 0. However, it can be shown that

a unique strictly positive solution exist for a ≥ σ2/2. We have seen this for
a = nσ2/4.

We have seen that at determining the fair price of a European call we
need the joint distribution of (rt,

∫ t
0
rudu). The joint Laplace transform of

the vector can be determined explicitly. We state the following result without
proof.

Theorem 18. For any u ≥ 0, v ≥ 0

E exp

{
−urt − v

∫ t

0

rsds

}
= e−aφu,v(t)−r0ψu,v(t),

where

φu,v(t) = − 2

σ2
log

(
2γet(b+γ)/2

σ2u(eγt − 1) + γ − b+ eγt(γ + b)

)
ψu,v(t) =

u(γ + b) + eγt(γ − b) + 2v(eγt − 1)

σ2u(eγt − 1) + γ − b+ eγt(γ + b)
,

59



where γ =
√
b2 + 2σ2v.

Therefore, using the result above and the Markov property the value of
the zero coupon bound

P (t, T ) = E
[
e−

∫ T
t rudu

∣∣∣Ft]
= E

[
e−

∫ T−t
0 rudu

∣∣∣r0 = rt

]
= exp {−aφ0,1(T − t)− rtψ0,1(T − t)}

The price of a European call option with strike price K at T1 for a zero
coupon bound with expiry T2 > T1

C(K;T1, T2)

= E
[
e−

∫ T1
0 rudu (exp {−aφ0,1(T2 − T1)− rT1ψ0,1(T2 − T1)} −K)+

]
.

This is not an explicit formula, but we now the joint Laplace transform of
the vector (

∫ T1

0
rudu, rT1), therefore it is numerically computable.

10.3 The Heath–Jarrow–Morton model

10.3.1 Forward rate

Assume that at time t we buy one zero coupon bond with expiry T and short
sell P (t, T )/P (t, T + ε) unit zero coupon bond with expiry T + ε. The value
of this portfolio at t

P (t, T )− P (t, T )

P (t, T + ε)
P (t, T + ε) = 0,

so it costs nothing. What happens is that at time T we borrow 1 dollar, and
we have to pay P (t, T )/P (t, T + ε) at time T + ε. Therefore the interest rate
we pay at time T is R(t, T, T + ε)

P (t, T )

P (t, T + ε)
= eεR(t,T,T+ε),

that is

R(t, T, T + ε) = −1

ε
(logP (t, T + ε)− logP (t, T )) .
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Thus the instantaneous forward interest rate at time T calculated at time t,
called forward rate is

f(t, T ) = lim
ε↓0

R(t, T, T + ε) = − ∂

∂T
logP (t, T ). (40)

Intuitively, it is clear that at time t we predict the interest at time t to
equal the short rate rt, that is rt = f(t, t). In what follows we prove this
statement.

{lemma:forward-short}
Lemma 10. For any t ∈ [0, T ]

f(t, t) = rt.

Proof. As logP (t, t) = 0

logP (t, T ) =

∫ T

t

∂

∂T
logP (t, u)du = −

∫ T

t

f(t, u)du,

we obtain
P (t, T ) = e−

∫ T
t f(t,u)du. (41) {eq:P-f}

Differentiating
∂

∂T
P (t, T ) = −f(t, T )P (t, T ),

which at t = T
∂

∂T
P (t, T )

∣∣∣∣
T=t

= −f(t, t),

On the other hand, differentiating

P (t, T ) = E
[
e−

∫ T
t rudu

∣∣∣Ft]
we obtain

∂

∂T
P (t, T ) = E

[
−rT e−

∫ T
t rudu

∣∣∣Ft]
which at T = t

∂

∂T
P (t, T )

∣∣∣
T=t

= −rt,

and the statement follows.
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10.3.2 The Heath–Jarrow–Morton model

The Heath–Jarrow–Morton (HJM) model describes the dynamic of the for-
ward rate f(t, T ) with the SDE

df(t, T ) = α(t, T )dt+ σ(t, T )dWt, (42) {eq:HJM}

which holds for every 0 ≤ t ≤ T ≤ T , where α and σ are adapted processes.
Note that the model has two time scales. In the followings we determine

the necessary conditions on α and σ. We have

d

(
−
∫ T

t

f(t, u)du

)
= f(t, t)dt−

∫ T

t

(df(t, u))du

= rtdt−
∫ T

t

(α(t, u)dt+ σ(t, u)dWt)du

= rtdt− α∗(t, T )dt− σ∗(t, T )dWt,

where

α∗(t, T ) =

∫ T

t

α(t, u)du, σ∗(t, T ) =

∫ T

t

σ(t, u)du.

Here we use a stochastic version of Fubini’s theorem, which we did not even
formulate. Put

Xt = logP (t, T ) = −
∫ T

t

f(t, u)du.

Then the above calculation gives

dXt = (rt − α∗(t, T ))dt− σ∗(t, T )dWt.

Thus

dP (t, T ) = eXt
(
rt − α∗(t, T ) +

1

2
σ∗(t, T )2

)
dt− eXtσ∗(t, T )dWt

= P (t, T )

[(
rt − α∗(t, T ) +

1

2
σ∗(t, T )2

)
dt− σ∗(t, T )dWt

]
.

Under the equivalent martingale measure the discounted value process of
a zero coupon bond

e−
∫ t
0 ruduP (t, T )
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is a martingale. Since

d
(
e−

∫ t
0 ruduP (t, T )

)
= e−

∫ t
0 rududP (t, T )− rte−

∫ t
0 ruduP (t, T )dt

= e−
∫ t
0 ruduP (t, T )

[(
−α∗(t, T ) +

1

2
σ∗(t, T )2

)
dt− σ∗(t, T )dWt

]
,

which is martingale if and only if for any 0 ≤ t ≤ T ≤ T

α∗(t, T ) =
1

2
σ∗(t, T )2.

Substituting back the definition of α∗ and σ∗, after differentiation we obtain
that

α(t, T ) = σ(t, T )

∫ T

0

σ(t, u)du. (43) {eq:HJM-alpha-sigma}

We proved the following.

Theorem 19. If the HJM model is determined by the SDE (42) then neces-
sarily (43) holds.
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