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Figure 1: Payoff of a forward

1 Introduction

These notes are based on the Hungarian lecture notes by Gáll and Pap [5],
on Shiryaev’s monograph [7], and on Elliott and Kopp [2].

There are two type of financial instruments: the basic financial units and
their derivatives.

Underlying:

• bond: risk-free asset, basically money. Its price is deterministic Bt;

• stock: risky asset. Its price is a random, modeled by a stochastic
process St (or with d risky assets = (S1

t , . . . , S
d
t )).

Derivatives are bets on the underlying. They are used to share or reduce
risk. Here we consider forward contracts and options.

1.1 Forward

A forward contract is an agreement to buy or sell an asset (stock) for a price
previously agreed K in the future time T .

From the buyers point of view, at time T his wealth is ST − K, that is
the payoff function is f(s) = s−K.

We want to determine the fair price of this contract, and to understand
the meaning of ’fair’. Assume B0 = 1.
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Seller’s point of view: At time 0, we can buy a stock for S0. Then at time
T selling a stock for K and paying back the loan S0 ·BT , we have K−S0BT .
Therefore,

K ≥ S0BT .

Buyer’s point of view: At time 0, we sell a stock for S0. At time T we
pay K for a stock, and the our wealth is S0BT −K. Thus,

K ≤ S0BT .

We see that the fair price has to be K = S0BT . Otherwise, either the
seller or the buyer would have a strategy providing riskless profit (arbitrage).

Example 1. Let S0 = 40, Bt = ert, r = 0.1 being the annual interest, T = 1
year. What is the fair price of this forward, and what is the value of the
contract after half a year if S0.5 = 45?

The forward price at time 0 is

K = S0B1 = 40 · e0.1 = 44.2.

At time t = 0.5 the forward price

K2 = S0.5B0.5 = 45 · e
1
2
0.1 = 47.3.

Thus the current value of the contract

e−
1
2
r(47.3− 44.2) = 2.9.

1.2 Options

An option is right to do something but not an obligation. European option
can be executed only at the expiration date, while American options can be
executed at any time.

The writer of a European call option agrees to sell a stock for a previously
agreed price K. Clearly, the buyer of this option will not use his right if
ST < K. The payoff function for the buyer is f(s) = (s−K)+

In case of a put option the writer agrees to buy a stock for K. The payoff
function of the buyer

2
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Figure 3: Payoff of a put option
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1.3 Put–call parity

The aim of the course is to determine the fair price of an option, and under-
stand the fairness. However, there is a simple relation between call and put
prices regardless of the underlying market model.

Let CK be the fair price of the call, and PK be the fair price of the put,
both with strike price K. Assume that B0 = 1. Then, from the payoff
functions it is easy to see that having put, a stock, and −1 call results at
the expiration date (regardless of the stock price) a wealth K. That is, after
discounting

K

BT

= PK + S0 − CK .

This is the put-call parity.

2 Portfolio, claim, and hedging in discrete

time

Let (Ω,F ,P) be a probability space. In the discrete time case we always
assume (if not stated otherwise) that Ω is finite, and P({ω}) > 0 for each
ω ∈ Ω. We assume that transactions are made only at the time instants
0, 1, . . . , N . Let (Fn)n=0,1,...,N be a filtration, an increasing sequence of σ-
algebras, such that F0 = {∅,Ω}, FN = F . Assume that there is a risky asset
and a bond. The price of the risky asset at time is Sn, an Fn-measurable
random variable, and the bond price at time n is Bn, deterministic.

2.1 Portfolio

An investment portfolio (strategy) is πn = (βn, γn), where βn ∈ R represents
the amount of bonds in the portfolio at time n, while γn ∈ R represents the
amount of stock at time n. (If there are d stocks, then γn is a random vector
in Rd.) The random variables (βn, γn) are Fn−1-measurable, which means
the investor has to decide at time n− 1 how to invest on time n. That is the
sequence (βn, γn) is predictable. The wealth of the investor at time n under
the strategy π is

Xπ
n = βnBn + γnSn.

This is the value process of the investment portfolio.
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A strategy is self-financing (SF) if the investor does not take out money
from, and does not invest money to the portfolio after time 0. That is π is
self-financing if

Xπ
n−1 = βnBn−1 + γnSn−1 for all n.

For a sequence an put ∆an = an − an−1.

Lemma 1. The following are equivalent:

(i) π is SF;

(ii) ∆Xπ
n = βn∆Bn + γn∆Sn;

(iii) Bn−1∆βn + Sn−1∆γn = 0.

Proof. We have

∆Xn = Xn −Xn−1

= βnBn − βn−1Bn−1 + γnSn − γn−1Sn−1

= βn(Bn −Bn−1) + (βn − βn−1)Bn−1 + γn(Sn − Sn−1) + (γn − γn−1)Sn−1

= βn∆Bn +∆βnBn−1 + γn∆Sn +∆γnSn−1,

and the equivalence follows.

In what follows, unless otherwise stated all the strategies are meant to be
SF.

2.2 Claim and hedging

Let fN be a nonnegative random variable, which is the payoff function, or
obligation, or contingent claim. A strategy π is an upper (x, fN)-hedge, if
P-almost surely

Xπ
0 = x, Xπ

N ≥ fN .

The hedge is perfect if = holds a.s.
Put

C∗(fN) = inf{x : ∃ upper (x, fN)-hedge }.

Lemma 2. For any payoff function fN there exists an x such that there is
an upper (x, fN)-hedge.
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Proof. Put

x =
B0

BN

max
ω∈Ω

|fN(ω)|.

Then the (trivial) strategy πn ≡ ( x
B0
, 0) (start with enough money and don’t

do anything) is an upper hedge.

2.3 Binomial market

2.3.1 One-step market

Consider a one-step binomial market with d = 1 stock. That is Ω = {0, 1},
F0 = {∅,Ω}, F1 = F = 2Ω. Assume that P({0}) ∈ (0, 1). The bond price
B1 = (1 + r)B0, that is r > −1 is the interest rate, and for some a < b,
S1 = (1 + ρ)S0, ρ ∈ {a, b}. Say, ρ(1) = b, ρ(0) = a. Let f be a payoff, that
is f(0) = f0, f(1) = f1. We construct a perfect hedge.

Using the strategy π1 = (β1, γ1) we want that

Xπ
1 = β1B1 + γ1S1 = f a.s.

Since there are only two possibilities, a.s. means

β1B0(1 + r) + γ1S0(1 + a) = f0

β1B0(1 + r) + γ1S0(1 + b) = f1.

Solving the linear system

γ1 =
1

S0

f1 − f0
b− a

, β1 =
f1 − (1 + b)f1−f0

b−a

B0(1 + r)
.

This is deterministic, so F0-measurable, as it should be. The initial cost of
this strategy is

Xπ
0 = B0β1 + S0γ1 =

1

1 + r

(
r − a

b− a
f1 +

b− r

b− a
f0.

)
If a < r < b this can be written as

Xπ
0 =

1

1 + r
EQf,

with the probability measure Q({0}) = (b−r)/(b−a), Q({1}) = (r−a)/(b−
a).

This shows that the ’fair’ price of the payoff is EQf/(1 + r). Note that
this does not depend on the probability measure P.

6



S0

S1 = s↑

S1 = s↓

S2 = s↑↑, f = f ↑↑

S2 = s↑↓, f = f ↑↓

S2 = s↓↑, f = f ↓↑

S2 = s↓↓, f = f ↓↓

Figure 4: 2-step binary market as 3 1-step binary market

2.3.2 N-step market

Assume we have only one stock, d = 1. For the bond Bn = (1 + rn)Bn−1,
and for the share Sn = (1 + ρn)Sn−1, where ρn ∈ {an, bn}.
Exercise 1. Give a concrete construction of the probability space and the
filtration!

Solution 1. Let

Ω = {0, 1}N = {ω = (ω1, . . . , ωN) : ωi ∈ {0, 1}}.

Define the random variables ρn : Ω → {an, bn} as

ρn(ω) =

{
an, if ωn = 0,

bn, if ωn = 1.

For the filtration let Fn = σ(ρ1, . . . , ρn), i.e. the natural filtration generated
by the variables ρ1, . . . , ρn.

Consider any payoff function fN . A perfect hedge can be constructed
recursively, using the simple one-step market. Indeed, a two-step model can
be seen as 3 one-step markets.

3 Arbitrage and pricing in discrete time

3.1 Arbitrage

A SF strategy π is an arbitrage strategy if

7



• Xπ
0 = 0;

• Xπ
n ≥ 0 for all n = 0, 1, . . . , N ;

• P(Xπ
N > 0) > 0.

That is, using the strategy π with 0 money we have riskless profit.
If the second assumption only holds for n = N then π is a weak arbitrage

strategy. According to the following if weak arbitrage strategy exists, then
also arbitrage strategy exists.

Lemma 3. Assume that π is a weak arbitrage strategy. Then there exists an
arbitrage strategy π′.

Proof. If Xπ
n ≥ 0 a.s. for all n, we are ready. Otherwise, there exists m < N

such that P(Xπ
m < 0) > 0, and Xπ

n ≥ 0 for any n ≥ m+ 1. Let

Am = {Xm < 0} ∈ Fm.

Consider the strategy

β′
n = I(Am)I(n > m)

(
βn −

Xm

Bm

)
, γ′n = I(Am)I(n > m)γn.

It is easy to check that this strategy is predictable, SF, and arbitrage strategy.
Indeed,

(i) predictable: for n ≤ m this is clear, since β′
n = 0 and γ′n = 0, while for

n > m Am is Fm-measurable and thus Fn−1-measurable as well, and
βn, γn are Fn−1-measurable by the assumption.

(ii) SF: for n ≤ m this is again clear. For n = m+ 1

Bm∆β
′
m+1 + Sm∆γ

′
m+1

= I(Am) (Bmβm+1(ω)−Xπ
m(ω) + Smγm+1(ω)) = 0,

since π is SF. For n > m + 1 we have ∆β′
n = IAm∆βn, and ∆γ′n =

IAm∆γn, and the result follows, using again that π is SF.

(iii) arbitrage: we have

Xπ′

n = I(Am)I(n > m)

(
βnBn + γnSn −

Xπ
mBn

Bm

)
,

where the sum of the first two terms in the bracket is nonnegative by
the definition of m and the last is strictly negative on Am, which proves
the statement.
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Exercise 2. Assume that a < b < r in the one-step binomial model. Give
an arbitrage strategy.

Assume that an < bn < rn for some n in the N -step binomial model.
Give an arbitrage strategy.

3.2 Martingale measures

A probability measure Q is called equivalent martingale measure (EMM) if
P ∼ Q and (Si

n/Bn,Fn) is a Q-martingale for each i = 1, 2, . . . , d.

3.2.1 EMM in binomial markets

In a one-step binomial market the martingale property is easy to check.
Indeed, (Si/Bi)i=0,1 is a martingale iff

EQ

[
S1

B1

∣∣∣∣F0

]
=
S0

B0

.

We have

EQ

[
S1

B1

∣∣∣∣F0

]
= EQ

S1

B1

= Q(ρ = a)
(1 + a)S0

(1 + r)B0

+ (1−Q(ρ = a))
(1 + b)S0

(1 + r)B0

=
S0

B0

.

Solving the equation we obtain that

Q(ρ = a) =
b− r

b− a
, and Q(ρ = b) =

r − a

b− a
.

That is Q({0}) = (b − r)/(b − a), Q({1}) = (r − a)/(b − a). This is the
probability measure Q we obtained at pricing.

Let us see the general N -step model. Then

Sn =
n∏

i=1

(1 + ρi)S0,
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thus the martingale property reads as

EQ

[
Sn

Bn

∣∣∣∣Fn−1

]
=
Sn−1

Bn−1

n = 0, 1, . . . N.

Using the properties of conditional expectation we have

EQ

[
Sn

Bn

∣∣∣∣Fn−1

]
=
Sn−1

Bn−1

1

1 + rn
EQ[1 + ρn|Fn−1].

Therefore Sn/Bn is a Q-martingale iff

EQ[ρn|Fn−1] = rn.

This condition exactly tells that under the new measure Q the risky asset
behaves as the bond on average. Using that ρn ∈ {an, bn}, we obtain as
above

Q(ρn = an|Fn−1) =
bn − rn
bn − an

, and Q(ρn = bn|Fn−1) =
rn − an
bn − an

.

Note the conditioning on Fn−1 gives a constant, meaning that ρn is indepen-
dent of Fn−1 under the measure Q.

We obtained the following.

Theorem 1. In the binomial market if an < rn < bn for each n then there
exists a unique EMM Q given by the formulas above. Moreover, under Q the
random variables ρ1, . . . , ρN are independent.

In the proof we used the following simple result.

Exercise 3. Assume that Y ∈ {a, b} and

P(Y = a|F) = p a.s.

Show that Y is independent of F .

Note that the original measure P is irrelevant.
In the special case of the homogeneous binomial market we get that

Q(SN = S0(1 + b)k(1 + a)N−k) =

(
N

k

)
qk(1− q)N−k, k = 0, 1, . . . , N.
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3.2.2 Pricing with EMM

Proposition 1. If Q is an EMM then (X
π

n = Xπ
n/Bn)n is a Q-martingale

for any SF strategy π.

Proof. Easily follows from the SF property. Indeed, using that βn, γn are
Fn−1-measurable

EQ

[
Xπ

n

Bn

∣∣∣∣Fn−1

]
= EQ

[
βn + γn

Sn

Bn

∣∣∣∣Fn−1

]
= βn + γnEQ

[
Sn

Bn

∣∣∣∣Fn−1

]
= βn + γn

Sn−1

Bn−1

=
βnBn−1 + γnSn−1

Bn−1

=
Xπ

n−1

Bn−1

,

where the last equality follow from the self-financing property.

The following main result is the first fundamental theorem of asset pricing.

Theorem 2. There exists an EMM if and only if the market is arbitrage-free.

Proof. Let Q be an EMM and π be any strategy with Xπ
0 = 0. Then, by the

previous statement

EQ
Xπ

N

BN

= EQ
Xπ

0

B0

= 0.

Thus XN ≥ 0 P-a.s., then also Q-a.s., which implies XN ≡ 0 Q-a.s., thus
P-a.s.

We prove the converse later.

Assume that fN is a replicable payoff, i.e. there is a prefect hedge π. This
means that

Xπ
N = fN a.s.

Then the fair price for fN is the initial cost of the portfolio, Xπ
0 = x. By the

martingale property

EQ
fN
BN

= EQ
Xπ

N

BN

mtg
= EQ

Xπ
0

B0

=
x

B0

.
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That is, the fair price x for a replicable payoff fN is

x =
B0

BN

EQfN .

In particular, it also follows that for a replicable fN , the value EQfN is the
same for any EMM Q.

Summarizing, we proved the following:

Theorem 3. Consider an arbitrage-free market and let fN be a replicable
payoff. Then the fair price of fN is

C(fN) = C∗ =
B0

BN

EQfN ,

where Q is any EMM.

3.3 Complete markets

We proved that if EMM exists then we have the fair price for any replicable
payoff. A market is complete if any payoff is replicable.

We have seen in Theorem 3 that on a complete arbitrage-free market any
payoff f has a unique well-defined fair price B0EQf/BN .

In section 2.3 we showed that a binomial market is complete.
The second fundamental theorem of asset pricing is the following.

Theorem 4. Consider an arbitrage-free market with EMM Q. Then the
following are equivalent:

(i) the market is complete;

(ii) Q is the unique EMM;

(iii) for any Q-martingale (Mn) there exists a predictable sequence γn such
that Mn can be represented as

Mn =M0 +
n∑

k=1

γk

(
Sk

Bk

− Sk−1

Bk−1

)
.

Proof. We prove again the easy parts (i) ⇒ (ii), and (iii) ⇔ (i), and postpone
the difficult (ii) ⇒ (i) implication later.

12



(i) ⇒ (ii): Assume that Q1 and Q2 are EMM’s. Consider any A ∈ F .
We show that Q1(A) = Q2(A) implying the uniqueness. Let π be a perfect
hedge to f = IA. Then X

π
n/Bn is both Q1 and Q2 martingale, so

Q1(A) = EQ1f = EQ1X
π
N = BNEQ1

Xπ
N

BN

= BN
Xπ

0

B0

= . . . = Q2(A).

(i) ⇒ (iii): Consider a Q-martingale Mn. There exists a strategy πn such
that a.s.

Xπ
N = BNMN .

Using that both Mn and Xπ
n/Bn are martingales

Mn = EQ[MN |Fn] = EQ

[
Xπ

N

BN

|Fn

]
=
Xπ

n

Bn

= βn + γn
Sn

Bn

.

Thus, using that π is SF

Mn −Mn−1 = ∆βn + γn
Sn

Bn

− γn−1
Sn−1

Bn−1

= γn

(
Sn

Bn

− Sn−1

Bn−1

)
+

1

Bn−1

(Bn−1∆βn + Sn−1∆γn)

= γn

(
Sn

Bn

− Sn−1

Bn−1

)
,

as claimed.
(iii) ⇒ (i): Consider a payoff f . We are looking for a strategy π such

that Xπ
N = f Q-a.s. We know that (Xπ

n/Bn)n is a martingale, so this should
be (Mn). Now the following choice is clear: let

Mn = EQ

[
f

BN

|Fn

]
.

Then Mn is a martingale, therefore by the assumption

Mn =M0 +
n∑

k=1

γk∆
Sk

Bk

.

Let

βn =Mn − γn
Sn

Bn

,

13



and consider the strategy πn = (βn, γn). To see that this is indeed a strategy
we have to show that it is predictable and SF. The sequence γn is predictable
by the assumption (iii), and βn is predictable because all the terms in Mn

are Fn−1-measurable except γnSn/Bn, which is subtracted. To see that it is
SF note that

Bn−1∆βn + Sn−1∆γn

= Bn−1

(
Mn −Mn−1 − γn

Sn

Bn

+ γn−1
Sn−1

Bn−1

)
+ Sn−1∆γn

= Bn−1

(
γn∆

Sn

Bn

− γn
Sn

Bn

+ γn−1
Sn−1

Bn−1

)
+ Sn−1∆γn = 0,

showing that π is SF. It is clearly a perfect hedge since

Xπ
N = βNBN + γNSN = BNMN = f,

as claimed.

3.4 Proof of the difficult part of Theorem 2

Here we use strongly that Ω is finite, and let |Ω| = k.
Assume that there is no arbitrage strategy. Let

V0 = {X : Ω → R r.v. |∃π : Xπ
0 = 0 and Xπ

N = X},

and
V1 = {X : Ω → R r.v. |X ≥ 0,EX ≥ 1}.

We identify a random variable X : Ω → R with a vector in Rk, as X ↔
(X(ω1), . . . , X(ωk)). Clearly, V0 is a linear subspace and V1 is convex set in
Rk.

Since there is no arbitrage strategy, V0∩V1 = ∅. Therefore, by the Kreps–
Yan theorem, there exists a linear functional ℓ : Rk → R such that ℓ|V0 ≡ 0
and ℓ(v1) > 0 for all v1 ∈ V1. A linear function in Rk (in any Hilbert space)
is a inner product, thus there exists q ∈ Rk such that

ℓ(v) = ⟨v, q⟩.

Define the random variables

Xi(ωj) = δi,j
1

P({ωi})
.

14



Then Xi ≥ 0 and EXi = 1, so Xi ∈ V1. Furthermore

ℓ(Xi) =
qi

P({ωi})
> 0,

implying qi > 0 for any i. Define the probability measure Q as

Q({ωi}) =
qi∑k
i=1 qi

.

It is clear that Q ∼ P. We have to check that (Sn/Bn) is a Q-martingale.
First we need a lemma.

Lemma 4. Let (Xn)
N
n=1 be an adapted process. If for any stopping time

τ : Ω → {0, . . . , N}
EXτ = EX0,

then (Xn) is martingale.

Proof. We show that Xn = E[XN |Fn], which implies that X is martingale.
Let A ∈ Fn and consider the stopping time

τA(ω) =

{
n, ω ∈ A,

N, otherwise.

This is indeed a stopping time, since {τA ≤ k} = ∅ for k < n, and A for
k ≥ n, which is Fk-measurable. Then, by the assumption

EX0 = EXτA = EXnI(A) + EXNI(A
c).

With A = ∅ we see that EX0 = EXN , implying

EXnI(A) = EXNI(A).

This exactly means that
Xn = E[XN |Fn],

as claimed.

We show that (Sn/Bn) satisfies the condition of the lemma above. Let τ
be a stopping time and define the strategy

βn =
Sτ

Bτ

I(τ ≤ n− 1)− S0

B0

, γn = I(τ > n− 1);

15



that is buy a stock at time 0, and sell it at τ +1, and don’t do anything else.
Since {τ < n} = {τ ≤ n − 1} ∈ Fn−1, the sequence (βn, γn) is predictable.
Furthermore,

Bn−1∆βn + Sn−1∆γn =
Sτ

Bτ

Bn−1I(τ = n− 1)− Sn−1I(τ = n− 1) = 0,

so it is SF. Finally,

Xπ
0 = −S0

B0

B0 + S0 = 0,

so Xπ
N ∈ V0. Therefore

0 = EQX
π
N = EQβNBN + γNSN

= EQ

((
Sτ

Bτ

I(τ ≤ N − 1)− S0

B0

)
BN +

Sτ

Bτ

I(τ = N)BN

)
= BNEQ

(
Sτ

Bτ

− S0

B0

)
.

That is (Sn/Bn) is indeed a Q-martingale.

3.5 Proof of the difficult part of Theorem 4

Here we prove the implication (ii) ⇒ (i).
We use the notation of the previous proof. Let

V2 = {X : Ω → R r.v. |EQX = 0}.

Then V2 is a linear subspace in Rk and we have seen in the previous proof
that V0 ⊂ V2. We claim that equality holds.

Assume first that this is indeed true. Then for any claim X the centered
version X − EQX ∈ V2 = V0, meaning that there is a perfect hedge. Thus
the market is complete. So we only have to show that V0 = V2.

Assume on the contrary that V0 ̸= V2. Then there is an y ∈ V2, which is
orthogonal to V0. Since qi > 0 (see the previous proof) for all i = 1, . . . , k,
we may choose ε > 0 small enough such that

q′i = qi − εyi > 0 for all i.

As both q and y are orthogonal to V0, q
′ is also orthogonal. Define the

measure

Q′({ωi}) =
q′i∑k
i=1 q

′
i

.

16



V2

V0

y

Figure 5: Choice of y

Exactly as in the previous proof we can show thatQ′ is EMM. The uniqueness
of the EMM implies

q′i∑k
i=1 q

′
i

=
qi∑k
i=1 qi

,

that is, using also the definition of q′,

q = αq′ = αq − αεy,

with α =
∑
qi/
∑
q′i. Thus

(1− α)q = −αεy.

But y ∈ V2 and by the definition of V2 q is orthogonal to it, so y ⊥ q, which
clearly contradicts to the previous displayed equation. The proof is complete.

4 Pricing and hedging European options

In this section we summarize our findings on pricing and hedging, and con-
sider some special cases in detail.

4.1 Complete markets

Consider an arbitrage-free complete market. The fair price of the contingent
claim fN is

C(fN) = inf{x : ∃π,Xπ
0 = x, Xπ

N = fN}.

17



Then, by Theorems 2 and 4 there exists a unique EMM Q. Since (Xπ
n/Bn)

is Q-martingale

EQ
fN
BN

= EQ
Xπ

N

BN

= EQ
x

B0

=
x

B0

,

therefore

C(fN) = x =
B0

BN

EQfN .

Note that x is independent of the hedge π itself, that is for different hedges
the initial value is the same.

For a hedge we need to know not only the fair price C, but also the
strategy π itself. For the given claim fN consider the martingale

Mn = EQ

[
fN
BN

∣∣∣∣Fn

]
.

By Theorem 4 there exists a representation

Mn =M0 +
n∑

k=1

γk∆
Sk

Bk

,

with a predictable sequence (γn). Let

βn =Mn −
γnSn

Bn

.

We proved that π = (βn, γn)n is an SF strategy and is a perfect hedge for
fN .

Summarizing, we obtained the following.

Theorem 5. In an arbitrary arbitrage-free complete market the price of the
contingent claim fN is

C(fN) = B0EQ
fN
BN

.

Moreover, there exists a strategy π which is a perfect hedge of fN , i.e.

Xπ
N = fN ,

where (βn, γn) are given above. The value process is determined by

Xπ
n = BnEQ

[
fN
BN

∣∣∣∣Fn

]
.
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4.2 Homogeneous binomial market – CRR formula

Consider a homogeneous binomial N -step market with a < r < b. That is

Bn = (1 + r)n, Sn = S0

n∏
k=1

(1 + ρk),

where ρk ∈ {a, b}. We proved that this market is arbitrage-free and complete,
and the unique EMM is given by

Q(ρi = a) =
b− r

b− a
,

and ρi’s are independent. If the claim fN only depends on the final price SN ,
and not on the whole trajectory, i.e.

fN(ω) = fN(SN(ω)),

then the pricing formula simplifies, and we obtain the Cox–Ross-Rubinstein
formula:

C(fN) =
1

(1 + r)N

N∑
k=0

fN(S0(1 + b)k(1 + a)N−k)

(
N

k

)
qk(1− q)N−k,

where q = r−a
b−a

.

5 American options

While European options can be exercised only at the terminal dateN , Ameri-
can options can be exercised at any time. Formally, instead of a fixed random
payoff function fN , a sequence of payoffs (fn)n=0,1,...,N is given, where fn is
Fn-measurable, i.e. (fn)n is adapted to (Fn)n. So fn is the random payoff
if the option is exercised at time n. Clearly, the exercise time has to be a
stopping time.

5.1 Optimal stopping problems

Consider a probability space with a filtration (Ω,F , (Fn)n=0,1,...,N ,P), and
let M denote the set of stopping times. Consider a sequence of nonnegative
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adapted random variables (Xn)n, and define by backward induction its Snell-
envelope (Zn)n as follows. We are interested in the value

ZN = XN , Zn = max{Xn,E[Zn+1|Fn]}, n < N.

For a stopping time τ the stopped process is denoted by Zτ , i.e.

Zτ
n = Zτ∧n,

where a ∧ b = min{a, b}.

Proposition 2. Let (Zn) be the Snell-envelope of (Xn) with Xn ≥ 0 a.s.

(i) Z is the smallest supermartingale dominating X.

(ii) The random variable τ ∗ = min{n : Zn = Xn} is a stopping time and
the stopped process Zn∧τ∗ = Zτ∗

n is martingale.

Proof. From the definition it is clear that Z is supermartingale and dominates
X. Let Y be another supermartingale dominating X. Then YN ≥ XN = ZN .
Assuming that Yn ≥ Zn we have

Yn−1 ≥ max{E[Yn|Fn−1], Xn−1} ≥ max{E[Zn|Fn−1], Xn−1} = Zn−1.

Thus the minimality follows.
To see that τ ∗ is stopping time note that

{τ ∗ = n} = ∩n−1
k=0{Zk > Xk} ∩ {Zn = Xn}.

For the last assertion note that

Zτ∗

n − Zτ∗

n−1 = I(τ ∗ ≥ n)(Zn − Zn−1).

On the event {τ ∗ ≥ n} we have Zn−1 = E[Zn|Fn−1] therefore

E[I(τ ∗ ≥ n)(Zn − Zn−1)|Fn−1] = 0.

A stopping time σ is optimal if

E(Xσ) = sup
τ∈M

E(Xτ ).

20



Proposition 3. The stopping time τ ∗ is optimal for X, and

Z0 = EXτ∗ = sup
τ∈M

EXτ .

Proof. Since Zτ∗ is martingale

Z0 = Zτ∗

0 = EZτ∗

N = EZτ∗ = EXτ∗ .

On the other hand for any stopping time τ the process Zτ is supermartingale
(by Doob’s optional sampling), thus

Z0 = EZτ
0 ≥ EZτ ≥ EXτ .

5.2 Pricing American options

Let us return to our pricing problem. Assume that we have an arbitrage-free
complete market, that is the EMM Q is unique. Let (fn)n=0,...,N be the payoff
of an American option. A hedging strategy now has to fulfill the conditions

Xπ
n ≥ fn, n = 0, 1, . . . , N,

as the option can be exercised at any time.
By Doob’s optional stopping (Xπ

0 /B0, X
π
τ /Bτ ) is martingale for any stop-

ping time τ , i.e.
x

B0

= EQ
Xπ

0

B0

= EQ
Xπ

τ

Bτ

≥ EQ
fτ
Bτ

.

Therefore the initial cost of the hedge is at least

x ≥ B0 sup
τ∈M

EQ
fτ
Bτ

. (1)

For a hedging strategy π we have that

(i) (Xπ
n/Bn)n is a Q-martingale (since Q is EMM and π is SF), and

(ii) (Xπ
n/Bn) dominates (fn/Bn) (since π is a hedge).

Therefore, the value process of a hedge is larger than the Snell-envelope of
(fn/Bn), i.e.

Xπ
n

Bn

≥ Zn, n = 0, 1, . . . , N, (2)
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where (Zn) is the Snell-envelope of (fn/Bn). The Snell-envelope (Zn) is
a supermartingale, therefore by the Doob-decomposition (that’s stated for
submartingale, but multiply by −1) we have

Zn =Mn − An, n = 0, 1, . . . , N, (3)

where Mn is a Q-martingale, and (An) is an increasing predictable sequence,
A0 = 0.

The market is complete, therefore (see the easy parts of the proof of
Theorem 4) there exists a strategy π such that

Xπ
n

Bn

=Mn, n = 0, 1, . . . , N.

This is a hedging strategy with initial cost

x

B0

=
Xπ

0

B0

=M0 = Z0.

Comparing to (1), we see that π is optimal.

Theorem 6. Consider an arbitrage-free complete market with unique EMM
Q. Let (fn) be the nonnegative payoff sequence of an American option. Let
(Zn) be the Snell-envelope of the discounted payoff sequence (fn/Bn). The
fair price for this option is

C = B0Z0 = B0 sup
τ∈M

EQ
fτ
Bτ

= B0EQ
fτ∗

Bτ∗
,

where τ ∗ is an (not unique in general) optimal exercise time given by

τ ∗ = min

{
n :

fn
Bn

= Zn

}
.

Furthermore, there exists a SF strategy π which is an optimal hedge with
initial cost C and

Xπ
τ∗ =

fτ∗

Bτ∗
.
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5.3 American vs. European options

Clearly, an American option with payoff sequence (fn)n=0,1,...,N worth at least
as a European option with payoff fN . However, in some cases the fair prices
are equal.

Consider an American call option with strike price K, that is

fn = f(Sn) = (Sn −K)+.

Assume that the deterministic sequence (Bn) is nondecreasing (i.e. the inter-
est rate is nonnegative). Let (Zn) denote the Snell envelope of (fn/Bn), that
is

ZN =
fN
BN

, Zn = max

{
fn
Bn

,E [Zn+1|Fn]

}
, n = 0, 1, . . . , N − 1.

Using that (Sn/Bn) is a Q-martingale, by Jensen’s inequality (E[φ(X)|G] ≥
φ(E[X|G])) with the convex function φ(x) = (x−K/BN−1)+

fN−1

BN−1

=
(SN−1 −K)+

BN−1

=

(
SN−1

BN−1

− K

BN−1

)
+

≤ EQ

[(
SN

BN

− K

BN−1

)
+

∣∣∣∣FN−1

]
Jensen’s inequality

≤ EQ

[(
SN

BN

− K

BN

)
+

∣∣∣∣FN−1

]
by BN ≥ BN−1

= EQ

[
(SN −K)+

BN

∣∣∣∣FN−1

]
= EQ[ZN |FN−1].

This means that at time N − 1 it is always good to hold the option and
continue to step N .

An induction argument shows that at any time it is better to hold the
option. Indeed, assume for some n

fn
Bn

≤ EQ[Zn+1|Fn].
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We just proved this for n = N − 1. The same way as above we have

fn−1

Bn−1

=
(Sn−1 −K)+

Bn−1

=

(
Sn−1

Bn−1

− K

Bn−1

)
+

≤ EQ

[(
Sn

Bn

− K

Bn−1

)
+

∣∣∣∣Fn−1

]
Jensen’s inequality

≤ EQ

[(
Sn

Bn

− K

Bn

)
+

∣∣∣∣Fn−1

]
by Bn ≥ Bn−1

= EQ

[
(Sn −K)+

Bn

∣∣∣∣Fn−1

]
= EQ

[
fn
Bn

∣∣∣∣Fn−1

]
≤ EQ

[
EQ[Zn+1|Fn]

∣∣Fn−1

]
induction

≤ EQ[Zn|Fn−1] Z supermartingale

Thus τ ∗ ≡ N is an optimal stopping time, which means that no matter what
happens, we wait until the end. Then the American option behaves as the
European, so the prices are equal.

Theorem 7. Assume that the market is arbitrage free and complete, and the
interest rate is nonnegative. Then the price of a European call option equals
to the price of the American call option.

The same argument shows that for a put option with negative interest
rates (that is with decreasing Bn) the European and American options are
the same.

6 Stochastic integral

This part is from Karatzas and Shreve [6], in a rather simplified way. Stochas-
tic integration is only worked out in detail with respect to SBM, and not with
respect to a continuous martingales. A lot of technical details are omitted.

Here we define the integration with respect to the Brownian motion. Note
that SBM is not of bounded variation, therefore we cannot define the integral
pathwise. This is the major difficulty in the theory.
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6.1 Integration of simple processes

In what follows we work on [0, T ], for T <∞. Let (Wt,Ft) be SBM.
The process (Xt) is a simple process, if

Xt(ω) = ξ0(ω)I{0}(t) +
n−1∑
i=0

ξi(ω)I(ti,ti+1](t),

where 0 = t0 < t1 < . . . < tn = T is a partition of [0, T ], and ξi is Fti-
measurable.

That is (Xt(ω)) is a step function for each ω ∈ Ω, where the step sizes
are random. Note that ξi is measurable with respect to the σ-algebra corre-
sponding to the left end point of the interval.

Exercise 4. Show that a simple process is adapted.

The definition of the integral of simple processes is straightforward. Let
k be such that t ∈ (tk, tk+1]. Then

It(X) =

∫ t

0

XsdWs =
k−1∑
i=0

ξi(Wti+1
−Wti) + ξk(Wt −Wtk), t ∈ [0, T ].

Note that we defined the process for each t ∈ [0, T ].
Recall Doob’s maximal inequality, which states that for a right-continous

submartingale Yt we have E(sup0≤t≤T Y
2
t ) ≤ 4E(Y 2

T ).

Theorem 8. Let X, Y be simple processes with square integrable coefficients.

(i) It(X) is a continuous martingale, I0(X) = 0 a.s.

(ii) For t > s

E

[(∫ t

s

XudWu

)2 ∣∣∣Fs

]
= E

[∫ t

s

X2
udu
∣∣∣Fs

]
;

in particular EIt(X)2 = E
∫ t

0
X2

udu.

(iii) The integral is linear, that is

I(αX + βY ) = αI(X) + βI(Y ), α, β ∈ R.

(iv) E sup0≤t≤T

(∫ t

0
XudWu

)2
≤ 4E

∫ T

0
X2

udu.
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Proof. (iii) is clear. (iv) follows from Doob’s maximal inequality.
(i) The continuity is obvious and I0(X) = 0. We prove that (It) is mar-

tingale. Let s < t and s ∈ (tk, tk+1], t ∈ (tm, tm+1]. Then∫ t

0

XudWu =
k−1∑
i=0

ξi(Wti+1
−Wti) + ξk(Ws −Wtk)

+ ξk(Wtk+1
−Ws) +

m−1∑
i=k+1

ξi(Wti+1
−Wti) + ξm(Wt −Wtm).

By the tower rule for ti > s

E[ξi(Wti+1
−Wti)|Fs] = E

[
E[ξi(Wti+1

−Wti)|Fti ]|Fs

]
= E

[
ξiE[Wti+1

−Wti |Fti ]|Fs

]
= E[ξi · 0|Fs] = 0.

The first and last term can be handled similarly.
(ii) We showed that∫ t

s

XudWu = ξk(Wtk+1
−Ws) +

m−1∑
i=k+1

ξi(Wti+1
−Wti) + ξm(Wt −Wtm).

Taking square and conditional expectation we end up with sum of terms

E[ξi(Wti+1
−Wti)ξj(Wtj+1

−Wtj)|Fs]

We show that this equals 0, whenever i ̸= j. Indeed,

E[ξi(Wti+1
−Wti)ξj(Wtj+1

−Wtj)|Fs]

= E
[
E[ξi(Wti+1

−Wti)ξj(Wtj+1
−Wtj)|Ftj ]|Fs

]
= 0.

Therefore

E

[(∫ t

s

XudWu

)2

|Fs

]

= E

[
ξ2k(Wtk+1

−Ws)
2 +

m−1∑
i=k+1

ξ2i (Wti+1
−Wti)

2 + ξ2m(Wt −Wtm)
2|Fs

]
.
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By the tower rule again

E[ξ2i (Wti+1
−Wti)

2|Fs] = E
[
E[ξ2i (Wti+1

−Wti)
2|Fti ]Fs

]
= E[ξ2i (ti+1 − ti)|Fs]

= E

[∫ ti+1

ti

X2
udu|Fs

]
.

Summing we obtain the result.

6.2 Extending the definition

The idea is the following. We defined the integral for simple processes.
Adapted processes can be approximated by simple processes, so we can de-
fine the integral of adapted process as a limit and hope for the best. This
was the method at the definition of both Riemann and Lebesgue integral.

Let

H =

{
(Xt) : Ft-adapted and E

∫ T

0

X2
udu <∞

}
.

We extend the definition to the class H.

Lemma 5. Let (Xt) ∈ H. There exists a sequence of simple processes
{(Xn

t )}n such that

lim
n→∞

E

∫ T

0

(Xs −Xn
s )

2 ds = 0.

Proof. We only prove in the special case when X is bounded and continuous.
Let

Xn
t (ω) = X0(ω)I{0}(t) +

2n−1∑
k=0

X kT
2n
(ω)I

( kT
2n

,
(k+1)T

2n
]
(t).

These are simple processes. Since continuous function is uniformly continu-
ous on compacts, almost surely∫ T

0

|Xn
u −Xu|2 dt→ 0.

Lebesgue’s dominated convergence gives the proof.
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Let X ∈ H and {Xn}n given in the lemma. By Theorem 8 (iv)

E sup
t∈[0,T ]

(∫ t

0

(Xn
u −Xm

u )dWu

)2

≤ 4E

∫ T

0

(Xn
u −Xm

u )2du. (4)

The right-hand side tends to 0 by the lemma above, therefore the left-hand
side too. Thus there exists a sequence {nk} such that

E sup
t∈[0,T ]

(∫ t

0

(Xnk+1
u −Xnk

u )dWu

)2

≤ 2−k. (5)

Then by Chebyshev

P

(
sup

t∈[0,T ]

|Ink+1

t − Ink
t | > k−2

)
≤ k42−k,

which is summable. Therefore, the first Borel–Cantelli lemma implies that
I(Xnk) converges uniformly on [0, T ]-n a.s. Let define the stochastic integral
I(X) as the limit

It(X) := lim
k→∞

It(X
nk).

As I(Xnk) is continuous, so is I(X). We have to show that I(X) does
not depend on the subsequence. In (4) letting m→ ∞

E sup
t∈[0,T ]

(It(X)− It(X
n))2 ≤ 4E

∫ T

0

(Xu −Xn
u )

2du,

so I(X) does not depend on the subsequence.
Next we show that I(X) is martingale, i.e. for any s < t

E[It(X)|Fs] = Is(X).

For any n

∥E[It(X)|Fs]− Is(X)∥L2 ≤ ∥E[It(X)− It(X
n)|Fs]∥L2

+ ∥E[It(Xn)− Is(X
n)|Fs]∥L2 + ∥Is(Xn)− Is(X)∥L2 ,

where ∥X∥L2 =
√
EX2. The second term on the RHS equals 0, since I(Xn)

is martingale, while the first and third term can be arbitrarily small. So
I(X) is indeed a martingale.
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Summarizing, for X ∈ H we defined the stochastic integral

It(X) =

∫ t

0

XudWu

and showed that it satisfies the properties of Theorem 8.
We note that the definition of the integral can be further extended from

H to the larger class

H′
=

{
(Xt) : Ft-adapted and

∫ T

0

X2
u du <∞ a.s.

}
such that Theorem 8 remains true.

Example 2 (Approximation of
∫ t

0
WsdWs). Fix ε ∈ [0, 1] and consider

Sε(Π) =
n−1∑
i=0

(
εWti+1

+ (1− ε)Wti

) (
Wti+1

−Wti

)
.

We prove that

lim
∥Π∥→0

Sε(Π)
L2

=
1

2
W 2

t +

(
ε− 1

2

)
t. (6)

We know that (W 2
t − t) is martingale, thus the limit above is martingale

iff ε = 0, which corresponds to the definition of Itô stochastic integral. There
are other stochastic integrals: ε = 1/2 corresponds to the Fisk–Stratonovich
integral, and ε = 1 corresponds to the backward Itô integral.

By (6) ∫ t

0

WsdWs =
W 2

t − t

2
.

Next we prove (6). Since

εWti+1
+ (1− ε)Wti =

Wti+1
+Wti

2
+

(
ε− 1

2

)(
Wti+1

−Wti

)
,

we have to determine the limits

n−1∑
i=0

(Wti+1
−Wti)

2,
n−1∑
i=0

(W 2
ti+1

−W 2
ti
).

The first is exactly the quadratic variation of SBM, therefore converges to t
in L2, while the second is a telescopic sum, giving W 2

t .
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Example 3. Let X be simple process and W SBM. Let

ζst (X) =

∫ t

s

XudWu −
1

2

∫ t

s

X2
udu, ζt = ζ0t .

We show that (Yt = eζt) is martingale.
Since X is simple, we have

Xt = ξ0I{0}(t) +
n−1∑
i=0

ξiI(ti,ti+1](t),

where ξi is Fti-measurable. Thus if s ∈ (tk, tk+1], t ∈ (tm, tm+1], then

ζst = ξk(Wtk+1
−Ws)−

ξ2k
2
(tk+1 − s) +

m−1∑
i=k+1

[
ξi(Wti+1

−Wti)−
ξ2i
2
(ti+1 − ti)

]
+ ξm(Wt −Wtm)−

ξ2m
2
(t− tm).

(7)

Since ζs is Fs-measurable we obtain

E[eζt |Fs] = eζsE[eζ
s
t |Fs].

We only have to show that

E[eζ
s
t |Fs] = 1.

This can be done by a repeated application of the tower rule. In (7) all terms
but the last are Ftm-measurable and

E

[
exp

{
ξm(Wt −Wtm)−

ξ2m
2
(t− tm)

}
|Ftm

]
= e−

ξ2m
2

(t−tm)E [exp{ξm(Wt −Wtm)}|Ftm ] .

In the exponent of the RHS ξm is Ftm-measurable and Wt −Wtm is indepen-
dent of Ftm , therefore (by the next exercise) ξm can be handled as a constant.
We have

EeλZ = e
λ2

2 ,
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therefore

E [exp{ξm(Wt −Wtm)}|Ftm ] = e
ξ2m
2

(t−tm).

Summarizing

E

[
exp{ξm(Wt −Wtm)−

ξ2m
2
(t− tm)}|Ftm

]
= 1.

Applying repeatedly the tower rule first to the σ-algebra Ftm−1 , then to Ftm−2 ,
. . ., we obtain that each factor equals 1.

Using the Itô formula we show that Y is martingale for more general
processes and it satisfies a certain stochastic differential equation.

Exercise 5. Let X, Y be random variables, X is G-measurable, and Y is
independent of G. Then

E[h(X, Y )|G] =
∫
h(X, y)dF (y),

where F (y) = P(Y ≤ y) is the distribution function of Y .

6.3 Itô’s formula

Let (Ω,F ,P) be a probability space, (Ft) a filtration, and (Wt) SBM for this
filtration. Then (Xt) is Itô process if

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdWs, (8)

where

• X0 F0-measurable;

• K,H are Ft-adapted processes;

•
∫ T

0
|Ku|du <∞,

∫ T

0
H2

sds <∞ a.s.

The part
∫ t

0
Ksds is the bounded variation part of the process, while∫ t

0
HsdWs is the martingale part.

Lemma 6. If Mt =
∫ t

0
Ksds is a continuous martingale and

∫ T

0
|Ks|ds <∞

almost surely then Mt ≡ 0.
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Proof. Assume that
∫ T

0
|Ks|ds ≤ C for some C < ∞. Then for a sequence

of partitions (Πn = {0 = t0 < t1 < . . . < tn = T}) of [0, T ]

E
n−1∑
i=0

(Mti+1
−Mti)

2 ≤ E sup
0≤i≤n−1

|Mti+1
−Mti |

∫ T

0

|Ks|ds

≤ CE sup
0≤i≤n−1

|Mti+1
−Mti| → 0,

as ∥Πn∥ → 0. We used that continuous function is uniformly continuous on
compacts and Lebesgue’s dominated convergence can be used because of the
boundedness.

Furthermore,

E(Mt −Ms)
2 = EM2

t + EM2
s − 2E (E[MtMs|Fs])

= EM2
t − EM2

s ,

for s < t, thus

E
n−1∑
i=0

(Mti+1
−Mti)

2 = E(M2
t −M2

0 ) = EM2
t .

Therefore EM2
t = 0 for all t, and the statement follows.

Corollary 1. Representation (8) is unique.

Proof. Indeed, if∫ t

0

Ksds+

∫ t

0

HsdWs =

∫ t

0

Lsds+

∫ t

0

GsdWs,

then ∫ t

0

(Ks − Ls)ds =

∫ t

0

(Gs −Hs)dWs.

The RHS is a continuous martingale, therefore by the previous lemma it has
to be constant 0.

In what follows we use the notation

dXt = Ktdt+HtdWt.
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Theorem 9 (Itô formula (1944)). Let Xt = X0 +
∫ t

0
Ksds+

∫ t

0
HsdWs be an

Itô process and f ∈ C2. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)H
2
sds.

That is (f(Xt)) is an Itô process too, with representation (8)

f(Xt) = f(X0) +

∫ t

0

(
f ′(Xs)Ks +

1

2
f ′′(Xs)H

2
s

)
ds+

∫ t

0

f ′(Xs)HsdWs.

Example 4. We already calculated the stochastic integral
∫
WsdWs in Ex-

ample 2. Now we determine it again.
The SBM as an Itô process can be represented with Ks ≡ 0, Hs ≡ 1. Let

f(x) = x2. Then

W 2
t = W 2

0 +

∫ t

0

2WsdWs +
1

2

∫ t

0

2ds.

From this we obtain ∫ t

0

WsdWs =
W 2

t − t

2
.

We see immediately that W 2
t − t is martingale.

Proof. We only prove under the following extra assumptions: f is compactly
supported; sups,ω |Ks(ω)| < K, sups,ω |Hs(ω)| < K for some K < ∞. (This
is not an essential restriction.)

Take Π = {0 = t0 < t1 < . . . < tm = T}. Using the Taylor formula

f(Xt)− f(X0) =
m∑
k=1

[
f(Xtk)− f(Xtk−1

)
]

=
m∑
k=1

f ′(Xtk−1
)(Xtk −Xtk−1

) +
1

2

m∑
k=1

f ′′(ηk)(Xtk −Xtk−1
)2

=
m∑
k=1

f ′(Xtk−1
)

∫ tk

tk−1

Ksds+
m∑
k=1

f ′(Xtk−1
)

∫ tk

tk−1

HsdWs

+
1

2

m∑
k=1

f ′′(ηk)(Xtk −Xtk−1
)2

= I1 + I2 + I3,

33



where ηk(ω) is between Xtk−1
(ω) and Xtk(ω).

It is easy to handle I1. As f
′ and Xt are continuous

I1 =
m∑
k=1

f ′(Xtk−1
)

∫ tk

tk−1

Ksds −→
∫ t

0

f ′(Xs)Ksds a.s., (9)

as ∥Π∥ → 0.
Rewrite I2 as

I2 =
m∑
k=1

f ′(Xtk−1
)

∫ tk

tk−1

HsdWs =

∫ t

0

m∑
k=1

f ′(Xtk−1
)I(tk−1,tk](s)HsdWs.

As ∥Π∥ → 0

E

∫ t

0

(
f ′(Xs)Hs −

m∑
k=1

f ′(Xtk−1
)I(tk−1,tk](s)Hs

)2

ds→ 0.

Indeed, for any ω ∈ Ω fix the integrand is bounded and by continuity goes to
0, therefore the dominated Lebesgue convergence theorem applies. Theorem
8 (ii) implies

I2 =

∫ t

0

m∑
k=1

f ′(Xtk−1
)I(tk−1,tk](s)HsdWs

L2

−→
∫ t

0

f ′(Xs)HsdWs. (10)

Next comes I3, the difficult part. We have to show that

I3 →
1

2

∫ t

0

f ′′(Xs)H
2
sds.

Write

(Xtk −Xtk−1
)2 =

(∫ tk

tk−1

Ksds+

∫ tk

tk−1

HsdWs

)2

=

(∫ tk

tk−1

Ksds

)2

+ 2

∫ tk

tk−1

Ksds ·
∫ tk

tk−1

HsdWs

+

(∫ tk

tk−1

HsdWs

)2

.
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We show that the contribution of the first two terms is negligible to the whole
sum. For the first∣∣∣∣∣∣

m∑
k=1

f ′′(ηk)

(∫ tk

tk−1

Ksds

)2
∣∣∣∣∣∣ ≤ ∥f ′′∥∞ ·K2

m∑
k=1

(tk − tk−1)
2 → 0 a.s. (11)

To handle the second introduce Mt =
∫ t

0
HsdWs. Then∣∣∣∣∣

m∑
k=1

f ′′(ηk)

∫ tk

tk−1

Ksds ·
∫ tk

tk−1

HsdWs

∣∣∣∣∣
≤ ∥f ′′∥∞ ·K sup

1≤k≤m
|Mtk −Mtk−1

| ·
m∑
k=1

(tk − tk−1)

= ∥f ′′∥∞ ·K t sup
1≤k≤m

|Mtk −Mtk−1
| → 0, a.s.,

(12)

since Mt =
∫ t

0
HsdWs is a continuous martingale.

We have to deal with the sum

m∑
k=1

f ′′(ηk)

(∫ tk

tk−1

HsdWs

)2

.

First we change ηk to Xtk−1
. Taking the difference

m∑
k=1

[f ′′(ηk)− f ′′(Xtk−1
)](Mtk −Mtk−1

)2

≤ sup
1≤k≤m

|f ′′(ηk)− f ′′(Xtk−1
)| ·

m∑
k=1

(Mtk −Mtk−1
)2.

By the Cauchy–Schwarz inequality∣∣∣∣∣E
m∑
k=1

[f ′′(ηk)− f ′′(Xtk−1
)](Mtk −Mtk−1

)2

∣∣∣∣∣
≤
√
E sup

1≤k≤m
(f ′′(ηk)− f ′′(Xtk−1

))2

√√√√E

(
m∑
k=1

(Mtk −Mtk−1
)2

)2

.

(13)

The first term tends to 0 because (Xt) is continuous and f
′′ is bounded. The

second is bounded by the following lemma.
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Lemma 7. Let (Mt) be a continuous bounded martingale on [0, t], that is
sups,ω |Ms(ω)| ≤ K, and let Π = {0 = t0 < t1 < . . . < tm = t} be a partition.
Then

E

(
m∑
i=1

(Mti −Mti−1
)2

)2

≤ 6K4.

Proof. Expanding the square

E

(
m∑
i=1

(Mti −Mti−1
)2

)2

=
m∑
i=1

E(Mti −Mti−1
)4 +

∑
i ̸=j

E(Mti −Mti−1
)2(Mtj −Mtj−1

)2.

Using several times that

E[(Mt −Ms)
2|Fs] = E[M2

t −M2
s |Fs], s < t,

we obtain ∑
i ̸=j

E(Mti −Mti−1
)2(Mtj −Mtj−1

)2

= 2
m−1∑
i=1

m∑
j=i+1

E(Mti −Mti−1
)2(Mtj −Mtj−1

)2

= 2
m−1∑
i=1

m∑
j=i+1

E
[
E[(Mti −Mti−1

)2(Mtj −Mtj−1
)2|Ftj−1

]
]

= 2
m−1∑
i=1

m∑
j=i+1

E(Mti −Mti−1
)2(M2

tj
−M2

tj−1
)

= 2
m−1∑
i=1

E(Mti −Mti−1
)2(M2

t −M2
ti
)

≤ 2K2

m−1∑
i=1

E(Mti −Mti−1
)2

= 2K2

m−1∑
i=1

E(M2
ti
−M2

ti−1
) ≤ 2K4.
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While, for the sum of 4th powers

m∑
i=1

E(Mti −Mti−1
)4 ≤ 4K2E

m∑
i=1

E(Mti −Mti−1
)2

= 4K2E(M2
t −M2

0 ) ≤ 4K4.

Summarizing from I3 we have the sum

m∑
k=1

f ′′(Xtk−1
)(Mtk −Mtk−1

)2.

We claim that
m∑
k=1

f ′′(Xtk−1
)(Mtk −Mtk−1

)2
L1

−→
∫ t

0

f ′′(Xs)H
2
sds. (14)

Since X and f ′′ are continuous

m∑
k=1

f ′′(Xtk−1
)

∫ tk

tk−1

H2
sds→

∫ t

0

f ′′(Xs)H
2
sds a.s.

Since almost sure convergence and boundedness implies L1 convergence, and
L2 convergence implies L1 convergence, it is enough to show that

m∑
k=1

f ′′(Xtk−1
)

(
(Mtk −Mtk−1

)2 −
∫ tk

tk−1

H2
sds

)
L2

−→ 0.

Theorem 8 (ii) implies

E
[
(Mtk −Mtk−1

)2|Ftk−1

]
= E

(∫ tk

tk−1

Hs dWs

)2

|Ftk−1


= E

[∫ tk

tk−1

H2
s ds|Ftk−1

]
,

so in

E

(
m∑
k=1

f ′′(Xtk−1
)

(
(Mtk −Mtk−1

)2 −
∫ tk

tk−1

H2
sds

))2
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the expectation of the mixed term is 0. Thus this equals

= E
m∑
k=1

f ′′(Xtk−1
)2

(
(Mtk −Mtk−1

)2 −
∫ tk

tk−1

H2
sds

)2

≤ ∥f ′′∥2∞
[
E

m∑
k=1

(Mtk −Mtk−1
)4 + 2E

m∑
k=1

(Mtk −Mtk−1
)2
∫ tk

tk−1

H2
sds

+ E
m∑
k=1

(∫ tk

tk−1

H2
sds

)2 ]
≤ ∥f ′′∥2∞

[
E

m∑
k=1

(Mtk −Mtk−1
)4 + 2K2tE sup

1≤k≤m
(Mtk −Mtk−1

)2 +K4t∥Π∥
]
.

The second and third term tend to 0, and for the first

E
m∑
k=1

(Mtk −Mtk−1
)4 ≤ E

[
m∑
k=1

(Mtk −Mtk−1
)2 · sup

1≤k≤m
|Mtk −Mtk−1

|2
]

≤

√√√√E

[
m∑
k=1

(Mtk −Mtk−1
)2

]2√
E sup

1≤k≤m
|Mtk −Mtk−1

|4

≤
√
6K2

√
E sup

1≤k≤m
|Mtk −Mtk−1

|4 → 0.

Summarizing we obtained L1, L2 and almost sure convergence in (9)–(14).
Since everything is bounded, L1 convergence follows in each case, that is

f(Xt)− f(X0) =
m∑
k=1

[f(Xtk)− f(Xtk−1
)]

L1

−→
∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)H
2
sds.

Convergence in L1 implies a.s. convergence on a subsequence. As both sides
are continuous we obtained that the two process are indistinguishable.
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Example 5 (Continuation of Example 3). Let

ζst =

∫ t

s

XudWu −
1

2

∫ t

s

X2
udu, ζt = ζ0t ,

where Xt is an adapted process. Then Zt = eζt satisfies the stochastic differ-
ential equation

Zt = 1 +

∫ t

0

ZsXsdWs,

or with a common notation

dZt = ZtXtdWt, Z0 = 1.

Writing ζ as an Itô process

ζt =

∫ t

0

−1

2
X2

udu+

∫ t

0

XudWu.

Using Itô’s formula with f(x) = ex

Zt = eζt = 1 +

∫ t

0

eζsdζs +
1

2

∫ t

0

eζsX2
sds

= 1 +

∫ t

0

eζs
(
−1

2
X2

sds+XsdWs

)
+

1

2

∫ t

0

eζsX2
sds

= 1 +

∫ t

0

eζsXsdWs

= 1 +

∫ t

0

ZsXsdWs,

as claimed. We see that Zt is martingale.

Exercise 6. Let ζt be as above. Show that Yt = e−ζt satisfies the SDE

dYt = YtX
2
t dt−XtYtdWt, Y0 = 1.

Similarly, one can show a more general version, where f depends on the
time variable t.

Theorem 10 (More general Itô formula). Let Xt be an Itô process and f ∈
C1,2. Then

f(t,Xt) = f(0, X0) +

∫ t

0

∂

∂s
f(s,Xs)ds+

∫ t

0

∂

∂x
f(s,Xs)dXs

+
1

2

∫ t

0

∂2

∂x2
f(s,Xs)H

2
sds.
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6.4 Multidimensional Itô processes

LetW = (W 1,W 2, . . . ,W r) be an r-dimensional SBM, that is its component
are iid SBM’s. Then (Xt) is a d-dimensional Itô process, if

X i
t = X i

0 +

∫ t

0

Ki
sds+

r∑
j=1

∫ t

0

H i,j
s dW j

s , (15)

where
∫ T

0
|Ki

s|ds < ∞,
∫ T

0
(H i,j

s )2ds < ∞ a.s., and Ki, H i,j are Ft-adapted,
i = 1, 2, . . . , d, j = 1, 2, . . . , r.

Theorem 11 (Multidimensional Itô formula). Let (Xt) be a multidimen-
sional Itô process and f : R1+d → R, f ∈ C1,2. Then

f(t,X1
t , . . . , X

d
t ) = f(0, X1

0 , . . . , X
d
0 ) +

∫ t

0

∂

∂s
f(s,X1

s , . . . , X
d
s ) ds

+
d∑

i=1

∫ t

0

∂

∂xi
f(s,X1

s , . . . , X
d
s ) dX

i
s

+
1

2

d∑
i,j=1

∫ t

0

∂2

∂xi∂xj
f(s,X1

s , . . . , X
d
s )

r∑
k=1

H i,k
s Hj,k

s ds.

6.5 Applications

Example 6 (Geometric Brownian motion). Let µ ∈ R, σ > 0. Solve the
SDE

dXt = µXtdt+ σXtdWt. (16)

We have

Xt = X0 +

∫ t

0

µXsds+

∫ t

0

σXsdWs.

Applying Itô’s formula with f(x) = log x

logXt = logX0 +

∫ t

0

1

Xs

(µXsds+ σXsdWs) +
1

2

∫ t

0

− 1

X2
s

σ2X2
sds

= logX0 + σWt +

(
µ− σ2

2

)
t.

Thus

Xt = X0 · e
σWt+

(
µ−σ2

2

)
t
. (17)
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This is martingale iff µ = 0.
Note that log x is not defined at 0, so the proof is not complete. It only

gives us a potential solution.

Exercise 7. Show that Xt in (17) is indeed a solution to the SDE (16).

A more constructive solution is to apply Itô’s formula with a general
f , and then choose f to obtain a simple equation. With f(x) = log x the
integrand in the martingale part is constant.

Example 7 (Integration by parts I). Let (X, Y ) be a two-dimensional Itô
process with representation

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dWs

Yt = Y0 +

∫ t

0

Ls ds+

∫ t

0

Gs dWs,

where K,L,H,G are as usual. Then∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

YsdXs −
∫ t

0

HsGsds.

Note that in the deterministic integration by parts formula the last term
is missing.

For the proof apply Itô’s formula for (X, Y ) and f(x, y) = xy. Then

r = 1, d = 2, K1
s = Ks, K

2
s = Ls, H

1,1
s = Hs, H

2,1
s = Gs.

Since ∂f
∂x

= y, ∂f
∂y

= x, ∂2f
∂2x

= ∂2f
∂2y

= 0, and ∂2f
∂x∂y

= ∂2f
∂y∂x

= 1, we obtain

XtYt = X0Y0 +

∫ t

0

YsdXs +

∫ t

0

XsdYs +
1

2
2

∫ t

0

HsGsds,

as claimed.

Example 8 (Integration by parts II). To change a bit let W̃ be another
SBM independent of W and (X, Y )

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dWs

Yt = Y0 +

∫ t

0

Ls ds+

∫ t

0

Gs dW̃s.
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Then ∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

YsdXs.

The proof is the same but here d = r = 2, and no extra term appears.

Most of the following examples and exercises are from Evans [3].

Example 9. Let g be a continuous function, and consider the SDE{
dXt = g(t)XtdWt

X0 = 1.

Show that the unique solution is

Xt = exp

{
−1

2

∫ t

0

g(s)2ds+

∫ t

0

g(s)dWs

}
.

The uniqueness follows from general results, assuming g is nice enough.
To check that Xt is indeed a solution, we use Itô’s formula. Let

Yt = −1

2

∫ t

0

g(s)2ds+

∫ t

0

g(s)dWs.

With f(x) = ex, we have

Xt = eYt = 1 +

∫ t

0

eYsdYs +
1

2

∫ t

0

eYsg2(s)ds

= 1 +

∫ t

0

Xsg(s)dWs,

as claimed.

Exercise 8. Show that Y (t) = et/2 cosWt is martingale.

Exercise 9. Show that∫ t

0

W 2
s dWs =

1

3
W 3

t −
∫ t

0

Wsds,

and ∫ t

0

W 3
s dWs =

1

4
W 4

t − 3

2

∫ t

0

W 2
s ds.
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Exercise 10. Let W = (W 1, . . . ,W r) be an r-dimensional SBM, r ≥ 2, and
let

Rt =

√√√√ r∑
i=1

(W i
t )

2.

Show that R satisfies the SDE

dRt =
r − 1

2Rt

dt+
r∑

i=1

W i
t

Rt

dW i
t .

This is the Bessel equation and R is the Bessel process.

Exercise 11. Let f and g be continuous functions, and consider the SDE{
dXt = f(t)Xtdt+ g(t)XtdWt

X0 = 1.

Show that the unique solution is

Xt = exp

{∫ t

0

[
f(s)− 1

2
g(s)2

]
ds+

∫ t

0

g(s)dWs

}
.

Exercise 12 (Brownian bridge). Show that

Bt = (1− t)

∫ t

0

1

1− s
dWs

is the unique solution of the SDE{
dBt = − Bt

1−t
dt+ dWt

B0 = 0.

Calculate the mean and covariance function of B.

A mean zero Gaussian process Bt on [0, 1] is called Brownian bridge if its
covariance function is

Cov(Bs, Bt) = min(s, t)− st.

Exercise 13. Show that if W is SBM then Bt = Wt − tW1 is Brownian
bridge.
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Exercise 14. Solve the SDE{
dXt = −1

2
e−2Xtdt+ e−XtdWt

X(0) = 0

and show that it explodes in a finite random time. Hint: Look for a solution
Xt = u(Wt).

Exercise 15. Solve the SDE

dXt = −Xtdt+ e−tdWt.

Exercise 16. Show that (Xt, Yt) = (cosWt, sinWt) is a solution to the SDE{
dXt = −1

2
Xtdt− YtdWt

dYt = −1
2
Ytdt+XtdWt.

Show that
√
X2

t + Y 2
t is a constant for any solution (X, Y )!

Exercise 17. Solve the SDE{
dXt = dt+ dW

(1)
t

dYt = XtdW
(2)
t ,

where W (1) and W (2) are independent SBMs.

Exercise 18. Solve the SDE{
dXt = Ytdt+ dW

(1)
t

dYt = Xtdt+ dW
(2)
t ,

where W (1) and W (2) are independent SBMs.

6.6 Quadratic variation and the Doob–Meyer decom-
position

We proved that

E

[(∫ t

s

XudWu

)2 ∣∣Fs

]
= E

[∫ t

s

X2
u du

∣∣Fs

]
,
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which means that the process(∫ t

0

Xu dWu

)2

−
∫ t

0

X2
u du (18)

is a continuous martingale. In the decomposition(∫ t

0

XudWu

)2

=

∫ t

0

X2
u du+

(∫ t

0

XudWu

)2

−
∫ t

0

X2
u du

the first term is an increasing process and the second term is a martingale,
that is we obtained the Doob–Meyer decomposition of It(X)2.

On the other hand, at the proof of Itô’s formula we showed (see (14))
that

n∑
i=1

(∫ ti

ti−1

XudWu

)2
L1

−→
∫ t

0

X2
udu, as ∥Πn∥ → 0.

The left-hand side is exactly the quadratic variation process of the martingale
It(X).

Summarizing, we proved the following.

Theorem 12. For any Itô process Xt, the quadratic variation of It(X) and
the increasing process in the Doob–Meyer decomposition of It(X)2 are the
same.

This result holds in a more general setup.
Let (Xt) be a (continuous) square integrable martingale, X ∈ M2 (orX ∈

Mc
2). Then X2

t is a submartingale, so by the Doob–Meyer decomposition
there exists a unique (up to indistinguishibility) adapted increasing process
At, such that A0 = 0 a.s. and X2

t −At is a martingale. The process ⟨X⟩t = At

is the quadratic variation of X.
With this notation, Theorem 12 states that〈∫ ·

0

XudWu

〉
t

= ⟨I(X)⟩t =
∫ t

0

X2
u du.

Without proof we mention that Theorem 12 holds not only for Itô pro-
cesses but for continuous square integrable martingales.

Theorem 13. Let X ∈ Mc
2. For partition Π of [0, t] we have

V
(2)
t (Π) :=

n∑
k=1

(Xtk −Xtk−1
)2

P−→ ⟨X⟩t as ∥Π∥ → 0.
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For square integrable martingales X, Y the crossvariation process of X
and Y is

⟨X, Y ⟩t =
1

4
(⟨X + Y ⟩t − ⟨X − Y ⟩t) .

The processes X and Y are orthogonal if ⟨X, Y ⟩t = 0 a.s. for any t.

Exercise 19. Show that if X, Y ∈ M2, then XY − ⟨X, Y ⟩ is a martingale.

One can define stochastic integral with respect to more general processes.
The process (Xt) is a continuous semimartingale if

Xt =Mt + At,

where Mt is a continuous martingale and At is of bounded variation, and
both are adapted. As in Lemma 6 it can be shown that this decomposition
is essentially unique.

We can define stochastic integral with respect to semimartingales. Indeed,
integral with respect to At can be defined pathwise, since A is of bounded
variation, and integration with respect to continuous Mt can be defined sim-
ilarly as for SBM.

The following version of Itô’s formula holds.

Theorem 14 (Itô formula for semimartingales). Let Xt = Mt + At be a
continuous semimartingale, and let f ∈ C2. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d⟨M⟩s.

6.7 Lévy characterization

One can define stochastic integral with respect to more general processes.
The process (Xt) is a continuous semimartingale if

Xt =Mt + At,

where Mt is a continuous martingale and At is of bounded variation, and
both are adapted.

We can define stochastic integral with respect to semimartingales. Indeed,
integral with respect to At can be defined pathwise, since A is of bounded
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variation, and integration with respect to continuous Mt can be defined sim-
ilarly as for SBM.

We recall Itô’s formula. If Xt =Mt+At be a continuous semimartingale,
and f ∈ C2, then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d⟨M⟩s.

We have seen that if Wt is SBM, then it Wt is a continuous martingale, and
W 2

t − t is a martingale. It turns out that this characterizes SBM.

Theorem 15 (Lévy’s characterization of SBM). Let Mt be a continuous
martingale, such that M0 = 0, and M2

t − t is martingale. Then Mt is SBM.

Proof. We determine the conditional characteristic function of Mt with re-
spect to Fs, t > s. Apply Itô with f(x) = eiux, where u ∈ R is arbitrary but
fixed. Since f ′(x) = iueiux, f ′′(x) = −u2eiux, and by assumption ⟨M⟩t = t,
therefore

eiuMt − eiuMs =

∫ t

s

iueiuMvdMv +
1

2

∫ t

s

(−u2)eiuMvdv.

Let A ∈ Fs arbitrary. Multiplying by e−iuMs , and integrating on A we get

E
[
eiu(Mt−Ms)IA

]
= P(A)− u2

2

∫ t

s

E
[
eiu(Mv−Ms)IA

]
dv.

With A and s fixed, define

gA,s(t) = g(t) = E
[
eiu(Mt−Ms)IA

]
.

With this notation

g(t) = P(A)− u2

2

∫ t

s

g(v)dv.

Differentiating we obtain

g′(t) = −u
2

2
g(t), g(s) = P(A).

Therefore, the solution

g(t) = P(A) · e−
u2

2
(t−s).
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This holds for any A ∈ Fs, which means that

E
[
eiu(Mt−Ms)|Fs

]
= e−

u2

2
(t−s)

for u ∈ R. That is the increment Mt − Ms is independent of Fs, and it
is Gaussian with mean 0 and variance (t − s). Since it is continuous, it is
SBM.

Note that the continuity assumption is important. Indeed, if Nt is a
Poisson process with intensity 1, then both (Nt − t) and (Nt − t)2 − t are
martingales.

6.8 Girsanov’s theorem

Let (Ω,A,P) be a probability space, and (Ft) a filtration. Let Q be another
probability measure on (Ω,A), which is absolute continuous with respect to
P, i.e. Q ≪ P. Let M∞ denote the Radon–Nikodym-derivative,

M∞ =
dQ

dP
,

that is

Q(A) =

∫
A

M∞dP.

In what follows, we have more (usually 2) probability measures, therefore
we put in the lower index of E the corresponding measure. That is EPX =∫
Ω
XdP, and EQX =

∫
Ω
XdQ. Note that the notion of martingale does

depend on the underlying measure. Therefore, we have P-martingale, and
Q-martingale.

Define the P-martingale

Mt = EP[M∞|Ft].

Lemma 8. The adapted process (Xt) is Q-martingale if and only if (MtXt)
is P-martingale.

Proof. Since
EP[M∞Xt|Ft] = XtMt,

for each A ∈ Ft ∫
A

XtM∞dP =

∫
A

XtMtdP.
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Therefore, if A ∈ Fs ⊂ Ft, then∫
A

XtdQ =

∫
A

XtM∞dP =

∫
A

XtMtdP∫
A

XsdQ =

∫
A

XsM∞dP =

∫
A

XsMsdP.

Then (Xt) is Q-martingale if the left-hand sides are equal for each A ∈ Fs,
s < t, which is obviously equivalent to the equality of the right-hand sides,
which means that (MtXt) is P-martingale.

Let

ζt =

∫ t

0

(−θu)dWu −
1

2

∫ t

s

θ2udu,

where θt is adapted. Then Zt = eζt satisfies the SDE

Zt = 1 +

∫ t

0

Zs(−θs)dWs. (19)

We use this formula in the proof of Girsanov’s theorem. We can write the
SDE above as

dZt = Zt(−θt)dWt, Z0 = 1.

Indeed, rewriting ζ as an Itô process

ζt =

∫ t

0

−1

2
θ2udu+

∫ t

0

(−θu)dWu,

and using the Itô formula with f(x) = ex, we obtain

Zt = eζt = 1 +

∫ t

0

eζsdζs +
1

2

∫ t

0

eζsθ2sds

= 1 +

∫ t

0

eζs
(
−1

2
θ2sds+ (−θs)dWs

)
+

1

2

∫ t

0

eζsθ2sds

= 1 +

∫ t

0

eζs(−θs)dWs

= 1 +

∫ t

0

Zs(−θs)dWs,

as claimed. We also see that Zt is a martingale.
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Exercise 20. Let ζt as above. Prove that Yt = e−ζt satisfies the SDE

dYt = Ytθ
2
t dt− θtYtdWt, Y0 = 1.

Theorem 16 (Girsanov’s theorem). Let (θt) be an adapted process, such that∫ T

0
θ2sds <∞ a.s., and assume that

Λt = exp

{
−
∫ t

0

θsdWs −
1

2

∫ t

0

θ2sds

}
(20)

is P-martingale, where (Wt) is P-SBM. Define Qθ = Q

dQθ

dP

∣∣∣∣
FT

= ΛT .

Then W̃t = Wt +
∫ t

0
θsds is Q-SBM.

Remark 1. We have seen above that Λt is martingale. In fact, in general it is
only local martingale, and we need integrability conditions. These technical
assumptions are omitted.

Proof. First we show that Q is indeed a probability measure. By (19)

Λt = 1−
∫ t

0

ΛsθsdWs,

which is martingale, so
EPΛT = EPΛ0 = 1.

Since ΛT > 0 we see that Q is probability measure.
Next we show that W̃ satisfies the conditions of the Lévy characterization.
The continuity is clear, since W is SBM and Q ≪ P. By Lemma 8 (W̃t)

is Q-martingale iff (W̃tΛt) is P-martingale. We apply the Itô formula with
f(x, y) = xy and the Itô process

W̃t =

∫ t

0

θsds+

∫ t

0

1dWs

Λt = 1−
∫ t

0

ΛsθsdWs.
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Then

ΛtW̃t =

∫ t

0

W̃sdΛs +

∫ t

0

ΛsdW̃s +

∫ t

0

−Λsθsds

= −
∫ t

0

W̃sΛsθsdWs +

∫ t

0

Λs (θsds+ dWs)−
∫ t

0

Λsθsds

=

∫ t

0

Λs(1− θsW̃s)dWs,

which is P-martingale. Thus (W̃t) is Q-martingale.

Next we show that (W̃ 2
t − t) is Q-martingale. Again, by Itô’s formula

with f(x) = x2

W̃ 2
t = 2

∫ t

0

W̃sdW̃s +
1

2

∫ t

0

2dt,

from which

W̃ 2
t − t = 2

∫ t

0

W̃s (θsds+ dWs) .

Therefore, using again the multivariate Itô formula with f(x, y) = xy,

Λt(W̃
2
t − t) =

∫ t

0

Λs2W̃s (θsds+ dWs) +

∫ t

0

(W̃ 2
s − s)dΛs −

∫ t

0

Λsθs2W̃sds

=

∫ t

0

[
2ΛsW̃s − (W̃ 2

s − s)Λsθs

]
dWs,

which is P-martingale. Thus (W̃ 2
t − t) is Q-martingale, and the proof is

complete.

Finally, we state without proof (and precise statement) the martingale
representation theorem.

Theorem 17 (Martingale representation). Let (Wt) SBM on (Ω,A,P), and
let (Ft) the generated filtration, together with the P-zero sets. If (Mt) is
continuous square integrable martingale with M0 = 0 a.s., then there exists
an adapted (Yt) such that

Mt =

∫ t

0

YsdWs.
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7 Continuous time markets

7.1 General setup

The general notations are the same as in the discrete time setup.
In what follows, we work on the finite time horizon [0, T ], T < ∞. Let

(Ω,A,P) be a probability space, and (Ft) a filtration. There are two financial
instruments on the market, the bond, which is the riskless asset, and the
stock, which is the risky asset. The price process of the bond is given by the
deterministic process (Bt = ert), r ∈ R being the continuous interest rate,
while the price process of the stock is (St), which is nonnegative, adapted to
(Ft). Furthermore, we assume that (St) is an Itô process.

A strategy / portfolio is a process (πt = (βt, γt)), where the components
are adapted and ∫ T

0

|βt|dt <∞,

∫ T

0

γ2t dt <∞, a.s.

The process βt represents the amount of bonds at time t, while γt is the
amount of stock. Both processes are real valued (short selling is possible).

The value of the portfolio (π) at t is

Xπ
t = βtBt + γtSt. (21)

Recall that in discrete time an equivalent formulation of self-financing
portfolio is

Xπ
n+1 −Xπ

n = βn+1(Bn+1 −Bn) + γn+1(Sn+1 − Sn).

The continuous time analogue of the above is the SDE

dXπ
t = βtdBt + γtdSt.

The strategy (πt = (βt, γt)) is self-financing (SF) if it satisfies the SDE

dXπ
t = βtdBt + γtdSt. (22)

In what follows all strategies are SF unless otherwise stated.
The discounted processes are defined as (St = St/Bt) and (X

π

t = Xπ
t /Bt).
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Proposition 4. A strategy (πt = (βt, γt)) is SF iff

X
π

t = Xπ
0 +

∫ t

0

γsdSs, t ∈ [0, T ].

Proof. Assume that π is SF. Then, by Itô’s formula

dX
π

t = d
(
e−rtXπ

t

)
= −re−rtXπ

t dt+ e−rtdXπ
t

= −re−rt(βte
rt + γtSt)dt+ e−rt

(
βtde

rt + γtdSt

)
= −re−rtγtStdt+ e−rtγtdSt

= γtd
(
e−rtSt

)
,

as claimed.
For the reverse direction, we have

dX
π

t = γtdSt.

Since Xπ
t = βte

rt + γtSt, so

dX
π

t = −re−rtXπ
t dt+ e−rtdXπ

t = −e−rtβtdBt − re−rtγtStdt+ e−rtdXπ
t .

The right-hand side

γtdSt = −re−rtγtStdt+ γte
−rtdSt.

The equality of the sides gives

dXπ
t = βtdBt + γtdSt,

which is the definition of SF.

An SF strategy π is arbitrage, if Xπ
0 = 0 a.s., XT ≥ 0 a.s., and P(Xπ

T >
0) > 0. The market is arbitrage free if there exists no arbitrage strategy.

A probability measure Q is equivalent martingale measure (EMM) if P ∼
Q (that is P ≪ Q and Q ≪ P), and (St) is Q-martingale.

We have seen in the discrete time setup that the existence of EMM is
equivalent to the arbitrage free property. One of the implications is rather
simple in the continuous time setup. Assume that Q is EMM, and let π
be an (SF) strategy. By Proposition 4 the discounted value process has the
representation

X
π

t = Xπ
0 +

∫ t

0

γsdSs.
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Since (St) is Q-martingale, and X
π

t is a stochastic integral with respect to
S, we see that (X

π

t ) is Q-martingale. (Recall the discrete time analogue of
this statement.) Therefore

EQX
π

T = EQX
π
0 .

Since P ∼ Q, Xπ
0 = 0, Xπ

T ≥ 0 P-a.s., implies Q-a.s. Then EQX
π

T =
EQX

π
0 = 0, from which Xπ

T ≡ 0 Q-a.s., and so P-a.s.
We proved the following.

Theorem 18. Assume that on the market (Ω,A,P, (St), (Bt = ert), (Ft))
there exists EMM. Then the market is arbitrage free.

7.2 Black–Scholes model

In a special model we explicitly construct the EMM via Girsanov’s theorem,
and compute the fair price of a payoff. In particular, we prove the Nobel-
prize winner Black–Scholes pricing formula, which gives the fair price of a
European call option.

Fix r > 0, µ ∈ R and σ > 0. Let (Ω,A,P) be a probability space, (Wt)
SBM on [0, T ], T < ∞, and Ft be the generated filtration. The bond and
stock price in the Black–Scholes-model is given by

dBt = rBt dt, B0 = 1,

dSt = µSt dt+ σSt dWt, S0 = S0.
(23)

From the form of St we immediately see that St is a martingale if and
only if µ = 0.

The bond price is simply Bt = ert.
Writing St as an Itô process

St = S0 +

∫ t

0

µSsds+

∫ t

0

σSsdWs.

Applying Itô with f(x) = log x

logSt = logS0 +

∫ t

0

1

Ss

(µSsds+ σSsdWs) +
1

2

∫ t

0

− 1

S2
s

σ2S2
sds

= logS0 + σWt +

(
µ− σ2

2

)
t.
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From which

St = S0 · e
σWt+

(
µ−σ2

2

)
t
. (24)

This is the exponential Brownian motion.
Note that the proof is not complete, because the logarithm is not smooth

at 0. The argument above only helps to find out the solution. (A more
constructive approach is to apply Itô with a general f , and then choose f to
obtain a solvable equation.)

Exercise 21. Prove that (24) is indeed a solution.

7.2.1 Equivalent martingale measure and the fair price

As an application of Girsanov’s theorem, we construct a new measure, such
that St is a martingale under this measure.

By (23)

dSt = St ((µ− r)dt+ σdWt) = StσdW̃
µ
t , (25)

where

W̃ µ
t = Wt +

µ− r

σ
t. (26)

Therefore, we need a measure Q such that the process W̃ µ
t is Q-SBM.

Then, by (25) (St) is Q-martingale.
Let θt ≡ θ = µ−r

σ
, and

dQ

dP

∣∣∣∣
FT

= ΛT = exp

{
−
∫ T

0

θdWs −
1

2

∫ T

0

θ2ds

}
= e−θWT− θ2T

2 .

By Girsanov’s theorem (Theorem 16) the shifted process (W̃ µ
t ) is Q-SBM,

thus (St) is Q-martingale. Since ΛT > 0 a.s., P ∼ Q, therefore Q is EMM.
By (25)

St = S0 · eσW̃
µ
t −σ2

2
t. (27)

Next, we determine the fair price of a claim fT , for which Ef 2
T <∞. Let

Nt = EQ

[
e−rTfT |Ft

]
, 0 ≤ t ≤ T.

By the martingale representation theorem (Theorem 17) there exists an
adapted process Yt, such that

Nt = N0 +

∫ t

0

YsdW̃
µ
s , (28)
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where N0 = EQe
−rTfT . Define the strategy πt = (βt, γt) as

βt = Nt −
Yt
σ
, γt =

Yte
rt

σSt

.

Lemma 9. The strategy (πt = (βt, γt)) is self-financing and X
π

t = Nt.

Proof. By the definition

Xπ
t = βtBt + γtSt =

(
Nt −

Yt
σ

)
ert +

Yt
σ
ert = ertNt,

i.e. X
π

t = Nt.
In order to show that π is SF, by Proposition 4 we need that dX

π

t = γtdSt.
By (28)

dX
π

t = dNt = YtdW̃
µ
t ,

while (25) gives

γtdSt = γtStσdW̃
µ
t = YtdW̃

µ
t .

Since
Xπ

T = erTNT = erTEPµ

[
e−rTfT |FT

]
= fT ,

π is a perfect hedge for fT , and X
π
0 = N0 = EQe

−rTfT . Therefore, we proved
the following.

Theorem 19. In the Black–Scholes model the fair price of the contingent
claim fT is

CT (fT ) = EQe
−rTfT .

Furthermore, πt = (βt, γt),

βt = Nt −
Yt
σ
, γt =

Yte
rt

σSt

,

is a perfect hedge, where Nt = EQ[e
−rTfT |Ft], and Nt = N0 +

∫ t

0
YsdW̃

µ
s .
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7.2.2 Black–Scholes formula

The famous Black–Scholes formula gives the fair price of a European call
option. In this case the payoff function is fT = (ST −K)+, where K is the
strike price. By Theorem 19, the fair price is

CT (K) = EQ

(
e−rT (ST −K)+

)
.

By (27)

ST = S0e
rT eσW̃

µ
T −σ2

2
T ,

where W̃ µ
T ∼ N(0, T ) under Q. Therefore, writing Z for a standard normal

CT (K) = EQ

(
e−rT (ST −K)+

)
= EQ

(
S0e

σW̃µ
T −σ2

2
T − e−rTK

)
+

= E
(
S0e

σ
√
TZ−σ2

2
T − e−rTK

)
+

=
1√
2π

∫ ∞

γ

(
S0e

σ
√
Tx−σ2

2
T − e−rTK

)
e−

x2

2 dx

= S0
1√
2π

∫ ∞

γ

e−
(x−σ

√
T )2

2 dx− e−rTK(1− Φ(γ))

= S0

(
1− Φ(γ − σ

√
T )
)
− e−rTK(1− Φ(γ)),

(29)

where

γ =
1

σ
√
T

[
log

K

S0

+

(
σ2

2
− r

)
T

]
.

The pricing formula

CT (K) = S0

(
1− Φ(γ − σ

√
T )
)
− e−rTK(1− Φ(γ))

is the Black–Scholes formula, which was published by Fischer Black and
Myron Scholes in 1973. The underlying theory was generalized later by
Merton. In 1997, Scholes and Merton received the Nobel prize for this (Black
died in 1995).
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7.2.3 From CRR to Black–Scholes

Here we derive the Black–Scholes formula as the limit of the discrete CRR
pricing formula. This part is based on [2], section 2.6.

Consider the continuous model on [0, T ]. Let r > 0 be the continuous
interest rate and σ > 0 the volatility. In the approximating discrete model
choose, for N fixed

0 = τ0 < τ1 < . . . < τN = T, τi =
i

N
T

Put h = T/N . The parameters of the N -step homogeneous binomial market
are rN , aN , and bN . The price of the bond and stock is denoted by BN

τi
and

SN
τi
, respectively.
Choose

rN = r
T

N
= rh, log

1 + bN
1 + rN

= σ
√
h, log

1 + aN
1 + rN

= −σ
√
h. (30)

It is easy to show that this implies

BN
τ tN

T

= (1 + rN)
⌊ tN

T
⌋ → ert = Bt,

which in fact suggests the choice of rN . Similar, but more complicated cal-
culations gives that with the choice above VarSN

τN
converges.

In the homogeneous binomial model the EMM was given by the upwards
step probability

p∗N =
rN − aN
bN − aN

.

Under the EMM

SN
τN

= S0(1 + bN)
YN (1 + aN)

N−YN = S0

(
1 + bN
1 + aN

)YN

(1 + aN)
N , (31)

where YN ∼ Binomial(N, p∗N).
The CRR pricing formula gives

CN(K) = E∗
N

(SN
τN

−K)+

BN
τN

. (32)
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By the central limit theorem (Lindeberg–Feller theorem)

YN −Np∗N√
Np∗N(1− p∗N)

D−→ N(0, 1), N → ∞, (33)

whenever 0 < lim infN→∞ p∗N ≤ lim supN→∞ p∗N < 1. Simple calculation gives
that limN→∞ p∗N = 1/2, so (33) holds. Rewriting (31)(

1 + bN
1 + aN

)YN

(1 + aN)
N = exp

{
YN log

1 + bN
1 + aN

+N log(1 + aN)

}
= exp

{
YN −Np∗N√
Np∗N(1− p∗N)

√
Np∗N(1− p∗N) log

1 + bN
1 + aN

+N

(
p∗N log

1 + bN
1 + aN

+ log(1 + aN)

)}
.

By (33) we need to determine the limits

lim
N→∞

√
Np∗N(1− p∗N) log

1 + bN
1 + aN

, and

lim
N→∞

N

(
p∗N log

1 + bN
1 + aN

+ log(1 + aN)

)
.

Taylor expansion and (30) gives

1 + bN = eσ
√
h(1 + rN) =

(
1 + σ

√
h+

σ2

2
h+O(h3/2)

)
(1 + rh)

= 1 + σ
√
h+

(
σ2

2
+ r

)
h+O(h3/2),

thus

bN = σ
√
h+

(
σ2

2
+ r

)
h+O(h3/2).

Similarly,

aN = −σ
√
h+

(
σ2

2
+ r

)
h+O(h3/2).
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From this

p∗N =
rN − aN
bN − aN

=
σ
√
h− σ2

2
h+O(h3/2)

2σ
√
h+O(h3/2)

=
1

2 +O(h)
− σ

√
h+O(h)

4 +O(h)

=
1

2
− σ

4

√
h+O(h).

Substituting back, and using the second order expansion log(1 + x) = x −
x2/2 +O(x3), x→ 0, we obtain

lim
N→∞

√
Np∗N(1− p∗N) log

1 + bN
1 + aN

= lim
N→∞

√
p∗N(1− p∗N)2σ

√
T = σ

√
T ,

and

lim
N→∞

N

(
p∗N log

1 + bN
1 + aN

+ log(1 + aN)

)
= lim

N→∞
N

([
1

2
− σ

4

√
T

N
+O(N−1)

]
2σ

√
T

N
− σ

√
T

N
+ r

T

N
+O(N−3/2)

)

=

(
r − σ2

2

)
T.

Substituting back into (32)

lim
N→∞

CN(K) = e−rTE∗
(
S0e

σ
√
TZ+T

(
r−σ2

2

)
−K

)
+

= E∗
(
S0e

σ
√
TZ−σ2

2
T − e−rTK

)
+
,

which is exactly the second line in (29).
In fact, we need the convergence of moments, that is, uniform integrabil-

ity. That can be done with a little more work, but the details are skipped.
It is important to note that not only the price convergence, but the whole
process (SN

τi
) converges to the exponential Brownian motion. This follows

from Donsker’s theorem.
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8 Ruin theory

This part is based on Asmussen, Steffensen: Risk and Insurance [1].

8.1 Risk processes

The classical risk process or Cramér–Lundberg model is the following. Let
(Nt)t≥0 be a Poisson process with intensity λ > 0, independently let Z, Z1,
Z2, . . . nonnegative iid random variables with distribution G. In terms of the
insurance, the kth jump time of the Poisson process represents that claim
arrives of size Zk. Then the reserve of the insurance company at time t is
given by

Ut = u+ ct−
Nt∑
k=1

Zk, (34)

where u > 0 is the initial capital, c is the rate of premium inflow.
For more general risk processes, called renewal model, we only assume

that N is a renewal process (not necessarily Poisson). The interarrival times
are X,X1, X2, . . ., (which in case of Poisson process are iid Exp(λ)), and we
assume that EX =: 1/λ <∞.

The general risk process has the following ingredients:

• claims: Z,Z1, Z2, . . . nonnegative iid with df G, EZ = µ;

• time between claims / interarrival times: X,X1, X2, . . . iid, EX = 1
λ
;

this sequence defines the renewal process Nt;

• rate of premium inflow: c > 0;

• initial capital u ≥ 0.

Ruin occurs if Ut < 0 for some t, and the time of ruin is

τ(u) = inf{t > 0 : Ut < 0}.

The ruin probability is the probability that ruin ever occurs

ψ(u) = P(τ(u) <∞).

Proposition 5. In the general renewal model, limt→∞
Ut

t
= c−λµ. Further-

more, if λµ ≥ c then ψ(u) = 1 for all u ≥ 0, while if λµ < c then ψ(u) < 1
for all u ≥ 0.
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Proof. By the SLLN

Nt

t
→ λ,

Z1 + . . .+ Zn

n
→ µ,

implying ∑Nt

k=1 Zk

t
=

∑Nt

k=1 Zk

Nt

Nt

t
→ λµ a.s.,

thus the first claim follows.
If c < λµ, then Ut → −∞ meaning that ruin occurs a.s. If c > λµ then

Ut → ∞, and P(inf Ut ≥ 0) > 0 for u = 0 (thus for any u ≥ 0).
If c = λµ then the corresponding random walk oscillates between +∞

and −∞. Details are omitted.

Therefore, in what follows we always assume the net-profit condition

c > λµ.

From the structure of U in (34) it is clear that ruin occurs when claim
arrives. Recall that X,X1, . . . are the interarrival times of N (the times
between two consecutive claims). Define the variables Yk := Zk − cXk. The
net profit condition is exactly that EY < 0, which assures that

∑n
k=1 Yk →

−∞, so

M := sup
n≥0

n∑
k=1

Yk <∞ a.s.

Then it is clear that
ψ(u) = P(M > u),

that is the ruin probability is the tail of the maximum of a random walk with
negative drift.

8.2 Maximum of a random walk

Here we follow Foss, Korshunov, and Zachary [4].
Let Y, Y1, Y2, . . . be iid random variables with E(Y ) < 0 and Sn =

∑n
i=1 Yi

their partial sum. Define

M := sup
n≥0

Yn <∞.
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We want to determine the tail probabilities P(M > u).
Let

τ+ = τ+(1) = min{k > 0 : Sk > 0}
denote the first strict ascending ladder epoch, and Sτ+ the first strict ascend-
ing ladder height. Since Sn → −∞, these are defective random variables,
that is

P(τ+ = ∞) = P(Sk ≤ 0, ∀k) = P(M = 0) =: p > 0. (35)

If τ+(1) <∞ we can define the second ladder epoch

τ+(2) = min{k > τ+(1) : Sk > Sτ+(1)},

and inductively, if τ+(n) <∞

τ+(n+ 1) = min{k > τ+(n) : Sk > Sτ+(n)}.

Since Y1, Y2, . . . are independent, τ+(2)−τ+(1) given τ+(1) <∞ has the same
distribution as τ+(1), and in general if τ+(n) <∞ then τ+(1), τ+(2)− τ+(1),
. . ., τ+(n) − τ+(n − 1) are iid. Furthermore, P(τ+(n) < ∞) = (1 − p)n,
and it is defined (possibly infinite) with probability (1 − p)n−1. The same
independence shows that given τ+(n) <∞ the variables

Sτ+(1), Sτ+(2) − Sτ+(1), . . . , Sτ+(n) − Sτ+(n−1)

are independent and identically distributed. Put

Hd(x) = P(Sτ+ ≤ x), H(x) = P(Sτ+ ≤ x|τ+ <∞) =
1

1− p
Hd(x). (36)

Then Hd is a defective distribution function, that is Hd(∞) = 1 − p < 1.
Therefore,

P(M > x) =
∞∑
k=1

P(Sτ+(k) > x, τ+(k) <∞, τ+(k + 1) = ∞)

=
∞∑
k=1

P(Sτ+(k) > x|τ+(k) <∞)(1− p)kp.

(37)

Or, what is the same, if ε+(1), ε+(2), . . . are iid with df H, and independently
N has geometric distribution P(N = k) = p(1− p)k, k = 0, 1, . . ., then

M
D
=

N∑
i=1

ε+(i).
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Define the taboo renewal measure on [0,∞)

R+(B) = I(0 ∈ B) +
∞∑
n=1

P(S1 > 0, S2 > 0, . . . , Sn > 0, Sn ∈ B).

The random vector (Y1, . . . , Yn) has the same distribution as (Yn, . . . , Y1),
thus

P(S1 > 0, S2 > 0, . . . , Sn > 0, Sn ∈ B)

= P(Yn > 0, Yn + Yn−1 > 0, . . . , Sn > 0, Sn ∈ B)

= P(Sn > Sn−1, Sn > Sn−2, . . . , Sn > 0, Sn ∈ B)

= P(Sn is a strict ascending ladder height in B )

= EI(Sn is a strict ascending ladder height in B ).

Therefore, summing over n we obtain the following.

Lemma 10. For any B ⊂ (0,∞), R+(B) is the expected number of ladder
heights in B. In particular,

R+((0,∞)) =
∞∑
k=1

kp(1− p)k =
1− p

p
,

and

R+([0,∞)) = 1 +R+((0,∞)) =
1

p
.

Similarly, define the weak descending ladder epochs and ladder heights as
follows. Let

τ− = τ−(1) = min{k > 0 : Sk ≤ 0},
the first weak descending ladder epoch, and Sτ− is the ladder height. and
inductively, for τ−(n) defined let

τ−(n+ 1) = min{k > τ−(n) : Sk ≤ Sτ−(n)}.

Furthermore, let ε−(1), ε−(2), . . . iid with the same distribution as Sτ− . Since
Sn → −∞ a.s., these random variables are all proper (finite with probability
1). Moreover, by Lemma 10

Eτ− =
∞∑
k=0

P(τ− > k) = 1 +
∞∑
k=1

P(S1 > 0, . . . , Sk > 0)

= R+([0,∞)) =
1

p
.

64



Since τ−(1) is a stopping time for (Sn), by Wald’s identity

Eε− = ESτ− = E(τ−)E(Y ) =
E(Y )

p
.

Define for B ⊂ (−∞, 0]

R−(B) =
∞∑
n=0

P(S0 ≤ 0, . . . , Sn ≤ 0, Sn ∈ B).

As in Lemma 10 we obtain

Lemma 11.

R−(B) = I(0 ∈ B) + E|{weak descending ladder heights in B}|.

The distribution of the ascending ladder height can be expressed for x > 0
as

P(Sτ+ > x) =
∞∑
n=1

P(Sn > x, τ+ = n)

=
∞∑
n=1

P(S1 ≤ 0, . . . , Sn−1 ≤ 0, Sn > x)

=
∞∑
n=1

∫
(−∞,0]

P(Yn > x− y)P(S1 ≤ 0, . . . , Sn−1 ≤ 0, Sn−1 ∈ dy)

=

∫
(−∞,0]

P(Y > x− y)R−(dy).

(38)

Similarly, for the distribution of the descending ladder height

P(Sτ− ≤ −x) =
∫
[0,∞)

P(Y ≤ −x− y)R+(dy), x ≥ 0. (39)

8.3 The Cramér–Lundberg model

In what follows we mainly consider the classical risk process, or Cramér–
Lundberg process, where (Nt) is a Poisson process with intensity λ, that is
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the interarrival times are exponential(λ). Here we specialize the formulas
obtained in the previous section.

Since Y = Z − cX, where Z ≥ 0 is the claim size, X is exponential(λ),
and Z,X are independent, for y ≥ 0

P(Y ≤ −y) = P(X ≥ c−1(Z + y))

=

∫
(0,∞)

e−λ(c−1(z+y)P(Z ∈ dz)

= e−
λ
c
y

∫
(0,∞)

e−
λ
c
zP(Z ∈ dz)

= e−
λ
c
yC1.

So, by (39)

P(Sτ− ≤ −x) =
∫
[0,∞)

P(Y ≤ −x− y)R+(dy)

=

∫
[0,∞)

e−
λ
c
(x+y)C1R+(dy)

= e−
λ
c
x

∫
[0,∞)

e−
λ
c
yC1R+(dy)

= e−
λ
c
x,

where the last equality follows fromP(Sτ− ≤ 0) = 1. That is, the distribution
of −Sτ− is exponential(λ/c). This means that the weak descending ladder
heights form a Poisson process on (−∞, 0), so Lemma 11 gives that the
measure R− is λ/c times the Lebesgue measure together with a unit mass at
0, or more formally

R−(dt) =
λ

c
dt+ δ0.

Therefore, by (38)

P(Sτ+ > x) =

∫
(−∞,0]

P(Y > x− y)R−(dy)

=

∫ 0

−∞
P(Y > x− y)

λ

c
dy +P(Y > x)

=
λ

c

∫ ∞

x

P(Y > y)dy +P(Y > x).

(40)
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For x > 0

P(Y > x) = P(Z − cX > x) =

∫
(x,∞)

(
1− e−λ z−x

c

)
P(Z ∈ dz)

= P(Z > x)−
∫
(x,∞)

e−
λ
c
(z−x)P(Z ∈ dz).

Substituting back, using Fubini

λ

c

∫ ∞

x

P(Y > y)dy

=
λ

c

∫ ∞

x

P(Z > y)dy − λ

c

∫ ∞

x

∫
(x,∞)

I(z > y)e−
λ
c
(z−y)P(Z ∈ dz)dy

=
λ

c

∫ ∞

x

P(Z > y)dy −
∫
(x,∞)

(
1− e−

λ
c
(z−x)

)
P(Z ∈ dz)

=
λ

c

∫ ∞

x

P(Z > y)dy −P(Z > x) +

∫
(x,∞)

e−
λ
c
(z−x)P(Z ∈ dz)

=
λ

c

∫ ∞

x

P(Z > y)dy −P(Y > x).

Substituting back into (40)

P(Sτ+ > x) =
λ

c

∫ ∞

x

P(Z > y)dy.

Thus we obtained that Sτ+ has a density, and substituting x = 0 we also see
that P(τ+ <∞) = λµ/c < 1. Using the notation

GI(x) =
1

µ

∫ x

0

P(Z > y)dy,

we see that
H(x) = P(Sτ+ ≤ x|τ+ <∞) = GI(x).

Recalling also (35) and (37), and that ψ(u) = P(M > u) we obtain the
following.

Theorem 20. In the Cramér–Lundberg model assume the net-profit condi-
tion c > λµ. Then for the strict ascending ladder epoch τ+ and height Sτ+
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we have

P(τ+ <∞) =
λµ

c
< 1,

d

dx
P(Sτ+ ≤ x) =

λ

c
P(Z > x).

For the maximum of the random walk M = supn≥0 Sn

ψ(u) = P(M > u) =
∞∑
k=1

(
λµ

c

)k (
1− λµ

c

)
(1−G∗k

I (u)).

Exercise 22. Assume that Z ∼Exp(δ). Compute explicitly ψ(u) using The-
orem 20.

8.4 Lundberg inequality

Introduce the notation

K(t) =
Nt∑
k=1

Zk − ct.

Next we calculate the moment generating function of K.

Proposition 6. Let N be a nonnegative integer valued random variable,
independent of the iid sequence Y, Y1, . . .. Then

E exp

{
s

N∑
k=1

Yk

}
= E

[(
EesY

)N]
.

Proof. Simply,

E exp

{
s

N∑
k=1

Yk

}
=

∞∑
i=0

P(N = i)(EesY )i

= E
[(
EesY

)N]
.

Introduce the notation

Ĝ(s) = EesZ =

∫
(0,∞)

eszG(dz).
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Recalling that if N ∼ Poisson(λ) then EsN = exp{λ(s− 1)}, we obtain

κ(α) := logEeαK(1) = λ(Ĝ(α)− 1)− αc. (41)

Similarly,
logEeαK(t) = tκ(α).

Corollary 2. For α ∈ R assume that Ĝ(α) < ∞. Let M(t) = eαK(t)−tκ(α).
Then (M(t)t≥0) is a martingale with respect to the filtration Ft = σ(K(s) :
s ∈ [0, t]).

Proof. Let t > s > 0. Since K(t)−K(s) is independent of Fs we have

E[M(t)|Fs] = E [exp{αK(s)− sκ(α) + α(K(t)−K(s))− (t− s)κ(α)|Fs]

=M(s)

as claimed.

We need that the function κ is convex.

Lemma 12. For any random variable X, the function h(s) = logEesX is
convex.

Proof. Differentiate twice, and use Cauchy–Schwarz. Indeed,

h′(s) =
EXesX

EesX
,

h′′(s) =
E(X2esX)EesX − (EXesX)2

(EesX)2
.

Cauchy–Schwarz inequality with XesX/2, and esX/2 shows that h′′(s) > 0,
that is h is convex.

Note that κ(0) = 0, and κ′(0) = λµ− c < 0, since the net profit condition
hold. Cramér’s condition is that

∃γ > 0 such that κ(γ) = 0, κ′(γ) <∞. (42)

Convexity implies that there is at most 1 solution. Then γ is the Lundberg
exponent.

Recall from section 9.1 that τ(u) = inf{t : Ut < 0} the time of ruin. With
the notation of K(t) we have τ(u) = inf{t : K(t) > u}. At the time of ruin
τ(u) the process K upcrosses u by making a jump. Let ξ(u) = K(τ(u))− u
denote the overshoot (defined on the event τ(u) <∞).
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Proposition 7. Under the Cramér condition

ψ(u) =
e−γu

E[eγξ(u)|τ(u) <∞]
.

Proof. Clearly, τ(u) is a stopping time, thus by the optional sampling theo-
rem

EM(τ ∧ t) = EM(0) = 1.

With α = γ we have κ(γ) = 0, thus M(t) = eγK(t), and

1 = EeγK(τ(u)∧t) = E
[
eγK(τ(u)∧t)I(τ(u) ≤ t)

]
+ E

[
eγK(τ(u)∧t)I(τ(u) > t)

]
.

As t → ∞ the second term tends to 0, as the integrand is bounded by eγu,
and tends to 0 pointwise since K(t) → −∞. Thus

1 = E
[
eγK(τ(u))I(τ(u) <∞)

]
= eγuE

[
eγξ(u)I(τ(u) <∞)

]
= eγuψ(u)E

[
eγξ(u)|τ(u) <∞

]
.

Noting that ξ(u) ≥ 0 Lundberg’s inequality is an immediate corollary.

Corollary 3 (Lundberg’s inequality). Under the Cramér condition for all
u ≥ 0

ψ(u) ≤ e−γu.

Corollary 4. Assume that Z ∼ Exp(δ). Then

ψ(u) =
λ

cδ
e−(δ−λ

c
)u.

Proof. Since

κ(α) = λ(Ĝ(α)− 1)− αc = λ

(
δ

δ − α
− 1

)
− αc,

the unique solution to κ(α) = 0 is γ = δ − λ/c.
Given τ(u) = t andK(t−) = x ≤ u we know that the claim size V > u−x.

The overshoot ξ(u) = V −u+x given that V > u−x is again exponential(δ).
Thus

E
[
eγξ(u)|τ(u) <∞

]
=

∫ ∞

0

eγyδe−δydy =
cδ

λ
.
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8.5 Cramér–Lundberg theorem

Theorem 21 (Cramér–Lundberg approximation). Assume that Cramér’s
condition hold, i.e. κ(γ) = 0 for some γ > 0. Then

ψ(u) ∼ Ce−γu as u→ ∞,

where

C =
c− λµ

κ′(γ)
=

c− λµ

λĜ(γ)′ − c
.

This means that the ruin probability decreases exponentially with the
initial capital u. This is good news for the insurance company.

Proof. Conditioning on the first ascending ladder height we have

ψ(u) = P(Sτ+ > u) +

∫
(0,u]

ψ(u− y)P(Sτ+ ∈ dy).

Using the explicit expressions in Theorem 20

ψ(u) =
λ

c

∫ ∞

u

P(Z > y)dy +

∫ u

0

ψ(u− y)
λ

c
P(Z > y)dy.

This is a defective renewal equation, since the total mass on the integral
involving ψ is ∫ ∞

0

λ

c
P(Z > y)dy =

λ

c
µ < 1.

Put ψ̃(u) = eγuψ(u). Multiplying both sides by eγu, we have

ψ̃(u) =
λ

c
eγu
∫ ∞

u

P(Z > y)dy +

∫ u

0

ψ̃(u− y)
λ

c
P(Z > y)eγydy. (43)

This is proper renewal equation, as∫ ∞

0

λ

c
P(Z > y)eγydy = 1. (44)

Indeed, by Fubini∫ ∞

0

P(Z > y)eγydy =

∫ ∞

0

∫
(0,∞)

I(z > y)eγyG(dz)dy

= γ−1

(∫
(0,∞)

eγzG(dz)− 1

)
= γ−1

(
Ĝ(γ)− 1

)
,
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and by the definition of the Lundberg exponent (see (42) and (41))

Ĝ(γ) = 1 +
γc

λ
.

Substituting everything back we obtain (44).
Introducing the notation

a(u) =
λ

c
eγu
∫ ∞

u

P(Z > y)dy,

and

F (u) =

∫ u

0

λ

c
P(Z > y)eγydy,

we have the usual form

ψ̃(u) = a(u) +

∫ u

0

ψ̃(u− y)F (dy).

Therefore, we can apply the key renewal theorem1 to equation (43). We
obtain

lim
u→∞

ψ̃(u) =

∫∞
0
a(y)dy∫

(0,∞)
yF (dy)

=

∫∞
0

λ
c
eγu
∫∞
u

P(Z > y)dydu
λ
c

∫∞
0
yP(Z > y)eγydy

.

It remains to evaluate the constant above. The numerator∫ ∞

0

eγu
∫ ∞

u

P(Z > y)dydu =
1

γ

∫ ∞

0

(eγy − 1)(1−G(y))dy

= γ−1
( c
λ
− µ

)
.

For the denominator∫ ∞

0

yP(Z > y)eγydy =

∫ ∞

0

∫
(0,∞)

I(z > y)G(dz)yeγydy

= γ−1

∫
(0,∞)

(
eγzz − γ−1(eγz − 1)

)
G(dz)

= γ−1E(ZeγZ)− γ−2γc

λ
=

1

λγ
κ′(γ),

since
κ′(γ) = λĜ(γ)′ − c = λE(ZeγZ)− c.

1Here we have to check that a is directly Riemann integrable. In fact, it is of bounded
variation, which is not difficult to show.
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8.6 Heavy tails

We learned that if the claim sizes have exponential moments, more precisely
Cramér’s condition holds, then the ruin probability decreases exponentially
with the capital. This is good for the insurance company, since in order
to decrease the ruin probability by a factor 0.5, only a constant amount of
money needed. The bad news is that in practice, claims are heavy-tailed,
no exponential moments exists. Assume that the claim sizes have Pareto
distribution,

P(Z > x) = 1−G(x) = x−α, x ≥ 1,

for some α > 1. Then EZ = µ = α
α−1

<∞. The integrated tail distribution

GI(x) =
1

µ

∫ x

0

(1−G(y))dy =
α− 1

α

(
1 +

∫ x

1

y−αdy

)
= 1− α−1x1−α.

Then by Theorem 20 we see

ψ(u) =
∞∑
k=1

(
λµ

c

)k (
1− λµ

c

)
(1−G∗k

I (u)) ≥ λµ

c

(
1− λµ

c

)
α−1u1−α,

that is
lim inf
u→∞

uα−1ψ(u) > 0.

In this case the ruin probability is much larger, decreases only as a power of
u.

In what follows, we are dealing with distributions on (0,∞) with un-
bounded support. In terms of random variables, Z,Z1, . . . are nonnega-
tive iid random variables, G(x) = P(Z ≤ x), G(x) < 1 for all x. Let
Sn = Z1 + . . .+ Zn denote the partial sum. Then P(Sn ≤ x) = G∗n(x).

The distribution G is subexponential, if

lim
x→∞

1−G∗2(x)

1−G(x)
= 2. (45)

Exercise 23. Determine the limit above if

• G(x) = 1− e−λx ;

• G(x) = Φ(x) standard normal distribution;

• G(x) = 1− x−α.
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Note that

1−G∗2(x) = 1−P(Z1 + Z2 ≤ x) = P(Z1 + Z2 > x).

For any distribution with unbounded support

P(max(Z1, Z2) > x) = 1−P(max(Z1, Z2) ≤ x)

= 1−G(x)2 ∼ 2(1−G(x)),

where the last asymptotic equality holds as x → ∞. Thus definition (45) is
equivalent to

P(Z1 + Z2 > x) ∼ P(max(Z1, Z2) > x) as x→ ∞.

That is, the sum is large if and only if one term is large. This is the one big
jump property.

Proposition 8. Let G be subexponential. Then

lim
x→∞

1−G∗n(x)

1−G(x)
= n,

or equivalently

P(Sn > x) ∼ P(max{Z1, . . . , Zn} > x) as x→ ∞.

To ease notation write

ρ =
λµ

c
.

Theorem 20 states that

ψ(u) =
∞∑
k=1

ρk(1− ρ)(1−G∗k
I (u)).

If GI is subexponential, then by Proposition 82

ψ(u) =
∞∑
k=1

ρk(1− ρ)(1−G∗k
I (u))

∼
∞∑
k=1

ρk(1− ρ)k(1−GI(u)) =
ρ

1− ρ
(1−GI(u)).

Corollary 5. Consider the Cramér–Lundberg risk process with the net-profit
condition, and assume that GI is subexponential. Then as u→ ∞

ψ(u) ∼ ρ

1− ρ
(1−GI(u)).

2In fact, here we need a bit more, a kind of uniform bound to ensure that we can
interchange summation and limit.
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