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Figure 1: Payoff of a forward

1 Introduction

These notes are based on the Hungarian lecture notes by Gall and Pap [2],
on Shiryaev’s monograph [3], and on Elliott and Kopp [1].

There are two type of financial instruments: the basic financial units and
their derivatives.

Underlying:

e bond: risk-free asset, basically money. Its price is deterministic By;

e stock: risky asset. Its price is a random, modeled by a stochastic
process S; = (S}, ..., 59).
Derivatives are bets on the underlying. They are used to share or reduce
risk. Here we consider forward contracts and options.

1.1 Forward

A forward contract is an agreement to buy or sell an asset (stock) for a price
previously agreed K in the future time 7.

From the buyers point of view, at time 7T his wealth is S;p — K, that is
the payoff function is f(s) = s — K.

We want to determine the fair price of this contract, and to understand
the meaning of ’fair’. Assume By = 1.



Seller’s point of view: At time 0, we can buy a stock for Sy. Then at time
T selling a stock for K and paying back the loan Sy - By, we have K — Sy Br.
Therefore,
K > S(]BT.

Buyer’s point of view: At time 0, we sell a stock for Sy. At time T we
pay K for a stock, and the our wealth is SoBr — K. Thus,

K < SyBr.

We see that the fair price has to be K = SyBr. Otherwise, either the
seller or the buyer would have a strategy providing riskless profit (arbitrage).

Example 1. Let Sy = 40, B, = ¢, r = 0.1 being the annual interest, T = 1
year. What is the fair price of this forward, and what is the value of the
contract after half a year if S5 = 457

The forward price at time 0 is

K = SyB; =40 - %! = 44.2.
At time t = 0.5 the forward price
Ky = SosBos = 45 - €201 = 47.3.
Thus the current value of the contract

e2"(47.3 — 44.2) = 2.9,

1.2 Options

An option is right to do something but not an obligation. European option
can be executed only at the expiration date, while American options can be
executed at any time.

The writer of a European call option agrees to sell a stock for a previously
agreed price K. Clearly, the buyer of this option will not use his right if
St < K. The payoff function for the buyer is f(s) = (s — K)4

In case of a put option the writer agrees to buy a stock for K. The payoff
function of the buyer
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Figure 3: Payoff of a put option



1.3 Put—call parity

The aim of the course is to determine the fair price of an option, and under-
stand the fairness. However, there is a simple relation between call and put
prices regardless of the underlying market model.

Let C'x be the fair price of the call, and Px be the fair price of the put,
both with strike price K. Then, from the payoff functions it is easy to see
that having put, a stock, and —1 call results at the expiration date (regardless
of the stock price) a wealth K. That is, after discounting

K
— —_pP+S,—C.
Br + 0

This is the put-call parity.

2 Portfolio, claim, and hedging in discrete
time

Let (€2, F,P) be a probability space. In the discrete time case we always
assume (if not stated otherwise) that € is finite, and P({w}) > 0 for each
w € . We assume that transactions are made only at the time instants
0,1,...,N. Let (F.)n=01. ~ be a filtration, an increasing sequence of o-
algebras, such that Fy = {0,Q}, Fxy = F. Assume that there are d risky
assets and a bond. The price of the risky asset 7 at time is S', an F,-
measurable random variable, and the bond price at time n is B,,.

2.1 Portfolio

An investment portfolio (strategy) is 7, = (6n, 1n), where 3, € R represents
the amount of bonds in the portfolio at time n, while v,, = (72,...,7%) € R?,
where v represents the amount of type-i stock at time n. The random vari-
ables (6,,v,) are F,_1-measurable, which means the investor has to decide
at time n — 1 how to invest on time n. That is the sequence (3,,7v,) is
predictable. For simplicity

d
=1



The wealth of the investor at time n under the strategy = is

This is the value process of the investment portfolio.

A strategy is self-financing (SF) if the investor does not take out money
from, and does not invest money to the portfolio after time 0. That is 7 is
self-financing if

Xy 1= 0BnBn1+7Sn-1  for all n.

For a sequence a,, put Aa, = a, — a,_1.
{lemma:SF}
Lemma 1. The following are equivalent:

(i) w is SF;
(ii)) AXT = B,AB,, + 7,AS,;
Proof. We have
AX, =X,— X,
= Ban - Bn—an—l + ’YnSn - ’Yn—lsn—l

= Bn(Bn - anl) + (ﬁn - 5n71)Bn71 + f)/n(sn - Sn71> + (7n - anfl)Snfl
= ﬁnABn + ABan—l + P)/nASn + A’Ynsn—b

and the equivalence follows. O

In what follows, unless otherwise stated all the strategies are meant to be
SF.
We can decompose the value process as

X7 = X7 4 AXT = ..
= X7+ Z(ﬁiABz’ + 7 AS;)
i—1
= X7+ G},

where G is the gain process. So the value of the strategy is the initial
investment plus the gain.



2.2 Strategies in a more general market

Previously, we assumed that there are no transaction cost (market is fric-
tionless), shares pay no dividend, and apart from time 0, there is neither
investment, nor consumption. Here we see how to handle this.

2.2.1 Dividend

Assume that stock-i pays a dividend 8" = D! — D! | > 0 at n, where &',
and D! are adapted processes. Then the change in the value process is

AX] = BAB, + Y (AS, + 6y),
and the value of the portfolio
X7 = BnBn + 1 (Sn + ).
Then, 7 is self-financing portfolio if
By 1ABy 4+ Sp-1A%, = dp-17n-1-

Indeed, the dividend obtained in time n — 1 is reinvested in the portfolio.

2.2.2 Consumption and investment

The consumption and investment can be included as well. Let (C,), (I,)
be adapted nondecreasing random sequences with Cy = Iy = 0. Then, if an
investor takes out AC,, and invests A, then

AXT = B,AB, + 7, AS, + Al, — AC,,
X™ = BBy + YuSh.

2.2.3 Transaction costs

If Ay, > 0 then we buy share, and pay an extra cost A, that is we pay
(1 4+ N)Sh-1A%,. While if Ay, < 0 we sell, and paying transaction cost
means receiving less money, say —(1 — ©)S,_1A7v,. Then an SF strategy
satisfies (see (iii) in Lemma 1)

B 1ALy + (1 + XS 1A I (A, > 0) + (1 — ) S 1Ay, I (Ay, < 0) = 0.



2.3 Claim and hedging

Let fy be a nonnegative random variable, which is the payoff function, or
obligation, or contingent claim. A strategy m is an upper (z, fn)-hedge, if

P-almost surely

It is a lower (x, fn)-hedge, if a.s.
Xg =, X]7\rf S .fN'

The hedge is perfect if = holds a.s.
Put

C*(fn) = inf{z : 3 upper (z, fx)-hedge },

and similarly

C.(fn) = sup{z : 3 lower (z, fy)-hedge }.

For the class of upper (z, fy)-hedge strategies put H*(x, fx,P), and for the
lower H,(z, fy,P).

Lemma 2. For any payoff function fxn there exists an x such that there is
an upper (x, fn)-hedge.

Proof. Put
By

v= g, max | (w)].

Then the (trivial) strategy m, = (Bio, 0) (start with enough money and don’t
do anything) is an upper hedge. O]

2.4 Binomial market
2.4.1 One-step market

Consider a one-step binomial market with d = 1 stock. That is Q = {0, 1},
Fo=1{0,Q}, F, = F = 2% Assume that P({0}) € (0,1). The bond price
By = (1 +1r)By, that is » > —1 is the interest rate, and for some a < b,
S1 = (14 p)So, p € {a,b}. Say, p(1) = b, p(0) = a. Let f be a payoff, that
is f(0) = fo, f(1) = fi. We construct a perfect hedge.

{lemma:hedge}

{ss:bin}



Using the strategy m; = (f1,71) we want that
X{T = 6131 + ’)/15’1 = f a.s.
Since there are only two possibilities, a.s. means

BiBo(1 +7) +7S0(1+a) = fo
51B0<1 + T) + ’}/15()(1 + b) = fl-

Solving the linear system

- rphEh

1 fi—fo 5 = i

’YIZSO b—a '

This is deterministic, so Fp-measurable, as it should be. The initial cost of
this strategy is

1 r—a b—r
X'=18B = )
0 081 + Somn 1—|—r<b—af1+b—af0)

If @ < r < b this can be written as

1
Xr=—B
O 14 af

W)ith the probability measure Q({0}) = (b—7)/(b—a), Q({1}) = (r—a)/(b—

This shows that the ’fair’ price of the payoff is Eqf/(1 4+ r). Note that
this does not depend on the probability measure P.

2.4.2 N-step market

Assume we have only one stock, d = 1. For the bond B, = (1 + r,)By_1,
and for the share S,, = (1 + p,)S,_1, where p, € {a,,b,}.

Exercise 1. Give a concrete construction of the probability space and the
filtration!

Solution 1. Let

Q=1{0,1}" ={w = (wi,...,wn) :w; €{0,1}}.
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Figure 4: 2-step binary market as 3 1-step binary market

Define the random variables p,, : Q — {a,, b, } as

ay, if w, =0,
pn(w) = {

b,, ifw,=1.

For the filtration let F,, = o(p1,. .., pn), i.e. the natural filtration generated
by the variables py, ..., pn.

Consider any payoff function fy. A perfect hedge can be constructed
recursively, using the simple one-step market. Indeed, a two-step model can
be seen as 3 one-step markets.

3 Arbitrage and pricing in discrete time

3.1 Arbitrage

A SF strategy 7 is an arbitrage strategy if
o X7 =0
e X" >0foralln=0,1,...,N;
e P(XT >0)>0.
That is, using the strategy m with 0 money we have riskless profit.
If the second assumption only holds for n = N then 7 is a weak arbitrage

strategy. According to the following if weak arbitrage strategy exists, then
also arbitrage strategy exists.



Lemma 3. Assume that w is a weak arbitrage strateqy. Then there exists an
arbitrage strategy '.

Proof. If X7 > 0 a.s. for all n, then we are ready. Otherwise, there exists
m < N such that P(XT < 0) >0, and X7 > 0 for any n > m + 1. Let

A ={Xn <0} € F.

Consider the strategy

Xm
Bl =1a, In>m <5n - B_> v Y = Lap Lnsm -

It is easy to check that this strategy is predictable, SF, and arbitrage strategy.
Indeed,
(i) predictable: for n < m this is clear, since 5/, = 0 and ~;, = 0, while for
n > m A, is F,,-measurable and thus F,_;-measurable as well, and
Bn,Vn are JF,_1-measurable by the assumption.

(ii) SF: for n < m this is again clear. For n =m + 1
BmAB;m—l"‘SmA'Y;Hl = 14,, (BnBm(w) — X (W) + Sp¥mia(w)) = 0,

since 7w is SF. For n > m + 1 we have AfB], = I, AB,, and Ay, =
14, A, and the result follows, using again that 7 is SF.

(iii) arbitrage: we have

/ X" B,
X;r - IAm]n>m (Ban + ’YnSn - g ) P
where the sum of the first two terms in the bracket is nonnegative by
the definition of m and the last is strictly negative on A,,, which proves
the statement.
O

Exercise 2. Assume that a < b < r in the one-step binomial model. Give
an arbitrage strategy.

Assume that a,, < b, < r, for some n in the N-step binomial model.
Give an arbitrage strategy.

10

{lemma:arbitrage}



3.2 Martingale measures

A probability measure Q is called equivalent martingale measure (EMM) if
P ~ Q and (S!/B,, F,) is a Q-martingale for each i = 1,2,...d.

3.2.1 EMM in binomial markets

In a one-step binomial market the martingale property is easy to check.
Indeed, (S;/B;)i=o01 is a martingale iff

Sh So
E
? [Bl }_1 By
We have
Sh Sh
Eq [E ]—"0} = EQE
_ L )So _ b)So
- (p_a) ’f‘)Bo +(1 Q(p_a>>( +T)Bo
_ %
=3
Solving the equation we obtain that
b—r r—a
Q(p =a) and Q(p=10) =

“b—a b—a

That is Q({0}) = (b—1r)/(b—a), Q({1}) = (r —a)/(b — a). This is the
probability measure Q we obtained at pricing.
Let us see the general N-step model. Then

H 1+pz SO»

thus the martingale property reads as

Sn Sh_
Eq | 2> .
Bn Bn—l
Using the properties of conditional expectation we have

B Sh, Sp—1 1
? Bn Bn—l 1+Tn

=0,1,...N.

fn1:| =

fn—1:| = EQ[l + pn|~Fn—1]‘

11



Therefore S,,/B,, is a Q-martingale iff

EQ[pn|}_n—1] = Tn-

This condition exactly tells that under the new measure Q the risky asset
behaves as the bond on average. Using that p, € {a,,b,}, we obtain as
above

b, — 7 Tn — Qp

Q(pn - an’fn—1> = and Q(/on = bn’fn—1> —

s .
bn_an bn_an

Note the conditioning on F,,_; gives a constant, meaning that p,, is indepen-
dent of F,,_1 under the measure Q.
We obtained the following.

Theorem 1. In the binomial market if a,, < r, < b, for each n then there
exists a unique EMM Q given by the formulas above. Moreover, under Q the
random variables py, ..., pn are independent.

In the proof we used the following simple result.

Exercise 3. Assume that Y € {a,b} and
P(Y =a|F)=pas.
Show that Y is independent of F.

Note that the original measure P is irrelevant.
In the special case of the homogeneous binomial market we get that

N

Q(SN = S(](l -+ b)k(l + a)ka) _ (k

)q’“(l—q)Nk, k=0,1,...,N.

3.2.2 Pricing with EMM

=i

Proposition 1. If Q is an EMM then (X, = X7 /B,), is a Q-martingale
for any SF strategy .

12

{thm:binom-EMM}

{prop:Xbar-mtg}



Proof. Easily follows from the SF property. Indeed, using that ,,~, are
F,.—1-measurable

™
n

Eq [B_

Sy
fn—1:| = EQ |:Bn + rYnB_

S
By,

fn—1:|

= Bn + /YnEQ |: ]:n—1:|

Sn—l
B Bn * n Bn—l

_ Ban—l + '7nSn—1
Bn—l

n—1

)
Bn—l

where the last equality follow from the self-financing property. m
The following main result is the first fundamental theorem of asset pricing.
Theorem 2. There exists an EMM if and only if the market is arbitrage-free.

Proof. Let Q be an EMM and 7 be any strategy with XJ = 0. Then, by the
previous statement

Thus Xy > 0 P-a.s., then also Q-a.s., which implies Xy = 0 Q-a.s., thus
P-a.s.
We prove the converse later. O

Assume that fy is a replicable payoff, i.e. there is a prefect hedge w. This
means that
Xy =fn as.

Then the fair price for fy is the initial cost of the portfolio, XJ = x. By the
martingale property

That is, the fair price x for a replicable payoff fy is

B,
L
v= g Baf

13

{thm:emm-arb}



In particular, it also follows that for a replicable f, the value Eqf is the
same for any EMM Q.

Summarizing, we proved the following:
{thm:pricing}
Theorem 3. Consider an arbitrage-free market and let f be a replicable
payoff. Then the fair price of f is
B
C(f)=C.=C" = 2 Eqf,
N

where Q is any EMM.

3.3 General one-step market
Assume that B1 = Bo(1 + r) with a deterministic interest rate r > —1 and

S1=So(1+ p),
where p > —1 is a random variable, the unique source of randomness in the model. Let
F(z)=P(p<z), z€R,
be the distribution function of p. Then F induces a probability measure (denoted by P) on the Borel sets
of (—1,00) (or R). If F is concentrated on {a,b} then we get back the previous one-step binomial model.

Assume without loss of generality that Bo = 1. Consider a payoff function f : R — R as a function
of the stock price Si. A strategy 7 is an upper hedge if

B(L+1)+7S0(1+p) > f(So(1+p)) as. (1) {eq:1lstep-hedge}

A probability measure on (R, B) is Q is EMM if P ~ Q (meaning that P is absolutely continuous to Q
(P(A) = 0 whenever Q(A) = 0) and conversely) if and only if S, /B, is Q-martingale, that is

S1 5o
B, By
This means
Eqp=r.

That is a probability measure Q which is equivalent to P is EMM iff

[ paae) =
R
Taking expectation with respect to the EMM Q
B(1+71)+ Sov(1+71) > EqQf(So(l+p)).

For the initial cost 8 + vSp we have

1501+ p)

So > E
B+vSo > Eq T+

14



Figure 5: Bounding the upper price C*

For the class of EMM’s put

P(P) ={Q : Q probability measure ,Q ~ P, (Sn/Bn)n is Q-martingale}.

Then

C*(f) = inf{B + S0 : (8,7) is an upper hedge}
> sup Eq f(So(L +p))
QeP(P) T+r

Similarly, for the lower price

Cyi(f) =sup{B+~So : (B,7) is a lower hedge}

< i mq olte))
QeP(P) 1+7r

Assume now that p € [a,b] for some —1 < a < b < 0o. To ease notation put

f@)=f(So(1+2)), =€ lab],
and assume that f is convex and continuous on [a,b]. By convexity,

O I gy, QDI =04 010

cpSo(l+ )+ .

f(@)

IN

15
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Indeed, the left-hand side is a linear function equals to f(a) at a, and f(b) at b. Introduce the strategy,

* * *®Y L v

= (B y") = (1+r7u)~
Then, by (5)

X[ =v+uSo(l+p) 2 fp),

that is, 7* is an upper hedge. Therefore,

C*(f)= inf XTI <P +Sov = %

+ uSo.
mupper hedge +r ’

(6) {eq:Cxlower}

Assumption (weak limit): In the set P(P) there exists a sequence P,, such that P, converges

weakly to a measure Q* supported on {a, b}. Since
Ep,p=r,

the equality holds for the limit
EQ* p=r.

Since Q* is supported on {a, b}
Eq-p=Q"({a})a+ (1 - Q" ({ah))b=r,

implying (as in the binomial market setup) that

b—r r—a
= .

Qe = Q)=

Note that Q* is, in general, not equivalent to P. In fact, it is only equivalent in the binomial market

setup.
By the convergence of P, (here we use the continuity of f)

f(p) : f(p)
e T
e {2
O f(a) . o)
=Q () + 0= Qe

=B"+7"S0 > C*(f).

Combining with (6) we obtained the following.

Theorem 4. Assume that the payoff function is convex and continuous on [a,b], and that the weak limit

assumption holds. Then

gy — flp) _b=r fla) r—a f()
C(f)_Q:;I()p) Q1+r_bfa1+r+b7a1+r’

and the supremum is attained on the measure Q*.

Exercise 4. Let p be uniform random variable on [a,b]. Show that the weak limit property holds.

Construct P, explicitly!
Try to weaken the condition on the distribution of p.

16



Figure 6: Bounding the lower price C

Let’s see the lower price C«(f). Assume again that f in (4) is continuous and convex. Then

fp) = f(r) + (p = m)A(r), (7

for some A(r). Here A\(r) = f/(r) if f is smooth, but this is not assumed.
If Q € P(P) then taking expectation in (7) and noting that Eqp = r we have

inf  Eqf(p) > f(r).

QeP(P)
Consider the strategy
f(r) A(r)
* = - A ) * = Tq -
Be= 1A S

Then, by (7), the value at 1

XT* = Be(147) +7:S0(1 +p) = f(r) + (p = )A(r) < f(p),

that is (B, v«) is a lower hedge.
Assumption (weak limit-2): In the set P(P) there exists a sequence Py, such that P, converges
weakly to a measure Qs+ concentrated at r.
Again note that Qs does not belong to P(P), as it is not equivalent to any nondegenerate measure.
Then by the continuity

. flo) f(p)
QeP®) Q147 “noee M1 ig
f(r)
- = B, + Sorvs
1+7r Pr+ S0y

< sup{B +vSo : (B8,7) lower hedge } = Cx.

Combined with (2) we obtain the following.

17

{eq:onestep-convex



Theorem 5. Let f be a convex continuous function on [a,b], and assume that the weak limit-2 assumption

holds. Then
flp) _ f(r)

C.(f) = inf - ,
D= qdple Bory = 14y

and the infimum is attained at the measure Qx.

3.4 Complete markets

We proved that if EMM exists then we have the fair price for any replicable
payoff. A market is complete if any payoff is replicable.

We have seen in Theorem 3 that on a complete arbitrage-free market any
payoff f has a unique well-defined fair price ByEqf/Bn.

In section 2.4 we showed that a binomial market is complete.

The second fundamental theorem of asset pricing is the following.

Theorem 6. Consider an arbitrage-free market with EMM Q. Then the
following are equivalent:

(i) the market is complete;
(11) Q is the unique EMM;

(11i) for any Q-martingale (M,) there exists a predictable sequence 7, such
that M, can be represented as

B (S S i1
Mn_Mo+;7k<Bk Bk1> M0+ZZ (k Bkl)‘

k=1 i=1

Proof. We prove again the easy parts (i) = (ii), and (iii) < (i), and postpone
the difficult (ii) = (i) implication later.

(i) = (ii): Assume that Q; and Qy are EMM’s. Consider any A € F.
We show that Q;(A) = Q2(A) implying the uniqueness. Let 7 be a perfect
hedge to f = I4. Then X7 /B, is both Q; and Qs martingale, so

Qu(4) = Eq.f = Bq,Xf = ByEq, 5 = Byl = ... = Qul4).
0

(i) = (iii): Consider a Q-martingale M,,. There exists a strategy m,, such
that a.s.

X = ByMy.

18

{thm: complete-mark



Using that both M,, and X7 /B, are martingales

X5 XT S,
M, = Eq[M =Eq |=Y =2 = =,
Thus, using that 7 is SF
Sn Sn—l
M, — M, _ :An no — In-17
1 B+ B, Y "B,
Sp Sno1 1
= — — B,_1A 1A
Tn (Bn Bnl) + anl ( n—1 511 + Sn 1 fYn)

(S S
- ’Vn Bn Bn_l )
as claimed.

(iii) = (i): Consider a payoff f. We are looking for a strategy = such
that X% = f Q-a.s. We know that (X7 /B,), is a martingale, so this should
be (M,). Now the following choice is clear: let

f
M,=E Ful -
Q [ By
Then M, is a martingale, therefore by the assumption

" S
M, = My + § ’ykAB—k.
k

k=1

Let g

Bn - Mn - /YnB_na
and consider the strategy 7, = (8, 7). To see that this is indeed a strategy
we have to show that it is predictable and SF. The sequence 7, is predictable
by the assumption (iii), and (3, is predictable because all the terms in M,
are J,_i-measurable except v,S, /B, which is subtracted. To see that it is

SF note that
Bn—lAﬁn + Sn—lA'Yn

Sh Sp—
= anl (Mn - Mnfl - ’YnB_ + fYnle !
n n—1

) + Sn_lA% = 0,

) + SnflAan

Sn Sn Sn—l

= Bn— nA_ —InH n—
1(7 B, WBn+7 "B
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showing that 7 is SF. It is clearly a perfect hedge since
XN = BnBy +nSy = ByMy = [,

as claimed. N

3.5 Proof of the difficult part of Theorem 2

Here we use strongly that 2 is finite, and let |Q| = k.
Assume that there is no arbitrage strategy. Let

Vo={X:Q—=Rrv. |3r:X] =0and X} = X},

and
Vi={X:Q—=Rrv. |[X>0,EX >1}.

We identify a random variable X : © — R with a vector in R¥, as X «
(X (w1),...,X(wg)). Clearly, V, is a linear subspace and V; is convex set in
RE,

Since there is no arbitrage strategy, VoNV; = (). Therefore, by the Kreps—
Yan theorem, there exists a linear functional ¢ : R¥ — R such that £|, = 0
and {(v;) > 0 for all v; € V;. A linear function in R* (in any Hilbert space)
is a inner product, thus there exists ¢ € R¥ such that

l(v) = (v,q).
Define the random variables

1
Xi(w;) = 5i,jm.
Then X; > 0 and EX; =1, so X; € V;. Furthermore
di
P({wi})
implying ¢; > 0 for any ¢. Define the probability measure Q as
di
Qe =

It is clear that Q ~ P. We have to check that (S,,/B,,) is a Q-martingale.
First we need a lemma.
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Lemma 4. Let (X,)"_, be an adapted process. 1If for any stopping time
7:Q—{0,...,N}
EX, = EX,,

then (X,) is martingale.

Proof. We show that X,, = E[Xy|F,], which implies that X is martingale.
Let A € F,, and consider the stopping time

() n, weA,
Ta(w) =
4 N, otherwise.

This is indeed a stopping time, since {74 < k} = () for £ < n, and A for
k > n, which is Fi-measurable. Then, by the assumption

EXo = EX,, = EX,I(A) + EXyI(A).
With A = () we see that EXy = EXy, implying
EX,[(A) = EXyI(A).

This exactly means that
X, = E[Xy|F.],

as claimed. N

We show that (S,,/B,,) satisfies the condition of the lemma above. Let 7
be a stopping time and define the strategy

S, So
B BT[(T_n 1) By Yo =I(T>n—-1)

Since {7 < n} = {7 < n—1} € F,_1, the sequence (53,,7,) is predictable.
Furthermore,
S,

Bn—lAﬁn + Sn—lA’Yn = B—Bn_lf(T =N — 1) — Sn_1]<7' =n — 1) = 0,

so it is SF. Finally,

S
X5 = —EZBO+SO =0,
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Vo

Vo

Figure 7: Choice of y

so X3 € V. Therefore
0 = EqXy = EqfnBn + 7SN

Eq ((%[(TSN—U—Z—Z) BN"‘%[(T:N)BN)

That is (S,/B,) is indeed a Q-martingale.

3.6 Proof of the difficult part of Theorem 6

Here we prove the implication (i) = (i).
We use the notation of the previous proof. Let

Vo={X:Q—Rrv. |[EqgX =0}

Then V), is a linear subspace in R*¥ and we have seen in the previous proof
that Vy C V5. We claim that equality holds.

Assume first that this is indeed true. Then for any claim X the centered
version X — EqX € V, = V), meaning that there is a perfect hedge. Thus
the market is complete. So we only have to show that Vy = V.

Assume on the contrary that Vy # V,. Then there is an y € V,, which is
orthogonal to Vy. Since ¢; > 0 (see the previous proof) for all i = 1,... k,
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we may choose £ > 0 small enough such that

/

q; =¢q —ey; >0 for all .

/

As both ¢ and y are orthogonal to Vy, ¢ is also orthogonal. Define the

measure ,
q;
Q' ({wi}) = —r
dic1 4
Exactly as in the previous proof we can show that Q' is EMM. The uniqueness
of the EMM implies
q . q;

2 = )
Zi:l 4 Zz‘:l a;

that is, using also the definition of ¢/,

¢ =aq = aq — azsy,
with o = > ¢;/ > ¢,. Thus
(1—a)g=—asy.

But y and ¢ are orthogonal, which is a contradiction. The proof is complete.

4 Girsanov’s theorem in discrete time

4.1 Second proof of the difficult part of Theorem 2

Assume that d = 1 and first consider the one-step model with Bg = By = 1. The stock price Sg is known,
and the only randomness here is S7.

Exercise 5. The no arbitrage assumption (in this simple market) is equivalent to
P(AS; > 0)P(AS1 <0) > 0.

Furthermore, (Sy) is Q-martingale if
EQS1 = Sp.

Therefore we have to construct a measure Q such that EQAS1 = 0. This is done in the following lemma.

Lemma 5. Let X be a random variable on (R, B(R),P) such that P(X > 0)P(X < 0) > 0. Then there
exists a probability measure Q ~ P such that EQX = 0. Furthermore, for any a € R

EQeaX < oo.
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Proof. Define the probability measure
Py (dz) = ce_“”2F(d:1:)7

where F(z) =P(X <z)and ¢! = [, e_IZF(dm). That is

PL(A) = /A ce=** F(da).

Then P; is equivalent to F. (Recall that p is absolute continuous with respect to v, p < v if u(A) =0
whenever v(A) = 0. And p and v are equivalent, u ~ v, if 4 < v and v < p.) Let

pla) = EpleaX = / e Pi(dz) = c/ e’”szF(dz).
R

R
Clearly, ¢(a) < oo for any a as the function ¢?*=2” is bounded on R. Note that @ is convex, because
/!
@ > 0. Put
( ) eaz
Zo(x) = .
‘ ¢(a)

Then

Qo(dz) = Zo(x)Pr1(dz)

is a probability measure for any a, and Q4 ~ P; ~ F. Again, this means

Qa(A):/AZa(ac)Pl(d:c): m/Ae‘“’*f F(dz).

Let

= inf .
= Inf p(a)

Since P;(X > 0) > 0 and P1(X < 0) > 0 we obtain that

li = oo.
oS #10) = 00

Therefore, the infimum is attained, i.e. there is ax such that ¢(ax) = p«. Then ¢’(ax) = 0, thus

ea*X

0=¢'(ax) = Ep, Xe¥X = p(a,)Ep, X ——
p(ax)

= p(ax)Eq,, X.

Thus the measure Qq, works. O

Exercise 6. Prove rigorously that

li = oo.
Bl (@) = 0

Exercise 7. Let X ~ N(u,02). Determine the measure constructed above explicitly.
Next we extend the previous lemma for a general N-step market.

Exercise 8. The no arbitrage assumption implies that for any n a.s.

P(ASp > 0|Fn_1)P(ASy, < 0|Fn_1) > 0.
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As a preliminary result we have to understand how to compute conditional expectation under different
measures.
{lemma: condexp-mea
Lemma 6. Let (Q,F, (Fn)n=0,1,...,n,P) a filtered probability space, and Z a nonnegative random vari-
able EpZ = 1. Define the new probability measure Q as

dQ = zdP,

that is
Q(A) = ZdP.

Put Z, = Ep[Z|Fn]. For any adapted process (Xn)
Zn—lEQ[Xn“Fn—l] - EP[XnZn|]:n—1}
Proof. Both sides are F,_1-measurable. We have to prove that for any A € F,,_1

/Zn,lEQ[Xn\fn,l]dP:/ X Z,dP. (8) {eq:cemlemma-0}
A A

First note that
Ep[ZXn|Fn] = XnEp[Z|Fn] = XnZn. 9) {eq:cemlemma-1}

Therefore, for an F,,_1-measurable Y
Ep[Zn-1Y|Fn-1] = YEp[Z|Fn-1],
implying for any A € Fp,—1 that
/ Zp_1YdP = / YEp|Z|Fp_1]dP
A A

=/ Ep[zy\fn,l]dpz/ Y ZdP.
A A

Choosing Y = Eq[Xn|Fn—1] we obtain

/Zn,lEQ[Xn\fn,l]dP:/ EqQ[Xn|Fa_1]2dP
A A

= /AEQ[Xn|~7:n—1]dQ definition of Q
= A XndQ conditional exp.
= /AXnZdP definition of Q
- / Xy ZndP, by (9)
A
which is (8). |

As a simple but useful corollary we obtain the following.

{cor:p-q-mtg}
Corollary 1. The adapted process (Xn) is Q-martingale if and only if (XnZn) is P-martingale.
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Lemma 7. Let (Xn)fyzl be an adapted process, and assume that
P(Xn > 0| Fn—1)P(Xn < O‘fnfl) > 0.
Then there exists a probabilty measure Q ~ P such that (Xn) is a Q-martingale difference.

Proof. First let

N
P;(dw) = cexp { ZX?(w)} P(dw),
i=0

where ¢ is the normalizing factor, i.e.

=0

N N
c1:/exp{—ZXf}dP:Eexp{—ZX?},
£ i=0
This means that for A € F
N
Pl(A):c/ cxp{—ZXf}dP.
A i=0

Let
¢n(a) = Ep, [**" | Froi].

Note that this is an F,,—i-measurable random variable. As in the proof of the previous lemma there is a
unique finite a, (random!) such that the infimum of ¢, is attained at a,. Since ¢y is F,—1-measurable
SO iS an.

Let Zp = 1, and recursively

eanXn

In="Lp-]——o——.
"t By e Xn | Fuy]

Then (Zy) is a Pi-martingale, since
EP1 [an}—n—l] = Zn—1~

Then the probability measure
Q(dw) = Zn (w) P (dw)

works. Indeed,

1

EQ[Xn‘]:nfl] = Z EP1 [Zan‘]‘—nfl] by Lemma 6
n—1
1 Zn—1 X "
= Ep, [Xpe®ntn|Fp_ definitio
Zn-1 Ep, [eanXn|F,_1] Py [Xne |Fr—1] nition
1
=  _.0=0. choice of ap,

Ep, [eanXn|Fp1]

Exercise 9. Show that a, is F,_1-measurable.

Now we can return to the proof of Theorem 2. The existence of the martingale measure follows from
the previous lemma applied to X,, = AS,,.
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4.2 ARCH processes

Autoregressive conditional heteroscedasticity (ARCH) models were introduced by Robert Engle in 1982
to model log-returns. In 2003 he obtained Nobel prize in economics for this model. The novelty in these
models is the stochastic volatility term.

Let

Sn

Snfl

R, = log

denote the log-return of the stock, and assume that

R, = pn + ﬁJr)\R%_lﬁn;

where &,’s are iid N(0, 1) random variables. Then (Ry) is an ARCH(1) process. That is conditionally on
Fn—1 the log-return R, is Gaussian with mean pun,, and variance 8 + AR%_I. Write o, = 8 + )\Ri_l.
Then for S,, we obtain

n
Sp = Sn—1efn = Sg exp{z <Mk +4/B8+ AR%&k)}
k=1

= Soexp{z (e +Uk§k)}~

k=1

In what follows we only assume that pn, and o, are F,_i-measurable, i.e. the sequence (fn,on)n is
predictable, and (&) is adapted, &, is independent of Fp,_1, and N(0, 1) distributed. Put hn, = pin+0nén.
For simplicity we assume that B, = 1.

We construct a measure Q such that (S) is a Q-martingale. Let

N N canhn
ZN = nl;[l Zn 1= };[1 Ep|etnn | Fp_1]
where n
an = —'Z—g ~3 (10)
Introduce the new measure Q as
dQ = ZnNdP,

and let Z, = Ep[Zn|Fn] =112, 2i-

By Corollary 1, to show that S, is Q-martingale we have to show that S, Z,, is a P-martingale. We
have
Ep [ehn (14an) |-Fn71}

Ep[etnhn | Fp_1]

EP [Snan]:nfl} = Snflznfl
Therefore we have to check that
Eple"»(ten)| 7, 1] = Eple® | F_1]. (1)

Recall that for a standard normal &

t ¢
Ee’ = e7

)

thus 5
Eelttoé — bt %

Since a, in (11) is Fp—1-measurable and given F,_; the variable hy, is Gaussian N(un,02), we obtain

2 2
Eplefn(ten) | F,_ ] = eun(1+an)+w

)
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and

2,2
Ep| hnan| ¥ _ ohnan+Ioin
P € ‘ n—l] =€ 5

By the choice of ar in (10)
o2 (1 + ap)? o2a2

Indeed, by (10)
1
pn + 02 (5 +an) =0.

That is, (11) holds.
We proved the following.

Theorem 7 (Discrete Girsanov’s theorem). Let (tn,on)n be a predictable sequence and assume that the
stock prices are given by

Sy, = exk=1(ktorsk)

where (&n)n s a adapted sequence of N(0,1) random variables, &n is independent of Fn_1. Further, let
Bn = 1. Then, under the new measure
dQ = ZydP

(Sn) is a martingale.

5 Pricing and hedging European options

In this section we summarize our findings on pricing and hedging, and con-
sider some special cases in detail.

5.1 Complete markets

Consider an arbitrage-free complete market. The fair price of the contingent
claim fy is

C(fy) =inf{z : Ir, XJ =z, X§ = fn}.
Then, by Theorems 2 and 6 there exists a unique EMM Q. Since (X[ /B,,)
is Q-martingale

In N T T
EqN —Eqil — Bgo = 2
By By QBO By’
therefore B
C(fy)=z= B_OEQfN
N

Note that x is independent of the hedge 7 itself, that is for different hedges
the initial value is the same.
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For a hedge we need to know not only the fair price C, but also the
strategy 7 itself. For the given claim fy consider the martingale

I
ndl
Sk

By’

M_EQ{

By Theorem 6 there exists a representation

with a predictable sequence (7,). Let

VnSn

= M, — :
B B,

We proved that m = (B, 7, )n is an SF strategy and is a perfect hedge for
I

Summarizing, we obtained the following.

Theorem 8. In an arbitrary arbitrage-free complete market the price of the
contingent claim fn is
f

N
By
Moreover, there exists a strateqy m which is a perfect hedge of fn, i.e.

Xy = In,

C(fn) = BoEq—

where (Bn,n) are given above. The value process is determined by

I

BN]:

X7 BEQ{

5.2 Homogeneous binomial market — CRR formula

Consider a homogeneous binomial N-step market with a < r < b. That is

B,=(1+7r)", H1+pk



where py, € {a,b}. We proved that this market is arbitrage-free and complete,
and the unique EMM is given by

and p;’s are independent. If the claim fy only depends on the final price Sy,
and not on the whole trajectory, i.e.

frn(w) = fn(Sn(w)),

then the pricing formula simplifies, and we obtain the Cox—Ross-Rubinstein
formula:

Clw) = NZfN oL+ 041+ 0N ()1 - ¥,

(1+7)

r—a

where ¢ = =2.

5.3 Incomplete markets

We assume that the market is arbitrage-free, but there are various EMM’s.
Let P(P) be the set of EMM’s.

In incomplete markets there are contingent claims which are not repli-
cable, that is, there is no perfect hedge. The upper price of a claim fy
is

C*(fy) =inf{x: 7w, XJ =2, X; > fn}.

We proved the following result in a one-step market. Without a proof we

state the general version.

Theorem 9. The upper price of the claim fy in an arbitrage-free incomplete

market is given by
C(7x) = swp Bilig ™
QeP(P) N

6 American options

While European options can be exercised only at the terminal date N, Ameri-
can options can be exercised at any time. Formally, instead of a fixed random
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payoff function fy, a sequence of payoffs (f,)n—01,.n is given, where f, is

Fn-measurable, i.e. (f,), is adapted to (F,)n. So f, is the random payoff
if the option is exercised at time n. Clearly, the exercise time has to be a
stopping time.

6.1 Optimal stopping problems

Consider a probability space with a filtration (2, F, (F)n=01..n~,P), and
let
MY = {7 7is a stopping time, 7 € {n,..., N}}.

To ease notation we suppress NV in the upper index. Consider a sequence
of nonnegative adapted random variables (X,),, and define by backward
induction its Snell-envelope (Z,), as follows. We are interested in the value

Zn = Xn, Z,=max{X,,E[Z,1|F.]}, n<N.
For a stopping time 7 the stopped process is denoted by Z7, i.e.
AR ZT/\?’L?

n

where a A b = min{a, b}.

Proposition 2. Let (Z,) be the Snell-envelope of (X,,) with X,, >0 a.s.
(i) Z is the smallest supermartingale dominating X .

(i) The random wvariable " = min{n : Z, = X,,} is a stopping time and
the stopped process Znny = Z7 is martingale.

Proof. From the definition it is clear that Z is supermartingale and dominates
X. Let Y be another supermartingale dominating X. Then Yy > Xy = Zy.
Assuming that Y,, > Z,, we have

Ynfl Z maX{E[YnLanl];anl} Z maX{E[ZnLanl]?anl} = anl-

Thus the minimality follows.
To see that 7* is stopping time note that

{r* =n} =0{Z > Xp,} N {Z, = X,.}.
For the last assertion note that

77 =77 =1(1">n)(Zn — Zp_a).
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On the event {7* > n} we have Z,,_, = E[Z,|F,_1] therefore

E[I(7" > n)(Z, — Zn-1)|Fna] = 0.

A stopping time o is optimal if

EX, = sup EX,.
TEMO

Proposition 3. The stopping time 7 is optimal for X, and

Zo=EX,« = sup EX,.
TEMo

Proof. Since Z7  is martingale
Zo=25 =BZy =EZ.. = EX,..

On the other hand for any stopping time 7 the process Z7 is supermartingale
(by Doob’s optional sampling), thus

Zy=EZ) > EZ, > EX,.
[l

Proposition 4. The stopping time o is optimal iff the following two condi-
tions hold.

(i) Zy = Xy;
(i1) Z° is martingale.
Proof. If (i) and (ii) hold than o is optimal. This follows exactly as the
optimality of 7*.
Conversely, assume that o is optimal. We have seen that sup, EX, = Z

thus
ZO = EXO’ S EZO’v

by the dominance of Z. By Doob’s optional stopping theorem Z¢ is super-
martingale, therefore EZ, < Z;, implying that

EX, =EZ,.
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Since Z, > X,, this implies X, = Z, a.s., proving (i).
By the optimality EZ, = Z,, while the supermartingale property implies

ZO Z EZU/\n Z EZO"

Thus
EZspny = EZ, = EE[Z,|F,].

Furthermore, by Doob’s optional stopping
Za/\n Z E[Zayfn]a

implying Z,r, = E[Z,|F,]. Thus (Z7) is indeed a martingale. O

6.2 Pricing American options

Let us return to our pricing problem. Assume that we have an arbitrage-free
complete market, that is the EMM Q is unique. Let (f,,)n—o.. .~ be the payoff
of an American option. A hedging strategy now has to fulfill the conditions

X*>f,, n=0,1,...,N,

as the option can be exercised at any time. A hedge is minimal, if for a
stopping time 7* we have X7. = f;-.

By Doob’s optional stopping (X[ /By, X7 /B;) is martingale for any stop-
ping time 7, i.e.

T X7 X7 f
— =Eq—' =Eq—" > Eq+".
By %By B, T 9B,

Therefore the initial cost of the hedge is at least

x > By sup EQﬁ.
reMy BT

At time N we need
Xy > In.

At time N — 1 the holder either exercise the option or continues to time N,
(in that case we discount the price), therefore

By
By

Xy_1 = max {fN—ly EQ[fN|]:N—1]} :
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Dividing by By_1

Thus, we see the connection with the Snell-envelope.
For a hedging strategy m we have that

(i) (X7/B.)n is a Q-martingale (since Q is EMM and 7 is SF), and
(ii) (X7/B,) dominates (f,/B,) (since 7 is a hedge).
Therefore, the value process of a hedge is larger than the Snell-envelope of

(fn/Bn), i.e.

Xﬂ'
sz on=01,...
B, = "

where (Z,) is the Snell-envelope of (f,/B,). The Snell-envelope (Z,) is
a supermartingale, therefore by the Doob-decomposition (that’s stated for
submartingale, but multiply by —1) we have

Z,=M,—A,, n=01,..., N, (13)

N, (12)

where M, is a Q-martingale, and (A,,) is an increasing predictable sequence,
Ap = 0. Comparing (12) and (13) we see that for n < 7*

XT('

o> M,

B, —

On the other hand, the market is complete, which implies (see the easy parts

of the proof of Theorem 6) that there exists a strategy 7 such that
XT('
— = M,, =0,1,...,N.
B, "

This is a minimal hedging strategy with initial cost

r  XJ

— = — = M, = Z,.

By By 0 0
Theorem 10. Consider an aribtrage-free complete market with unique EMM
Q. Let (f,) be the nonnegative payoff sequence of an American option. Let
(Z,) be the Snell-envelope of the discounted payoff sequence (f,/By). The

fair price for this option is

fT*
B,

C = B()Z() = BO sup EQ% = B()EQ

TEM(])V
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*

is an (not unique in general) optimal exercise time given by

: fn
= AL =7,
T mln{n Bn

where T

Furthermore, there exists a SF strategy m which is an optimal hedge with
initial cost C' and
X7r _ fT*

x = .
T BT*

6.3 American vs. European options

Clearly, an American option with payoff sequence (f,,)n=0.1,.. v worth at least
as a European option with payoff fn. However, in some cases the fair prices
are equal.

Consider an American call option with strike price K, that is

fn = f(Sn) = (Sn - K)+.

Assume that the deterministic sequence (B,,) is nondecreasing (i.e. the inter-
est rate is nonnegative). Let (Z,) denote the Snell envelope of (f,,/B,), that
is

Iy

T =
N BN’

Zn:max{g,E[ZnJrﬂ}"n]}, n=0,1,...,N — 1.

Using that (S,/B,) is a Q-martingale, by Jensen’s inequality

fvar (Syva = K)y

B Bn_1

(52 -55)
Bvi Byi).

/S K

< Eq (—N — ) F N—1:| Jensen’s inequality
\B~y Bn-1/.

S K

< Eq <B—Z - B_N)+ ]:N—1] by By > By—1
(SN - K)+

= Eq T By FNn-1

= Eq[Zy|Fn-1]
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This means that at time N — 1 it is always good to hold the option and
continue to step N.

An induction argument shows that at any time it is better to hold the
option. Indeed, assume for some n

5 < BolzanlF)

n

We just proved this for n = N — 1. The same way as above we have

fn—l o (Sn 1_K)+

Bn—l B
Sn . :
< EQ — — Fro1 Jensen’s inequality
B +
Sh
S EQ B ]:n—l by Bn 2 Bn—l
Bn n +
= EQ ( = n 1:|
fn
=Eq |+—|F._
Q| 3B, Fn
< Eq [EQ[Zns1| Fl| Fui] induction
< EqlZ,|Fn-1] Z supermartingale

Thus 7% = N is an optimal stopping time, which means that no matter what
happens, we wait until the end. Then the American option behaves as the
European, so the prices are equal.

Theorem 11. Assume that the market is arbitrage free and complete, and
the interest rate is nonnegative. Then the price of a Furopean call option
equals to the price of the American call option.
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7 Stochastic integration

7.1 Lévy characterization

One can define stochastic integral with respect to more general processes.
The process (X;) is a continuous semimartingale if

Xt - Mt"‘At?

where M; is a continuous martingale and A; is of bounded variation, and
both are adapted.

We can define stochastic integral with respect to semimartingales. Indeed,
integral with respect to A; can be defined pathwise, since A is of bounded
variation, and integration with respect to continuous M, can be defined sim-
ilarly as for SBM.

We recall 1t6’s formula.

Theorem 12 (It6 formula for semimartingales). Let X; = M; + A; be a
continuous semimartingale, and let f € C%. Then

Fx) = 100+ [ Fxgax.+ g [ i,

We have seen that if W, is SBM, then it W, is a continuous martingale,
and W2 — t is a martingale. It turns out that this characterizes SBM.

Theorem 13 (Lévy’s characterization of SBM). Let M; be a continuous
martingale, such that My =0, and M? —t is martingale. Then M, is SBM.

Proof. We determine the conditional characteristic function of M; with re-
spect to F, t > s. Apply Ito with f(z) = €**, where u € R is arbitrary but
fixed. Since f'(z) = ue®, f"(r) = —u?e"*, and by assumption (M), = t,
therefore

t t
elth . eluMS _ / iUGIUMvd,A [v + 5 / (—UQ)GWM”dU.

Let A € F, arbitrary. Multiplying by e~™s_and integrating on A we get

U2

t
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With A and s fixed, define
gas(t) = glt) = B [H0—M) ]

With this notation

Therefore, the solution
g(t) = P(A) - e~ 7 (),
This holds for any A € F, which means that

E [eiu(Mt—Ms) F = )

for v € R. That is the increment M, — M, is independent of F;, and it
is Gaussian with mean 0 and variance (¢t — s). Since it is continuous, it is

SBM. D

Note that the continuity assumption is important. Indeed, if N; is a
Poisson process with intensity 1, then both (N; —t) and (N; — t)? — ¢ are
martingales.

7.2 Girsanov’s theorem

Let (©2,.A, P) be a probability space, and (F;) a filtration. Let Q be another
probability measure on (£2,.4), which is absolute continuous with respect to
P,ie Q < P. Let M., denote the Radon—Nikodym-derivative,

_ 49

Moo - I
dpP

that is
Q(A) :/MOOdP.
A
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In what follows, we have more (usually 2) probability measures, therefore
we put in the lower index of E the corresponding measure. That is Ep X =
Jo XdP, and EqX = [, XdQ. Note that the notion of martingale does
depend on the underlying measure. Therefore, we have P-martingale, and
Q-martingale.

Define the P-martingale

M, = Ep[M|F].

Lemma 8. The adapted process (X;) is Q-martingale if and only if (M;X;)
1s P-martingale.

Proof. Since
Ep (Mo X4|Fi] = X M,

for each A € F,
A A

Therefore, if A € F, C F;, then

A A A
/XSdQ:/XsMOOdP:/XSMSdP.
A A A

Then (X;) is Q-martingale if the left-hand sides are equal for each A € Fy,
s < t, which is obviously equivalent to the equality of the right-hand sides,
which means that (M;X;) is P-martingale. O

Let
t 1 t
¢ :/ 0,dW, — 5/ 02du, (= ¢,
where 6, is adapted. Then Z, = e satisfies the SDE

t
Zy =1+ / Z,X AW, (14)
0

We use this formula in the proof of Girsanov’s theorem. We can write the
SDE above as
dZt - ZtXtth, Z() - 1
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Indeed, rewriting ¢ as an [to process

t 1 t
G = / S Pdu+ / B, AW,
0 2 0

Using the It6 formula with f(z) = e, we obtain
t 1 t
7y = e = 1+/ e d¢, + —/ e 02ds
0 2 Jo

t 1 1 t
=1 +/ e (——93d3+XSdWS) - —/ e 02ds
0 2 2 0

t
=14+ / %0, dW,
0
t
=1+ / Z.0,dW,,
0

as claimed. We also see that Z; is a martingale.

Exercise 10. Let (; as above. Prove that Y; = e~ satisfies the SDE

dY, = V0%t — 0,Y,dW,, Yy =1.

{thm:Girsanov}
Theorem 14 (Girsanov’s theorem). Let (6;) be an adapted process, such that
fOT 62ds < oo a.s., and assume that

t 1 t
Ay =exp {—/ 0, dW, — 5/ dis} (15) {eq:Lambda}
0 0

is P-martingale, where (W;) is P-SBM. Define Qg = Q

aQ

| M

Fr

Then W, = W; + [ 6,ds is Q-SBM.

Remark 1. We have seen above that A; is martingale. In fact, in general it is
only local martingale, and we need integrability conditions. These technical

assumptions are omitted.
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Proof. First we show that Q is indeed a probability measure. By (14)
t
AN=1- / A 0,dWs,
0

which is martingale, so
EPAT - EPAO - 1

Since Ap > 0 we see that Q is probability measure.
Next we show that W satisfies the conditions of the Lévy characterization.
The continuity is clear, since W is SBM and Q < P. By Lemma 8 (W;)
is Q-martingale iff (mAt) is P-martingale. We apply the It6 formula with
f(x,y) = zy and the Ito6 process

N t t
W, :/ 95d3+/ 1dW;
0 0

¢
At - 1 —/ Asedes.
0
Then
N t t . t
AtWt:/ WSdAS—i—/ AdeS—i—/ —A.0.ds
0 0 0

t t t
:—/ WSASQSdWS—i—/ A, (98d5+dWS)—/ A 0.ds
0 0 0
t o~
:/ A1 — 0,T7.)dW.,
0

which is P-martingale. Thus (Wt) is Q-martingale.
Next we show that (W72 — t) is Q-martingale. Again, by It6’s formula
with f(z) = 2?

. t o 1 t
W2 =2 [ WdW, + 3 / 2dt,
0

0

from which ,
W?2—t= 2/ W, (6,ds + dW,).
0
Therefore
o t __ t __ t __
At(Wf —t) = A2W (0,ds + dWy) + / (VVS2 — s)dAg — / A0 2W . ds

t

[QASWS (W2 - s)ASHS] dw,,

J | 0
J

41



which is P-martingale. Thus (Wf — t) is Q-martingale, and the proof is
complete. n

Finally, we state without proof (and precise statement) the martingale

representation theorem.
{thm:martingale-re

Theorem 15 (Martingale representation theorem). Let (W;) SBM on (2, A, P),
and let (F;) the generated filtration, together with the P-zero sets. If (M) is
continuous square integrable martingale with My = 0 a.s., then there exists
an adapted (Y;) such that

t
Mt - / }/;dWS
0

8 Continuous time markets in general

The general notations are the same as in the discrete time setup.

In what follows, we work on the finite time horizon [0,T], T" < oco. Let
(22, A, P) be a probability space, and (F;) a filtration. There are two financial
instruments on the market, the bond, which is the riskless asset, and the
stock, which is the risky asset. The price process of the bond is given by the
deterministic process (B; = €™), r € R being the continuous interest rate,
while the price process of the stock is (Sy), which is nonnegative, adapted to
(F). Furthermore, we assume that (.S;) is an It6 process.

A strategy / portfolio is a process (m; = (8¢, 7)), where the components
are adapted and

T T
/ |B¢]dt < oo, / yidt < oo, a.s.
0 0

The process ; represents the amount of bonds at time ¢, while v, is the
amount of stock. Both processes are real valued (short selling is possible).
The value of the portfolio (7) at ¢ is

X[ = BBt + 7St (16) {eq:ertekfoly}

Recall that in discrete time an equivalent formulation of self-financing
portfolio is

Xn+1 - Xn - /Bn—i-l(Bn—‘rl - Bn) + 7n+1(Sn+1 - Sn)
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The continuous time analogue of the above is the SDE
dX] = fidB; + v dS;.
The strategy (m; = (8¢, 7)) is self-financing (SF) if it satisfies the SDE
dX] = BidB; + 7 dS;. (17) {eq:onfin}

In what follows all strategies are SF unless otherwise stated.
The discounted processes are defined as (S; = S;By/B;) and (X, =
X7 By/By).
{all:onfin-ekv}
Proposition 5. A strategy (7 = (B, ) is SF iff

t

Yf:X(H/ 7,dS,, t€0,T].
0

Proof. Assume that 7 is SF. Then, by It6’s formula

dX; =d (e "X]) = —re " X[ dt + e "dX,
= —re " (Be + 7, Sp)dt + €7 (ﬁtdert + %dst)
= —re "y, dt + e "y, d S,
= 7d (efrtst) ;

as claimed.
For the reverse direction, we have

dX] = ~,dS,.
Since X[ = Bie™ + 445, so
dX; = —re "' X7 dt + e AXT = —e "B, dB, — re "y, S, dt + e "X
The right-hand side
%dS; = —re "y, dt 4+ et dS,.
The equality of the sides gives
dX[ = B:dB; + v dS;,

which is the definition of SF. O
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An SF strategy 7 is arbitrage, if XJ = 0 a.s., X7 > 0 a.s., and P(XT >
0) > 0. The market is arbitrage free if there exists no arbitrage strategy.

A probability measure Q is equivalent martingale measure (EMM) if P ~
Q (that is P < Q and Q < P), and (S,) is Q-martingale.

We have seen in the discrete time setup that the existence of EMM is
equivalent to the arbitrage free property. One of the implications is rather
simple in the continuous time setup. Assume that Q is EMM, and let =
be an (SF) strategy. By Proposition 5 the discounted value process has the
representation

t
X, = XI+ / 7,dS.
0

Since (S;) is Q-martingale, and Y: is a stochastic integral with respect to
S, we see that (X ) is Q-martingale. (Recall the discrete time analogue of
this statement.) Therefore

EqX; = EQXT.

Since P ~ Q, X§ = 0, X7 > 0 P-a.s., implies Q-a.s. Then EQY; =
EqQX{ = 0, from which X7 =0 Q-a.s., and so P-a.s.
We proved the following.

Theorem 16. Assume that on the market (Q, A, P,(S;), (B, = €™),(F))
there exists EMM. Then the market is arbitrage free.

9 Black—Scholes model

In a special model we explicitly construct the EMM via Girsanov’s theorem,
and compute the fair price of a payoff. In particular, we prove the Nobel-
prize winner Black—Scholes pricing formula, which gives the fair price of a
European call option.

9.1 The model

Fixr > 0,4 € Rand 0 > 0. Let (2, 4, P) be a probability space, (W;) SBM
on [0, 7], T < oo, and F; be the generated filtration. The bond and stock
price in the Black—Scholes-model is given by

dBt = TBt dt, BO = 1,

(18)
dSt = [I,St dt + O'St th, S() = S().,
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From the form of S; we immediately see that S; is a martingale if and

only if p = 0.
The bond price is simply B; = e".
Writing S; as an [to process

t t
Sy =Sy + / wSgds + / oS,dWs.
0 0

Applying 1t6 with f(z) = logz

t 1 /41
log S; = log Sy + / — (uSsds + 0 S,dWy) + —/ ——0%5%ds
0 s 2)y 52

o2
=log So + oW, + (,u — 7) t.

From which 5
S, =S, - e"Wf+(“—%)t_

This is the exponential Brownian motion.

(19)

Note that the proof is not complete, because the logarithm is not smooth
at 0. The argument above only helps to find out the solution. (A more
constructive approach is to apply Ito with a general f, and then choose f to

obtain a solvable equation.)

Exercise 11. Prove that (19) is indeed a solution.

9.2 Equivalent martingale measure and the fair price

As an application of Girsanov’s theorem, we construct a new measure, such

that S; is a martingale under this measure.
By (18) N
dS; = S; ((u — r)dt + odW;) = S;odW/,

where
pw—r

WtNZVVt-}- t

(20)

(21)

Therefore, we need a measure QQ such that the process Wt" is Q-SBM.

Then, by (20) (S;) is Q-martingale.
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Let 0, = 0 = ==, and

' 1 g 92T
VR O L
Fr 0 2 /o

By Girsanov’s theorem (Theorem 14) the shifted process (W}) is Q-SBM,
thus (S;) is Q-martingale. Since Ay > 0 a.s., P ~ Q, therefore Q is EMM.
By (20)

dQ
P

_ ~u 52
Sy =Sy-e”We Tt (22)
Next, we determine the fair price of a claim fz, for which Ef% < co. Let
N, =Eqle " fr|R], 0<t<T.

By the martingale representation theorem (Theorem 15) there exists an
adapted process Y;, such that

t
N, = N + / Y, dWH, (23)
0

where Ny = Eqe ™7 fr. Define the strategy 7 = (8, 7:) as

Y, Y,emt
By = Ny — _ta Ve = : .
o oS,

Lemma 9. The strategy (m; = (B, %)) is self-financing and X, = Nj.

Proof. By the definition

Y, Y,
X[ = BB+ 7S = (Nt - i) e’ + ;tert =" Ny,

ie X; =N,
In order to show that 7 is SF, by Proposition 5 we need that dY: = 7,dS,.
By (23)
dX] = dN, = Y,dW},
while (20) gives
1dS; = 1,.S,odW = Y,dW}.

46

{eq:S-mu}

{eq:N-def}



Since
X7 =eTNp = €TTEPM [e_TTfT\fT} = fr,

7 is a perfect hedge for fr, and X7 = Ny = Eqe™"" fr. Therefore, we proved

the following.

{thm:bs-price}
Theorem 17. In the Black-Scholes model the fair price of the contingent
claim fr is

CT(fT) = qufrTle

Furthermore, 7 = (B¢, V1),

Y, Y,e"t
5t:Nt——t> ’Yt:t—7
o oS

is a perfect hedge, where Ny = Eqle™"" fr|F,], and N, = Ny + fot stf@

9.3 Black—Scholes formula

The famous Black—Scholes formula gives the fair price of a European call
option. In this case the payoff function is fr = (S — K)., where K is the
strike price. By Theorem 17, the fair price is

CT(K) = EQ (€_TT(ST - K)_,.) .

By (22)

= 2
ST — SoerTGUWTfTT,
where Wi‘ﬁ ~ N(0,T) under Q. Therefore, writing Z for a standard normal
Cr(K) = Eq (7" (Sr — K)+)
TA7H (72
= Eq (Soe”WT_TT — e_TTK)

—E (S()GUﬁZ_éT o e—rTK>

+

+

= —— Spe?VTa=FT _ e”"TK> e 2 dx
\/QW/W ( ’

1 ® (@—ovT)?
e de —e " TK(1—-®
v (1-2()

= S, (1 — B(y — aﬁ)) — e TK (1= ®(7)),

(24) {eq:BS-calc}
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where

7wl (7)1
= og — ——r .
TV S T\ 2
The pricing formula

Cr(K) = Sy (1 —B(y— aﬁ)> — TR (1 — 3(7))

is the Black—Scholes formula, which was published by Fischer Black and
Myron Scholes in 1973. The underlying theory was generalized later by
Merton. In 1997, Scholes and Merton received the Nobel prize for this (Black
died in 1995).

9.4 From CRR to Black—Scholes

Here we derive the Black—Scholes formula as the limit of the discrete CRR
pricing formula. This part is based on [1], section 2.6.

Consider the continuous model on [0,7]. Let r > 0 be the continuous
interest rate and o > 0 the volatility. In the approximating discrete model

choose, for N fixed

i
O:TO<7'1<...<TN:T, TZ:NT
Put h = T/N. The parameters of the N-step homogeneous binomial market
are ry,ay, and by. The price of the bond and stock is denoted by Bg and
Sg , respectively.
Choose

1+bN 1+CLN
L —ovh, 1 = oI 2
TN TN rh, og1 - a\/_, og1 - ovh (25)

It is easy to show that this implies

N
BY =(1+ry)l7) = et =B,
T

which in fact suggests the choice of ry. Similar, but more complicated cal-
culations gives that with the choice above VarSi\][V converges.
In the homogeneous binomial model the EMM was given by the upwards

step probability
Dl = N —an
N bN — aN .
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Under the EMM

1+ by
1+apn

YN
Sy = So(1+0x)™ (1 +ay)" 7 =Sy ( ) () (0

where Yy ~ Binomial(N, p},).
The CRR pricing formula gives

Ox(K) = By 2 (27)
TN
By the central limit theorem (Lindeberg—Feller theorem)
Yy — Npj
N PN DUN(0,1), N — oo, (28)

Npy(1—py)

whenever 0 < liminfx_, py < limsupy_,., py < 1. Simple calculation gives
that limy_, piy = 1/2, so (28) holds. Rewriting (26)

1+by\"™ 1+b
(1—}—&1117/) (1—|—aN)N:exp{YNlog1+a]:f+N10g(1+aN)}

Yy — Npt 140
=eXp{ N PN N (1 — py) log -
Npy (1 —px) L+an

1+ by
N pi 1 log(1 .
+ (pN 0g1+aN—|— og( +aN))}

By (28) we need to determine the limits

1
li Nph (1 —p%) 1
Nl—I};o pN( pN) Ogl—i—a 1+apn

Taylor expansion and (25) gives
2
1+ by = eV (1 +1y) = (1 +oVh+ Sht O(h3/2)) (14 rh)
o2
=1+oVh+ (7 +r) h+ O(h*?),

thus )
by = oV + (% + 7“) h+ O(h/?).
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b 1+0
il N and lim N <p}‘v log o + log(1 —i—aN)) :
N N—oo —+



Similarly,
2
v =—oVh+ (% + r) h+ O(R*?).
From this
* N —an U\/E_ %2h+0(h3/2)

PN oy —an 20V h + O(h3/2)
B 1 B ovh+ O(h)
N 2+O(h) 4+ 0O(h)
1

Substituting back, and using the second order expansion log(l + x) = = —
?/2 + O(x?), * — 0, we obtain

]\}131)0 Npi (1 —py) log T Tan ngnoo piv(1 —pN)QJ\/T = oVT,
and
1
hm N< j‘vlog +10g(1 +aN))
= lim N( - — = ]20\/——0\/ +T—+O 3/2)>
N—oo

_ 0_
N 2
Substituting back into (27)

lim CN(K) — efrTE* (SOGU\FTZ-&-T(r—"Q) . K)

N—oo
02
_ E* (SoeaﬁZ—TT . e—TTK) 7
+

+

which is exactly the second line in (24).

In fact, we need the convergence of moments, that is, uniform integrabil-
ity. That can be done with a little more work, but the details are skipped.
It is important to note that not only the price convergence, but the whole
process (Sg ) converges to the exponential Brownian motion. This follows
from Donsker’s theorem.
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10 Interest rate models

10.1 The general setup

In what follows we are interested in options on bonds instead of stocks.
Therefore, we assume that the stock price B; is also random. The bond price

is given by
t
B; = exp {/ rudu} : (29)
0

where r;, the interest rate is an adapted stochastic process. The time interval
is [0, 7]. The stock price is given by

t t
Sy = Sy + / p(u)S,du + / OuSudW,, (30)
0 0

with some adapted process p and o. Note that the bond price B, is a stochas-
tic process too, but it is much smoother than the stock price 5, as it is the
exponential of the Lebesgue integral of a stochastic process. In particular,
the path of B; are of bounded variation, while the path of S; are not. (Re-
call that an Ito process is of bounded variation if and only if the stochastic
integral part vanishes.)

We want to find an equivalent martingale measure. For the discounted
stock price S; = S;/B,

d% —d (S fore)

¢
— e homds, + Si(—r)e” Jo rudugy
=S (e — ) dt + o dW;)
= gtUtth,

where

__ t
Wt = / 05d3+Wt,
0

with 0, = % Applying Girsanov’s theorem /V[v/t is SBM under the measure

g, Where
dQy r L[t
— = — 0, dW, — = f=ds .
P exp{ /0 %% 2/0 cds
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Therefore, under Qp the discounted stock price S; is a martingale, i.e. Qp is
an equivalent martingale measure.

We are not interested in the specific form of the underlying risky asset
(S¢) in (30), but we assume that there exists a unique equivalent martingale
measure (that is (S;/B;) is martingale). This will be the only measure on
the probability space, therefore it is denoted by P (instead of Qy).

Formally, let (€2, A, (F;), P) be a filtered probability space, (r,) an adapted
stochastic process, and (B;) is given by (29). We assume that the risky as-
set (S¢) is an adapted stochastic process, such that (S;/B;): is a martingale
under P, and P is the unique such measure.

A zero coupon bond (elemi kétvény) maturing at time 7T is a claim that
pays 1 at time 7. Its value at time ¢ € [0,7]] is denoted by P(t,T), 0 <t <
T<T.

From the pricing theorem we see that the fair price of the zero coupon

bond at time 0 is .
POT)=E|—
0.7) {BT] ’

thus at time 0 < ¢t < T

P(,T) = BE [BiT‘ft] —E {exp {— /tT 'rudu} )]—“t] . (31)

A term structure model (hozamgdorbe modell) is a mathematical model for
the prices P(t,T).

We are interested in pricing bond options. The fair price at time 0 of a
FEuropean call option with strike price K at expiry date T} for a zero coupon
bound with expiry date 75, where T, > 17, is given by

Ee o' mdu (P(T),Ty) — K), . (32)

10.2 Short rate diffusion models

In short rate diffusion models the interest rate r; is given as a solution of a
stochastic differential equation.

10.2.1 Ornstein—Uhlenbeck process
Consider the Langevin equation

dY; = —pY, dt + o dW,
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where > 0, 0 > 0, and Y} is independent of o(W; : s > 0).
The solution of the homogeneous equation is e #¢. Taking the derivative
of e*'Y, we obtain

d (e“th) = e Y, + petY, dt = et o dW,,

t
Y, =e (Yo +/ e“SJdWS) )
0

This is the Ornstein—Uhlenbeck process. The integral of a deterministic func-
tion with respect to SBM is Gaussian, thus

which gives

Y, — e MY,
is normal with mean and variance

EY, = e " EY,,
t 2
EY? = e M EY? + e 2 / o2 e ds = e M EYS + ;— (1 —e 2.
0 H
We see that as t — oo
D
Y, — N(0,0°/(2p)).
Taking the limit for the initial distribution Yy we see that (Y;) is Gaussian
and
o2
Y, ~N (0, —) .
2p

Next we determine the covariance function of Y. Since
t
Y, =e ™ <YO + / o el qu)
0

t
Y, — 6_“('5_5)1/5 = e_“t/ oetdW,, t > s, (33) {eq:ou-fgt}

we get

which is independent of o(W,, : u < s) 0. Therefore,

Cov(Yt, st) —EY,Y,=E (y;5 _ e*u(tfs)Yt9 + e’“(t*S)Y;) Y,

2
= M=) EY? = 9 —ult=s)

24

Y
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which depends only on ¢ — s. That is (Y;) is stationary.
Using formula (33) for A € B(R)
PY,e AlY, :u<s,Y, =x)
=P, — e M=y, e A — e_u(t_s)ﬂYu cu<s, Y, =ux)
=P(Y; — e MY, € A — e 79y,

The variable Y; — e #=%)Y, is mean zero Gaussian with variance
2

E (Y, - 67“(“5)3/5)2 = 2 /t oreidy = ;T_,u (1 —e2uli=2)),

Substituting s = 0
2

. ~ N —put 0__ 1— —2ut
pe(-|) (6 Z, 2% (1—e )) ,

that is, the transition density

i) =\ [y o0 ()

We proved that (Y;) is a continuous stationary Markov process. It can be
shown that this characterizes the OU process.
Finally, we spell out the Kolmogorov equations. The backward is

0 0 o2 9?
&Pt(yﬂ) = —,WU%M(?JW) + ?@Pt(mx)a

which is called Fokker—Planck equation. The forward is
0 0 o? 02
5 Wle) = ~ay (—pype(ylz)) + 7a—y2pt(y|ﬂf)~

10.2.2 Vasicek model

For r¢,a,b, o given positive numbers let r; is given by the stochastic differ-
ential equation
dry = a(b —r)dt + odW,, (34)

o4
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where W; is a standard Brownian motion. Thus r; is a translated Ornstein—
Uhlenbeck process. Indeed, X; = r; — b satisfies

dXt = d’r’t = —aXtdt + O'th,

t
X, =e @ (XO +/ e“sadWS) ,
0
t
r,=b+4+e <r0 —b+ / e“sadWs> )
0

Thus r; is normally distributed for any fixed ¢ with mean

thus

from which

Ery=b+e¢ “(rg—b)

and variance )

g —2a
Var(r;) = %(1 — g2t

This implies that r, can take arbitrarily large negative values, which is not
very realistic.
Now we determine the distribution of P(¢,7T"). By (31)

P(t,T)=E lexp {— /tT rudu} ‘ft]
— TR |:exp {— /tT Xudu} )]—}} ,

where X; = r; — b as above. Since X, is a Markov process, we have that

T—t

P(t,T) = e "M YEexp {—
0

)?udu} ) (35) {eq:vasicek-pt}

where X is the solution to the Langevin equation
d)N(S = —CL)N(S + odW, )Z'O =x9=1—b. (36) {eq:vasicek-initiz

Therefore, we need to determine the distribution of

t ~
/ X, du.
0
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We have seen that (X,) is a continuous Gaussian process, therefore its inte-
gral is Gaussian too. Since EX, = e %z, we have

t t 2
E/ X, du = xo/ e du=—(1—e ).
0 0 a

Furthermore, for t > s

t s
Cov (X, X;) = Ee_at/ aea“que_aS/ oe®™dW,
0 0

s 2
_ O_Qe—a(t-‘rs)E (/ eauqu>
0

s
_ O' e a(t+s)/ 62audu
0

_ O_Zefa(tJrs) (eQas . 1) )

2a

Therefore

t t t
Var (/ Xudu) = Cov / X, du, Xudu)
0 0 0

| B
t t . -
= / / Cov(X,, X,)dudv
0 Jo
t v
= 2/ / Cov(X,, X,)dudv
_ / / —a(u+v) 2au o 1) dudv

2a3 (at —3+4e ™ — _2‘”) .

Thus we have the expectation and variance of the Gaussian random variable
fot X,du. Since Ee!@Z+b) — ¢a®*/2+0t for 7 . N(0,1), we have

b o2
Eexp {/ XudU} = exp {—@(1 — —“t) 4 _3 (at — 34 e _ 6—2at)} '
0 a 4a
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Substituting back into (35) and using the initial condition (36), we obtain

P, T)= exp{ (T —t) — T — b(l B e—a(T—t))
a

02

+ 1 (a(T —t)—3+ 4e~ =t _ e_QQ(T_t)) }
The fair price of a European call option with strike price K at T} for a
zero coupon bond with expiry Ty > 17 is

C(K;T,T3) = Ee™ Jo't redt (P(T1,T,) — K) (37) {eq:vasicek-eucall

L
Since P(T1,T5) is determined by 77, to evaluate the latter integral we need

the joint distribution of fOTl ridt and rp,. They are jointly Gaussian, and
their covariance is

t t
Cov (/ Tudu,rt) :/ Cov(ry,ry)du
0 0

t 0_2
_ / _e—a(t-i-u) (€2au . 1)du
0 2a

0.2

== @(1 — 26_at + 6_2at).

Therefore, the fair price in (37) is
C(K;, T, Ty)
V—b

a

(1 o e—a(Tg -1 ) )

= EeV <exp{ —b(T, —T)) —

2
+ 1 (alTy = Ty) = 3+ deo(B7T) — =2 | K) :
_|_

where (U,V) is a two dimensional normal random vector with covariance
matrix

243 2
2a 2a 5

7o (1 —2e7 4-e72¢T1) Z(1—e M),

(0’2 (CLTl o 3 + 46—aT1 _ 6_2aT1) 0'_2<1 _ 2€_aT1 + 6_2aTI>>
2
2a2
The main point here is that there exists an explicit formula, which can

be computed numerically easily.
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10.2.3 Hull-White model

This is a simple generalization of the Vasicek model, where we allow the pa-
rameters to be time dependent. Assume that for some deterministic functions
a,b, and o

dry = (a(t) — b(t)r,)dt + o(t)dW;, ro =19 > 0. (38)

Then the solution is
t t
r(t) = e P® <T0 +/ ?™Wa(u)du +/ 65(“)0(u)qu) .
0 0
where (t) = [y b(u)du.

10.2.4 Cox—Ingersoll-Ross model
In the Vasicek and the Hull-White model the distribution of r; is normal

for any t, therefore it can take any large negative number, which is not so
realistic. In the following model r; is nonnegative.
First consider n independent Ornstein—Uhlenbeck processes, that is

1
dX;(t) = —5aX()dt + %dWi(t), i=1,2,...n,
where Wy, ..., W, are independent standard Brownian motions. Then
Xi(t) =e 2! (XZ-(O) + 5/ e2SdWi(s)) :
0
Put

re=X7(t) + ...+ X2(t).

Using the multivariate version of Ito’s formula
n n 2
o
= —ard f Xy(Odwi() + "Ca
= —QAT¢ t+o .- z(t) I(t)_’_T t

TLO'2

_ (T - art> dt + a\/ﬁi %dWi(t)-
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The process

wzz/ "%Mww

is a continuous martingale, such that

t n t Xz 2
W?:Q/LMM%+§:/ 7@>m
0 i=1 70 u

t
zz/vnam+@
0

which means that W72 — ¢ is a martingale too. Therefore, by Lévy’s charac-
terization of the Wiener process we obtain that W; is a SBM. Substituting
back we have

2
th = (% — Oé?”t) dt + U\/T_tth

with W; SBM. This is the definition of the Cox—Ingersoll-Ross (CIR) process.
The CIR process with parameters a > 0, b > 0, ¢ > 0 is the solution of
the stochastic differential equation

dry = (a — bry)dt + o/r dW,. (39)

Note that existence and uniqueness result for SDE’s does not apply here,
because the function /x is not Lipschitz at 0. However, it can be shown that
a unique strictly positive solution exist for a > ¢%/2. We have seen this for
a=no?/4.

We have seen that at determining the fair price of a European call we
need the joint distribution of (r, fot rodu). The joint Laplace transform of
the vector can be determined explicitly. We state the following result without
proof.

Theorem 18. For any u >0, v > 0

¢
E exp {_W"t — U/ Tst} = e_w"’v(t)—rwuw(t)’
0

where

2 276t(b+7)/2
Pup(t) = = log | 5—— t
o o?u(et —1)+~v—b+et(y+0b)
bualt) = u(y +b) + e (y —b) +2v0(e" — 1)
GO gtu(et — 1) +y —b+ et (y+b)
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where v = /b2 + 202v.

Therefore, using the result above and the Markov property the value of
the zero coupon bound

P(taT) =E [e_ftTTudu th}

=E [6_ foTit rudu

o = Tt]
= exp {—ado (T" = t) = repo (T — 1)}

The price of a European call option with strike price K at T for a zero
coupon bound with expiry T3 > T}

C(KaTl)TQ)
=E [e_fOTl rud (exp {—ago1 (T — Th) — reytpor (To — Th)} — K) | -

This is not an explicit formula, but we now the joint Laplace transform of
the vector ( fOTl rodu, rr, ), therefore it is numerically computable.

10.3 The Heath—Jarrow—Morton model
10.3.1 Forward rate

Assume that at time ¢ we buy one zero coupon bond with expiry 7" and short
sell P(¢,T)/P(t,T + ) unit zero coupon bond with expiry 7"+ . The value
of this portfolio at ¢

P(t,T)

PO = P+

P, T+¢)=0,

so it costs nothing. What happens is that at time 7" we borrow 1 dollar, and
we have to pay P(t,T)/P(t,T +¢) at time T+ €. Therefore the interest rate
we pay at time T is R(¢t, T, T + ¢)

P(tv T) _ eaR(t,T,T+s)

Pt,T+¢e) ’
that is

! (log P(t,T +¢) —log P(t,T)).

R(t,T,T+€) = —g
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Thus the instantaneous forward interest rate at time 71" calculated at time ¢,
called forward rate is

: 9,
ft,7T)= lalg)l R(t,T.T +¢) = ~a7 log P(t,T). (40)

Intuitively, it is clear that at time ¢ we predict the interest at time ¢ to
equal the short rate ry, that is r, = f(¢,t). In what follows we prove this

statement.
{lemma: forward-shc

Lemma 10. For any t € [0, T]

f(t, t) = Tt.
Proof. As log P(t,t) =0

T 9 T
log P(t,T) = / a—Tlog P(t,u)du = —/ f(t, u)du,
t t

we obtain .
P(t,T) = e~ Jv Jltw)du (41) {eq:P-f}
Differentiating
0
—Pt,T)=—f(t,T)P(t,T
TP T) = {6 T)P(L.T),
which at t =T 5
—P(t,T = —f(t,t
P T =),

On the other hand, differentiating

Py~ B[ ] 2]
we obtain
iP(t T)=E [_ = rudu ;}
aT 9 - TTe t
which at T'=t¢ 5
2 p.T ‘ —
oT (t.T) T=t Tt
and the statement follows. O]
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10.3.2 The Heath—Jarrow—Morton model

The Heath—Jarrow—Morton (HJM) model describes the dynamic of the for-
ward rate f(t,7) with the SDE

df(t,T) = a(t,T)dt + o(t, T)AW,, (42) {eq:HIM}

which holds for every 0 <t < T < 7T, where a and ¢ are adapted processes.
Note that the model has two time scales. In the followings we determine
the necessary conditions on a and o. We have

d (—/t f(t,u)du) = f(t,t)dt—/t (df(t,u))du
ot — / (at, u)dt + o (t, w)dW;)du
=rdt — " (¢, T)dt — o™ (¢t, T)dW,,

where . .
o (t,T) = / a(t,u)du, o*(t,T) = / o(t,u)du.
t t

Here we use a stochastic version of Fubini’s theorem, which we did not even
formulate. Put

T
Xy =log P(t,T) = —/ f(t, u)du.
t
Then the above calculation gives
dXt = (Tt —aof (t, T))dt — U*(t7 T)th
Thus
1
dP@JU—e&(n—a%uTy+?ﬁmTf)&—e&fajwﬂm
1
:P@T)Kn—a%um+§ﬁ@JY>M—a%umM%.
Under the equivalent martingale measure the discounted value process of

a zero coupon bond
t
e~ Jordup(g T)
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is a martingale. Since
d (e frep(t, 1)) = e B dP(t, T) = rie™ o (e, T)at
¢ 1
= e Jorudup(t T) [(—a*(t,T) + 5a*(t,T)2) dt — o*(t, T)dW;| ,
which is martingale if and only if for any 0 < ¢t <T < T
* ]' * 2
o (t,T) = 3¢ (t,T)".

Substituting back the definition of a* and ¢*, after differentiation we obtain
that

T
a(t,T) = a(t,T)/ o(t,u)du. (43)
0
We proved the following.

Theorem 19. If the HIM model is determined by the SDE (42) then neces-
sarily (43) holds.
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