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Preface to the First Edition

This text studies heavy-tailed distributions in probability theory, and especially
convolutions of such distributions. The main goal is to provide a complete and com-
prehensive introduction to the theory of long-tailed and subexponential distributions
which includes many novel elements and, in particular, is based on the regular use
of the principle of a single big jump. Much of the material appears for the first time
in text form, including:
– The establishment of new relations between known classes of subexponential

distributions and the introduction of important new classes
– The development of some important new concepts, including those of

h-insensitivity and local subexponentiality
– The presentation of new and direct probabilistic proofs of known asymptotic

results
A number of recent textbooks and monographs contain some elements of the

present theory, notably those by S. Asmussen [1, 2], P. Embrechts, C. Klüppelberg,
and T. Mikosch [24], T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels [47],
and A. Borovkov and K. Borovkov [11]. Further, the monograph by N. Bingham,
C. Goldie, and J. Teugels [9] comprehensively develops the theory of regularly
varying functions and distributions; the latter form an important subclass of the
subexponential distributions. We have been influenced by these books and by fur-
ther contacts with their authors.

Chapters 2 and 3 of the present monograph deal comprehensively with the prop-
erties of heavy-tailed, long-tailed and subexponential distributions, and give appli-
cations to random sums. Chapter 4 develops concepts of local subexponentiality and
gives further applications. Finally, Chap. 5 studies the distribution of the maximum
of a random walk with negative drift and heavy-tailed increments; notably it con-
tains new and short probabilistic proofs for the tail asymptotics of this distribution
for both finite and infinite time horizons. The study of heavy-tailed distributions in
more general probability models—for example, Markov-modulated models, those
with dependencies, and continuous-time models—is postponed until such future
date as the authors may again find some spare time. Nevertheless, the same basic
principles apply there as are developed in the present text.

v
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Preface

This is an extended and corrected version of the First Edition. The major changes are:
– Chapters 2 through 5 are now appended by lists of problems and exercises.

We also provide answers and a number of solutions.
– Chapter 5 includes three new sections on applications, to queueing theory, to risk,

and to branching processes, and a new section describing time to exceed a high
level by a random walk and its location around that time.

– Sections 5.1, 5.2 and 5.9 are extended.

Sergey Foss
August 2012 Dmitry Korshunov
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Notation and Conventions

Intervals (x,y) is an open, [x,y] a closed interval; half-open intervals are
denoted by (x,y] and [x,y).

Integrals
∫ y

x is the integral over the interval (x,y].
R, R+, Rs Stand for the real line, the positive real half-line [0,∞), and

s-dimensional Cartesian space.
Z, Z+ Stand for the set of integers and for the set {0,1,2, . . .}.
I(A) Stands for the indicator function of A, i.e. I(A) = 1 if A holds and

I(A) = 0 otherwise.
O, o, and ∼ Let u and v depend on a parameter x which tends, say, to infinity.

Assuming that v is positive we write

u = O(v) if limsup
x→∞

|u|/v < ∞

u = o(v) if u/v → 0 as x → ∞
u ∼ v if u/v → 1 as x → ∞.

P{B} Stands for the probability (on some appropriate space) of the event B.
P{B|A} Stands for the conditional probability of the event B given A, i.e., for

the ratio P{BA}/P{A}.
Eξ Stands for the mean of the random variable ξ .
E{ξ ;B} Stands for the mean of ξ over the event B, i.e., for Eξ I(B).
F ∗G Stands for the convolution of the distributions F and G.
F∗n Stands for the n-fold convolution of the distribution F with itself.
ξ+, F+ For any random variable ξ on R with distribution F , the random

variable ξ+ = max(ξ ,0) and F+ denotes its distribution.
:= (=:) The quantity on the left (right) is defined to be equal to the quantity

on the right (left).
� Indicates the end of a proof.

xi



Chapter 1
Introduction

Heavy-tailed distributions (probability measures) play a major role in the analysis of
many stochastic systems. For example, they are frequently necessary to accurately
model inputs to computer and communications networks, they are an essential com-
ponent of the description of many risk processes, they occur naturally in models of
epidemiological spread, and there is much statistical evidence for their appropriate-
ness in physics, geoscience and economics. Important examples are Pareto distribu-
tions (and other essentially power-law distributions), lognormal distributions, and
Weibull distributions (with shape parameter less than 1). Indeed most heavy-tailed
distributions used in practice belong to one of these families, which are defined,
along with others, in Chap. 2. We also consider the Weibull distribution at the end
of this chapter.

Since the inputs to systems such as those described above are frequently cumu-
lative in their effects, the analysis of the corresponding models typically features
convolutions of heavy-tailed distributions. For a satisfactory theory it is necessary
that these distributions possess certain regularity conditions. From the point of view
of applications practically all heavy-tailed distributions may be considered to be
long-tailed, and indeed to possess the stronger property of subexponentiality (see
below for definitions).

In this monograph we study convolutions of long-tailed and subexponential
distributions on the real line. Our aim is to prove some important new results, and
to do so through a simple, coherent and systematic approach. It turns out that all the
standard properties of such convolutions are then obtained as easy consequences
of these results. Thus we also hope to provide further insight into these properties,
and to dispel some of the mystery which still seems to surround the phenomenon of
subexponentiality in particular.

We define the tail function F of a distribution F on R to be given by F(x) =
F(x,∞) for all x. We describe as a tail property of F any property which depends
only on {F(x) : x≥ x0} for any (finite) x0. We further say that F has right-unbounded
support if F(x)> 0 for all x.

S. Foss et al., An Introduction to Heavy-Tailed and Subexponential Distributions,
Springer Series in Operations Research and Financial Engineering,
DOI 10.1007/978-1-4614-7101-1 1, © Springer Science+Business Media New York 2013
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2 1 Introduction

Heavy-Tailed Distributions

A distribution F on R is said to be (right-) heavy-tailed if
∫ ∞

−∞
eλ x F(dx) = ∞ for all λ > 0, (1.1)

that is, if and only if F fails to possess any positive exponential moment. Otherwise
F is said to be light-tailed. We shall show in Chap. 2 that the distribution F is heavy-
tailed if and only if its tail function F fails to be bounded by any exponentially
decreasing function.

It follows that for a distribution F to be heavy-tailed is a tail property of F , and
of course that any heavy-tailed distribution has right-unbounded support.

We mention briefly at this point the connection with hazard rates. Let F be a
distribution on R which is absolutely continuous with density f with respect to
Lebesgue measure. Such a distribution is often characterised in terms of its hazard
rate r(x) = f (x)/F(x), most naturally in the case where F is concentrated on the
positive half-line R+. We then have

F(x) = exp

(

−
∫ x

−∞
r(y)dy

)

.

It follows easily from (1.1) that if lim
x→∞

r(x) = 0 then the distribution F is heavy-

tailed, whereas if liminf
x→∞

r(x)> 0 then F fails to be heavy-tailed (indeed the integral

in (1.1) is finite for any λ such that liminf
x→∞

r(x) > λ ). In the final case where

liminf
x→∞

r(x) = 0 but in which the limit itself fails to exist then both possibilities for

F exist.

Long-Tailed Distributions

A distribution F on R is said to be long-tailed if F has right-unbounded support
and, for any fixed y > 0,

F(x+ y)

F(x)
→ 1 as x → ∞. (1.2)

Clearly to be long-tailed is again a tail property of a distribution. Further, it is
fairly easy to see that a long-tailed distribution is also heavy-tailed. However, the
condition (1.2) implies a degree of smoothness in the tail function F which is not
possessed by every heavy-tailed distribution.
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Subexponential Distributions

In order to make good progress with heavy-tailed distributions, we require a slightly
stronger regularity condition than the requirement that such a distribution be long-
tailed. This will turn out to be satisfied by all heavy-tailed distributions likely to be
encountered in practice.

We consider first distributions on the positive half-line R
+. Let F be any distri-

bution on R
+ and let ξ1, . . . ,ξn be independent random variables with the common

distribution F . Then

P{ξ1 + . . .+ ξn > x} ≥ P{max(ξ1, . . . ,ξn)> x}
= 1−Fn(x)

∼ nF(x) as x → ∞. (1.3)

(Here and throughout we use “∼” to mean that the ratio of the quantities on ei-
ther side of this symbol converges to one; we further frequently omit, especially in
proofs, the qualifier “as x → ∞”, as unless otherwise indicated all our limits will be
of this form.)

Taking n = 2 it follows in particular that

liminf
x→∞

F ∗F(x)

F(x)
≥ 2, (1.4)

where as usual, for any two distributions F and G, by F ∗G we denote their convo-
lution, i.e. the distribution of the random variable ξ +η where the random variables
ξ and η are independent with distributions F and G.

A considerably deeper result (proved in Chap. 2) than the above inequality (1.4)
is that if F is heavy-tailed then the relation (1.4) holds with equality. (We remark
that there are also examples of light-tailed distributions on R

+ for which (1.4) holds
with equality.) The distribution F on R

+ is said to be subexponential if

lim
x→∞

F ∗F(x)

F(x)
= 2. (1.5)

It turns out that the above condition is now sufficient to ensure that F is heavy-
tailed—and indeed that F is long-tailed. Thus a distribution F on R

+ is subexpo-
nential if and only if is heavy-tailed and sufficiently regular that the limit on the left
side of (1.5) exists; this limit is then equal to 2. It is therefore not surprising that
the various examples of heavy-tailed distributions on R

+ mentioned at the start of
this chapter all turn out to be subexponential. Indeed those heavy-tailed distributions
which do not possess this property are all distinctly pathological in character.

We shall see that subexponentiality as defined above is also a tail property of the
distribution F . Inductive arguments (see Chap. 3) now show that if a distribution F
on R

+ is subexponential then the relation (1.5) generalises to

lim
x→∞

F∗n(x)

F(x)
= n for all integer n ≥ 1



4 1 Introduction

(where F∗n denotes the n-fold convolution of the distribution F with itself). It
follows from this and from the argument leading to (1.3) that subexponentiality
of F is equivalent to the requirement that

P{max(ξ1, . . . ,ξn)> x} ∼ P{ξ1 + · · ·+ ξn > x} as x → ∞. (1.6)

The interpretation of the condition (1.6) is that the only significant way in which
the sum ξ1 + · · ·+ ξn can exceed some large value x is that the maximum of one of
the individual random variables ξ1, . . . , ξn also exceeds x. This is the principle of a
single big jump which underlies the probabilistic behaviour of sums of independent
subexponential random variables.

Since subexponentiality is a tail property of a distribution, it is natural, and im-
portant for many applications, to extend the concept to a distribution F on the entire
real line R. This may be done either by requiring that F has the same tail as that of a
subexponential distribution on R

+ (it is natural to consider the distribution F+ given
by F+(x) = F(x) for x ≥ 0 and F+(x) = 0 for x < 0) or, equivalently as it turns out,
by requiring that F is long-tailed and again satisfies the condition (1.5)—the latter
condition on its own no longer being sufficient for the subexponentiality of F . We
explore these matters further in Chap. 3.

We develop also similar concepts of subexponentiality for local probabilities and
for densities (see Chap. 4).

Further examples of heavy-tailed distributions which are of use in practical
applications, e.g. the modelling of insurance claim sizes, are given by Embrechts,
Klüppelberg, and Mikosch [24]. These, and the examples mentioned above, are all
well-behaved in a manner we shall shortly make precise. However, mathematically
there is a whole range of further possible distributions, and one of our aims is to
provide a firm basis for excluding those which are in some sense pathological and
to study the properties of those which remain.

Example: The Weibull Distribution

In order to understand better the typical behaviour of heavy-tailed distributions, that
is, the single big jump phenomenon—as opposed to the behaviour of distributions
which are light-tailed—we study the Weibull distribution Fα given by its tail func-
tion

Fα(x) = e−xα
, x ≥ 0, (1.7)

and hence density fα (x) = αxα−1e−xα
, x ≥ 0, for some shape parameter α > 0.

This is a heavy-tailed distribution if and only if α < 1, and is then sometimes called
a stretched exponential distribution—notably in physics. We refer to Hallinan [29]
for a historical review of Weibull distribution. Note that in the case α = 1 we have
the exponential distribution. All moments of the Weibull distribution are finite.

In practice, this class of distributions is motivated in part by the fact that the
large deviations of multiplicative processes are usually Weibull-distributed, see
Frisch and Sornette [28]. For example, consider n independent random variables
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Fig. 1.1 Density of ξ1/d conditional on ξ1 + ξ2 = d, for d = 10 (left panel) and d = 25 (right
panel), and for α = 0.5 (solid line), α = 1 (short-dashed line) and α = 2 (long-dashed line)

ξ1, . . . , ξn with a common light-tailed distribution F such that F(x) ∼ e−cxγ
with

γ ≥ 1, for instance an exponential or normal distribution. Then the tail of the distri-
bution of their product ξ1 . . .ξn possesses the following lower bound:

P{ξ1 . . .ξn > x} ≥ P{ξ1 >
n
√

x, . . . ,ξn >
n
√

x}
= (F( n

√
x))n ∼ e−cnxγ/n

,

and the shape parameter of this Weibull distribution is less than 1 when n > γ;
for the exponential distribution the product ξ1ξ2 is heavy-tailed, while for the nor-
mal distribution the triple product ξ1ξ2ξ3 is heavy tailed. Many examples of why
the Weibull distribution is valuable in describing different phenomena in nature
and in economics may be found in Laherrère and Sornette [39], Malevergne and
Sornette [42], Sornette [51] and Metzler and Klafter [43].

Now let ξ1 and ξ2 be independent random variables with common Weibull dis-
tribution function Fα as given by (1.7). We consider the distribution of the random
variable ξ1/d conditional on the sum ξ1 + ξ2 = d for varying values of d and the
shape parameter α . This conditional distribution has density gα ,d where

gα ,d(z) = c[z(1− z)]α−1e−dα (zα+(1−z)α ), (1.8)

for the appropriate normalising constant c. Clearly this conditional density is sym-
metric about 1/2. The left panel of Fig. 1.1 plots the density for d = 10 and for each
of the three cases α = 0.5, α = 1, and α = 2, while the right panel plots the density
for d = 25 and for each of the same three values of α . We see that in the heavy-tailed
case α = 0.5, conditional on the fixed value d of the sum ξ1 +ξ2, the value of ξ1/d
tends to be either close to 0 or close to 1; further this effect is more pronounced for
the larger value of d. For the case α = 1 and for any value of d, the above condi-
tional density is uniform. For the case α = 2, we see that the conditional density of
ξ1/d is concentrated in a neighbourhood of 1/2, and that again this concentration is
more pronounced for the larger value of d.
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These observations are readily verified from (1.8). Indeed it follows from that
expression that, for α < 1 and as d → ∞, the distribution of ξ1/d conditional on
ξ1 + ξ2 = d converges to that which assigns probability 1/2 to each of the points
0 and 1. For α = 1 and for all d, the distribution is uniform. Finally, for α > 1
and as d → ∞, the distribution converges to that which is concentrated on the single
point 1/2.



Chapter 2
Heavy-Tailed and Long-Tailed Distributions

In this chapter we are interested in (right-) tail properties of distributions, i.e. in
properties of a distribution which, for any x, depend only on the restriction of
the distribution to (x,∞). More generally it is helpful to consider tail properties
of functions.

Recall that for any distribution F on R we define the tail function F by

F(x) = F(x,∞), x ∈ R.

We start with characteristic properties of heavy-tailed distributions, i.e., of distribu-
tions all of whose positive exponential moments are infinite. The main result here
concerns lower limits for convolution tails, see Sect. 2.3.

Following this we study different properties of long-tailed distributions, i.e.,
of distributions whose tails are asymptotically self-similar under shifting by a
constant. Of particular interest are convolutions of long-tailed distributions. Our
approach is based on a simple decomposition for such convolutions and on the
concept of “h-insensitivity” for a long-tailed distribution with respect to some
(slowly) increasing function h. In Sect. 2.8, we present useful characterisations of
h-insensitive distributions.

2.1 Heavy-Tailed Distributions

The usage of the term “heavy-tailed distribution” varies according to the area of
interest but is frequently taken to correspond to an absence of (positive) exponential
moments. In the following definitions—which, for completeness here, repeat some
of those made in the Introduction—we follow this tradition.

Definition 2.1. A distribution F on R is said to have right-unbounded support if
F(x)> 0 for all x.

Definition 2.2. We define a distribution F to be (right-) heavy-tailed if and only if

S. Foss et al., An Introduction to Heavy-Tailed and Subexponential Distributions,
Springer Series in Operations Research and Financial Engineering,
DOI 10.1007/978-1-4614-7101-1 2, © Springer Science+Business Media New York 2013
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∫

R

eλ xF(dx) = ∞ for all λ > 0. (2.1)

It will follow from Theorem 2.6 that to be heavy-tailed is indeed a tail property
of a distribution. As a counterpart we give also the following definition.

Definition 2.3. A distribution F is called light-tailed if and only if
∫

R

eλ xF(dx)< ∞ for some λ > 0, (2.2)

i.e. if and only if it fails to be heavy-tailed.
Clearly, for any light-tailed distribution F on the positive half-line R

+=[0,∞),
all moments are finite, i.e.,

∫ ∞
0 xkF(dx)< ∞ for all k > 0.

We shall say that a non-negative function (usually tending to zero) is heavy-tailed
if it fails to be bounded by a decreasing exponential function. More precisely we
make the following definition.

Definition 2.4. We define a function f ≥ 0 to be heavy-tailed if and only if

limsup
x→∞

f (x)eλ x = ∞ for all λ > 0. (2.3)

For a function to be heavy-tailed is clearly a tail-property of that function. Theorem
2.6 shows in particular that a distribution is heavy-tailed if and only if its tail func-
tion is a heavy-tailed function. First we make the following definition.

Definition 2.5. For any distribution F , the function R(x) := − lnF(x) is called the
hazard function of the distribution. If the hazard function is differentiable, then its
derivative r(x) = R′(x) is called the hazard rate.

The hazard rate, when it exists, has the usual interpretation discussed in the Intro-
duction.

Theorem 2.6. For any distribution F the following assertions are equivalent:
(i) F is a heavy-tailed distribution.

(ii) The function F is heavy-tailed.
(iii) The corresponding hazard function R satisfies liminfx→∞ R(x)/x = 0.
(iv) For some (any) fixed T > 0, the function F(x,x+T ] is heavy-tailed.

Proof. (i)⇒(iv). Suppose that the function F(x,x+T ] is not heavy-tailed. Then

c := sup
x∈R

F(x,x+T ]eλ ′x < ∞ for some λ ′ > 0,

and, therefore, for all λ < λ ′

∫ ∞

0
eλ xF(dx) ≤

∞

∑
n=0

eλ (n+1)T F(nT,nT +T ]

≤ c
∞

∑
n=0

eλ (n+1)T e−λ ′nT = ceλ T
∞

∑
n=0

e(λ−λ ′)nT < ∞.
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It follows that the integral defined in (2.1) is finite for all λ ∈ (0,λ ′), which implies
that the distribution F cannot be heavy-tailed. The required implication now follows.

(iv)⇒(ii). This implication follows from the inequality F(x)≥ F(x,x+T ].
(ii)⇒(iii). Suppose that, on the contrary, “liminf” in (iii) is (strictly) positive.

Then there exist x0 > 0 and ε > 0 such that R(x)≥ εx for all x ≥ x0 which implies
that F(x)≤ e−εx in contradiction of (ii).

(iii)⇒(i). Suppose that, on the contrary, F is light-tailed. It then follows from
(2.2) (e.g., by the exponential Chebyshev inequality) that, for some λ > 0 and c> 0,
we have F(x) ≤ ce−λ x for all x. This implies that liminfx→∞ R(x)/x ≥ λ which
contradicts (iii). ��
Lemma 2.7. Let the distribution F be absolutely continuous with density function f .
Suppose that the distribution F is heavy-tailed. Then the function f (x) is heavy-
tailed also.

Proof. Suppose that f (x) is not heavy-tailed; then there exist λ ′ > 0 and x0 such
that

c := sup
x>x0

f (x)eλ ′x < ∞,

and, therefore, for all λ ∈ (0,λ ′)
∫

R

eλ xF(dx) ≤ eλ x0 + c
∫ ∞

x0

eλ xe−λ ′xdx < ∞.

It follows that the integral defined in (2.1) is finite for all λ such that 0 < λ < λ ′,
which contradicts heavy-tailedness of the distribution F . ��

We give an example to show that the converse assertion is not in general true.
Consider the following piecewise continuous density function:

f (x) =
∞

∑
n=1

I{x ∈ [n,n+ 2−n]}.

We have limsupx→∞ f (x)eλ x = ∞ for all λ > 0, so that f is heavy-tailed. On the
other hand, for all λ ∈ (0, ln2),

∫ ∞

0
eλ x f (x)dx <

∞

∑
n=1

eλ (n+2−n)2−n =
∞

∑
n=1

eλ (n+2−n)−n ln2 < ∞,

so that F is light-tailed.

For lattice distributions we have the following result.

Lemma 2.8. Let F be a distribution on some lattice {a+ hn, n ∈ Z}, a ∈ R, h > 0,
with probabilities F{a+hn}= pn. Then F is heavy-tailed if and only if the sequence
{pn} is heavy-tailed, i.e.,

limsup
n→∞

pneλ n = ∞ for all λ > 0. (2.4)
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Proof. The result follows from Theorem 2.6 with T = h. ��

Examples of Heavy-Tailed Distributions

We conclude this section with a number of examples.

• The Pareto distribution on R
+. This has tail function F given by

F(x) =

(
κ

x+κ

)α

for some scale parameter κ > 0 and shape parameter α > 0. Clearly we have
F(x)∼ (x/κ)−α as x →∞, and for this reason the Pareto distributions are some-
times referred to as the power law distributions. The Pareto distribution has all
moments of order γ < α finite, while all moments of order γ ≥ α are infinite.

• The Burr distribution on R
+. This has tail function F given by

F(x) =

(
κ

xτ +κ

)α

for parameters α,κ ,τ > 0. We have F(x) ∼ κα x−τα as x → ∞; thus the Burr
distribution is similar in its tail to the Pareto distribution, of which it is otherwise
a generalisation. All moments of order γ < ατ are finite, while those of order
γ ≥ ατ are infinite.

• The Cauchy distribution onR. This is most easily given by its density function f
where

f (x) =
κ

π((x− a)2 +κ2)

for some scale parameter κ > 0 and position parameter a ∈ R. All moments of
order γ < 1 are finite, while those of order γ ≥ 1 are infinite.

• The lognormal distribution on R
+. This is again most easily given by its density

function f , where

f (x) =
1√

2πσx
exp

(

− (logx− μ)2

2σ2

)

for parameters μ and σ > 0. All moments of the lognormal distribution are
finite. Note that a (positive) random variable ξ has a lognormal distribution with
parameters μ and σ if and only if logξ has a normal distribution with mean μ
and variance σ2. For this reason the distribution is natural in many applications.

• The Weibull distribution on R
+. This has tail function F given by

F(x) = e−(x/κ)α
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for some scale parameter κ > 0 and shape parameter α > 0. This is a
heavy-tailed distribution if and only if α < 1. Note that in the case α = 1 we
have the exponential distribution. All moments of the Weibull distribution are
finite.

Another useful class of heavy-tailed distributions is that of dominated-varying
distributions. We say that F is a dominated-varying distribution (and write F ∈D)
if there exists c > 0 such that

F(2x)≥ cF(x) for all x.

Any intermediate regularly varying distribution (see Sect. 2.8) belongs to D. Other
examples may be constructed using the following scheme. Let G be a distribution
with a regularly varying tail (again see Sect. 2.8). Then a distribution F belongs to
the class D, provided c1G1(x) ≤ F(x) ≤ c2G(x) for some 0 < c1 < c2 < ∞ and for
all sufficiently large x.

2.2 Characterisation of Heavy-Tailed Distributions
in Terms of Generalised Moments

A major objective of this and the succeeding section is to establish the important,
if somewhat analytical, result referred to in the Introduction that for a heavy-tailed
distribution F on R

+ we have liminfx→∞ F ∗F(x)/F(x) = 2. This is Theorem 2.12.
As remarked earlier, it will then follow (see Chap. 3) that the subexponentiality of
a distribution F on R

+ is then equivalent to heavy-tailedness plus the reasonable
regularity requirement that the limit as x → ∞ of F ∗F(x)/F(x) should exist.

In this section we therefore consider an important (and again quite analytical)
characterisation of heavy-tailed distributions on R

+, which is both of interest in
itself and essential to the consideration of convolutions in the following section.
In very approximate terms, for any such distribution we seek the existence of a
monotone concave function h such that the function e−h(·) characterises the tail of
the distribution.

If a distribution F on the positive half-line R+ is such that not all of its moments
are finite, i.e.,

∫ ∞
0 xkF(dx) = ∞ for some k, then F is heavy-tailed. In this case we

can find such k ≥ 1 that the kth moment is infinite, while the (k− 1)th moment is
finite. That is

∫ ∞

0
xe(k−1) lnx F(dx) = ∞ and

∫ ∞

0
e(k−1) lnx F(dx)< ∞. (2.5)

Note that here the power of the exponent is a concave function. This observation
can be generalised onto the whole class of heavy-tailed distributions as follows.
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Theorem 2.9. Let ξ ≥ 0 be a random variable with a heavy-tailed distribution. Let
the function g(x) be such that g(x) → ∞ as x → ∞. Then there exists a monotone
concave function h : R+ → R

+ such that h(x) = o(x) as x → ∞, Eeh(ξ ) < ∞, and
Eeh(ξ )+g(ξ ) = ∞.

Now (2.5) is a particular example of the latter theorem with g(x) = lnx. In this
case, if not all moments of ξ are finite, the concave function h(x) may be taken as
(k− 1) lnx for k as defined above. However, Theorem 2.9 is considerably sharper:
it guarantees the existence of a concave function h for any function g (such that
g(x)→ ∞ as x → ∞), which may be taken as slowly increasing as we please.

As a further example, note that if ξ has a Weibull distribution with tail function
F(x) = e−xα

, α ∈ (0,1), and if g(x) = lnx, then one can choose h(x) = (x+ c)α −
ln(x+ c), with c > 0 sufficiently large.

Note also that Theorem 2.9 provides a characteristic property of heavy-tailed dis-
tributions; it fails for any light-tailed distribution. Indeed, consider any non-negative
random variable ξ having a light-tailed distribution, i.e., Eeλ ξ < ∞ for some λ > 0.
Take g(x) = lnx. If h(x) = o(x) as x → ∞, then h(x)≤ c+λ x/2 for some c < ∞ and,
hence,

Eeh(ξ )+g(ξ ) ≤ Eξ ec+λ ξ/2 < ∞.

Proof (of Theorem 2.9). We will construct a piecewise linear function h(x). To do
so we construct two positive sequences xn ↑ ∞ and εn ↓ 0 as n → ∞ and let

h(x) = h(xn−1)+ εn(x− xn−1) if x ∈ (xn−1,xn], n ≥ 1.

This function is monotone, since εn > 0. Moreover, this function is concave, due to
the monotonicity of εn.

Put x0 = 0 and h(0) = 0. Since ξ is heavy-tailed and g(x)→ ∞, we can choose
x1 sufficiently large that eg(x) ≥ 2 for all x > x1 and

E{eξ ;ξ ∈ (x0,x1]}+ ex1F(x1) > F(x0)+ 1.

Choose ε1 > 0 so that

E{eε1ξ ;ξ ∈ (x0,x1]}+ eε1x1 F(x1) = F(0)+ 1/2,

which is equivalent to

E{eh(ξ );ξ ∈ (x0,x1]}+ eh(x1)F(x1) = eh(x0)F(0)+ 1/2.

By induction we construct an increasing sequence xn and a decreasing sequence
εn > 0 such that eg(x) ≥ 2n for all x > xn and

E{eh(ξ );ξ ∈ (xn−1,xn]}+ eh(xn)F(xn) = eh(xn−1)F(xn−1)+ 1/2n
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for any n ≥ 2. For n = 1 this is already done. Make the induction hypothesis for
some n ≥ 2. Due to the heavy-tailedness of ξ and to the convergence g(x) → ∞,
there exists xn+1 so large that eg(x) ≥ 2n+1 for all x > xn+1 and

E{eεn(ξ−xn);ξ ∈ (xn,xn+1]}+ eεn(xn+1−xn)F(xn+1) > 2.

As a function of εn+1, the sum

E{eεn+1(ξ−xn);ξ ∈ (xn,xn+1]}+ eεn+1(xn+1−xn)F(xn+1)

is continuously decreasing to F(xn) as εn+1 ↓ 0. Therefore, we can choose εn+1 ∈
(0,εn) so that

E{eεn+1(ξ−xn);ξ ∈ (xn,xn+1]}+ eεn+1(xn+1−xn)F(xn+1) = F(xn)+ 1/(2n+1eh(xn)).

By the definition of h(x) this is equivalent to the following equality:

E{eh(ξ );ξ ∈ (xn,xn+1]}+ eh(xn+1)F(xn+1) = eh(xn)F(xn)+ 1/2n+1.

Our induction hypothesis now holds with n+ 1 in place of n as required.
Next, for any N,

E{eh(ξ );ξ ≤ xN+1} =
N

∑
n=0

E{eh(ξ );ξ ∈ (xn,xn+1]}

=
N

∑
n=0

(
eh(xn)F(xn)− eh(xn+1)F(xn+1)+ 1/2n+1

)

≤ eh(x0)F(x0)+ 1.

Hence, Eeh(ξ ) is finite. On the other hand, since eg(x) ≥ 2n for all x > xn,

E{eh(ξ )+g(ξ );ξ > xn} ≥ 2n
E{eh(ξ );ξ > xn}

≥ 2n
(
E{eh(ξ );ξ ∈ (xn,xn+1]}+ eh(xn+1)F(xn+1)

)

= 2n
(

eh(xn)F(xn)+ 1/2n+1
)
.

Then E{eh(ξ )+g(ξ );ξ > xn} ≥ 1/2 for any n, which implies Eeh(ξ )+g(ξ ) = ∞. Note
also that necessarily limn→∞ εn = 0; otherwise liminf

x→∞
h(x)/x> 0 and ξ is light tailed.

��
The latter theorem can be strengthened in the following way (for a proof see [20]):

Theorem 2.10. Let ξ ≥ 0 be a random variable with a heavy-tailed distribution. Let
f :R+ →R be a concave function such that Ee f (ξ ) =∞. Let the function g :R+ →R

be such that g(x)→ ∞ as x → ∞. Then there exists a concave function h : R+ →R
+

such that h ≤ f , Eeh(ξ ) < ∞, and Eeh(ξ )+g(ξ ) = ∞.
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2.3 Lower Limit for Tails of Convolutions

Recall that the convolution F ∗G of any two distributions F and G is given by, for
any Borel set B,

(F ∗G)(B) =
∫ ∞

−∞
F(B− y)G(dy) =

∫ ∞

−∞
G(B− y)F(dy),

where B − y = {x − y : x ∈ B}. If, on some probability space with probability
measure P, ξ and η are independent random variables with respective distribu-
tions F and G, then (F ∗G)(B)=P{ξ +η ∈B}. The tail function of the convolution,
the convolution tail, of F and G is then given by, for any x ∈ R,

F ∗G(x) = P{ξ +η > x} =

∫ ∞

−∞
F(x− y)G(dy) =

∫ ∞

−∞
G(x− y)F(dy).

Now let F be a distribution on R
+. In this section we discuss the following lower

limit:

liminf
x→∞

F ∗F(x)

F(x)
,

in the case where F is heavy-tailed. We start with the following result, which gen-
eralises an observation in the Introduction.

Theorem 2.11. Let F1, . . . ,Fn be distributions on R
+ with unbounded supports.

Then

liminf
x→∞

F1 ∗ . . .∗Fn(x)

F1(x)+ . . .+Fn(x)
≥ 1.

Proof. Let ξ1, . . . , ξn be independent random variables with respective distributions
F1, . . ., Fn. Since the events {ξk > x,ξ j ∈ [0,x] for all j �= k} are disjoint for different
k, the convolution tail can be bounded from below in the following way:

F1 ∗ . . .∗Fn(x) ≥
n

∑
k=1

P{ξk > x,ξ j ∈ [0,x] for all j �= k}

=
n

∑
k=11

Fk(x)∏
j �=k

Fj(x)

∼
n

∑
k=1

Fk(x) as x → ∞,

which implies the desired statement. ��
Note that in the above proof we have heavily used the condition Fk(R

+) = 1; for
distributions on the whole real line R Theorem 2.11 in general fails.
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It follows in particular that, for any distribution F on R
+ with unbounded support

and for any n ≥ 2,

liminf
x→∞

F∗n(x)

F(x)
≥ n. (2.6)

In particular,

liminf
x→∞

F ∗F(x)

F(x)
≥ 2. (2.7)

As already discussed in the Introduction, in the light-tailed case the limit given
by the left side of (2.7) is typically greater than 2. For example, for an exponential
distribution it equals infinity. Thus we may ask under what conditions do we have
equality in (2.7). We show that heavy-tailedness of F is sufficient.

Theorem 2.12. Let F be a heavy-tailed distribution on R
+. Then

liminf
x→∞

F ∗F(x)

F(x)
= 2. (2.8)

Proof. By the lower bound (2.7), it remains to prove the upper bound only, i.e.,

liminf
x→∞

F ∗F(x)

F(x)
≤ 2.

Assume the contrary, i.e. there exist δ > 0 and x0 such that

F ∗F(x)≥ (2+ δ )F(x) for all x > x0. (2.9)

Applying Theorem 2.9 with g(x) = lnx, we can choose an increasing concave
function h : R+ → R

+ such that Eeh(ξ ) < ∞ and Eξ eh(ξ ) = ∞. For any positive
b > 0, consider the concave function

hb(x) := min(h(x),bx).

Since F is heavy-tailed, h(x) = o(x) as x → ∞; therefore, for any fixed b there exists
x1 such that hb(x) = h(x) for all x > x1. Hence, Eehb(ξ ) < ∞ and Eξ ehb(ξ ) = ∞.

For any x, we have the convergence hb(x) ↓ 0 as b ↓ 0. Then Eehb(ξ1) ↓ 1 as b ↓ 0.
Thus there exists b such that

Eehb(ξ1) ≤ 1+ δ/4. (2.10)

For any real a and t, put a[t] = min(a, t). Then

E(ξ [t]
1 + ξ [t]

2 )ehb(ξ1+ξ2) = 2Eξ [t]
1 ehb(ξ1+ξ2) ≤ 2Eξ [t]

1 ehb(ξ1)+hb(ξ2),
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by the concavity of the function hb. Hence,

E(ξ [t]
1 + ξ [t]

2 )ehb(ξ1+ξ2)

Eξ [t]
1 ehb(ξ1)

≤ 2
Eξ [t]

1 ehb(ξ1)Eehb(ξ2)

Eξ [t]
1 ehb(ξ1)

= 2Eehb(ξ2) ≤ 2+ δ/2, (2.11)

by (2.10). On the other hand, since (ξ1 + ξ2)
[t] ≤ ξ [t]

1 + ξ [t]
2 ,

E(ξ [t]
1 + ξ [t]

2 )ehb(ξ1+ξ2)

Eξ [t]
1 ehb(ξ1)

≥ E(ξ1 + ξ2)
[t]ehb(ξ1+ξ2)

Eξ [t]
1 ehb(ξ1)

=

∫ ∞
0 x[t]ehb(x)(F ∗F)(dx)
∫ ∞

0 x[t]ehb(x)F(dx)
. (2.12)

The right side, after integration by parts, is equal to
∫ ∞

0 F ∗F(x)d(x[t]ehb(x))
∫ ∞

0 F(x)d(x[t]ehb(x))
.

Since Eξ1ehb(ξ1) = ∞, in the latter fraction both the integrals in the numerator and
the denominator tend to infinity as t →∞. For the increasing function hb(x), together
with the assumption (2.9) this implies that

liminf
t→∞

∫ ∞
0 F ∗F(x)d(x[t]ehb(x))
∫ ∞

0 F(x)d(x[t]ehb(x))
≥ 2+ δ .

Substituting this into (2.12) we get a contradiction to (2.11) for sufficiently large t.
��

It turns out that the “liminf” given by the left side of (2.7) is equal to 2 not only
for heavy-tailed but also for some light-tailed, distributions. Here is an example.
Let F be an atomic distribution at the points xn, n = 0, 1, . . . , with masses pn, i.e.,
F{xn} = pn. Suppose that x0 = 1 and that xn+1 > 2xn for every n. Then the tail of
the convolution F ∗F at the point xn − 1 is equal to

F∗F(xn − 1) = (F×F)([xn,∞)×R
+)+(F×F)([0,xn−1]× [xn,∞))

∼ 2F(xn − 1) as n → ∞.

Hence,

lim
n→∞

F ∗F(xn − 1)

F(xn − 1)
= 2.

From this equality and from (2.7),

liminf
x→∞

F ∗F(x)

F(x)
= 2. (2.13)
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Take now xn = 3n, n= 0, 1, . . . , and pn = ce−3n
, where c is the normalising constant.

Then F is a light-tailed distribution satisfying the relation (2.13).
We conclude this section with the following result for convolutions of non-

identical distributions.

Theorem 2.13. Let F1 and F2 be two distributions on R
+ and let the distribution F1

be heavy-tailed. Then

liminf
x→∞

F1 ∗F2(x)

F1(x)+F2(x)
= 1. (2.14)

Proof. By Theorem 2.11, the left side of (2.14) is at least 1. Assume now that it is
strictly greater than 1. Then there exists ε > 0 such that, for all sufficiently large x,

F1 ∗F2(x)

F1(x)+F2(x)
≥ 1+ 2ε. (2.15)

Consider the distribution G = (F1 + F2)/2. This distribution is heavy-tailed.
By Theorem 2.12 we get

liminf
x→∞

G∗G(x)

G(x)
= 2. (2.16)

On the other hand, (2.15) and Theorem 2.11 imply that, for all sufficiently large x,

G∗G(x) =
F1 ∗F1(x)+F2 ∗F2(x)+ 2F1 ∗F2(x)

4

≥ 2(1− ε)F1(x)+ 2(1− ε)F2(x)+ 2(1+ 2ε)(F1(x)+F2(x))
4

= 2(1+ ε/2)G(x),

which contradicts (2.16). ��

2.4 Long-Tailed Functions and Their Properties

Our plan is to introduce and to study the subclass of heavy-tailed distributions which
are long-tailed. Later on we will study also long-tailedness properties of other char-
acteristics of distributions. Therefore, we find it reasonable to start with a discussion
of some generic properties of long-tailed functions.

Definition 2.14. An ultimately positive function f is long-tailed if and only if

lim
x→∞

f (x+ y)
f (x)

= 1, for all y > 0. (2.17)

Clearly if f is long-tailed, then we may also replace y by −y in (2.17).
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The following result makes a useful connection.

Lemma 2.15. The function f is long-tailed if and only if g(x) := f (log x) (defined
for positive x) is slowly varying at infinity, i.e., for any fixed a > 0,

g(ax)
g(x)

→ 1 as x → ∞.

Proof. The proof is immediate from the definition of g since

g(ax)
g(x)

=
f (logx+ loga)

f (logx)
. ��

If f is long-tailed, then we also have uniform convergence in (2.17) over y in
compact intervals. This is obvious for monotone functions, but in the general case
the result follows from the Uniform Convergence Theorem for functions slowly
varying at infinity, see Theorem 1.2.1 in [9]. Thus, for any a > 0, we have

sup
|y|≤a

| f (x)− f (x+ y)|= o( f (x)) as x → ∞. (2.18)

We give some quite basic closure properties for the class of long-tailed functions.
We shall make frequent use of these—usually without further comment.

Lemma 2.16. Suppose that the functions f1, . . . , fn are all long-tailed. Then
(i) For constants c1 and c2 where c2 > 0, the function f1(c1 + c2x) is long-tailed.

(ii) If f ∼ ∑n
k=1 ck fk where c1, . . . , cn > 0, then f is long-tailed.

(iii) The product function f1 · · · fn is long-tailed.
(iv) The function min( f1, . . . , fn) is long-tailed.
(v) The function max( f1, . . . , fn) is long-tailed.

Proof. The proofs of (i)–(iii) are routine from the definition of long-tailedness.
For (iv) observe that, for any a > 0 and any x, we have

min

(
f1(x+ a)

f1(x)
,

f2(x+ a)
f2(x)

)

≤ min( f1(x+ a), f2(x+ a))
min( f1(x), f2(x))

≤ max

(
f1(x+ a)

f1(x)
,

f2(x+ a)
f2(x)

)

.

Since f1, f2 are long-tailed the result now follows for the case n = 2. The result for
general n follows by induction.

For (v) observe that, analogously to the argument for (iv) above, for any a > 0
and any x, we have

min

(
f1(x+ a)

f1(x)
,

f2(x+ a)
f2(x)

)

≤ max( f1(x+ a), f2(x+ a))
max( f1(x), f2(x))

≤ max

(
f1(x+ a)

f1(x)
,

f2(x+ a)
f2(x)

)

,

and the result now follows as before. ��
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We now have the following result.

Lemma 2.17. Let f be a long-tailed function. Then f is heavy-tailed and, moreover,
satisfies the following relation: for every λ > 0,

lim
x→∞

f (x)eλ x = ∞.

Proof. Fix λ > 0. Since f is long-tailed, f (x+ y) ∼ f (x) as x → ∞ uniformly in
y ∈ [0,1]. Hence, there exists x0 such that, for all x ≥ x0 and y ∈ [0,1],

f (x+ y) ≥ f (x)e−λ/2.

Then f (x0 + n+ y)≥ f (x0)e−λ (n+1)/2 for all n ≥ 1 and y ∈ [0,1], and, therefore,

liminf
x→∞

f (x)eλ x ≥ f (x0) lim
n→∞

e−λ (n+1)/2eλ n = ∞,

so that the lemma now follows. ��
However, it is not difficult to construct a heavy-tailed function f which fails to

be sufficiently smooth so as to be long-tailed. Put

f (x) =
∞

∑
n=1

2−n
I{2n−1 < x ≤ 2n}.

Then, for any λ > 0,

limsup
x→∞

f (x)eλ x ≥ limsup
n→∞

2−neλ 2n
= ∞,

so that f is heavy-tailed. On the other hand,

liminf
x→∞

f (x+ 1)
f (x)

≤ liminf
n→∞

f (2n + 1)
f (2n)

=
1
2
,

which shows that f is not long-tailed.

h-Insensitivity

We now introduce a very important concept of which we shall make frequent sub-
sequent use.

Definition 2.18. Given a strictly positive non-decreasing function h, an ultimately
positive function f is called h-insensitive (or h-flat) if

sup
|y|≤h(x)

| f (x+ y)− f (x)|= o( f (x)) as x → ∞, uniformly in |y| ≤ h(x). (2.19)
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It is clear that the relation (2.19) implies that the function f is long-tailed and con-
versely that any long-tailed function is h-insensitive for any constant function h.
The following lemma gives a strong converse result, which we shall use repeatedly
in Sect. 2.7 and subsequently throughout the monograph.

Lemma 2.19. Suppose that the function f is long-tailed. Then there exists a function
h such that h(x)→ ∞ as x → ∞ and f is h-insensitive.

Proof. For any integer n ≥ 1, by (2.18), we can choose xn such that

sup
|y|≤n

| f (x+ y)− f (x)| ≤ f (x)/n for all x > xn.

Without loss of generality we may assume that the sequence {xn} is increasing to
infinity. Put h(x) = n for x ∈ [xn,xn+1]. Since xn → ∞ as n → ∞, we have h(x)→ ∞
as x → ∞. By the construction we have

sup
|y|≤h(x)

| f (x+ y)− f (x)| ≤ f (x)/n

for all x > xn, which completes the proof. ��
One important use of h-insensitivity is the following. The “natural” definition of

long-tailedness of a function f is that of h-insensitivity with respect to any constant
function h(x) = a for all x and some a > 0. The use of this property in this form
would then require that both the statements and the proofs of many results would
involve a double limiting operation in which first x was allowed to tend to infin-
ity, with the use of the relation (2.18), and following which a was allowed to tend
to infinity. The replacement of the constant a by a function h itself increasing to
infinity, but sufficiently slowly that the long-tailed function f is h-insensitive, not
only enables two limiting operations to be replaced with a single one in proofs, but
also permits simpler, cleaner, and more insightful presentations of many results (a
typical example is the all-important Lemma 2.34 in Sect. 2.7).

Now observe that if a long-tailed function f is h-insensitive for some function h
and if a further positive non-decreasing function ĥ is such that ĥ(x)≤ h(x) for all x,
then (by definition) f is also ĥ-insensitive. Two trivial, but important (and frequently
used), consequences of the combination of this observation with Lemma 2.19 are
given by the following proposition.

Proposition 2.20. (i) Given a finite collection of long-tailed functions f1, . . . , fn,
we may choose a single function h, increasing to infinity, with respect to which
each of the functions fi is h-insensitive.

(ii) Given any long-tailed function f and any positive non-decreasing function ĥ, we
may choose a function h such that h(x)≤ ĥ(x) for all x and f is h-insensitive.

Proof. For (i), note that for each i we may choose a function hi, increasing to infin-
ity, such that fi is hi-insensitive, and then define h by h(x) = mini hi(x).

For (ii), note that we may take h(x) = min(ĥ(x), h̄(x)) where h̄ is such that f is
h̄-insensitive. ��
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Finally we note that a further important use of h-insensitivity is the following.
For any given positive function h, increasing to infinity, we may consider the class
of those distributions whose (necessarily long-tailed) tail functions are h-insensitive.
For varying h, this gives a powerful method for the classification of such distribu-
tions, which we explore in detail in Sect. 2.8.

2.5 Long-Tailed Distributions

As discussed in the Introduction, all heavy-tailed distributions likely to be encoun-
tered in practical applications are sufficiently regular as to be long-tailed, and it is
the latter property, as applied to distributions, which we study in this section.

First, for any distribution F on R, recall that we denote by R the hazard function
R(x) :=− lnF(x). By definition, R is always a non-decreasing function and

R(x+ 1)−R(x) =− ln
F(x+ 1)

F(x)
.

Definition 2.21. A distribution F on R is called long-tailed if F(x)> 0 for all x and,
for any fixed y > 0,

F(x+ y)∼ F(x) as x → ∞. (2.20)

That is, the distribution F is long-tailed if and only if its tail function F is a long-
tailed function. Note that in (2.20) we may again replace y by −y. Further, for a
distribution F to be long-tailed it is sufficient to require (2.20) to hold for any one
non-zero value of y. Note also that the convergence in (2.20) is again uniform over
y in compact intervals.

We shall write L for the class of long-tailed distributions on R. Clearly F ∈ L

is a tail property of the distribution F , since it depends only on {F(x) : x ≥ x0} for
any finite x0. Further, it follows from Lemma 2.17 that if the distribution F is long-
tailed (F ∈L) then F is a heavy-tailed function, and so, by Theorem 2.6, F is also a
heavy-tailed distribution. However, as the example following Lemma 2.17 shows, a
heavy-tailed distribution need not be long-tailed.

The following lemma gives some readily verified equivalent characterisations of
long-tailedness.

Lemma 2.22. Let F be a distribution on R with right-unbounded support, and let ξ
be a random variable with distribution F. Then the following are equivalent:

(i) The distribution F is long-tailed (F ∈L).
(ii) For any fixed y > 0, F(x,x+ y] = o(F(x)) as x → ∞.

(iii) For any fixed y > 0, P{ξ > x+ y |ξ > x}→ 1 as x → ∞.
(iv) The hazard function R(x) satisfies R(x+ 1)−R(x)→ 0 as x → ∞.

Analogously to Lemma 2.16 we further have the following result.
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Lemma 2.23. Suppose that the distributions F1, . . . , Fn are all long-tailed (i.e. be-
long to the class L) and that ξ1,. . . ,ξn are independent random variables with dis-
tributions F1, . . . , Fn, respectively. Then

(i) For any constants c1 and c2 > 0, the distribution of c2ξ1 + c1 is long-tailed.
(ii) If F(x)∼ ∑n

k=1 ckFk(x) where c1, . . . , cn > 0, then F is long-tailed.
(iii) If F(x) = min(F1(x), . . . ,Fn(x)), then F is long-tailed.
(iv) If F(x) = max(F1(x), . . . ,Fn(x)), then F is long-tailed.
(v) The distribution of min(ξ1, . . . ,ξn) is long-tailed.

(vi) The distribution of max(ξ1, . . . ,ξn) is long-tailed.

Proof. The proofs follow from the application of Lemma 2.16 to the corresponding
tail functions. In particular (v) and (vi) follow from (i) and (iii) of Lemma 2.16. ��

2.6 Long-Tailed Distributions and Integrated Tails

In the study of random walks in particular, a key role is played by the integrated tail
distribution, the fundamental properties of which we introduce in this section.

Definition 2.24. For any distribution F on R such that
∫ ∞

0
F(y)dy < ∞, (2.21)

(and hence
∫ ∞

x F(y)dy < ∞ for any finite x) we define the integrated tail distribution
FI via its tail function by

FI(x) = min

(

1,
∫ ∞

x
F(y)dy

)

. (2.22)

Note that if ξ is a random variable with distribution F , then
∫ ∞

x
F(y)dy = E{ξ ;ξ > x}− xP{ξ > x}= E{ξ − x;ξ > x}. (2.23)

An associated concept (in renewal theory and in queueing) is the residual distri-
bution Fr which is defined for any distribution F on R

+ with finite mean a by:

Fr(B) =
1
a

∫

B
F(y)dy, B ∈B(R+).

The integrated tail and residual distributions satisfy the equality Fr(x) = FI(x)/a
for all sufficiently large x.

The following characterisation will frequently be useful.

Lemma 2.25. Suppose that the distribution F is such that (2.21) holds. Then FI is
long-tailed if and only if F(x) = o(FI(x)) as x → ∞.
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Proof. The integrated tail distribution FI is long-tailed (FI ∈ L) if and only if
FI(x)−FI(x+ 1) = o(FI(x)), or, equivalently, FI(x)−FI(x+ 1) = o(FI(x+ 1)).
The required result now follows from the inequalities

F(x+ 1)≤ FI(x)−FI(x+ 1)≤ F(x),

valid for all sufficiently large x. ��
Lemma 2.26. Suppose that the distribution F is long-tailed (F ∈ L) and such that
(2.21) holds. Then FI is long-tailed as well (FI ∈L) and F(x) = o(FI(x)) as x → ∞.

Proof. The long-tailedness of FI follows from the relations, as x → ∞,

FI(x+ t) =
∫ ∞

x
F(x+ t + y)dy ∼

∫ ∞

x
F(x+ y)dy = FI(x),

for any fixed t. That F(x) = o(FI(x)) as x → ∞ now follows from Lemma 2.25. ��
The converse assertion, i.e., that long-tailedness of FI implies long-tailedness of

F is not in general true. This is illustrated by the following example.

Example 2.27. Let the distribution F be such that F(x) = 2−2n for x ∈ [2n,2n+1).
Then F is not long-tailed since F(2n − 1)/F(2n) = 4 for any n, so that F(x −
1)/F(x) �→ 1 as x → ∞. But we have x−2 ≤ F(x) ≤ 4x−2 for any x > 0. In par-
ticular, FI(x) ≥ x−1 and thus F(x) = o(FI(x)) as x → ∞. Thus, by Lemma 2.25, FI

is long-tailed.

We now formulate a more general result which will be needed in the theory of
random walks with heavy-tailed increments and is also of some interest in its own
right. Let F be a distribution on R and μ a non-negative measure on R

+ such that
∫ ∞

0
F(t)μ(dt)< ∞. (2.24)

We may then define the distribution Fμ on R
+ given by

Fμ(x) := min

(

1,
∫ ∞

0
F(x+ t)μ(dt)

)

, x ≥ 0. (2.25)

If μ is Lebesgue measure, then Fμ is the integrated tail distribution. We can formu-
late the same question as for FI: what type of conditions on F imply long-tailedness
of Fμ? The answer is given by the following theorem.

Theorem 2.28. Let F be a long-tailed distribution. Then Fμ is a long-tailed distri-
bution and, for any fixed y > 0,

F μ(x+ y)∼ Fμ(x)
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as x → ∞ uniformly in all μ satisfying (2.24), i.e.,

inf
μ

inf
x>x0

F μ(x+ y)

F μ(x)
→ 1 as x0 → ∞. (2.26)

If, in addition, F(x + h(x)) ∼ F(x) as x → ∞, for some positive function h, then
(2.26) holds with h(x) in place of y.

Proof. Fix ε > 0. Since F(x+y+u)∼ F(x+u) as x → ∞ uniformly in u ≥ 0, there
exists x0 such that (2.24),

F(x+ y+ u) ≥ (1− ε)F(x+ u) for all x > x0.

Then, for all x > x0 and μ ,

Fμ(x+ y) =
∫ ∞

0
F(x+ y+ u)μ(dy) ≥ (1− ε)

∫ ∞

0
F(x+ u)μ(du) = (1− ε)Fμ(x).

Letting ε → 0 we obtain the desired result. The same argument holds when y is
replaced by h(x). ��

2.7 Convolutions of Long-Tailed Distributions

We know from Theorem 2.11 that for any distributions F and G on the positive
half-line R+

liminf
x→∞

F ∗G(x)

F(x)+G(x)
≥ 1. (2.27)

In order to get an analogous result for distributions on the entire real line R, we
assume some of those involved to be long-tailed. The assumption of the theorem
below seems to be the weakest possible in the absence of conditions on left tails.

Theorem 2.29. Let the distributions F1, . . . , Fn on R be such that the function
F1(x)+ . . .+Fn(x) is long-tailed. Then,

liminf
x→∞

F1 ∗ . . .∗Fn(x)

F1(x)+ . . .+Fn(x)
≥ 1. (2.28)

In particular (2.28) holds whenever each of the distributions Fi is long-tailed.

Proof (cf Theorem 2.11). Let ξ1, . . . , ξn be independent random variables with
respective distributions F1, . . . , Fn. For any fixed a > 0, we have the following lower
bound:



2.7 Convolutions of Long-Tailed Distributions 25

F1 ∗ . . .∗Fn(x) ≥
n

∑
k=1

P{ξk > x+(n− 1)a,ξ j ∈ (−a,x] for all j �= k}

=
n

∑
k=1

Fk(x+(n− 1)a)∏
j �=k

Fj(−a,x]. (2.29)

For every ε > 0 there exists a such that Fj(−a,a] ≥ 1− ε for all j. Thus, for all
x > a,

F1 ∗ . . .∗Fn(x) ≥ (1− ε)n−1
n

∑
k=1

Fk(x+(n− 1)a).

Since the function F1 + . . .+Fn is long-tailed,

liminf
x→∞

F1 ∗ . . .∗Fn(x)

F1(x)+ . . .+Fn(x)
≥ (1− ε)n−1.

The required result (2.28) now follows by letting ε → 0. ��
For identical distributions, Theorem 2.29 yields the following corollary.

Corollary 2.30. Let the distribution F on R be long-tailed (F ∈ L). Then, for any
n ≥ 2,

liminf
x→∞

F∗n(x)

F(x)
≥ n.

We also have the following result for the convolution of a long-tailed distribu-
tion F with an arbitrary distribution G, the proof of which is similar in spirit to that
of Theorem 2.29.

Theorem 2.31. Let the distributions F and G on R be such that F is long-tailed
(F ∈L). Then,

liminf
x→∞

F ∗G(x)

F(x)
≥ 1. (2.30)

Proof. Let ξ and η be independent random variables with respective distributions
F and G. For any fixed a,

F ∗G(x) ≥ P{ξ > x− a, η > a}
= F(x− a)G(a). (2.31)

For every ε > 0 there exists a such that G(a)≥ 1− ε . Thus, for all x,

F ∗G(x) ≥ (1− ε)F(x− a).
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Since the distribution F is long-tailed, it now follows that

liminf
x→∞

F ∗G(x)

F(x)
≥ 1− ε

and the required result (2.30) once more followed by letting ε → 0. ��
We now have the following corollary.

Corollary 2.32. Let the distribution F on R be such that F is long-tailed (F ∈ L)
and let the distribution G be such that G(a) = 0 for some a. Then F ∗G(x) ∼ F(x)
as x → ∞.

Proof. Since G(a) = 0, we have F ∗G(x) ≤ F(x− a). Thus since F is long-tailed
we have

limsup
x→∞

F ∗G(x)

F(x)
≤ 1.

Combining this result with the lower bound of Theorem 2.31, we obtain the desired
equivalence. ��

In order to further study the convolutions of long-tailed distributions, we make
repeated use of two fundamental decompositions. Let h > 0 and let ξ and η be
independent random variables with distributions F and G, respectively. Then the
tail function of the convolution of F and G possesses the following decomposition:
for x > 0,

F ∗G(x) = P{ξ +η > x,ξ ≤ h}+P{ξ +η > x,ξ > h}. (2.32)

If in addition h ≤ x/2, then

F ∗G(x)

= P{ξ +η > x,ξ ≤ h}+P{ξ +η > x,η ≤ h}+P{ξ +η > x,ξ > h,η > h},
(2.33)

since if ξ ≤ h and η ≤ h then ξ +η ≤ 2h ≤ x.
Note that

P{ξ +η > x,ξ ≤ h}=
∫ h

−∞
G(x− y)F(dy), (2.34)

while the probability of the event {ξ+η>x,ξ>h,η>h} is symmetric in F and G, and

P{ξ +η > x,ξ > h,η > h} =

∫ ∞

h
F(max(h,x− y))G(dy)

=

∫ ∞

h
G(max(h,x− y))F(dy). (2.35)
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Definition 2.33. Given a strictly positive non-decreasing function h, a distribution F
on R is called h-insensitive(or h-flat) if its tail function F is an h-insensitive function
(see Definition 2.18). Since F is monotone, this reduces to the requirement that
F(x± h(x))∼ F(x) as x → ∞.

Recall from the results for h-insensitive functions that a distribution F is long-
tailed if and only if there exists a function h as above with respect to which F is
h-insensitive.

For long-tailed distributions F and G we shall now make particular use of the
decomposition (2.33) in which the constant h is replaced by a function h increasing
to infinity (with h(x)< x/2 for all x) and such that both F and G are h-insensitive.

The following three lemmas are the keys to everything that follows later in this
section.

Lemma 2.34. Suppose that the distribution G on R is long-tailed (G ∈ L) and that
the positive function h is such that h(x)→ ∞ as x → ∞ and G is h-insensitive. Then,
for any distribution F, as x → ∞,

∫ h(x)

−∞
G(x− y)F(dy) ∼ G(x),

∫ ∞

x−h(x)
F(x− y)G(dy) ∼ G(x).

Proof. The existence of the function h is guaranteed by Lemma 2.19. We now have

∫ h(x)

−∞
G(x− y)F(dy)≤ G(x− h(x)).

On the other hand we also have,

∫ h(x)

−∞
G(x− y)F(dy)≥

∫ h(x)

−h(x)
G(x− y)F(dy)

≥ F(−h(x),h(x)]G(x+ h(x))

∼ G(x+ h(x)) as x → ∞,

where the last equivalence follows since h(x) → ∞ as x → ∞. The first result
now follows from the choice of the function h. The second result follows simi-
larly: the integral is again bounded from above by G(x− h(x)) and from below by
F(−h(x))G(x+ h(x)) and the result follows as previously. ��
Remark 2.35. Note the crucial role played by the monotonicity of the tail function G
in the proof of Lemma 2.34—something which is not available to us in considering,
e.g., densities in Chap. 4.

We now prove a version of Lemma 2.34 which is symmetric in the distributions
F and G, and which allows us to get many important results for convolutions—see
the further discussion below.
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Lemma 2.36. Suppose that the distributions F and G on R are such that the sum
F + G of their tail functions is a long-tailed function (equivalently the measure
F + G is long-tailed in the obvious sense) and that the positive function h is such
that h(x)→ ∞ as x → ∞ and F + G is h-insensitive. Then

∫ h(x)

−∞
G(x− y)F(dy)+

∫ h(x)

−∞
F(x− y)G(dy)∼ G(x)+F(x) as x → ∞.

Proof. The proof is simply a two-sided version of that for the first assertion of
Lemma 2.34. The existence of the function h is again guaranteed by Lemma 2.19.
Now note first that, as in the earlier proof,

∫ h(x)

−∞
G(x− y)F(dy)+

∫ h(x)

−∞
F(x− y)G(dy)≤ G(x− h(x))+F(x− h(x)),

and second that
∫ h(x)

−∞
G(x− y)F(dy)+

∫ h(x)

−∞
F(x− y)G(dy)

≥
∫ h(x)

−h(x)
G(x− y)F(dy)+

∫ h(x)

−h(x)
F(x− y)G(dy)

≥ F(−h(x),h(x)]G(x+ h(x))+G(−h(x),h(x)]F(x+ h(x))

∼ G(x+ h(x))+F(x+ h(x)) as x → ∞,

where the last equivalence follows since h(x) → ∞ as x → ∞. The required result
now follows from the choice of the function h. ��

Note that special cases under which F +G is long-tailed are (a) F and G are both
long-tailed—in which case Lemma 2.36 (almost) follows from 2.34, and (b) F is
long-tailed and G(x) = o(F(x)) as x → ∞.

In various calculations we need to estimate the “internal” part of the convolution.
The following result will be useful.

Lemma 2.37. Let h be any increasing function on R
+ such that h(x)→ ∞. Then, for

any distributions F1, F2, G1, and G2 on R,

limsup
x→∞

P{ξ1 +η1 > x,ξ1 > h(x),η1 > h(x)}
P{ξ2 +η2 > x,ξ2 > h(x),η2 > h(x)} ≤ limsup

x→∞

F1(x)

F2(x)
· limsup

x→∞

G1(x)

G2(x)
,

where ξ1, ξ2, η1, and η2 are independent random variables with respective distri-
butions F1, F2, G1 and G2.

In particular, in the case where the limits of the ratios F1(x)/F2(x) and
G1(x)/G2(x) exist, we have

lim
x→∞

P{ξ1 +η1 > x,ξ1 > h(x),η1 > h(x)}
P{ξ2 +η2 > x,ξ2 > h(x),η2 > h(x)} = lim

x→∞

F1(x)

F2(x)
· lim

x→∞

G1(x)

G2(x)
.
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Proof. It follows from (2.35) that

P{ξ1 +η1 > x,ξ1 > h(x),η1 > h(x)}

≤ sup
z>h(x)

F1(z)

F2(z)

∫ ∞

h(x)
F2(max(h(x),x− y))G1(dy)

= sup
z>h(x)

F1(z)

F2(z)

∫ ∞

h(x)
G1(max(h(x),x− y))F2(dy).

Similarly,
∫ ∞

h(x)
G1(max(h(x),x− y))F2(dy)

≤ sup
z>h(x)

G1(z)

G2(z)

∫ ∞

h(x)
G2(max(h(x),x− y))F2(dy)

= sup
z>h(x)

G1(z)

G2(z)
P{ξ2 +η2 > x,ξ2 > h(x),η2 > h(x)}.

Combining these results and recalling that h(x)→∞ as x→∞, we obtain the desired
conclusion. ��
Definition 2.38. Two distributions F and G with right-unbounded supports are said
to be tail-equivalent if F(x)∼ G(x) as x → ∞ (i.e. limx→∞ F(x)/G(x) = 1).

In the next two theorems we provide conditions under which a random shifting
preserves tail equivalence.

Theorem 2.39. Suppose that F1, F2 and G are distributions on R such that F1(x)∼
F2(x) as x → ∞. Suppose further that G is long-tailed. Then F1 ∗G(x) ∼ F2 ∗G(x)
as x → ∞.

Proof. By Lemma 2.19 we can find a function h such that h(x)→ ∞ and

G(x± h(x))∼ G(x) as x → ∞,

i.e. G is h-insensitive. We use the following decomposition: for k = 1, 2,

Fk ∗G(x) =

(∫ x−h(x)

−∞
+

∫ ∞

x−h(x)

)

Fk(x− y)G(dy). (2.36)

It follows from the tail equivalence of F1 and F2 that F1(x−y)∼ F2(x−y) as x →∞
uniformly in y < x− h(x). Thus,

∫ x−h(x)

−∞
F1(x− y)G(dy) ∼

∫ x−h(x)

−∞
F2(x− y)G(dy) (2.37)
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as x → ∞. Next, by Lemma 2.34, for k = 1, 2,
∫ ∞

x−h(x)
Fk(x− y)G(dy) ∼ G(x) as x → ∞. (2.38)

Substituting (2.37) and (2.38) into (2.36) we obtain the required equivalence
F1 ∗G(x)∼ F2 ∗G(x). ��
Theorem 2.40. Suppose that F1, F2, G1 and G2 are distributions on R such that
F1(x) ∼ F2(x) and G1(x) ∼ G2(x) as x → ∞. Suppose further that the function
F1 +G1 is long-tailed. Then F1 ∗G1(x)∼ F2 ∗G2(x) as x → ∞.

Proof. The conditions of the theorem imply that the function F2 +G2 is similarly
long-tailed. By Lemma 2.19 and the following remark we can choose a function h
such that h(x)→ ∞ as x → ∞, h(x)≤ x/2 and, for k = 1, 2,

Fk(x± h(x))+Gk(x± h(x))∼ Fk(x)+Gk(x) as x → ∞,

i.e. Fk +Gk is h-insensitive. We use the following decomposition which follows
from (2.33) to (2.35):

Fk ∗Gk(x) =
∫ h(x)

−∞
Fk(x− y)Gk(dy)+

∫ h(x)

−∞
Gk(x− y)Fk(dy)

+

∫ ∞

h(x)
Fk(max(h(x),x− y))Gk(dy). (2.39)

Since F1 and F2 are tail equivalent and G1 and G2 are tail equivalent, it follows from
Lemma 2.37 that, as x → ∞,

∫ ∞

h(x)
F1(max(h(x),x− y))G1(dy) ∼

∫ ∞

h(x)
F2(max(h(x),x− y))G2(dy). (2.40)

Further, by Lemma 2.36, for k = 1,2 and as x → ∞,

∫ h(x)

−∞
Fk(x− y)Gk(dy)+

∫ h(x)

−∞
Gk(x− y)Fk(dy) ∼ Fk(x)+Gk(x). (2.41)

Substituting (2.40) and (2.41) into (2.39) we obtain the required equivalence
F1 ∗G1(x)∼ F2 ∗G2(x). ��

We now use Theorem 2.40 to show that the class L is closed under convolutions.
This is a corollary of the following result.

Theorem 2.41. Suppose that the distributions F and G are such that F is long-tailed
and the measure F +G is also long-tailed (i.e. the sum F +G of the tail functions of
the two distributions is long-tailed). Then the convolution F ∗G is also long-tailed.

Proof. Fix y > 0. Take F1 = F and F2 to be equal to F shifted by −y, i.e., F2(x) =
F(x+y). Then F2∗G is equal to F ∗G shifted by −y. Since F is long-tailed, F1(x)∼
F2(x). Since also F1 +G is long-tailed, it follows from Theorem 2.40 with G1 =
G2 = G that F1 ∗G(x)∼ F2 ∗G(x). Hence F ∗G(x)∼ F ∗G(x+ y) as x → ∞. ��
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Both the following corollaries are now immediate from Theorem 2.41 since in
each case the measure F +G is long-tailed.

Corollary 2.42. Let the distributions F and G be long-tailed. Then the convolution
F ∗G is also long-tailed.

Corollary 2.43. Suppose that F and G are distributions and that F is long-tailed.
Suppose also that G(x) = o(F(x)) as x → ∞. Then F ∗G is long-tailed.

Finally in this section we have the following converse result.

Lemma 2.44. Let F and G be two distributions on R
+ such that F has unbounded

support and G is non-degenerate at 0. Suppose that G(x) ≤ cF(x) for some c < ∞
and

limsup
x→∞

F ∗G(x)

F(x)+G(x)
≤ 1. (2.42)

Then F is long-tailed.

Proof. Take any a such that G(a,∞)> 0 which is possible because G is not concen-
trated at 0. Since for any two distributions on R

+

F ∗G(x) =
∫ x

0
F(x− y)G(dy)+G(x),

it follows from the condition (2.42) that
∫ x

0
F(x− y)G(dy) ≤ F(x)+ o(F(x)+G(x))

= F(x)+ o(F(x)) as x → ∞,

due to the condition G(x)≤ cF(x). This implies that
∫ x

0
F(x− y,x]G(dy) =

∫ x

0
(F(x− y)−F(x))G(dy)

= o(F(x)) as x → ∞.

For x ≥ a, the left side is not less than F(x−a,x]G(a,x], hence F(x−a,x] = o(F(x))
as x → ∞. The latter relation is equivalent to F(x− a)∼ F(x) which completes the
proof. ��

2.8 h-Insensitive Distributions

Let F be a long-tailed distribution (F ∈ L), i.e. a distribution whose tail function
F is such that for some (and hence for all) non-zero y, we have F(x+ y) ∼ F(x)
as x → ∞. We saw in Lemma 2.19 that we can then find a non-decreasing positive
function h such that h(x)→ ∞ as x → ∞ and
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F(x+ y)∼ F(x) uniformly in |y| ≤ h(x), (2.43)

i.e. such that the distribution F is h-insensitive (see Definition 2.33).
In this section we turn this process around: we fix a positive function h which is

increasing to infinity and seek to identify those long-tailed distributions which are
h-insensitive. By varying the choice of h, we then have an important technique for
classifying long-tailed distributions according to the heaviness of their tails and for
establishing characteristic properties of various classes of these distributions.

Slowly Varying Distributions

As a first example, consider the function h given by h(x) = εx for some ε > 0;
then the class of h-insensitive distributions coincides with the class of distributions
whose tails are slowly varying at infinity, i.e., for any ε > 0,

F((1+ ε)x)
F(x)

→ 1 as x → ∞. (2.44)

These distributions are extremely heavy; in particular they do not possess any fi-
nite positive moments, i.e.,

∫
xγ F(dx) = ∞ for any γ > 0. Examples are given by

distributions F with the following tail functions:

F(x)∼ 1/ lnγ x, F(x)∼ 1/(ln lnx)γ as x → ∞, γ > 0.

Regularly Varying Distributions

We introduce here the well-known class of regularly varying distributions and con-
sider their insensitivity properties.

Recall that an ultimately positive function f is called regularly varying at infinity
with index α ∈R if, for any fixed c > 0,

f (cx) ∼ cα f (x) as x → ∞. (2.45)

A distribution F on R is called regularly varying at infinity with index −α < 0 if
F(cx) ∼ c−αF(x) as x → ∞, i.e., F(x) is regularly varying at infinity with index
−α < 0.

Particular examples of regularly varying distributions which were introduced in
Sect. 2.1 are the Pareto, Burr and Cauchy distributions.

If a distribution F on R
+ is regularly varying at infinity with index −α < 0, then

all moments of order γ < α are finite, while all moments of order γ > α are infinite.
The moment of order γ = α may be finite or infinite depending on the particular
behaviour of the corresponding slowly varying function (see below).

If a function f is regularly varying at infinity with index α , then we have f (x) =
xα l(x) for some slowly varying function l. Hence it follows from the discussion
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of Sect. 2.4 that, for any positive function h such that h(x) = o(x) as x → ∞, we
have f (x+ y) ∼ f (x) as x → ∞ uniformly in |y| ≤ h(x); we shall then say that f is
o(x)-insensitive. Similarly we shall say that a distribution F is o(x)-insensitive if its
tail function F is o(x)-insensitive. Thus distributions which are regularly varying at
infinity are o(x)-insensitive.

It turns out that integration preserves regular variation of distribution; this result
is formulated next and is known as Karamata’s theorem for distribution functions.

Theorem 2.45. A distribution F is regularly varying with index −α < −1 if and
only if the integrated tail distribution FI is regularly varying with index −α +1 < 0.
If any holds, then F(x)∼ (α − 1)FI(x)/x as x → ∞.

Proof. Due to monotonicity of F(y), for any c1 > 1,

FI(x)−FI(c1x) =
∫ c1x

x
F(y)dy ≤ (c1x− x)F(x) (2.46)

and, for any c2 < 1,

FI(c2x)−FI(x)≥ (x− c2x)F(x). (2.47)

Assume that FI is regularly varying with index −α + 1. Then, from (2.46) and
by regular variation of FI , for any c1 > 1,

liminf
x→∞

xF(x)

FI(x)
≥ 1− c1−α

1

c1 − 1
.

Letting c1 ↓ 1, we get

liminf
x→∞

xF(x)

FI(x)
≥ α − 1. (2.48)

Similarly, from (2.47) we get, for any c2 < 1,

limsup
x→∞

xF(x)

FI(x)
≤ c1−α

2 − 1
1− c2

,

Letting c2 ↑ 1, we get

limsup
x→∞

xF(x)

FI(x)
≤ α − 1. (2.49)

Then (2.48) and (2.49) lead to xF(x)∼ (α−1)FI(x) as x→∞, which implies regular
variation of F with index −α .

Assume now that F is a regularly varying distribution with index −α . Then, for
every c > 0,
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FI(cx) =
∫ ∞

cx
F(y)dy

= c−1
∫ ∞

x
F(z/c)dz

∼ cα−1
∫ ∞

x
F(z)dz = cα−1FI(x) as x → ∞,

which means the regular variation of FI with index 1−α . ��

Intermediate Regularly Varying Distributions

It turns out that the property of o(x)-insensitivity characterises a slightly wider class
of distributions than that of distributions whose tails are regularly varying, and we
now discuss this.

Definition 2.46. A distribution F on R is called intermediate regularly varying if

lim
ε↓0

liminf
x→∞

F(x(1+ ε))
F(x)

= 1. (2.50)

Any regularly varying distribution is intermediate regularly varying. But the latter
class is richer. We provide first a simple example. Take any density function g which
is regularly varying at infinity with index −α <−1. Then, by Karamata’s Theorem,
the corresponding distribution G will be regularly varying with index −α + 1 < 0.
Now consider any density function f such that c1g(x) ≤ f (x) ≤ c2g(x), for some
0 < c1 < c2 < ∞ and for all x. The corresponding distribution F is intermediate
regularly varying because

F(x,x(1+ ε)]≤ c2G(x,x(1+ ε)] and F(x)≥ c1G(x).

On the other hand, F is not necessarily a regularly varying distribution. We now
have the following characterisation result.

Theorem 2.47. A distribution F on R is intermediate regularly varying if and only
if, for any positive function h such that h(x) = o(x) as x → ∞,

F(x+ h(x))∼ F(x), (2.51)

i.e. if and only if F is o(x)-insensitive.

Proof. It is straightforward that if F is intermediate regularly varying, then it is
o(x)-insensitive. Hence it only remains to prove the reverse implication. Assume,
on the contrary, that this implication fails. Thus let F be a distribution which is
o(x)-insensitive but which fails to be intermediate regularly varying. The function

l(ε) := liminf
x→∞

F(x(1+ ε))
F(x)
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decreases in ε > 0, due to the monotonicity of F . Therefore, the failure of (2.50)
implies that there exists a positive δ such that l(ε) ≤ 1− 2δ for any ε > 0. Hence,
for any positive integer n, we can find xn such that

F(xn(1+ 1/n)) ≤ (1− δ )F(xn)

Without loss of generality we may assume the sequence {xn} to be increasing. Now
put h(x) = x/n for x ∈ [xn,xn+1). Then h(x) = o(x) as x → ∞. However,

liminf
x→∞

F(x+ h(x))

F(x)
≤ liminf

n→∞

F(xn + h(xn))

F(xn)

= liminf
n→∞

F(xn(1+ 1/n))

F(xn)

≤ 1− δ ,

which contradicts the o(x)-insensitivity of F . ��
We now give an attractive probabilistic characterisation of intermediate regularly

varying distributions.

Theorem 2.48. A distribution F on R is intermediate regularly varying if and only
if, for any sequence of independent identically distributed random variables ξ1, ξ2,
. . . with finite positive mean,

F(Sn)

F(nEξ1)
→ 1 as n → ∞ (2.52)

with probability 1, where Sn = ξ1 + . . .+ ξn.

Proof. We suppose first that F is intermediate regularly varying; let ξ1, ξ2, . . . be any
sequence of independent identically distributed random variables with finite positive
mean, and, for each n, let Sn = ξ1 + . . .+ ξn; we show that then the relation (2.52)
holds. Let a = Eξ1. Fix any ε > 0. It follows from the definition of intermediate
regular variation that there is n0 and a δ > 0 such that

sup
n≥n0

∣
∣
∣
∣
F(n(a± δ ))

F(na)
− 1

∣
∣
∣
∣ ≤ ε.

By the Strong Law of Large Numbers, with probability 1, there exists a random
number N such that |Sn − na| ≤ nδ for all n ≥ N. Then, for n ≥ max{N,n0},

∣
∣
∣
∣
F(Sn)

F(na)
− 1

∣
∣
∣
∣ ≤ sup

n≥n0

∣
∣
∣
∣
F(n(a± δ ))

F(na)
− 1

∣
∣
∣
∣≤ ε.

Since ε > 0 is arbitrary, this implies the convergence (2.52).
We now prove the converse implication. Assume that the distribution F is not

intermediate regularly varying. It is sufficient to construct a sequence of independent
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identically distributed random variables ξ1, ξ2, . . . with mean 1, such that the relation
(2.52) fails to hold (where again Sn = ξ1 + . . .+ ξn). By Theorem 2.47 F fails to be
o(x)-insensitive, and so there exists an ε > 0, an increasing sequence nk and an
increasing function h with h(x) = o(x) such that

F(nk + h(nk))≤ (1− ε)F(nk) for all k. (2.53)

Since h(x)/x → 0, we can choose an increasing subsequence nkm such that

∞

∑
m=1

h(nkm)

nkm

< ∞. (2.54)

Since h is increasing it follows also that ∑∞
m=1 n−1

km
< ∞, and so we can define a

random variable ξ taking values on {1± h(nkm),m = 1,2, . . .} with probabilities

P{ξ = 1− h(nkm)}= P{ξ = 1+ h(nkm)}= c/nkm

(where c is the appropriate normalising constant). It further follows from (2.54)
that the random variable ξ has a finite mean; moreover, this mean equals 1. Define
the sequence of independent random variables ξ1, ξ2, . . . to each have the same
distribution as ξ . We shall show that

liminf
m→∞

P{Snkm
≥ nkm + h(nkm)}> 0. (2.55)

From this and from (2.53), and since also F is non-increasing, it will follow that

liminf
m→∞

P{F(Snkm
)≤ (1− ε)F(nk)}> 0,

so that (2.52) cannot hold.
To show (2.55), fix m and consider the events

A j =
⋂

i≤nkm , i�= j

{ξi �= 1± h(nkm)}, j = 1, . . .nkm .

Then the events A j ∩{ξ j = 1+ h(nkm)} are disjoint. Therefore,

P{Snkm
≥ nkm + h(nkm)}

≥
nkm

∑
j=1

P{Snkm
≥ nkm + h(nkm) |A j, ξ j = 1+ h(nkm)}P{A j, ξ j = 1+ h(nkm)}

= nkmP{Snkm
− nkm ≥ h(nkm) |A1, ξ1 − 1 = h(nkm)}P{A1}P{ξ1 = 1+ h(nkm)}

= cP{Snkm
− nkm ≥ h(nkm) |A1, ξ1 − 1 = h(nkm)}P{A1},
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where the final equality follows from the definition of the distribution of ξ1. Using
again the independence of the random variables ξi, we have

P{Snkm
− nkm ≥ h(nkm) |A1,ξ1 − 1 = h(nkm)}

= P{Snkm
− nkm − (ξ1 − 1)≥ 0 |A1} ≥ 1/2,

where the final inequality follows from the symmetry about 1 of the common distri-
bution of the random variables ξi. In addition,

P{A1} = (P{ξi �= 1± h(nkm)})
nkm−1

= (1− 2c/nkm)
nkm−1 → e−2c as m → ∞.

We thus finally obtain that

liminf
m→∞

P{Snkm
≥ nkm + h(nkm)} ≥ ce−2c/2,

so that (2.55) follows. ��

Other Heavy-Tailed Distributions

We proceed now to heavy-tailed distributions with thinner tails. For the lognormal
distribution, one can take h(x) = o(x/ lnx) in order to have h-insensitivity. For the
Weibull distribution with parameter α ∈ (0,1), one can take h(x) = o(x1−α).

In many practical situations, the class of so-called
√

x-insensitive distributions—
those which are h-insensitive for the function h(x) = x1/2—is of special interest.
Among these are intermediate regularly varying distributions (in particular regularly
varying distributions), lognormal distributions and Weibull distributions with shape
parameter α < 1/2. The reason for interest in this quite broad class is explained by
the following theorem, which should be compared with Theorem 2.48.

Theorem 2.49. For any distribution F onR, the following assertions are equivalent:
(i) F is

√
x-insensitive.

(ii) For some (any) sequence of independent identically distributed random vari-
ables ξ1, ξ2, . . . with positive mean and with finite positive variance,

F(Sn)

F(nEξ1)
→ 1 as n → ∞ (2.56)

in probability, where Sn = ξ1 + . . .+ ξn.

Proof. To show (i)⇒(ii) suppose that the distribution F is
√

x-insensitive and that
the independent identically distributed random variables ξ1, ξ2, . . . have common
mean a> 0 and finite variance. Fix ε > 0. By the Central Limit Theorem, there exist
N and A such that P{|Sn − na| ≤ A

√
n} ≥ 1− ε for all n ≥ N. It follows from the

definition of
√

x-insensitivity that there is n0 such that
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∣
∣
∣
∣
F(na±A

√
n))

F(na)
− 1

∣
∣
∣
∣≤ ε for all n ≥ n0.

Then, for n ≥ max{N,n0},

P

{∣∣
∣
∣
F(Sn)

F(na)
− 1

∣
∣
∣
∣≤ ε

}

≥ P{|Sn − na| ≤ A
√

n} ≥ 1− ε,

which establishes (2.56).
To show (ii)⇒(i) assume that the independent identically distributed random

variables ξ1, ξ2, . . . have common mean a > 0 and finite variance σ2 > 0, but that,
on the contrary, the distribution F fails to be

√
x-insensitive. Then there exists ε > 0

and an increasing sequence nk such that, for all k,

F(nka+
√

nkσ2)≤ (1− ε)F(nka).

Therefore,

P

{∣∣
∣
∣

F(Snk)

F(nka)
− 1

∣
∣
∣
∣≥ ε

}

≥ P{Snk − nka ≥
√

nkσ2}→
∫ ∞

1

e−u2/2
√

2π
du > 0,

which contradicts (2.56). ��
We finish this section by observing that the exponential distribution, while itself

light-tailed, is, in an obvious sense, on the boundary of the class of such dis-
tributions. We may construct examples of long-tailed (and hence heavy-tailed)
distributions on R

+, say, whose tails are, in a sense, arbitrarily close to that of the
exponential distribution. For example, the distribution with tail function

F(x) = e−cx/ lnα x, α > 0, c > 0,

is very close to the exponential distribution but is still long-tailed; indeed one can
take the function h of Lemma 2.19 to be any such that h(x) = o(lnα x) as x → ∞.
Further, if we replace the logarithmic function by the mth iterated logarithm, we
obtain again a long-tailed distribution.

2.9 Comments

The lower bound (2.7) may be found in Chistyakov [13] and in Pakes [44].
Theorem 2.12 was proved by Foss and Korshunov in [27]. For earlier results

see Rudin [48] and Rogozin [46]. Some generalisations may be found in the papers
[19, 20] by Denisov, Foss and Korshunov.

The class of long-tailed distributions (but not the term itself) was introduced by
Chistyakov in [13], in the context of branching processes.
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Theorem 2.40 generalises a result of Cline [16] where the case F1, F2, G1, G2 ∈L

was considered.
Corollary 2.42 is well known from Embrechts and Goldie [21].
A comprehensive study of the theory of regularly varying functions may be found

in Seneta [50] and in Bingham, Goldie and Teugels [9].

2.10 Problems

2.1. Let distribution F on R
+ has a regularly varying tail with index α , i.e., let

F(x) = L(x)/xα where function L(x) is slowly varying at infinity. Prove that:

(i) Any power moment of distribution F of order γ < α is finite.
(ii) Any power moment of order γ > α is infinite.

Show by examples that the moment of order γ = α may either exist or not, depend-
ing on the tail behaviour of slowly varying function L(x).

2.2. Let distribution F on R
+ have a regularly varying tail with index α > 0.

Prove the distribution of logξ is light-tailed.
2.3. Let ξ > 0 be a random variable. Prove that the distribution of logξ is light-

tailed if and only if ξ has a finite power moment of order α , for some α > 0.
2.4. Let distribution F on R

+ have an infinite moment of order γ > 0. Prove that
F is heavy-tailed.

2.5. Let random variable ξ ≥ 0 be such that Eeξ α
= ∞ for some α < 1. Prove

that the distribution of ξ is heavy-tailed.
2.6. Let random variable ξ has
(i) exponential; (ii) normal
distribution. Prove that the distribution of eαξ is both heavy- and long-tailed, for

every α > 0.
2.7. Student’s t-distribution. Assume we do not know the exact formula for its

density. By estimating the moments, prove that the distribution of the ratio

ξ
√
(ξ 2

1 + . . .+ ξ 2
n )/n

is heavy-tailed where the independent random variables ξ , ξ1, . . . , ξn are sampled
from the standard normal distribution. Moreover, prove that this distribution is reg-
ularly varying at infinity.
Hint: Show that the denominator has a positive density function in the neighbour-
hood of zero.

2.8. Let η1, . . . ,ηn be n positive random variables (we do not assume their inde-
pendence, in general). Prove that the distribution of η1 + . . .+ηn is heavy-tailed if
and only if the distribution of at least one of the summands is heavy-tailed.

2.9. Let ξ > 0 and η > 0 be two random variables with heavy-tailed distributions.
Can the minimum min(ξ ,η) have a light-tailed distribution?



40 2 Heavy-Tailed and Long-Tailed Distributions

2.10. Suppose that ξ1, . . . , ξn are independent random variables with a common
distribution F and that

ξ(1) ≤ ξ(2) ≤ . . .≤ ξ(n)

are the order statistics.

(i) For k ≤ n, prove that the distribution of ξ(k) is heavy-tailed if and only if F is
heavy-tailed.

(ii) For k ≤ n− 1, prove that the distribution of ξ(k+1)− ξ(k) is heavy-tailed if and
only if F is heavy-tailed.

(iii) Based on (ii) and on Problem 8, prove that ξ(k)− ξ(l) has a heavy-tailed distri-
bution if and only if F is heavy-tailed.

2.11. Let ξ and η be two positive independent random variables. Prove that the
distribution of ξ −η is heavy-tailed if and only if the distribution of ξ is heavy-
tailed.

2.12. Let ξn, n= 1, 2,. . . , be independent identically distributed random variables
on R

+. Let ν ≥ 1 be an independent counting random variable. Let both ξ1 and ν
have light-tailed distributions. Prove that the distribution of random sum ξ1 + ξ2 +
. . .+ ξν is light-tailed too.

2.13. Let ξn, n = 1, 2, . . . , be independent identically distributed random vari-
ables on R

+ such that P{ξ1 > 0}> 0. Let ν ≥ 1 be an independent counting random
variable. Let ν have heavy-tailed distribution. Prove that the distribution of random
sum ξ1 + ξ2 + . . .+ ξν is heavy-tailed.

2.14. Find a light-tailed distribution F such that the distribution of the product
ξ1ξ2 is heavy-tailed where ξ1 and ξ2 are two independent random variables with
distribution F .

2.15. Let non-negative random variable ξ has distribution F . Consider a family
of distributions Fx(B) := P{ξ ∈ x+B|ξ > x}, B ∈B(R+).

(i) Prove F is long-tailed if and only if Fx ⇒ ∞, as x → ∞.
(ii) Prove F is h-insensitive if and only if ξx/h(x) ⇒ ∞ as x → ∞ where ξx is a

random variable with distribution Fx.

2.16. We say that H(x) is a boundary function for a long-tailed distribution F if
the following condition holds: F is h-insensitive if and only if h(x) = o(H(x)) as
x → ∞. Find any boundary function for:

(i) A regularly varying distribution with index α > 0.
(ii) A standard log-normal distribution.

(iii) A Weibull distribution with tail F(x) = e−xβ
where 0 < β < 1.

(iv) A distribution with tail F(x) = e−x/ log(1+x), x ≥ 0.

2.17. Prove that a distribution whose tail is slowly varying at infinity does not
have a boundary function.

2.18. Let a random variable ξ has the standard normal distribution.

(i) Find all values of α > 0 such that the power |ξ |α has a heavy-tailed distribution.
(ii) Prove the power |ξ |α has a heavy- and long-tailed distribution for every α < 0.
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2.19. Let independent random variables ξ1, . . . , ξn have the standard normal dis-
tribution. Find all n such that the product ξ1 · . . . ·ξn is heavy-tailed. For those n, is
the product also long-tailed?

2.20. Let independent non-negative random variables ξ1, . . . , ξn have Weibull

distribution with the tail F(x) = e−xβ
, β > 0. Find the values of β , for which the

product ξ1 · . . . ·ξn has a heavy-tailed distribution.
2.21. Perpetuity. Suppose ξ1, ξ2, . . . are independent identically distributed ran-

dom variables with common uniform distribution in the interval [−2,1]. Let S0 = 0,
Sn = ξ1 + . . .+ ξn and

Z =
∞

∑
n=0

eSn .

(i) Prove Z is finite with probability 1 and that Z has a heavy-tailed distribution.
Hint: Show that EZγ = ∞ for some γ > 0.

(ii) How can the result of (i) be generalised to other distributions of ξ ’s?

2.22. Let F and G be two distributions on R
+ with finite means aF and aG. Prove

that, for all sufficiently large x,

(F ∗G)I(x) = FI(x)+F ∗GI(x)+ (aG− 1)F(x)

= GI(x)+FI ∗G(x)+ (aF − 1)G(x).

2.23. Prove the distribution of a random variable ξ ≥ 0 is
√

x-insensitive if and
only if the distribution of

√
ξ is long-tailed. More generally, prove that the distribu-

tion of ξ ≥ 0 is xα -insensitive with some 0 < α < 1 if and only if the distribution of
ξ 1−α is long-tailed.

2.24. Suppose Xn is a time-homogeneous Markov chain with state space Z
+ and

transition probabilities pi j. Let Xn be a skip-free Markov chain, i.e., only the tran-
sition probabilities pi,i−1, pi,i and pi,i+1 are non-zero. Let Xn be positive recurrent
with invariant probabilities πi. Show that

πi =
i

∏
j=1

p j−1, j

p j, j−1
.

Further, assume that limsupi→∞ pii < 1.

(i) Prove if limsupi→∞(pi,i+1 − pi,i−1)< 0, then the invariant distribution is light-
tailed.

(ii) Prove if limsupi→∞(pi,i+1 − pi,i−1) = 0, then the invariant distribution is heavy-
tailed.

2.25. Suppose Xn is a time-homogeneous irreducible aperiodic Markov chain
with state space Z

+. Let Xn be positive recurrent. Let there exist a state i0 such that
the distribution of the jump from this state is heavy-tailed, i.e.,

E{eλ X1 | X0 = i0}= ∞,
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for every λ > 0. Prove that the invariant distribution of the Markov chain is also
heavy-tailed.

2.26. Excess process. Suppose Xn is a time-homogeneous irreducible non-periodic
Markov chain with state space {1,2,3, . . .}. Let P{X1 = i− 1 | X0 = i} = 1 for ev-
ery i ≥ 2. Denote by F the distribution of the jump from the state 1, i.e., for every
i ∈ Z

+,
F{i}= P{X1 = i+ 1 | X0 = 1}.

(i) Prove this Markov chain is positive recurrent if and only if F has finite mean.
Find the corresponding invariant distribution.

(ii) Prove the invariant distribution of this chain is heavy-tailed if and only if F is
heavy-tailed.

(iii) Prove the invariant distribution of this chain is long-tailed if and only if the
integrated tail distribution FI is long-tailed.

2.27. Suppose Xn is a time-homogeneous irreducible aperiodic Markov chain
with state space {1,2,3, . . .}. Let there exist i0 ≥ 1 such that P{X1 = i− 1 | X0 =
i} = 1 for every i ≥ i0 + 1. Denote by Fi the distribution of the jump from the state
i, i ∈ {1, . . . , i0}, i.e., for every j ∈ Z

+,

Fi{ j}= P{X1 = j+ i | X0 = i}.

(i) Prove this Markov chain is positive recurrent if and only if all Fi, i ∈ {1, . . . , i0},
have finite mean. Prove that the invariant probabilities {π j} satisfy the equa-
tions, for j ≥ i0 + 1,

π j =
i0

∑
i=1

πiFi[ j− i,∞).

(ii) Prove the invariant distribution of this chain is heavy-tailed if and only if at least
one of Fi, i ∈ {1, . . . , i0}, is heavy-tailed.

(iii) Prove the invariant distribution of this chain is long-tailed if all the integrated
tail distributions Fi,I are long-tailed.



Chapter 3
Subexponential Distributions

As we stated in the Introduction, all those heavy-tailed distributions likely to be
of use in practical applications are not only long-tailed but possess the additional
regularity property of subexponentiality. Essentially this corresponds to good tail
behaviour under the operation of convolution. In this chapter, following established
tradition, we introduce first subexponential distributions on the positive half-lineR+.
It is not immediately obvious from the definition, but it nevertheless turns out, that
subexponentiality is a tail property of a distribution. It is thus both natural, and im-
portant for many applications, to extend the concept to distributions on the entire
real line R. We also study the very useful subclass of subexponential distributions
which was originally called S∗ in [32] and which we name strong subexponential.
In particular this class again contains all those heavy-tailed distributions likely to be
encountered in practice.

Different sufficient and necessary conditions for subexponentiality may be found
in Sects. 3.5 and 3.6. We also discuss the questions of why not every long-tailed
distribution is subexponential and why the subexponentiality of a distribution does
not imply subexponentiality of the integrated tail distribution.

In Sect. 3.9 we consider closure properties for the class of subexponential
distributions. We conclude with the fundamental uniform upper bound for the tail
of the nth convolution of a subexponential distribution known as Kesten’s bound.

3.1 Subexponential Distributions on the Positive Half-Line

In the previous chapter we showed in (2.7) that, for any distribution F on R
+ with

unbounded support,

liminf
x→∞

F ∗F(x)

F(x)
≥ 2.
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It was then proved in Theorem 2.12 that, for any heavy-tailed distribution F on R
+,

liminf
x→∞

F ∗F(x)

F(x)
= 2.

In particular, if F is heavy-tailed on R
+ and if

F ∗F(x)

F(x)
→ c as x → ∞,

where c ∈ (0,∞], then necessarily c = 2. This observation leads naturally to the
following definition.

Definition 3.1. Let F be a distribution on R
+ with unbounded support. We say that

F is subexponential, and write F ∈ S, if

F ∗F(x)∼ 2F(x) as x → ∞. (3.1)

Now let ξ1 and ξ2 be independent random variables on R
+ with common distribu-

tion F . Then the above definition is equivalent to stating that F is subexponential if

P{ξ1 + ξ2 > x} ∼ 2P{ξ1 > x} as x → ∞.

This last relation may be rewritten as

P{ξ1 > x|ξ1 + ξ2 > x}→ 1/2 as x → ∞.

Further, since we always have the equivalence

P{max(ξ1,ξ2)> x}= 1− (1−P{ξ1 > x})2 ∼ 2P{ξ1 > x}
as x → ∞, it follows that F is a subexponential distribution if and only if

P{ξ1 + ξ2 > x} ∼ P{max(ξ1,ξ2)> x} as x → ∞.

Finally, since ξ1, ξ2 are non-negative, the inequality max(ξ1,ξ2) > x implies also
that ξ1 + ξ2 > x, and so the subexponentiality of their distribution is equivalent to
the following relation:

P{ξ1 + ξ2 > x,max(ξ1,ξ2)≤ x}= o(P{ξ1 > x}) as x → ∞. (3.2)

That is, for large x, the only significant way in which ξ1 + ξ2 can exceed x is that
either ξ1 or ξ2 should itself exceed x. This is the well-known “principle of a single
big jump” for sums of subexponentially distributed random variables.

Lemma 2.44 with G = F implies immediately the following result.

Lemma 3.2. Any subexponential distribution on R
+ is long-tailed. In particular,

any subexponential distribution is heavy-tailed.

The converse is not true; there exist some long-tailed distributions on R
+ which

are not subexponential; see Sect. 3.7 for more detail.
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Since a long-tailed distribution F satisfies F(x)eλ x → ∞ as x → ∞, for all λ > 0
(see Lemma 2.17), it is this property that originally suggested the name subexpo-
nential. However, the name is now always used in the slightly more restrictive sense
that we have defined.

In the class of distributions on the positive half-line, subexponentiality is a
tail property, as are both heavy- and long-tailedness. To see this, observe that
if a distribution F1 on R

+ is subexponential (and therefore long-tailed) and if a
distribution F2 on R

+ is such that, for some x0, we have F1(x) = F2(x) for all
x ≥ x0, then by Theorem 2.40 F1 ∗F1(x) ∼ F2 ∗F2(x) as x → ∞, which implies the
subexponentiality of F2.

3.2 Subexponential Distributions on the Whole Real Line

In the previous section we defined subexponential distributions on the positive
half-line R+. We showed there that subexponentiality was a tail property of a
distribution. Thus, as remarked at the beginning of this chapter, it is both natural
and desirable to extend the concept to distributions on the entire real line R.

The problem is now that of extending the definition appropriately. It turns out
that, for a distribution F on the entire real line R, the condition (3.1) no longer
defines a tail property of that distribution, nor even implies that the distribution is
long-tailed. This is illustrated by the following example.

Example 3.3. For A ≥ 0, consider the distribution F on the interval [−A,∞) with the
tail function

F(x) = (x+A+ 1)−2e−(x+A), x ≥−A.

The convolution tail is given by

F ∗F(x) =
∫ ∞

−∞
F(x− y)F(dy)

=

∫ x/2

−∞
F(x− y)F(dy)−

∫ ∞

x/2
F(x− y)dF(y)

= 2
∫ x/2

−∞
F(x− y)F(dy)+ (F(x/2))2,

after integration by parts. We thus have that, as x → ∞,

F ∗F(x) ∼ 2e−x−A
∫ x/2

−A
(x− y)−2eyF(dy)+ o(F(x))

∼ 2x−2e−x−A
∫ x/2

−A
eyF(dy)+ o(F(x))

∼ 2F(x)
∫ ∞

−A
eyF(dy).
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Take A such that
∫ ∞
−A eyF(dy) = 1. Then F ∗F(x)∼ 2F(x), but F is not long-tailed

and indeed F is light-tailed.

The above example shows that the satisfaction of the condition (3.1) is not a tail
property for the class of distributions on the whole real line R – for otherwise the
condition would be satisfied by the distribution F+ (given, as in the Introduction,
by F+(x) = F(x) for x ≥ 0 and F+(x) = 0 for x < 0), and Lemma 3.2 would then
guarantee that F+ was long-tailed in contradiction to the result F is not long-tailed.

Thus the most usual way to define the subexponentiality of a distribution F on
the whole real line R is to require that the distribution F+ on R

+ be subexponential.
By Lemma 3.2 and Theorem 2.40 the condition (3.1) then continues to hold – it is
simply no longer sufficient for subexponentiality. This approach has the advantage
of making it immediately clear that subexponentiality remains a tail property, but the
disadvantage of requiring a two-stage definition. We shall see below that an equiva-
lent definition, which we shall make formally, is to require that the distribution F , in
additional to satisfying (3.1), is also long-tailed. The asserted equivalence follows
from the following lemma.

Lemma 3.4. Let F be a distribution on R and let ξ be a random variable with
distribution F. Then the following are equivalent:

(i) F is long-tailed and F ∗F(x)∼ 2F(x) as x → ∞.
(ii) The distribution F+ of ξ+ is subexponential.

(iii) The conditional distribution G(B) := P{ξ ∈ B |ξ ≥ 0} is subexponential.

Proof. Let ξ1 and ξ2 be two independent copies of ξ .
(i)⇒(ii). Suppose that F is long-tailed. Fix A > 0. On the event {ξk > −A}, we

have ξ+
k ≤ ξk +A. Thus, for x ≥ 0,

P{ξ+
1 + ξ+

2 > x} ≤ P{ξ1 + ξ2 > x− 2A,ξ1 >−A,ξ2 >−A}
+P{ξ2 > x,ξ1 ≤−A}+P{ξ1 > x,ξ2 ≤−A}

≤ P{ξ1 + ξ2 > x− 2A}+ 2F(x)F(−A).

Hence, since F is long-tailed,

limsup
x→∞

P{ξ+
1 + ξ+

2 > x}
F(x)

≤ lim
x→∞

P{ξ1 + ξ2 > x− 2A}
F(x− 2A)

+ 2F(−A)

= 2+ 2F(−A).

Since A can be chosen as large as we please,

limsup
x→∞

P{ξ+
1 + ξ+

2 > x}
F(x)

≤ 2.

Together with (2.7) this implies that F+ ∗F+(x) ∼ 2F+(x) as x → ∞, i.e. that the
distribution F+ of ξ+ is subexponential.
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(ii)⇒(i). Suppose now that the distribution F+ of ξ+ is subexponential. That F+

and hence F is long-tailed follows from Lemma 3.2. We further have ξ1 + ξ2 ≤
ξ+

1 + ξ+
2 , so that

F ∗F(x)≤ F+ ∗F+(x)∼ 2F(x)

as x → ∞, again by the subexponentiality of F+. Together with the lower bound
for the ‘liminf’ provided by Corollary 2.30, we get the required tail asymptotics
F ∗F(x)∼ 2F(x) as x → ∞.

(ii)⇔(iii). We show now the equivalence of the conditions (ii) and (iii). Define
first p = P{ξ < 0} and observe that, for x ≥ 0,

P{ξ+
1 + ξ+

2 > x} = 2P{ξ1 < 0,ξ2 > x}+P{ξ1+ ξ2 > x,ξ1 ≥ 0,ξ2 ≥ 0}
= 2pF(x)+ (1− p)2

P{ξ1 + ξ2 > x |ξ1 ≥ 0,ξ2 ≥ 0}
= 2pF(x)+ (1− p)2G∗G(x).

Since also, for x ≥ 0, we have F(x) = (1− p)G(x), the subexponentiality of G is
equivalent to the condition that, as x → ∞,

P{ξ+
1 + ξ+

2 > x} ∼ 2pF(x)+ 2(1− p)F(x)

= 2P{ξ+ > x},
i.e. to the subexponentiality of F+. ��

The above lemma allows us to make the following definition of whole-line subex-
ponentiality.

Definition 3.5. Let F be a distribution on R with right-unbounded support. We say
that F is whole-line subexponential, and write F ∈ SR, if F is long-tailed and

F ∗F(x)∼ 2F(x) as x → ∞.

Equivalently, a random variable ξ has a whole-line subexponential distribution if
ξ+ has a subexponential distribution.

Thus whole-line subexponentiality generalises the concept of subexponentiality
on the positive half-line R+ and any distribution which is subexponential on R

+ or
R is long-tailed, i.e. S⊆ SR ⊆ L.

We now have the following theorem which provides the foundation for our results
on convolutions of subexponential distributions.

Theorem 3.6. Let the distribution F on R be long-tailed (F ∈ L) and let ξ1, ξ2

be two independent random variables with distribution F. Let the function h be
such that h(x)→ ∞ as → ∞ and F is h-insensitive (see Definition 2.33). Then F is
whole-line subexponential (F ∈ SR) if and only if

P{ξ1 + ξ2 > x,ξ1 > h(x),ξ2 > h(x)} = o(F(x)) as x → ∞. (3.3)
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Proof. We assume first that additionally h(x)< x/2 for all x. Then, for any x,

P{ξ1 + ξ2 > x}
= P{ξ1 + ξ2 > x, ξ1 ≤ h(x)}+P{ξ1+ ξ2 > x, ξ2 ≤ h(x)}

+P{ξ1+ ξ2 > x, ξ1 > h(x), ξ2 > h(x)}. (3.4)

Since F is long-tailed, it follows from (2.34), the given conditions on h and
Lemma 2.34 that, for i = 1,2,

P{ξ1 + ξ2 > x, ξi ≤ h(x)} ∼ F(x) as x → ∞. (3.5)

Again, since F is long-tailed, the subexponentiality of F is equivalent to the
requirement that P{ξ1 + ξ2 > x} ∼ 2F(x) as x → ∞, and the equivalence of this
to the condition (3.3) now follows from (3.4) and (3.5).

In the case where we do not have h(x) < x/2 for all x, small variations are
required to the above proof. If F is subexponential, then we may consider instead
the function ĥ given by ĥ(x) = min(h(x),x/2). Since F is then also ĥ-insensitive, the
relation (3.3) holds with h replaced by ĥ, and so also in its original form. Conversely,
if (3.3) holds, then that F is subexponential follows as before, except only that we
now have “≤” instead of equality in (3.4), which does not affect the argument. ��

Theorem 3.6 implies that, as in the case of non-negative subexponential
summands, the most probable way for large deviations of the sum ξ1 + ξ2 to oc-
cur is that one summand is small and the other is large; for (very) large x, the main
contribution to the probability P{ξ1 + ξ2 > x} is made by the probabilities of the
events {ξ1 + ξ2 > x, ξi ≤ h(x)} for i = 1,2.

We now give what is almost a restatement of Theorem 3.6 in terms of integrals,
in a form which will be of use in various of our subsequent calculations.

Theorem 3.7. Let the distribution F on R be long-tailed. Then the following are
equivalent:

(i) F is whole-line subexponential, i.e. F ∈ SR.
(ii) For every function h with h(x)< x/2 for all x and such that h(x)→∞ as x→∞,

∫ x−h(x)

h(x)
F(x− y)F(dy) = o(F(x)) as x → ∞. (3.6)

(iii) There exists a function h with h(x)< x/2 for all x, such that h(x)→∞ as x→∞
and F is h-insensitive, and the relation (3.6) holds.

Proof. As remarked above, the theorem is only a slight variation on Theorem 3.6.
Let ξ1 and ξ2 again be independent random variables with common distribution F ,
and let h be any function such that h(x)< x/2, h(x)→∞ and F is h-insensitive (note
that since F ∈L there is always at least one such function h); the difference between
the left side of (3.3) and the left side of (3.6) is

P{ξ1 > x− h(x), ξ2 > h(x)}= F(x− h(x))F(h(x))∼ F(x)F(h(x)) = o(F(x))
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as x→∞. The theorem thus follows immediately from Theorem 3.6, except only that
it is necessary to observe that the reason why, in the statement (ii), we do not require
any restriction to functions h such that F is h-insensitive follows from Proposition
2.20(ii). ��

In the succeeding sections, we will make use of the following result.

Lemma 3.8. Suppose that F is whole-line subexponential and that the function h is
such that h(x)→ ∞ as x → ∞. Let the distributions G1, G2 be such that, for i = 1, 2,
we have Gi(x) =O(F(x)) as x → ∞. If η1 and η2 are independent random variables
with distributions G1 and G2, then

P{η1 +η2 > x,η1 > h(x),η2 > h(x)} = o(F(x)) as x → ∞.

Proof. Let ξ1 and ξ2 be two independent random variables with distribution F .
Since Gi(x) = O(F(x)), it follows from Lemma 2.37 that, for some c < ∞,

P{η1 +η2 > x,η1 > h(x),η2 > h(x)} ≤ cP{ξ1 + ξ2 > x,ξ1 > h(x),ξ2 > h(x)}.
The subexponentiality of F and Theorem 3.6, together with the immediately pre-
ceding remark, imply that

P{ξ1 + ξ2 > x,ξ1 > h(x),ξ2 > h(x)}= o(F(x)).

Hence the result follows. ��

3.3 Subexponentiality and Weak Tail-Equivalence

We start with the definition of weak tail-equivalence and then use this property to
establish a number of powerful results.

Definition 3.9. Two distributions F and G with right-unbounded supports are called
weakly tail-equivalent if there exist c1 > 0 and c2 < ∞ such that, for any x > 0,

c1 ≤ F(x)

G(x)
≤ c2.

This is equivalent to the condition

0 < liminf
x→∞

F(x)

G(x)
≤ limsup

x→∞

F(x)

G(x)
< ∞.

Lemma 3.10. Let F and G be weakly tail-equivalent distributions on R. Suppose
that either (i) both F and G are long-tailed, or (ii) both F and G are concentrated
on R

+, and suppose further that

limsup
x→∞

F ∗G(x)

F(x)+G(x)
≤ 1. (3.7)

Then both F and G are subexponential.
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Proof. It follows from Lemma 2.44 that, in both the cases considered, both F and
G are long-tailed.

Now let h be any function such that h(x)< x/2, h(x)→ ∞, and both F and G are
h-insensitive (recall that the existence of such a function is guaranteed by the results
of Sect. 2.4). Let ξ and η be independent random variables with distributions F and
G respectively. It follows from the decomposition (2.33) (with h(x) in place of h),
Lemma 2.34, and the condition (3.7) that

P{ξ +η > x,ξ > h(x),η > h(x)}= o(F(x)+G(x)) as x → ∞. (3.8)

Let ξ ′ be an additional random variable, independent of ξ , with distribution F . Then,
from (3.8), the weak tail-equivalence of F and G, and Lemma 2.37,

P{ξ + ξ ′ > x,ξ > h(x),ξ ′ > h(x)}= o(F(x)+G(x))

= o(F(x)) as x → ∞,

where the second line in the above display again follows from the weak tail-
equivalence of F and G. Hence, by Theorem 3.6, F is subexponential. ��

Now we prove that the class of subexponential distributions is closed under the
weak tail-equivalence relation.

Theorem 3.11. Suppose that F is whole-line subexponential, i.e. F ∈ SR, that G is
long-tailed, and that F and G are weakly tail-equivalent. Then G ∈ SR.

Proof. Choose a function h such that h(x)→∞ and G is h-insensitive. Let η1 and η2

be independent random variables with distribution G. Then, from Lemma 3.8 and
the given weak tail-equivalence,

P{η1 +η2 > x,η1 > h(x),η2 > h(x)} = o(F(x)) = o(G(x)).

Hence it follows from Theorem 3.6 that G ∈ SR. ��
Definition 3.12. Two distributions F and G with right-unbounded supports are said
to be proportionally tail-equivalent if there exists a constant c > 0 such that F(x)∼
cG(x) as x → ∞.

Theorem 3.11 has the following corollary.

Corollary 3.13. Let the distributions F and G be proportionally tail-equivalent. If
F ∈ SR then G ∈ SR.

We now turn to convolutions of many distributions.

Theorem 3.14. Let (a reference distribution) F ∈ SR. Suppose that distributions
G1, . . . ,Gn are such that, for each i, the function F +Gi is long-tailed and Gi(x) =
O(F(x)) as x → ∞. Then

G1 ∗ · · · ∗Gn(x) = G1(x)+ . . .+Gn(x)+ o(F(x)) as x → ∞.
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Proof. Note first that it follows from the conditions of the theorem that, for each i
and for any constant a,

F(x+ a)+Gi(x+ a) = F(x)+Gi(x)+ o(F(x)+Gi(x))

= F(x)+Gi(x)+ o(F(x)).

Hence from the representation F +∑k
i=1 Gi = ∑k

i=1(F +Gi)− (k− 1)F and since F
is also long-tailed, for each k and for any constant a,

F(x+ a)+
k

∑
i=1

Gi(x+ a) = F(x)+
k

∑
i=1

Gi(x)+ o(F(x)),

and so the measure F +∑k
i=1 Gi (i.e. the function F +∑k

i=1 Gi) is also long-tailed.
Note also that for each k we have ∑k

i=1 Gi(x) = O(F(x)). It now follows that it is
sufficient to prove the theorem for case n = 2, the general result then following by
induction.

By Lemma 2.19 and Proposition 2.20 there exists a function h such that h(x)→∞,
h(x) ≤ x/2, and F , F +G1 and F +G2 are all h-insensitive. It then follows from
Lemma 2.34 that, as x → ∞,
∫ h(x)

−∞
G1(x− y)G2(dy) =

∫ h(x)

−∞
(G1 +F)(x− y)G2(dy)−

∫ h(x)

−∞
F(x− y)G2(dy)

= G1 +F(x)−F(x)+ o(G1(x)+F(x))

= G1(x)+ o(F(x)), (3.9)

and similarly
∫ h(x)

−∞
G2(x− y)G1(dy) = G2(x)+ o(F(x)). (3.10)

Further, from Lemma 3.8,
∫ ∞

h(x)
G1(max(h(x),x− y)G2(dy) = o(F(x)). (3.11)

The required result now follows from the decomposition (2.33) (where ξ and η
are independent random variables with distributions G1 and G2) and from (3.9)
to (3.11). ��
Theorem 3.15. Suppose again that the conditions of Theorem 3.14 hold, and that
additionally G1 ∈L and that G1 is weakly tail equivalent to F. Then G1 ∗ · · ·∗Gn ∈
SR, and additionally G1 ∗ · · · ∗Gn is weakly tail equivalent to F.

Proof. It follows from Theorem 3.11 that G1 ∈ SR. Further the weak tail equivalence
of F and G1 implies that, for each k, Gk(x) = O(G1(x)). Hence by Theorem 3.14
with F = G1, the distribution G1 ∗ G2 ∗ · · · ∗ Gn is long-tailed and weakly tail
equivalent to G1 and so also to F . In particular, again by Theorem 3.11, G1 ∗ · · · ∗
Gn ∈ SR. ��

We have the following corollaries of Theorems 3.14 and 3.15.
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Corollary 3.16. Suppose that distributions F and G are such that F ∈ SR, that F+G
is long-tailed and that G(x) = O(F(x)) as x → ∞. Then F ∗G ∈ SR and

F ∗G(x) = F(x)+G(x)+ o(F(x)) as x → ∞.

Proof. This result follows from Theorems 3.14 and 3.15 in the case n = 2 with G1

replaced by F and G2 by G. ��
Corollary 3.17. Assume that F, G ∈ SR. If F and G are weakly tail-equivalent, then
F ∗G ∈ SR.

Corollary 3.18. Assume that F ∈ SR. If G(x) = o(F(x)) as x → ∞, then F ∗G ∈ SR
and F ∗G(x)∼ F(x).

Corollary 3.19. Suppose that F ∈ SR. Let G1, . . . ,Gn be distributions such that
Gi(x)/F(x)→ ci as x → ∞, for some constants ci ≥ 0, i = 1, . . . ,n. Then

G1 ∗ . . .∗Gn(x)

F(x)
→ c1 + . . .+ cn as x → ∞.

If c1 + . . .+ cn > 0, then G1 ∗ . . .∗Gn ∈ SR.

Proof. The first statement of the corollary is immediate from Theorem 3.14. If c1 +
. . .+cn > 0, we may assume without loss of generality that c1 > 0, so that the second
statement follows from Theorem 3.15. ��

The following result is a special case of Corollary 3.19.

Corollary 3.20. Assume that F ∈ SR. Then for any n ≥ 2, F∗n(x)/F(x) → n as
x → ∞. In particular, F∗n ∈ SR.

The following converse result follows.

Theorem 3.21. Let a distribution F on R
+ with unbounded support be such that

F∗n(x)∼ nF(x) for some n ≥ 2. Then F is subexponential.

Proof. Take G := F∗(n−1). For any x we have the inequality G(x) ≥ F(x). On the
other hand, G(x) ≤ F∗n(x) ∼ nF(x). Hence the distributions F and G are weakly
tail-equivalent. Thus by Theorem 2.11, as x → ∞,

F ∗G(x) ≥ (1+ o(1))(F(x)+G(x))

= F(x)+G(x)+ o(F(x)).

Recalling that F ∗G(x) = F∗n(x)∼ nF(x), we deduce the following upper bound:

F∗(n−1)(x) = G(x) ≤ (n− 1+ o(1))F(x).

Together with lower bound (2.6) this implies that F∗(n−1)(x)∼ (n−1)F(x) as x→∞.
By induction we deduce then that F∗2(x)∼ 2F(x), which completes the proof. ��
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3.4 The Class S∗ of Strong Subexponential Distributions

We have already observed that a heavy-tailed distribution F on R
+ is subexponential

if and only if it is long-tailed and its tail is sufficiently regular that limx→∞ F ∗F(x)/
F(x) exists (and that this limit is then equal to 2). Thus subexponentiality, with all
its important properties for the tails of convolutions, is effectively guaranteed for all
those heavy-tailed distributions likely to be encountered in practice.

However, some applications, for example, those concerned with the behaviour of
the maxima of random walks with heavy-tailed increments, require a very slightly
stronger regularity condition with respect to their tails—that of membership of the
class S∗ of strong subexponential distributions which we introduce below. We shall
see that membership of S∗ is again a tail property of a distribution and that S∗ is a
subclass of the class SR of distributions which are whole-line subexponential.

For any distribution F onR with right-unbounded support, we have the inequality
∫ x

0
F(x− y)F(y)dy = 2

∫ x/2

0
F(x− y)F(y)dy

≥ 2F(x)
∫ x/2

0
F(y)dy.

Therefore, always

liminf
x→∞

1

F(x)

∫ x

0
F(x− y)F(y)dy ≥ 2m,

where m = Eξ+ and ξ has distribution F . If F is heavy-tailed, then (see Lemma 4
in [27])

liminf
x→∞

1

F(x)

∫ x

0
F(x− y)F(y)dy = 2m. (3.12)

These observations provide a motivation for the following definition.

Definition 3.22. Let F be a distribution on R with right-unbounded support and
finite mean on the positive half line. We say that F is strong subexponential, and
write F ∈ S∗, if

∫ x

0
F(x− y)F(y)dy ∼ 2mF(x) as x → ∞,

where m = Eξ+ and ξ has distribution F .

It follows from the observation (3.12) that a distribution F on R belongs to the
class S∗ if and only if it is heavy-tailed and sufficiently regular that

lim
x→∞

1

F(x)

∫ x

0
F(x− y)F(y)dy
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exists. Thus it is again the case that most heavy-tailed distributions likely to be of
use in practical applications belong to the class S∗. This includes all those named
distributions introduced in Sect. 2.1, i.e. the Pareto, Burr, Cauchy, lognormal, and
Weibull (with shape parameter α < 1) distributions.

We shall see in Sect. 4.10 that the condition F ∈ S∗ is equivalent to the require-
ment that the density f on R

+ given by f (x) := F(x)/m be subexponential in the
sense defined there.

We show first that the class S∗ of strong subexponential distributions is a subclass
of the class L of long-tailed distributions on R.

Theorem 3.23. Let the distribution F on R belong to S∗. Then F is long-tailed.

Proof. Since, for x ≥ 2,
∫ x

0
F(x− y)F(y)dy ≥ 2F(x)

∫ 1

0
F(y)dy+ 2F(x− 1)

∫ x/2

1
F(y)dy,

the inclusion F ∈ S∗ implies

(F(x− 1)−F(x))
∫ x/2

1
F(y)dy ≤ 1

2

∫ x

0
F(x− y)F(y)dy−F(x)

∫ x/2

0
F(y)dy

= mF(x)−mF(x)+ o(F(x)) as x → ∞,

where again m =
∫ ∞

0 F(y)dy. It thus follows from Lemma 2.22 that F is long-tailed.
��

We now have the following analogue to the conditions for subexponentiality
given by Theorem 3.7.

Theorem 3.24. Let F be a distribution on R. Then the following are equivalent:
(i) F ∈ S∗.

(ii) F is long-tailed, and for every function h with h(x)< x/2 for all x and such that
h(x)→ ∞ as x → ∞,

∫ x−h(x)

h(x)
F(x− y)F(y)dy = o(F(x)) as x → ∞. (3.13)

(iii) There exists a function h with h(x)< x/2 for all x, such that h(x)→ ∞ as x → ∞
and F is h-insensitive, and the relation (3.13) holds.

Note that it follows in particular from Theorem 3.24 that membership of the
class S∗ is a tail property.

Proof. Note first that each of the conditions (i)–(iii) implies that F is long-tailed.
This follows in the case of (i) from Theorem 3.23, and in the case of (iii) from the
existence of an increasing function with respect to which F is h-insensitive. Hence
we assume without loss of generality that F is long-tailed (F ∈ L).
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Let h be any function with h(x) < x/2, such that h(x) → ∞ as x → ∞ and F is
h-insensitive. (Note as usual that since F is assumed long-tailed there exists at least
one such function h.) Then, for any x ≥ 0,

∫ x

0
F(x− y)F(y)dy = 2

∫ h(x)

0
F(x− y)F(y)dy+

∫ x−h(x)

h(x)
F(x− y)F(y)dy.

The h-insensitivity of F implies that
∫ h(x)

0
F(x− y)F(y)dy ∼ mF(x) as x → ∞,

where again m=Eξ+ and ξ has distribution F . It thus follows that the condition F ∈
S∗ is equivalent to (3.13). The theorem now follows on noting that, as in the proof of
Theorem 3.7, the reason why, in the statement (ii), we do not require any restriction
to functions h such that F is h-insensitive follows from Proposition 2.20(ii). ��

We now have the following theorem and its important corollary.

Theorem 3.25. Suppose that F ∈ S∗, that G is long-tailed, and that F and G are
weakly tail-equivalent. Then G ∈ S∗.

Proof. Let h be a function such that h(x) < x/2, h(x) → ∞ and G is h-insensitive.
Then, from Theorem 3.24 and the given weak tail-equivalence,

∫ x−h(x)

h(x)
G(x− y)G(y)dy = O

(∫ x−h(x)

h(x)
F(x− y)F(y)dy

)

= o(F(x))

= o(G(x)) as x → ∞.

Again from Theorem 3.24, it now follows that G ∈ S∗. ��
Corollary 3.26. Let distributions F and G be proportionally tail-equivalent. If F ∈
S∗ then G ∈ S∗.

The following theorem asserts in particular that S∗ is a subclass of SR.

Theorem 3.27. If F ∈ S∗, then F ∈ SR and FI ∈ S.

We do not provide a proof for this result now. Instead of that we recall the notion
of an integrated weighted tail distribution and state sufficient conditions for its tail
to be subexponential. Then Theorem 3.27 is a particular case of Theorem 3.28.

Let F be a distribution on R and let μ be a non-negative measure on R
+ such that

∫ ∞

0
F(t)μ(dt) is finite. (3.14)

Then, as in (2.25), we can define the distribution Fμ on R
+ by its tail:

F μ(x) := min

(

1,
∫ ∞

0
F(x+ t)μ(dt)

)

, x ≥ 0. (3.15)
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We may now ask the following question: what type of conditions on F imply the
subexponentiality of Fμ?

For any b > 0, define the class Mb of all non-negative measures μ on R
+ such

that μ(x,x+ 1]≤ b for all x.

Theorem 3.28. Let F ∈ S∗ and μ ∈ Mb, b ∈ (0,∞). Then Fμ ∈ S. Moreover,
Fμ ∗Fμ(x)∼ 2Fμ(x) as x → ∞ uniformly in μ ∈Mb.

Here are two examples of such measures μ : (i) if μ(B) = I{0 ∈ B}, then Fμ is F
restricted to R

+; (ii) if μ(dt) = dt is Lebesgue measure on R
+, then Fμ = FI . These

examples give a proof of Theorem 3.27.

Proof. First, recall that Theorem 2.28 states that if F is long-tailed, then Fμ is
long-tailed uniformly in μ ∈ Mb. Thus, it is sufficient to show that, for any
h(x)→ ∞,

lim
x→∞

sup
μ∈Mb

1

F μ(x)

∫ x−h(x)

h(x)
F μ(x− y)Fμ(dy) = 0, (3.16)

see Theorem 3.7. For any μ ∈Mb,

Fμ(y,y+ 1]≤
∫ y+1

y
F(t)μ(dt)≤ F(y)μ(y,y+ 1]≤ bF(y).

Therefore, (3.16) holds if and only if

lim
x→∞

sup
μ∈Mb

1

F μ(x)

∫ x−h(x)

h(x)
F μ(x− y)F(y)dy = 0. (3.17)

Since F ∈ S∗, as x → ∞,
∫ x−h(x)

h(x)
F(x− u)F(u)du = o(F(x)),

by Theorem 3.24. Then,

∫ x−h(x)

h(x)
Fμ(x− y)F(y)dy =

∫ x−h(x)

h(x)

(∫ ∞

0
F(x+ t − y)μ(dt)

)

F(y)dy

≤
∫ ∞

0

(∫ x+t−h(x)

h(x)
F(x+ t − y)F(y)dy

)

μ(dt)

=

∫ ∞

0
o(F(x+ t))μ(dt) = o(Fμ(x))

and we get (3.17). ��
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3.5 Sufficient Conditions for Subexponentiality

We formulate and prove here two results. The first may be applied to very heavy
distributions such as Pareto distributions, while the second one may be applied to
lighter distributions of the Weibull-type.

Theorem 3.29. Let F be a long-tailed distribution on R (F ∈ L) and suppose that
there exists c > 0 such that F(2x)≥ cF(x) for all x (that is, F belongs to the class D
of dominated-varying distributions introduced in Sect. 2.1). Then:

(i) F is whole-line subexponential.
(ii) F ∈ S∗, provided F has a finite mean on the positive half line.

(iii) Fμ ∈ S, for all μ satisfying (3.14).

Note in particular that the statement (i) of Theorem 3.29 asserts that D∩L⊆ SR.

Proof. It follows from the comment after Theorem 3.28 that (iii) implies (i) and
(ii). Thus it is sufficient to prove (iii). The inequality F(2x) ≥ cF(x) yields, for
those values of x such that the integrals below are less than 1,

F μ(2x) =
∫ ∞

0
F(2x+ y)μ(dy)

≥ c
∫ ∞

0
F(x+ y/2)μ(dy)

≥ c
∫ ∞

0
F(x+ y)μ(dy) = cF μ(x). (3.18)

Now let h be any function such that h(x)< x/2 and h(x)→∞. We have the following
bound:
∫ x−h(x)

h(x)
F μ(x− y)Fμ(dy) =

∫ x/2

h(x)
Fμ(x− y)Fμ(dy)+

∫ x−h(x)

x/2
F μ(x− y)Fμ(dy)

≤ F μ(x/2)Fμ(h(x))+Fμ(h(x))F μ(x/2).

Therefore, by (3.18),
∫ x−h(x)

h(x)
F μ(x− y)Fμ(dy) ≤ 2Fμ(x)F μ(h(x))/c = o(F μ(x)) as x → ∞.

Applying now Theorem 3.7(ii), we conclude that Fμ ∈ S. ��
The Pareto distribution, and more generally any regularly varying or indeed

intermediate regularly varying distribution, satisfies the conditions of Theorem 3.29
(i.e. belongs to D ∩ L) and is, therefore, subexponential. All of the above
distributions whose means are finite also belong to the to class S∗.

However, the lognormal distribution and the Weibull distribution do not satisfy
the conditions of Theorem 3.29 and we need a different technique for proving their
subexponentiality.
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Recall that we denote by R the hazard function given by R(x) := − lnF(x) and
by r the hazard rate function given by r(x) = R′(x), provided the hazard function is
differentiable.

Theorem 3.30. Let F be a long-tailed distribution on R (F ∈L). Assume that there
exist γ < 1 and A < ∞ such that the hazard function R(x) satisfies the following
inequality:

R(x)−R(x− y) ≤ γR(y)+A, (3.19)

for all x > 0 and y ∈ [0,x/2]. If the function e−(1−γ)R(x) is integrable over R+, then
F ∈ S∗. In particular, F is whole-line subexponential (F ∈ SR).

Proof. For any h < x/2,

∫ x−h

h
F(x− y)F(y)dy = 2

∫ x/2

h
F(x− y)F(y)dy

= 2F(x)
∫ x/2

h
eR(x)−R(x−y)−R(y)dy.

It follows from (3.19) that
∫ x/2

h
eR(x)−R(x−y)−R(y)dy ≤ eA

∫ ∞

h
e−(1−γ)R(y)dy → 0 as h → ∞,

since the function e−(1−γ)R(x) is integrable. Hence, if h is now any function such that
h(x)→ ∞ then

∫ x−h(x)

h(x)
F(x− y)F(y)dy = o(F(x)).

Hence, by Theorem 3.24, we have F ∈ S∗. ��
We note briefly that, for 0 < γ < 1, the function e−(1−γ)R(x) is integrable if F has

a finite moment of order 1
1−γ +ε on the positive half line R+ for some ε > 0. To see

this note that the tail of F may then be bounded from above by cx−1/(1−γ)−ε (by the
Chebyshev inequality):

e−(1−γ)R(x) = (F(x))1−γ ≤ c1−γx−1−(1−γ)ε .

The heavy-tailed Weibull distribution, with tail function F given by F(x) = e−xα

for some α ∈ (0,1), satisfies the conditions of Theorem 3.30. Indeed, since the
function R(x) = xα is concave for α ∈ (0,1), we have for y ≤ x/2

(
so that x− y ≥ y

and R′(x− y)≤ R′(y)
)

R(x)−R(x− y)≤ yR′(x− y)≤ yR′(y) = αR(y).

Similarly, it may be checked that the lognormal distribution satisfies conditions
of Theorem 3.30 and, therefore, belongs to the class S∗.
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3.6 Conditions for Subexponentiality in Terms
of Truncated Exponential Moments

Note that some heavy-tailed distributions, for example those with tail functions of
the form e−x/ logx do not satisfy the conditions of Theorem 3.30 (in this case γ = 1)
and we need a more advanced technique for proving the subexponentiality of such
distributions. The next two theorems, due to Pitman [45], relate the classes S and S∗
to the asymptotic behaviour of truncated exponential moments with special indices.

Theorem 3.31. Let F be a distribution on R
+. Suppose that the hazard rate func-

tion r exists, is eventually non-increasing and that r(x) → 0 as x → ∞. Then F is
subexponential (F ∈ S) if and only if

∫ x

0
eyr(x)F(dy)→ 1 as x → ∞. (3.20)

Further, a sufficient condition for subexponentiality is that the function of y given by
eyr(y)−R(y)r(y) is integrable over R+. Here R(x) =

∫ x
0 r(y)dy defines the correspond-

ing hazard function.

Note that the integral in (3.20) is equal to E{eξ r(x);ξ ≤ x}, where ξ is a random
variable with distribution F .

Proof. The proof consists of two steps. First, we show that it may be assumed
without loss of generality that the function r(x) is non-increasing for all x (and
that the condition (3.20) is a tail property), and then we prove the results under this
assumption.

Suppose first that r(x) may increase in a neighbourhood of 0 but is non-increasing
for all x ≥ x∗. Define the non-increasing hazard rate

r∗(x) =
{

r(x∗) for x ≤ x∗,
r(x) for x > x∗,

and put R∗(x) =
∫ x

0 r∗(y)dy. Define also the distribution F∗ by F∗(x) = e−R∗(x). Then,
for all x ≥ x∗,

R∗(x)−R(x) =
∫ x∗

0
(r(x∗)− r(y))dy =: c∗,

and hence, by Theorem 3.11, either both F∗ and F are subexponential or both are
not. We now prove that the functions r and r∗ either both satisfy, or else both fail to
satisfy, the condition (3.20). Note first that F∗(x∗) = e−c∗F(x∗). Note that r(x)→ 0
as x → ∞ implies that eyr(x) → 1 as x → ∞, uniformly in 0 ≤ y ≤ x∗. Hence

∫ x

0
eyr(x)F(dy) =

(∫ x∗

0
+

∫ x

x∗

)

eyr(x)F(dy)

= F[0,x∗]+ o(1)+
∫ x

x∗
eyr(x)F(dy).
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It now follows that F satisfies the condition (3.20) if and only if
∫ x

x∗
eyr(x)F(dy) =

∫ x

x∗
F(dy)+ o(1) = F(x∗)+ o(1).

Note also that F∗(dx) = e−c∗F(dx) for x > x∗. Therefore, as x → ∞,
∫ x

0
eyr∗(x)F∗(dy) =

∫ x∗

0
eyr∗(x)F∗(dy)+

∫ x

x∗
eyr(x)F∗(dy)

= F∗[0,x∗]+ o(1)+ e−c∗
∫ x

x∗
eyr(x)F(dy)

= F∗[0,x∗]+ o(1)+ e−c∗(F(x∗)+ o(1))

= F∗[0,x∗]+F∗(x∗)+ o(1) = 1+ o(1).

where the equality in the second line follows since r(x)→ 0 and from the definitions,
and equality in the third line holds if and only if and only if F satisfies (3.20).
Thus, we have shown that F satisfies (3.20) if and only if F∗ satisfies the analogous
condition, with F∗ in place of F and r∗ in place of r. In other words, without loss of
generality, we may assume from the very beginning that r(x) is non-increasing for
all x ≥ 0.

It follows from the definition (3.1) that subexponentiality is equivalent to the
convergence: as x → ∞,

∫ x

0
eR(x)−R(x−y)F(dy) =

∫ x

0
eR(x)−R(x−y)−R(y)r(y)dy → 1. (3.21)

Since r(x) = R′(x) is non-increasing, R(x) is concave and

R(x)−R(x− y)≥ yr(x) for any y ∈ [0,x].

Hence, subexponentiality in the form (3.21) implies

limsup
x→∞

∫ x

0
eyr(x)F(dy)≤ 1.

Together with the fact that the integral in the above expression is at least F[0,x], this
implies (3.20).

Now suppose that (3.20) holds. We make use of the following representation:
∫ x

0
eR(x)−R(x−y)F(dy) =

(∫ x/2

0
+
∫ x

x/2

)

eR(x)−R(x−y)−R(y)r(y)dy

=

∫ x/2

0
eR(x)−R(x−y)−R(y)r(y)dy

+

∫ x/2

0
eR(x)−R(x−y)−R(y)r(x− y)dy

=: I1 + I2.
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The first integral is not less than F [0,x/2] which tends to 1 as x → ∞. On the other
hand, for y ≤ x/2, and therefore x− y ≥ x/2,

R(x)−R(x− y)≤ yr(x− y)≤ yr(x/2). (3.22)

Thus,

I1 ≤
∫ x/2

0
eyr(x/2)F(dy),

which tends to 1 as x → ∞ by (3.20). Thus I1 → 1.
On noting that, for any fixed y, eR(x)−R(x−y)−R(y)r(y)→ e−R(y)r(y) as x → ∞ and

that
∫ ∞

0 e−R(y)r(y)dy = 1, we obtain that the family (in x) of functions (in y)

zx(y) = eR(x)−R(x−y)−R(y)r(y)I{y ≤ x/2}
is uniformly integrable in the sense that

sup
x

∫ ∞

A
zx(y)dy → 0 as A → ∞.

Since r(x − y) ≤ r(y) for all y ≤ x/2, the integrand in I2 is dominated by zx(y).
It follows that I2 → 0 as x → ∞, since also eR(x)−R(x−y)−R(y)r(x − y)≤r(x − y)
→ 0 for any fixed y. Thus (3.21) holds; that is, the condition (3.20) implies
subexponentiality.

The second part of the theorem follows by dominated convergence, since, for all
sufficiently large y < x, we have r(x) ≤ r(y). ��

As an example, consider a distribution F such that, for some α > 0 and for all
sufficiently large x,

F(x) = e−x/ logα x (3.23)

Then, again for sufficiently large x, the hazard rate function r is given by r(x) =
1/ logα x−α/ logα+1 x and the function

exr(x)−R(x)r(x) = e−αx/ logα+1 xr(x)

(where, as usual, R is the corresponding hazard function) is integrable over R
+.

Therefore, by Theorem 3.31, F is subexponential.
In the following theorem we give an applicable necessary and sufficient condition

for membership of the class S∗.

Theorem 3.32. Let F be a distribution on R
+ with finite mean m. Suppose that the

hazard rate function r exists, is eventually non-increasing, and that r(x) → 0 as
x → ∞. Then F is strong subexponential if and only if

∫ x

0
eyr(x)F(y)dy → m as x → ∞. (3.24)

Further, a sufficient condition for F ∈ S∗ is that (the function of y given by) eyr(y)F(y)
is integrable over R+.
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Proof. Arguments similar to those used in the proof of Theorem 3.31 show that
without loss of generality we may assume that the corresponding hazard function R
satisfies R(0)= 0 and that the hazard rate function r is non-increasing over all ofR+.
The distribution F belongs to the class S∗ if and only if, as x → ∞,

∫ x/2

0
eR(x)−R(x−y)F(y)dy :=

∫ x/2

0
eR(x)−R(x−y)−R(y)dy → m. (3.25)

Since r(x) = R′(x) is non-increasing, R(x) is concave and

R(x)−R(x− y)≥ yr(x) for any y ∈ [0,x].

Suppose first that the condition (3.25) holds. Then

limsup
x→∞

∫ x

0
eyr(x)F(y)dy ≤ m.

However, we also have that the latter integral is at least
∫ x

0 F(y)dy which tends to m
as x → ∞. Hence the condition (3.24) follows.

Now suppose instead that the condition (3.24) holds. It follows from (3.22) that
∫ x/2

0
eR(x)−R(x−y)F(y)dy ≤

∫ x/2

0
eyr(x/2)F(y)dy,

and from (3.24) that this latter integral tends to m as x → ∞.
The second part of the theorem follows by dominated convergence, since, again

for all sufficiently large y < x, we have r(x)≤ r(y). ��
As an example we again consider a distribution F whose tail is such that, for

some α > 0 and for all sufficiently large x, the relation (3.23) holds. We now have
that F ∈ S∗, since in this case the function

exr(x)−R(x) = e−αx/ logα+1 x

(where the hazard rate function r is given as previously and R is again the corre-
sponding hazard function) is integrable over R+.

3.7 S Is a Proper Subset of L

In this section we use Theorem 3.31 to construct a distribution F which is long-tailed
but not subexponential. Fix any decreasing sequence αn → 0 as n → ∞. The corre-
sponding hazard function R(x) will be defined as continuous and piecewise linear
so that the hazard rate function r(x) := R′(x) = αn for x ∈ (xn−1,xn]. Since on the
interval y ∈ (xn−1,xn]

yr(xn)−R(y) = yαn − [R(xn−1)+αn(y− xn−1)]>−R(xn−1),

we have the following lower bound for the integral on the left side of (3.20):
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∫ xn

xn−1

eyr(xn)−R(y)r(y)dy ≥
∫ xn

xn−1

e−R(xn−1)αndy

= αn(xn − xn−1)e
−R(xn−1).

Now choose x0 = 0, R(x0) = 0, and the xn so that

αn(xn − xn−1)e
−R(xn−1) = 2.

For this we take xn = xn−1 + 2α−1
n eR(xn−1) and then

R(xn) = R(xn−1)+αn(xn − xn−1)

= R(xn−1)+ 2eR(xn−1).

Clearly R(x)→∞ as x→∞. Since αn → 0 as n→∞, r(x)→ 0 as x→∞; thus, F(x)=
e−R(x) is long-tailed (see Sect. 2.5). On the other hand, by the above construction,

∫ xn

xn−1

eyr(xn)−R(y)r(y)dy ≥ 2 for all n,

so that
∫ xn

0
eyr(xn)−R(y)r(y)dy

does not converge to 1 as n → ∞. It now follows from Theorem 3.31 that F is not
subexponential.

The idea in this example is that the tail F is a piecewise exponential function;
the indexes of the exponents tend to zero and the lengths of the intervals of
exponentiality grow very fast.

3.8 Does F ∈ S Imply That FI ∈ S?

It is natural to consider the following question: May the assumption F ∈ S∗ of
Theorem 3.28 be weakened to F ∈ S? In the case of Lebesgue measure μ , i.e. where
Fμ = FI , this question is raised in [24, Sect. 1.4.2].

In this section, we answer the above question in the negative by giving an
example of a distribution F ∈ S with finite mean such that FI /∈ S. This example
is based on the following construction.

Define R0 = 0, R1 = 1 and Rn+1 = eRn/Rn. Since ex/x is increasing for x ≥ 1, the
sequence Rn is increasing and

Rn = o(Rn+1) as n → ∞. (3.26)

Put tn = R2
n. Define the hazard function R(x) :=− lnF(x) as

R(x) = Rn + rn(x− tn) for x ∈ (tn, tn+1],
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where

rn =
Rn+1 −Rn

tn+1 − tn
=

1
Rn+1 +Rn

(3.27)

∼ 1
Rn+1

as n → ∞ (3.28)

by (3.26). In other words, the hazard rate r(x) = R′(x) is defined as r(x) = rn for
x ∈ (tn, tn+1], where rn is given by (3.27). By construction, we have

F(tn) = e−
√

tn ,

so that at the points tn the tail function F of the distribution F behaves like that of
the Weibull distribution with parameter 1/2. Between these points the tail decays
exponentially with indexes rn.

We shall prove that F ∈ S and has finite mean, but that FI /∈ S. Let

Jn := FI(tn, tn+1] =

∫ tn+1

tn
F(u)du =

∫ tn+1

tn
e−R(u)du.

Since by (3.28)

Jn = r−1
n

(
e−Rn − e−Rn+1

)

∼ r−1
n e−Rn ∼ Rn+1e−Rn = 1/Rn as n → ∞, (3.29)

the mean of F ,
∫ ∞

0
F(y)dy =

∞

∑
n=0

∫ tn+1

tn
F(y)dy,

is finite.
It follows from (3.27) that r(x) is eventually decreasing and tends to 0, and we

can thus apply Theorem 3.31 to show that F is subexponential. By that theorem,
F is subexponential provided the function eyr(y)−R(y)r(y) is integrable over R+. We
estimate the integral of this function. Put

In =

∫ tn+1

tn
eyr(y)−R(y)r(y)dy.

Then

In = rn

∫ tn+1

tn
eyrn−Rn−rn(y−tn)dy ≤ rne−Rn+rntn tn+1.

Since, as n → ∞,

rntn+1 = rnR2
n+1 ∼ Rn+1 (3.30)

by (3.28) and

rntn = rnR2
n ∼ R2

n/Rn+1 = R3
ne−Rn → 0, (3.31)
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we get, for n sufficiently large,

In ≤ 2Rn+1e−Rn ∼ 2/Rn.

Therefore,
∫ ∞

0
eyr(y)−R(y)r(y)dy =

∞

∑
n=0

In < ∞,

and F is indeed subexponential.
In order to prove that FI is not subexponential, we again take use of Theorem 3.31.

It suffices to prove that
∫ x

0
eyr(x)FI(dy) =

∫ x

0
eyr(x)F(y)dy → ∞

for some subsequence of points x. If we take x = tn+1, then the latter integral is not
less than

∫ tn+1

tn
eyr(tn+1)F(y)dy =

∫ tn+1

tn
eyrne−Rn−rn(y−tn)dy

≥ e−Rn(tn+1 − tn).

Then, for all those n where tn+1 > 2tn,
∫ tn+1

0
eyr(tn+1)FI(dy)≥ e−Rntn+1/2 = e−RnR2

n+1/2 = eRn/2R2
n.

which tends to infinity as n → ∞. so that FI is not subexponential. Thus, F ∈ S and
has finite mean, but FI /∈ S.

3.9 Closure Properties of the Class of Subexponential
Distributions

In this section, we discuss the following question: is the class SR closed under
convolution? It is well-known that the class of regularly varying distributions, which
is a subclass of the class SR of subexponential distributions, is closed under convo-
lution. Indeed if F and G are regularly varying, the result that F ∗G is also regularly
varying is straightforwardly obtained from Theorem 3.14 by taking the “reference”
distribution of that theorem to be (F +G)/2. It is also known that the class SR
does not possess this closure property. However, if distributions F , G ∈ SR, then it
follows from Corollary 3.16 that a sufficient condition for F ∗G ∈ SR is given by
G(x) = O(F(x)) as x → ∞. (Indeed, as the corollary shows, G may satisfy weaker
conditions than that of being subexponential.) Further it follows that under this
condition we have that, for any function h such that h(x) → ∞ and both F and G
are h-insensitive,

P{ξ +η > x,ξ > h(x),η > h(x)}= o(F(x)+G(x)) as x → ∞, (3.32)
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where ξ and η are independent random variables with respective distributions F
and G. (See, for example, the proof of Theorem 3.14 above.) The following result is
therefore not surprising: if F , G∈ SR, the condition (3.32) is necessary and sufficient
for F ∗G ∈ SR.

Theorem 3.33. Suppose that the distributions F and G on R are subexponential.
Then the following conditions are equivalent:

(i) F ∗G(x)∼ F(x)+G(x) as x → ∞
(ii) F ∗G ∈ SR

(iii) The mixture pF +(1− p)G belongs to SR for all p satisfying 0 < p < 1
(iv) The mixture pF +(1− p)G belongs to SR for some p satisfying 0 < p < 1
(v) The relation (3.32) holds for any function h such that h(x)→ ∞ as x → ∞ and

both F and G are h-insensitive
(vi) The relation (3.32) holds for some function h such that h(x)→ ∞ as x → ∞ and

both F and G are h-insensitive

Proof. Let h be any function such that h(x) → ∞ as x → ∞ and both F and G are
h-insensitive. We show that each of the conditions (i)–(iv) is equivalent to (3.32).
The equivalence of the conditions (i)–(vi) of the theorem is then immediate. First,
since F and G are subexponential, and hence long-tailed, it follows from the decom-
position (2.18) and Lemma 2.34 that

F ∗G(x)

= F(x)+ o(F(x))+G(x)+ o(G(x))+P{ξ +η > x,ξ > h(x),η > h(x)}. (3.33)

Hence the condition (i) and (3.32) are equivalent.
To show the equivalence of (ii) and (3.32) observe first that subexponentiality of

F and G implies that

F∗2(x)∼ 2F(x), G∗2(x)∼ 2G(x), (3.34)

and thus in particular, from Lemma 2.37, that

P{ξ1 + ξ2 +η1 +η2 > x,ξ1 + ξ2 > h(x),η1 +η2 > h(x)}
∼ 4P{ξ +η > x,ξ > h(x),η > h(x)}. (3.35)

Further, since (F ∗G)∗2 = F∗2 ∗G∗2 and since both F∗2 and G∗2 are h-insensitive,
(F ∗G)∗2(x) may be estimated as in (3.33) with F∗2 and G∗2 replacing F and G.
Hence, using also (3.34) and (3.35),

(F ∗G)∗2(x)

= (2+ o(1))(F(x)+G(x))+ (4+ o(1))P{ξ +η > x,ξ > h(x),η > h(x)}.
(3.36)

Now since subexponentiality of F and G also implies, by Corollary 2.42, that
F ∗G ∈ L, the condition (ii) is equivalent to the requirement that
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(F ∗G)∗2(x) = (2+o(1))F ∗G(x)

= (2+o(1))(F(x)+G(x))+(2+o(1))P{ξ +η > x,ξ > h(x),η > h(x)},
(3.37)

where (3.37) follows from (3.33). However, the equalities (3.36) and (3.37) hold
simultaneously if and only if (3.32) holds.

Finally, to show the equivalence of (iii) (and (iv)) and (3.32), fix p such that
0< p < 1 and note first that pF +(1− p)G is h-insensitive. Hence, by Theorem 3.6,
subexponentiality of pF +(1− p)G is equivalent to
∫ ∞

h(x)
pF +(1− p)G(max(h(x),x− y))(pF +(1− p)G)(dy) = o(F(x)+G(x)).

The left side is equal to

p2
P{ξ1+ξ2>x,ξ1>h(x),ξ2>h(x)}+(1−p)2

P{η1+η2 > x,η1 > h(x),η2 > h(x)}
+2p(1−p)P{ξ+η > x,ξ > h(x),η > h(x)}.

By subexponentiality of F and G and again by Theorem 3.6, P{ξ1 + ξ2 > x,ξ1 >
h(x),ξ2 > h(x)} = o(F(x)) and P{η1 +η2 > x,η1 > h(x),η2 > h(x)} = o(G(x)).
The equivalence of (iii) and (3.32) now follows. ��

In general, the class SR is not closed under convolutions. An example of two
subexponential distributions F1 and F2 such that F1 ∗F2 is not subexponential was
constructed by Leslie in [40].

3.10 Kesten’s Bound

We know that if a distribution F on R is subexponential (F ∈ SR) then F∗n(x)/
F(x) → n as x → ∞. However, for many purposes, e.g. the application of the
dominated convergence theorem, an upper bound for F∗n(x)/F(x) is required.
One such is given by the theorem below, known as Kesten’s bound.

Theorem 3.34. Suppose that F ∈ SR. Then, for any ε > 0, there exists c(ε)> 0 such
that, for any x ≥ 0 and n ≥ 1,

F∗n(x)≤ c(ε)(1+ ε)nF(x).

Proof. Since for any random variable ξ we have ξ ≤ ξ+, it is sufficient to prove the
theorem for distributions on the positive half-line R

+. Let ξ1,ξ2, . . . be a sequence
of independent random variables with common distribution F , and, for each n, let
Sn = ∑n

i=1 ξi. For x0 > 0 and k ≥ 1, put

Ak := Ak(x0) = sup
x>x0

F∗k(x)

F(x)
.
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Take ε > 0. It follows from subexponentiality that there exists x0 such that, for any
x > x0,

P{ξ1 + ξ2 > x, ξ2 ≤ x} = P{ξ1 + ξ2 > x}−P{ξ2 > x}
≤ (1+ ε/2)F(x).

We have the following decomposition

P{Sn > x}= P{Sn > x, ξn ≤ x− x0}+P{Sn > x, ξn > x− x0}
=: P1(x)+P2(x).

By the definitions of An−1 and x0, for any x > x0,

P1(x) =
∫ x−x0

0
P{Sn−1 > x− y}P{ξn ∈ dy}

≤ An−1

∫ x−x0

0
F(x− y)P{ξn ∈ dy}

= An−1P{ξ1 + ξn > x, ξn ≤ x− x0}
≤ An−1(1+ ε/2)F(x). (3.38)

Further, for any x > x0,

P2(x)≤ P{ξn > x− x0} ≤ LF(x), (3.39)

where

L = sup
y

F(y− x0)

F(y)
.

Since F is long-tailed, L is finite. It follows from (3.38) and (3.39) that An ≤
An−1(1+ ε/2)+L for n > 1. Therefore, an induction argument yields:

An ≤ A1(1+ ε/2)n−1+L
n−2

∑
l=0

(1+ ε/2)l ≤ Ln(1+ ε/2)n−1.

This implies the conclusion of the theorem. ��
It is straightforward to check that the above proof depends on F only through the

quantity |F ∗F(x)/F(x)− 2|. We hence obtain immediately the following uniform
version of Kesten’s bound.

Theorem 3.35. Suppose that the family of distributions F is uniformly subexponen-
tial, that is,

sup
F∈F

∣
∣
∣
F ∗F(x)

F(x)
− 2
∣
∣
∣→ 0 as x → ∞, (3.40)

and, in addition, for any y > 0,
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sup
F∈F

sup
x

F(x− y)

F(x)
< ∞. (3.41)

Then, for any ε > 0, there exists c(ε)> 0 such that, for any F ∈ F, x ≥ 0 and n ≥ 1,

F∗n(x)≤ c(ε)(1+ ε)nF(x).

Recall from Sect. 3.4 that, for any b > 0, we define the class Mb to consist of all
non-negative measures μ on R

+ such that μ(x,x+ 1] ≤ b for all x. As before, we
define the distribution Fμ on R

+ by its tail:

F μ(x) := min
(

1,
∫ ∞

0
F(x+ t)μ(dt)

)
, x ≥ 0.

We now have the following corollary to Theorem 3.35.

Corollary 3.36. Assume that F ∈ S∗ and b > 0. Then, for any ε > 0, there exists
c(ε)> 0 such that, for all μ ∈Mb, x ≥ 0 and n ≥ 1,

F∗n
μ (x) ≤ c(ε)(1+ ε)nF μ(x).

Proof. We check the conditions of Theorem 3.35. The uniform subexponentiality
follows from Theorem 3.28. Fix y > 0. Since F ∈ S∗, F is long-tailed and, therefore,
there exists c < ∞ such that F(x− y)≤ cF(x) for all x. Then

∫ ∞

0
F(x− y+ t)μ(dt) ≤ c

∫ ∞

0
F(x+ t)μ(dt),

and so also the condition (3.41) holds. ��

3.11 Subexponentiality and Randomly Stopped Sums

In this section we study tail asymptotics for the distribution of a sum of independent
identically distributed random variables stopped at a random time which is indepen-
dent of the summands. These results may be used in a variety of areas including the
theory of random walks, branching processes, infinitely divisible laws, etc.

Let ξ , ξ1, ξ2, . . . be independent random variables with a common distribution
F on R

+. Let S0 = 0 and, for n ≥ 1, let Sn = ξ1 + . . .+ξn. Let the counting random
variable τ be independent of the sequence {ξn} and take values in Z

+. Then the
distribution of Sτ is given by

F∗τ =
∞

∑
n=0

P{τ = n}F∗n. (3.42)

The first result below says that if the random variable τ has a light-tailed
distribution and the distribution F of the random variables ξi has a subexponential
distribution, then again there holds the “principle of a single big jump” introduced
in Sect. 3.1.
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Theorem 3.37. Suppose that Eτ < ∞, that F ∈ SR and that E(1+δ )τ < ∞ for some
δ > 0. Then

P{Sτ > x}
F(x)

→ Eτ as x → ∞. (3.43)

Proof. The proof is immediate from Corollary 3.20, Theorem 3.34, and the domi-
nated convergence theorem. ��

Here the result is valid for any subexponential distribution on the whole real
line. For a fixed distribution F , the condition E(1+ δ )τ < ∞ may be substantially
weakened. We can illustrate this by the following example. Assume that there exist
finite positive constants c and α such that F(x/n)≤ cnαF(x) for all x > 0 and n ≥ 1
(for instance, the Pareto distribution with parameter α satisfies this condition). Then
P{Sτ > x}∼Eτ ·F(x) as x→ ∞ provided Eτ1+α is finite; this follows by combining
the dominated convergence with the inequalities

P{Sn > x} ≤ P{n ·max
k≤n

ξk > x} ≤ nP{ξ1 > x/n} ≤ n1+αF(x).

The next result shows that subexponentiality on the positive half-line R
+ is

essentially characterised by the relation (3.43).

Theorem 3.38. Suppose that Eτ < ∞ and that P{τ > 1} > 0. Suppose further that
the distribution F is concentrated on R

+ and that

limsup
x→∞

P{Sτ > x}
F(x)

≤ Eτ.

Then F ∈ S.

Proof. For each positive integer k, let pk = P{τ = k}; note also that, from (2.6),
since F is concentrated on R

+ and has unbounded support,

liminf
x→∞

F∗k(x)

F(x)
≥ k. (3.44)

Let n ≥ 2 be such that pn > 0. Then, from (3.42) and the theorem hypothesis,

Eτ ≥ limsup
x→∞

P{Sτ > x}
F(x)

≥ liminf
x→∞ ∑

k �=n

pk
F∗k(x)

F(x)
+ pn limsup

x→∞

F∗n(x)

F(x)

≥ ∑
k �=n

pk liminf
x→∞

F∗k(x)

F(x)
+ pn limsup

x→∞

F∗n(x)

F(x)

≥ ∑
k �=n

pkk+ pn limsup
x→∞

F∗n(x)

F(x)
,
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where the third line in the above display follows from Fatou’s Lemma and the last
line follows from (3.44). Since also Eτ = ∑k≥0 pkk and pn > 0, it follows that

limsup
x→∞

F∗n(x)

F(x)
≤ n,

which, by Theorem 3.21, implies the subexponentiality of F . ��
The uniform version of Kesten’s bound, see Theorem 3.35, implies the following

result for families of distributions.

Theorem 3.39. Let δ > 0 and c < ∞. Suppose that the family of distributions F is
uniformly subexponential, that is,

sup
F∈F

∣
∣
∣
∣
F ∗F(x)

F(x)
− 2

∣
∣
∣
∣→ 0 as x → ∞,

and that, in addition, for any y > 0,

sup
F∈F

sup
x

F(x− y)

F(x)
< ∞.

Then
∞

∑
n=0

F∗n(x)P{τ = n} ∼ EτF(x)

as x → ∞ uniformly in F ∈ F and in all τ such that E(1+ δ )τ ≤ c.

Together with Corollary 3.36, Theorem 3.39 implies the following uniform
asymptotics.

Corollary 3.40. Let b > 0, δ > 0 and c < ∞. Suppose that F ∈ S∗. Then

∞

∑
n=0

F∗n
μ (x)P{τ = n} ∼ EτF μ(x)

as x → ∞ uniformly in μ ∈Mb and in all τ such that E(1+ δ )τ ≤ c.

3.12 Comments

The concept of subexponential distributions (but not the name) was introduced by
Chistyakov in [13], in the context of branching processes. In the same paper, the
present Lemma 3.2 was established as well as some sufficient conditions for subex-
ponentiality. Also, Theorem 3.34 (Kesten’s bound) was proved under an additional
technical assumption. The first book containing subexponential stuff was [7] by
Athreya and Ney; to the best of our knowledge, the term subexponential class of
distributions (as well as the notation S) was first introduced in this book. This book
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also contains the general case of Kesten’s bound (Lemma 4.4.7 there), the proof is
due to Kesten, as written in the second paragraph on p. 148 in [7] and in Remark 2
on page 267 in [14] (an analogue result for the class Sγ , γ > 0, see Chover, Ney, and
Wainger [15]).

The notion of weak tail-equivalence and Theorem 3.11 go back to Klüppelberg
[32].

The class S∗ was introduced by Klüppelberg [32].
Corollary 3.18 was proved by Embrechts, Goldie, and Veraverbeke [23].
The version of Corollary 3.16 with G ∈ L was proved by Embrechts and

Goldie [21]). Corollary 3.19 is well-known (and goes back to Embrechts and
Goldie [22] where the case n = 2, G1 = G2 was considered; some particular re-
sults may be found in Teugels [52] and Pakes [44], see also Asmussen, Foss, and
Korshunov [4]).

Theorem 3.31 is due to Pitman [45].
Examples where F is long-tailed but not subexponential can be found in

Embrechts and Goldie [21], and in Pitman [45]. Here we have followed the idea
of Pitman.

The first four equivalences given by Theorem 3.33 were proved by Embrechts
and Goldie in [21].

3.13 Problems

3.1. Prove the Cauchy distribution is subexponential and strong subexponential.
3.2. Using direct estimates for convolution of the Pareto density, show the Pareto

distribution is subexponential and strong subexponential.
3.3. Using direct estimates for convolutions, prove that any regularly varying at

infinity distribution is subexponential and strong subexponential.
3.4. Let F and G be two distributions that are regularly varying at infinity, and let

0 < p < 1.

(i) Prove that the distribution pF +(1− p)G is regularly varying at infinity.
(ii) Prove that the distribution F ∗G is regularly varying at infinity.

3.5. Prove by direct calculations of convolution density that the exponential
distribution is not subexponential.

3.6. Suppose that ξ1, . . . , ξn are independent random variables with common
distribution F . Prove the maximum, max(ξ1, . . . ,ξn), has subexponential distribu-
tion if and only if F is subexponential.

3.7. Suppose that F and G are weakly tail-equivalent distributions on R
+. Prove

that the convolutions F ∗F and G∗G are weakly tail-equivalent too. Prove the same
for n-fold convolutions, for any n ≥ 3.

3.8. Suppose that ξ1, . . . , ξn are independent random variables with a common
exponential distribution. Find the asymptotics for probability P{ξ α1

1 + . . .+ ξ αn
n >

x} as x → ∞ if
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(i) all αi > 1;
(ii) all αi < 0;
(iii) all αi �∈ [0,1].

3.9. Let non-negative random variable ξ have the Weibull distribution with the

tail F(x) = e−xβ
, β > 0. For which values of α > 0, doesP{ξ +ξ α > x}∼ P{ξ > x}

as x → ∞?
Hint: Make use of the equality ξ + ξ α = ξ α(1+ ξ 1−α) and Problem 2.23.

3.10. Let random variable ξ have the standard log-normal distribution. For which
values of parameter α > 0, does P{ξ + ξ α > x} ∼ P{ξ > x} as x → ∞?

3.11. How do Pitman’s criteria work

(i) for the Pareto distribution;
(ii) for the exponential distribution?

3.12. Specify Kesten’s bound for the standard Cauchy distribution.
3.13. Let X(t) be a compound Poisson process with a subexponential distribution

of jump. For every t, find the asymptotic tail behaviour of the distribution of X(t) in
terms of the jump distribution.

3.14. Find an example of subexponential distribution F and of counting random
variable τ such that the equivalence

F∗τ(x)∼ EτF(x) as x → ∞

doesn’t hold.
Hint: Make a link to Galton-Watson process.

3.15. Markov modulated random walk. Suppose Xn is a time-homogeneous
Markov chain with state space {1,2} and transition probabilities pi j. Suppose
ξn, n ≥ 0, are independent identically distributed random variables with common
subexponential distribution F and ηn, n ≥ 0, are also independent with common
subexponential distribution G and such that ξ ’s and η’s are mutually independent.
Assume ζn = ξn if Xn = 1 and ζn = ηn if Xn = 2. Assume that G(x) ∼ cF(x) as
x → ∞, with 0 ≤ c < ∞.

(i) Find the tail asymptotics for the distribution of ζ0 + ζ1 in terms of F .
(ii) Denote τ1 :=min{n> 0 : Xn =X0}. Find the tail asymptotics for the distribution

of ζ0 + . . .+ ζτ1 in terms of F .
(iii) For k ≥ 2, let τk = min{n > τk−1 : Xn = X0}. Find the tail asymptotics for the

distribution of ζ0 + . . .+ ζτk in terms of F .

3.16. Suppose F is long tailed distribution on R
+ such that the corresponding

integrated tail distribution FI is subexponential. Prove that (F ∗F)I is subexponential
too.
Hint: Make use of the equality in Problem 2.22.

3.17. Suppose ξ1, . . . , ξn are independent nonnegative random variables with
common subexponential distribution F .
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(i) Prove that

P
{√

ξ 2
1 + . . .+ ξ 2

n > x
}∼ nF(x) as x → ∞.

(ii) More generally, prove that, for any convex function g : R+ →R
+,

P{g−1(g(ξ1)+ . . .+ g(ξn))> x} ∼ nF(x) as x → ∞.

3.18. Let random variable ξ have an intermediate regularly varying distribution
and random variable η a light-tailed distribution. Prove that, for any joint distribu-
tion of ξ and η ,

P{ξ +η > x} ∼ P{ξ > x} as x → ∞.

3.19. Let η be a positive random variable and ξ1, ξ2 be two identically distributed
random variables which are conditionally independent given any value of η , that
is, a.s.

P{ξ1 ∈ B1,ξ2 ∈ B2 | η}= P{ξ1 ∈ B1 | η}P{ξ2 ∈ B2 | η}
for all Borel sets B1 and B2. Find the exact asymptotics for P{ξ1 > x} and P{ξ1 +
ξ2 > x} in the following cases:

(i) P{ξi > x | η} = (1+ x)−η a.s. and η is uniformly distributed in the interval
[1,2].
Hint: Make use of the following bounds:

P{ξ1 + ξ2 > x)≥ P{ξ1 > x}+P{ξ2 > x}−P{ξ1 > x,ξ2 > x}
and, for any function h(x)< x/2,

P{ξ1 + ξ2 > x} ≤ P{ξ1 > x− h(x)}+P{ξ2 > x− h(x)}
+P{h(x)< ξ1 < x− h(x),ξ2 > x− ξ1}.

(ii) P{ξi > x | η}= e−xη
and η is uniformly distributed in the interval [1/2,3/2].

(iii) P{ξi > x | η}= e−xη
and η is uniformly distributed in the interval [0,1].

3.20. Let ξ1, ξ2, η1, η2 be four mutually independent random variables where ξ1

and ξ2 have a regularly varying distribution with parameter α > 0 while η1 and η2

have a uniform distribution in the interval [−1,1]. Find the asymptotics, as x → ∞,
for the following probabilities:

(i) P{ξ1eη1 + ξ2eη2 > x}; (ii) P{ξ1eη1 + ξ2eη1+η2 > x}.

3.21. Excess process. In conditions of Problem 2.26, prove that the invariant
distribution is subexponential if and only if the integrated tail distribution FI is
subexponential.

3.22. In Problem 2.27, introduce extra conditions that are sufficient for the
subexponentiality of the invariant distribution.



Chapter 4
Densities and Local Probabilities

This chapter is devoted to local long-tailedness and to local subexponentiality. First
we consider densities with respect to either Lebesgue measure on R or counting
measure on Z. Next we study the asymptotic behaviour of the probabilities to belong
to an interval of a fixed length. We give the analogues of the basic properties of the
tail probabilities including two analogues of Kesten’s estimate, and provide suffi-
cient conditions for probability distributions to have these local properties.

The study of local properties of subexponentiality gives insights into the local
asymptotic behaviour of sums and maxima of random variables having heavy-
tailed distributions and, in particular, permits us to obtain the local asymptotics
for the supremum of a random walk with negative drift. The concept of a subex-
ponential density on the positive line is well-known, while the broader concept of
‘delta’-subexponentiality has been introduced recently [4]. The theories for these
two classes of distributions look similar, but there are (sometimes essential) differ-
ences in the ideas and proofs, and we therefore think that it makes sense to provide
a complete treatment of both concepts.

Sections 4.1–4.4 deal with long-tailed densities, subexponential densities, and
sufficient conditions for a distribution to have a subexponential density, while
Sects. 4.5–4.8 deal with similar topics for Δ -subexponential distributions.

4.1 Long Tailed Densities and Their Convolutions

In this section, we provide the definition and basic properties of long-tailed densities
on the real line R. Since a long-tailed density may be a non-monotone function,
we cannot prove here a general result similar to Theorem 2.41 for tail distribution
functions. We provide instead two separate results, Theorem 4.3 and Lemma 4.4.

Let μ be either Lebesgue measure on R or counting measure on Z. We say that a
distribution F on R is absolutely continuous with respect to μ if F has a density f
with respect to μ , that is, for any Borel set B ⊆ R,

S. Foss et al., An Introduction to Heavy-Tailed and Subexponential Distributions,
Springer Series in Operations Research and Financial Engineering,
DOI 10.1007/978-1-4614-7101-1 4, © Springer Science+Business Media New York 2013
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F(B) =
∫

B
f (x)μ(dx).

In what follows the argument of the density is either a real number if μ is Lebesgue
measure; or an integer if μ is counting measure. If μ is Lebesgue measure, then f
is a density of F if, for any Borel set B ⊆ R,

F(B) =
∫

B
f (x)dx.

If μ is counting measure, then f is a density of F if, for any B ⊆ Z,

F(B) = ∑
n∈B

f (n).

For two distributions F and G with densities f and g respectively, the convolution
F ∗G has density f ∗ g with respect to μ given by

( f ∗ g)(x) =
∫ ∞

−∞
f (x− y)G(dy) =

∫ ∞

−∞
f (x− y)g(y)μ(dy).

Definition 4.1. We say that a density f with respect to μ is long-tailed if f (x) > 0
for all sufficiently large x and f (x+ t)∼ f (x) as x → ∞, for any fixed t > 0.

Thus a density f is long-tailed if and only if f is a long-tailed function. As
pointed out in (2.18), it then follows that f (x+ t)∼ f (x) as x → ∞ uniformly over t
in compact intervals. In particular, this implies that if f is long-tailed, then f (x)→ 0
as x → ∞. To see this, assume that, on the contrary, there exist a sequence xn → ∞
and ε > 0 such that xn+1 > xn + 2 and f (xn) ≥ 2ε for all n. Then, from the uni-
form tail-equivalence (2.18) with a = 1, there is N such that, for n ≥ N and for
x ∈ [xn − 1,xn + 1), f (x)≥ ε . Hence,

1 =

∫ ∞

−∞
f (y)μ(dy)≥

∞

∑
n=N

∫ xn+1

xn−1
f (y)μ(dy) ≥

∞

∑
n=N

2ε = ∞.

This contradiction proves that f (x)→ 0 as x → ∞.
Every distribution F with long-tailed density f is long-tailed itself, since for any

fixed y

F(x+ y) =
∫ ∞

0
f (x+ y+ u)μ(du)

∼
∫ ∞

0
f (x+ u)μ(du) = F(x) as x → ∞.

Theorem 4.2. Let the distributions F and G on R have densities f and g with re-
spect to μ . Suppose that f is long-tailed. Then the density f ∗ g satisfies

liminf
x→∞

( f ∗ g)(x)
f (x)

≥ 1. (4.1)
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If, in addition, g is long-tailed, then

liminf
x→∞

( f ∗ g)(x)
f (x)+ g(x)

= 1. (4.2)

Proof. Fix any a > 0. By the uniform convergence (2.18), f (x−y)∼ f (x) as x → ∞
uniformly in |y| ≤ a. Hence,

( f ∗ g)(x)≥
∫ a

−a
f (x− y)G(dy)∼ f (x)G[−a,a) as x → ∞.

Letting a → ∞ we obtain (4.1).
If g(x) is also long-tailed, then g(x− y) ∼ g(x) as x → ∞ uniformly in |y| ≤ a.

Thus, for all x > 2a,

( f ∗ g)(x) ≥
∫ a

−a
f (x− y)G(dy)+

∫ a

−a
g(x− y)F(dy)

∼ f (x)G[−a,a)+ g(x)F[−a,a) as x → ∞.

Letting a → ∞ we obtain

liminf
x→∞

( f ∗ g)(x)
f (x)+ g(x)

≥ 1.

Hence the equality (4.2) will follow if we show that

liminf
x→∞

( f ∗ g)(x)
f (x)+ g(x)

≤ 1.

To prove this, assume that, on the contrary, there exist ε > 0 and x0 such that, for all
x > x0,

( f ∗ g)(x)≥ (1+ ε)( f (x)+ g(x)).

Integrating with respect to x we obtain

F ∗G(x)≥ (1+ ε)(F(x)+G(x)),

which implies

F+ ∗G+(x)≥ (1+ ε)(F+(x)+G+(x)),

Since the density f is long-tailed, the distribution F+ is also long-tailed and, there-
fore, heavy-tailed, and so the latter inequality contradicts Theorem 2.13. ��
Theorem 4.3. Let the distributions F and G on R have densities f and g with re-
spect to μ both of which are long-tailed. Then the density f ∗ g of the convolution
F ∗G is also long-tailed.
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Proof. By Lemma 2.19 and Proposition 2.20, we can choose a function h such that
h(x) < x/2, h(x)→ ∞ as x → ∞ and both f and g are h-insensitive (i.e. f (x− y) ∼
f (x) and g(x− y)∼ g(x) as x → ∞ uniformly in |y| ≤ h(x)). Fix t > 0. Then,

( f ∗ g)(x+ t) =
∫ x−h(x)

−∞
f (x+ t − y)G(dy)+

∫ x+t−h(x)

x−h(x)
f (x+ t − y)G(dy)

+

∫ ∞

x+t−h(x)
f (x+ t − y)g(y)μ(dy). (4.3)

For fixed t > 0, it follows from the given conditions on h that f (x+ t−y)∼ f (x−y)
as x → ∞ uniformly in y ≤ x− h(x). Therefore, as x → ∞,

∫ x−h(x)

−∞
f (x+ t − y)G(dy)∼

∫ x−h(x)

−∞
f (x− y)G(dy). (4.4)

The second integral is bounded from above by

sup
y∈[h(x),h(x)+t)

f (y)G[x− h(x),x+ t − h(x)) ∼ t f (h(x))g(x)

= o(g(x)) = o(( f ∗ g)(x)) (4.5)

as x → ∞, by (4.2). The third integral in (4.3) is equal to

∫ h(x)

−∞
g(x+ t− y)F(dy) ∼

∫ h(x)

−∞
g(x− y)F(dy) (4.6)

by arguments similar to that leading to (4.4). Collecting (4.4)–(4.6), we get
( f ∗ g)(x+ t) = ( f ∗ g)(x)+ o(( f ∗ g)(x)), since the sum of right sides in (4.4) and
(4.6) equals ( f ∗ g)(x). This completes the proof. ��
Lemma 4.4. Let the distributions F and G on R have densities f and g with respect
to μ . Suppose that f is long-tailed and that

sup
z≥x

g(z) = o( f (x)) as x → ∞.

Then f ∗ g is also long-tailed.

Proof. Again Lemma 2.19 with Proposition 2.20 enables us to find an increasing
function h such that h(x) < x/2, h(x) → ∞ as x → ∞ and f is h-insensitive. For
any t, consider the following decomposition:

( f ∗ g)(x+ t) =
∫ x−h(x)

−∞
f (x+ t − y)G(dy)+

∫ ∞

x−h(x)
f (x+ t − y)g(y)μ(dy).

The first integral satisfies (4.4). The second integral is not greater than

sup
y>x−h(x)

g(y) = o( f (x− h(x))) = o( f (x)). (4.7)
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It follows from (4.4) and (4.7) that, as x → ∞,

( f ∗ g)(x+ t) = (1+ o(1))( f ∗ g)(x)+ o( f (x)).

Applying now the result (4.1) of Theorem 4.2, we arrive at the desired equivalence
( f ∗ g)(x+ t)∼ ( f ∗ g)(x) as x → ∞. ��

Theorems 4.2 and 4.3 imply the following corollary.

Corollary 4.5. Suppose that f is long-tailed. Then f ∗n is also long-tailed and

liminf
x→∞

f ∗n(x)
f (x)

≥ n.

4.2 Subexponential Densities on the Positive Half-Line

In this section, we introduce the concept of a subexponential densities on the half
real line R+. We study further their properties, in particular giving closure properties
for the class of such densities and providing also the analogue of Kesten’s estimate.

Definition 4.6. We say that a density f on R
+ with respect to μ is subexponential if

f is long-tailed and

f ∗2(x) :=
∫ x

0
f (x− y) f (y)μ(dy)∼ 2 f (x) as x → ∞.

Typical examples of subexponential densities are given by the Pareto, lognor-
mal, and Weibull (with parameter between 0 and 1) distributions (see Sect. 4.4 for
proofs).

Every distribution F with subexponential density f is subexponential itself,
since then

F ∗F(x) =
∫ ∞

x
( f ∗ f )(y)μ(dy)

∼ 2
∫ ∞

x
f (y)μ(dy)

= 2F(x) as x → ∞.

The converse result is not in general true: one can, for example, modify a density
while keeping the corresponding distribution almost the same. For example, we may
take any subexponential density g corresponding to a, necessarily subexponential,
distribution G, and construct a new density f such that f (x) is equal to g(x) every-
where except the intervals x ∈ [2n,2n +1), n ≥ 1 where we put f (x) = 0. To make f
a probability density, we may add an appropriate mass to the interval [0,2]. Then the
density f is not subexponential because it is not long-tailed. On the other hand, the
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corresponding distribution F is subexponential, since it may easily be verified that
F(x)∼ G(x) as x → ∞ and G is subexponential.

Now we formulate the basic theorem for subexponential densities.

Theorem 4.7. Suppose that the distribution F on R
+ has a long-tailed density f

with respect to μ . Then the following assertions are equivalent:
(i) The density f is subexponential.

(ii) For every function h such that h(x)→ ∞ as x → ∞ and h(x)< x/2,

∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy) = o( f (x)) as x → ∞. (4.8)

(iii) The relation (4.8) holds for some function h such that h(x)< x/2, h(x)→ ∞ as
x → ∞ and f is h-insensitive.

Proof. (i)⇒(ii). Assume that f is subexponential. We have

f ∗2(x) = 2
∫ h(x)

0
f (x− y) f (y)μ(dy)+

∫ x−h(x)

h(x)
f (x− y) f (y)dy. (4.9)

By Fatou’s lemma,

liminf
x→∞

∫ h(x)

0

f (x− y)
f (x)

f (y)μ(dy)≥ 1,

and so (4.8) follows from the subexponentiality of f .
(ii)⇒(iii). This implication is trivial on recalling that f is long-tailed.
(iii)⇒(i). Assume now that the relation (4.8) holds for some function h as given

by (iii). Then (4.9) holds, and the first integral on the right of (4.9) is tail-equivalent
to f (x) (as x → ∞) by the choice of the function h. Together with the condition (4.8)
this implies the subexponentiality of f . ��
Theorem 4.8. Let f be a subexponential density on R

+ with respect to μ . Suppose
that the density g on R

+ is long-tailed and that f and g are weakly tail-equivalent,
that is,

0 < liminf
x→∞

g(x)
f (x)

≤ limsup
x→∞

g(x)
f (x)

< ∞. (4.10)

Then g is also subexponential.
In particular, the condition (4.10) is satisfied if g(x)∼ c f (x) as x → ∞ for some

c ∈ (0,∞).

Proof. The result follows from Theorem 4.7(ii) and (iii): observe that (4.10) implies
that there exists c1 < ∞ such that g(x) ≤ c1 f (x) for all sufficiently large x; hence,
for any function h such that h(x) < x/2 for all x, h(x) → ∞ as x → ∞ and g is
h-insensitive,
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∫ x−h(x)

h(x)
g(x− y)g(y)μ(dy)≤ c2

1

∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy) = o( f (x)) = o(g(x)).

��
Lemma 4.9. Let f be a subexponential density on R

+ with respect to μ . Let f1, f2

be two densities on R
+ such that f1(x)/ f (x) → c1 and f2(x)/ f (x) → c2 as x → ∞,

for some constants c1, c2 ≥ 0. Then

( f1 ∗ f2)(x)
f (x)

→ c1 + c2 as x → ∞. (4.11)

Further, if c1 + c2 > 0 then the convolution f1 ∗ f2 is a subexponential density.

Proof. Let h be any function such that h(x) < x/2, h(x) → ∞ as x → ∞ and f is
h-insensitive. Then

f1 ∗ f2(x) =

∫ h(x)

0
f1(x− y) f2(y)μ(dy)+

∫ h(x)

0
f2(x− y) f1(y)μ(dy)

+
∫ x−h(x)

h(x)
f1(x− y) f2(y)μ(dy)

=: I1(x)+ I2(x)+ I3(x).

We have I1(x)/ f (x)→ c1 and I2(x)/ f (x)→ c2 as x → ∞. Finally,

I3(x)≤ (c1c2 + o(1))
∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy) = o( f (x)),

by Theorem 4.7(ii), so that (4.11) now follows. The final assertion of the lemma
follows from Theorem 4.8. ��

Using induction arguments, we obtain the following corollary.

Corollary 4.10. Assume that f is a subexponential density on R
+ with respect to μ .

Then, for any n ≥ 2, f ∗n(x)∼ n f (x) as x → ∞ and f ∗n is a subexponential density.

For subexponential densities on R
+ we have the following analogue of Kesten’s

bound.

Theorem 4.11. Assume that f is a subexponential density on R
+ with respect to μ .

If f is bounded, then, for any ε > 0, there exist x0 = x0(ε) and c(ε)> 0 such that, for
any x > x0 and for any integer n ≥ 1,

f ∗n(x)≤ c(ε)(1+ ε)n f (x).

Proof. Take c < ∞ such that f (x) ≤ c for all x ≥ 0. Then it follows from the convo-
lution formula that

f ∗n(x)≤ cF∗(n−1)[0,x]≤ c for all x ≥ 0 and n ≥ 1. (4.12)
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Since f is long-tailed, there exists x1 such that

inf
x∈[x1,x2]

f (x) > 0 for every x2 > x1. (4.13)

For x0 > x1 and n ≥ 1, put

An(x0) := sup
x>x0

f ∗n(x)
f (x)

.

Fix any ε > 0. By the subexponentiality of f , there exists x0 such that, for all x > x0,

∫ x−x0

0
f (x− y) f (y)μ(dy)≤ (1+ ε/2) f (x).

For any n ≥ 2 and x > 2x0,

f ∗n(x) =
∫ x−x0

0
f ∗(n−1)(x− y) f (y)μ(dy)+

∫ x0

0
f (x− y) f ∗(n−1)(y)μ(dy).

By the definition of An−1(x0) and the choice of x0,
∫ x−x0

0
f ∗(n−1)(x− y) f (y)μ(dy) ≤ An−1(x0)

∫ x−x0

0
f (x− y) f (y)μ(dy)

≤ An−1(x0)(1+ ε/2) f (x). (4.14)

Further,
∫ x0

0
f (x− y) f ∗(n−1)(y)μ(dy)≤ max

0<y≤x0
f (x− y)≤ L1 f (x), (4.15)

where

L1 := sup
0<y≤x0,t>2x0

f (t − y)
f (t)

.

If x0 < x ≤ 2x0, then, by (4.12) and (4.13),

f ∗n(x)
f (x)

≤ c
infx0<t≤2x0 f (t)

=: L2 < ∞. (4.16)

Since f is long-tailed, we may choose x0 so that also L1 < ∞. Put L = max(L1,L2).
It follows from (4.14) to (4.16) that, for any x > x0,

f ∗n(x)≤ (An−1(x0)(1+ ε/2)+L) f (x).

Hence, An(x0)≤ An−1(x0)(1+ ε/2)+L. Therefore, an induction argument gives

An(x0)≤ A1(x0)(1+ ε/2)n−1+L
n−2

∑
l=0

(1+ ε/2)l ≤ Ln(1+ ε/2)n−1,

which implies the conclusion of the theorem. ��
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4.3 Subexponential Densities on the Real Line

In the previous chapter we showed that there are two equivalent ways to define the
subexponentiality of probability distributions on the whole real line: the distribution
F of a random variable ξ is subexponential if, either:
(1) It is long-tailed and F ∗F(x)∼ 2F(x) as x → ∞, or, equivalently, if
(2) The conditional distribution P{ξ ∈ · ∣∣ξ ≥ 0) on the positive half-line R

+ is
subexponential

The latter shows that subexponentiality continues to be a tail property for distribu-
tions defined on the whole real line; in particular we have Theorem 3.6.

For probability densities the situation is more complex. Suppose that a distribu-
tion F on R has a density f with respect to μ . We give here two candidate conditions
for the definition of the subexponentiality of f , the first of which preserves the tail
property while the second does not. In the interests of openness we refrain from
making a present judgement as to which condition might be considered more ap-
propriate. Our two conditions are:
(D1) The density f+ of the conditional distribution of F on R

+, that is,

f+(x) :=
f (x)I{x ≥ 0}

F(R+)
, (4.17)

is subexponential.
(D2) The density f of F is long-tailed and

f ∗2(x) :=
∫ ∞

−∞
f (x− y) f (y)μ(dy)∼ 2 f (x) as x → ∞. (4.18)

It follows immediately from the results of the previous section that the condi-
tion (D1) defines a tail property of the distribution F . Further, if the distribution F
has a support which is bounded below, i.e. F(a) = 0 for some a ∈R, then the situa-
tion is essentially no different from that in which F in concentrated on R

+; it is easy
to see (using the long-tailedness of f ) that the theory of the previous section con-
tinues to hold and that the conditions (D1) and (D2) above are equivalent. However,
when the support of the distribution F is not bounded below, then the behaviour of
its left tail may influence the right tail of the density of its convolution with itself,
and here the condition (D2) may not correspond to a tail property of F .

In Lemma 4.12 below we show that the condition (D2) implies the condi-
tion (D1), while in Lemma 4.13 we show that, under a further condition on the
right tail of F , the conditions (D1) and (D2) are equivalent.

Lemma 4.12. Suppose that the distribution F on R has a density f with respect to
μ which is long-tailed and which satisfies the condition (4.18). Then the density f+

on R
+ given by (4.17) is subexponential.
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Proof. Since f is long-tailed, by Lemma 2.19, we can choose a function h such that
h(x)< x/2, h(x)→ ∞ as x → ∞ and f is h-insensitive. Then

f ∗2(x) = 2
∫ −h(x)

−∞
f (x− y) f (y)μ(dy)+ 2

∫ h(x)

−h(x)
f (x− y) f (y)μ(dy)

+
∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy) (4.19)

≥ 2
∫ h(x)

−h(x)
f (x− y) f (y)μ(dy)+

∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy)

∼ 2 f (x)+
∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy)

as x → ∞, by the choice of the function h. Since also f satisfies the condition (4.18),
we obtain that

∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy) = o( f (x)) as x → ∞.

Hence the density f+ satisfies the condition (4.8) of Theorem 4.7 and so is subex-
ponential. ��

We now give the converse result where we require an extra condition.

Lemma 4.13. Suppose that the distribution F on R has a density f with respect to
μ such that, for some x0 and c < ∞,

f (x+ y)≤ c f (x) for all x > x0 and y > 0. (4.20)

Suppose further that the density f+ defined by (4.17) is subexponential. Then f (in
addition to being long-tailed) satisfies the condition (4.18).

Proof. Since the subexponentiality of f+ implies that f is long-tailed, we may again
choose a function h such that h(x)< x/2, h(x)→ ∞ as x → ∞ and f is h-insensitive.
We make use of decomposition (4.19). It follows from the condition (4.20) that

∫ −h(x)

−∞
f (x− y) f (y)μ(dy) ≤ c f (x)F(−h(x))

= o( f (x)) as x → ∞. (4.21)

Further, from the choice of h,

∫ h(x)

−h(x)
f (x− y) f (y)μ(dy) ∼ f (x)

∫ h(x)

−h(x)
f (y)μ(dy)

∼ 2 f (x) as x → ∞. (4.22)
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Since the density f+ is subexponential, it follows from Theorem 4.7 that

∫ x−h(x)

h(x)
f+(x− y) f+(y)μ(dy) = o( f (x)) as x → ∞,

and hence
∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy) = o( f (x)) as x → ∞. (4.23)

The relations (4.21), (4.22), and (4.23) now imply that f ∗2(x)∼ 2 f (x) as x → ∞.
��

We conclude this section with the following comment. In contrast to tail func-
tions, densities are not in general decreasing functions. Moreover, a subexponential
density may be not tail-equivalent to any non-increasing function and, in particular,
the condition (4.20) may fail. This may be viewed as being essentially the reason
for the difficulty in extending the concept of subexponentiality of densities to distri-
butions on R.

4.4 Sufficient Conditions for Subexponentiality of Densities

Sufficient conditions for distributions to be subexponential were given in Sect. 3.5.
In this section, we provide similar conditions for subexponentiality of densities.

Theorem 4.14. Let the distribution F on R
+ have a long-tailed density f . Suppose

that there exist c > 0 and x0 such that f (y) ≥ c f (x) for any x > x0 and y ∈ (x,2x].
Then the density f is subexponential.

Proof. Let h be any positive function such that h(x)→ ∞ as x → ∞ and h(x)< x/2
for all x. Then

∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy) = 2

∫ x/2

h(x)
f (x− y) f (y)μ(dy)

≤ 2c f (x)
∫ x/2

h(x)
f (y)μ(dy) = o( f (x))

as x → ∞. The subexponentiality of f now follows from Theorem 4.7(ii). ��
Observe that in particular the density of the Pareto distribution satisfies the con-

ditions of Theorem 4.14.

Theorem 4.15. Let the distribution F on R
+ have a long-tailed density f . Suppose

that, for some x0, the function R(x) := − ln f (x) is concave for x ≥ x0. Suppose
further that there exists a function h such that h(x)< x/2 for all x, that h(x)→ ∞ as
x → ∞, that f is h-insensitive, and that xe−R(h(x)) → 0 as x → ∞. Then the density f
is subexponential.
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Proof. Since g is concave, the minimum of the sum R(x− y)+R(y) in y ∈ [h(x),
x− h(x)] is equal to R(x− h(x))+R(h(x)). Therefore,

∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy) =

∫ x−h(x)

h(x)
e−(R(x−y)+R(y))μ(dy)≤ xe−(R(x−h(x))+R(h(x))).

Since e−R(x−h(x)) ∼ e−R(x),

∫ x−h(x)

h(x)
f (x− y) f (y)μ(dy) = O(e−R(x)xe−R(h(x))) = o( f (x)),

so that the result now follows from Theorem 4.7. ��
The density of the Weibull distribution with parameter α ∈ (0,1) satisfies condi-

tions of Theorem 4.15 with h(x) = ln2/α x. The density of the lognormal distribution
satisfies the these conditions with h(x) =

√
x.

4.5 Δ -Long-Tailed Distributions and Their Convolutions

This section and the next deal with local properties of long-tailedness and subex-
ponentiality which may be considered as intermediate properties of a distribu-
tion between that of being long-tailed/subexponential and that of having a long-
tailed/subexponential density, and are formulated in terms of the probability for a
random variable to belong to an interval of a fixed length when the location of the
interval is tending to infinity.

Define Δ = (0,T ] for some finite T > 0. For any x and for any nonnegative
integer n, define also x+Δ := (x,x+T ] and nΔ := (0,nT ].

We now introduce the following definition.

Definition 4.16. A distribution F on R is called Δ -long-tailed if F(x+Δ) is a long-
tailed function, that is, for any fixed y > 0,

F(x+ y+Δ)

F(x+Δ)
→ 1 as x → ∞.

By the property (2.18) of long-tailed functions, the latter convergence holds uni-
formly over all y in any compact set. We write also LΔ for the class of Δ -long-tailed
distributions. We consider here only finite intervals Δ , but if we allowed the interval
to be infinite, Δ = (0,∞), we would have LΔ = L, the class of long-tailed distribu-
tions.

It follows from the definition that, if F ∈ LΔ for some interval Δ = (0,T ], then
F ∈ LnΔ for any n = 2,3, . . . and also F ∈ L. To see this observe that, for any fixed
y > 0 and any n ∈ {2,3, . . . ,∞},
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F(x+ y+ nΔ) =
n−1

∑
k=0

F(x+ kT + y+Δ)

∼
n−1

∑
k=0

F(x+ kT +Δ) = F(x+ nΔ).

Note that any distribution F on the integer lattice with F{n+1}∼F{n} as n→∞
(i.e. with a long-tailed density with respect to counting measure) may be also viewed
as a member of LΔ with Δ = (0,1].

In earlier chapters we dealt with tail functions of distributions (for any distribu-
tion F and for any x, the tail F(x) = F(x+Δ) with Δ = (0,∞)). Tail functions are
monotone non-increasing, and this allowed us to prove Theorem 2.11. For finite in-
tervals Δ , there is in general no such monotonicity, and we need further restrictions,
given by Theorem 4.17, to obtain the inequality

liminf
x→∞

(F ∗G)(x+Δ)

F(x+Δ)+G(x+Δ)
≥ 1. (4.24)

Theorem 4.17. Let the distributions F and G belong to the class LΔ , where Δ =
(0,T ] for some finite T . Then

liminf
x→∞

(F ∗G)(x+Δ)

F(x+Δ)+G(x+Δ)
= 1. (4.25)

Proof. Let ξ and η be two independent random variables with respective distribu-
tions F and G. Fix any a > 0. For x > 2a, we have the following lower bound:

(F ∗G)(x+Δ)≥ P{ξ +η ∈ x+Δ , |ξ | ≤ a}+P{ξ +η ∈ x+Δ , |η | ≤ a}.

We also have the tail equivalences F(x+ y+Δ) ∼ F(x+Δ) and G(x+ y+Δ) ∼
G(x+Δ) as x → ∞ uniformly in |y| ≤ a. Therefore, as x → ∞,

P{ξ +η ∈ x+Δ , |ξ | ≤ a}=
∫

[−a,a]
G(x− y+Δ)F(dy)

∼ G(x+Δ)
∫

[−a,a]
F(dy)

∼ G(x+Δ)F[−a,a],

and similarly

P{ξ +η ∈ x+Δ , |η | ≤ a} ∼ F(x+Δ)G[−a,a].

Letting a → ∞ implies the lower bound (4.24). Now assume that, on the contrary,
the equality (4.25) does not hold, that is,

liminf
x→∞

(F ∗G)(x+Δ)

F(x+Δ)+G(x+Δ)
> 1.
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Then there exist ε > 0 and x0 such that, for all x > x0 and n ≥ 0,

(F ∗G)(x+ nT +Δ) ≥ (1+ ε)(F(x+ nT +Δ)+G(x+ nT +Δ)).

Summing over n ≥ 0, we obtain

F ∗G(x)≥ (1+ ε)(F(x)+G(x)),

which implies

F+ ∗G+(x)≥ (1+ ε)(F+(x)+G+(x)),

However, since F ∈ LΔ ⊆L, it follows that the distribution F+ is heavy-tailed, and
therefore the latter inequality contradicts Theorem 2.13. ��

In the next theorem we prove that, for any Δ , the class LΔ is closed under
convolutions.

Theorem 4.18. Let the distributions F and G belong to the class LΔ for some finite
interval Δ = (0,T ]. Then F ∗G ∈ LΔ .

Proof. Let ξ and η be two independent random variables with respective distribu-
tions F and G. By Lemma 2.19 and Proposition 2.20 there exists a function h such
that h(x)< x/2, h(x)→ ∞ and both F(x+Δ) and G(x+Δ) are h-insensitive.

Consider the event B(x, t) = {ξ +η ∈ x+ t +Δ}. In order to prove that F ∗G ∈
LΔ , we need to check that, for any t > 0, P{B(x, t)} ∼ P{B(x,0)} as x → ∞. Since
the events {ξ ≤ x−h(x)} and {η ≤ h(x)} together imply {ξ +η ≤ x}, we have the
following decomposition:

P{B(x, t)}= P{B(x, t), ξ ≤ x− h(x)}
+P{B(x, t), η ≤ h(x)}+P{B(x, t), ξ > x− h(x), η > h(x)}. (4.26)

For fixed t > 0, G(x+ t−y+Δ)∼G(x−y+Δ) as x → ∞ uniformly in y ≤ x−h(x),
since h(x)→ ∞. Therefore, as x → ∞,

P{B(x, t), ξ ≤ x− h(x)} =

∫ x−h(x)

−∞
G(x+ t − y+Δ)F(dy)

∼
∫ x−h(x)

−∞
G(x− y+Δ)F(dy)

= P{B(x,0), ξ ≤ x− h(x)}. (4.27)

A similar argument shows that



4.6 Δ -Subexponential Distributions 89

P{B(x, t), η ≤ h(x)} =

∫ h(x)

−∞
F(x+ t − y+Δ)G(dy)

∼
∫ h(x)

−∞
F(x− y+Δ)G(dy)

= P{B(x,0), η ≤ h(x)}. (4.28)

Finally,

P{B(x, t), ξ > x− h(x), η > h(x)}
= P{B(x, t), ξ ∈ (x− h(x),x− h(x)+ t+T ], η > h(x)}.

The value of the latter probability is at most

G(h(x))F(x− h(x)+ (0, t+T ]) = o(F(x− h(x)+ (0, t+T ])) as x → ∞.

Without loss of generality, we can assume that t < T . Then,

F(x− h(x)+ (0, t+T ]) ≤ F(x− h(x)+Δ)+F(x− h(x)+T +Δ).

Both terms on the right side of the above expression are of the order O(F(x+Δ)),
by the choice of the function h. Thus, as x → ∞,

P{B(x, t), ξ > x− h(x), η > h(x)}= o(F(x+Δ)). (4.29)

Combining (4.26)–(4.29) we conclude that

P{B(x, t)}= (1+ o(1))P{B(x,0)}+ o(F(x+Δ))

as x → ∞. The conclusion of the theorem now follows on applying Theorem 4.17.
��

By induction arguments we obtain the following corollary to Theorems 4.17
and 4.18.

Corollary 4.19. If F ∈LΔ , then, for all n ≥ 2, F∗n ∈ LΔ and

liminf
x→∞

F∗n(x+Δ)

F(x+Δ)
≥ n.

4.6 Δ -Subexponential Distributions

We continue our study of local properties by introducing the concept of
Δ -subexponentiality.
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Definition 4.20. Let F be a distribution on R
+ with right-unbounded support. For

any fixed Δ = (0,T ] for some finite T > 0 we say that F is Δ -subexponential if
F ∈ LΔ and

(F ∗F)(x+Δ)∼ 2F(x+Δ) as x → ∞.

Equivalently, a random variable ξ has a Δ -subexponential distribution if the func-
tion P{ξ ∈ x+Δ} is long-tailed and, for two independent copies ξ1 and ξ2 of ξ ,

P{ξ1 + ξ2 ∈ x+Δ} ∼ 2P{ξ ∈ x+Δ} as x → ∞.

In this and the following two sections, we always consider finite intervals Δ .
But if we allowed the interval to be infinite, Δ = (0,∞), then the class of (0,∞)-
subexponential distributions would be none other than the standard class S

of subexponential distributions on R
+. For all finite Δ , the typical examples of

Δ -subexponential distributions are the same—in particular the Pareto, lognormal,
and Weibull (with parameter between 0 and 1) distributions, as we shall show in
Sect. 4.8. Also, many properties of Δ -subexponential distributions with finite Δ are
very close to those of subexponential distributions, as we shall show below. How-
ever, we have to repeat (see the previous section) that, for any distribution F , in
contrast to the tail function F , the function F(x+Δ) may be non-monotone. This
leads to extra challenges in the study of Δ -subexponentiality (see the example on
non-monotonicity at the end of Sect. 4.8).

Note that, for any Δ = (0,T ), any distribution F with subexponential density f
is Δ -subexponential since

(F ∗F)(x+Δ) =

∫ x+T

x
( f ∗ f )(y)μ(dy)

∼ 2
∫ x+T

x
f (y)μ(dy) = 2F(x+Δ) as x → ∞. (4.30)

Further, it follows from the definition that, if F is Δ -subexponential, then F is
nΔ -subexponential for any n = 2,3, . . . and F ∈ SR. To see this observe that, for
any n ∈ {2,3, . . . ,∞} and as x → ∞,

P{ξ1 + ξ2 ∈ x+ nΔ} =
n−1

∑
k=0

P{ξ1 + ξ2 ∈ x+ kT +Δ}

∼ 2
n−1

∑
k=0

P{ξ ∈ x+ kT +Δ}

= 2P{ξ ∈ x+ nΔ}.

Thus we have in particular that, for any Δ , the class of Δ -subexponential distribu-
tions is a subclass of S.

Note also that if we consider the distributions concentrated on the integers, then
the class of (0,1]-subexponential distributions consists of all distributions F such
that F{n+ 1} ∼ F{n} and F∗2{n} ∼ 2F{n} as n → ∞, and so coincides with the
class of distributions with subexponential densities.
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We now have the following theorem which characterises Δ -subexponential dis-
tributions on the positive half-line R

+ and which is analogous to Theorem 3.6 or
Theorem 3.7 for subexponential distributions on R and to Theorem 4.7 for subex-
ponential densities on R

+.

Theorem 4.21. Suppose that the distribution F on R
+ is such that F ∈ LΔ for

some Δ . Let ξ1 and ξ2 be two independent random variables with common dis-
tribution F. Then the following assertions are equivalent:

(i) F is Δ -subexponential.
(ii) For every function h such that h(x)→ ∞ as x → ∞ and h(x)< x/2,

P{ξ1 + ξ2 ∈ x+Δ ,ξ1 > h(x),ξ2 > h(x)}= o(F(x+Δ)). (4.31)

(iii) There exists a function h such that h(x)< x/2, h(x)→ ∞ as x → ∞, the function
F(x+Δ) is h-insensitive and the relation (4.31) holds.

Proof. (i)⇒(ii). Suppose first that F is Δ -subexponential. Define the event B =
{ξ1 + ξ2 ∈ x+Δ}. We have

P{B}= P{B,ξ1 ≤ h(x)}+P{B,ξ2 ≤ h(x)}+P{B,ξ1 > h(x), ξ2 > h(x)}
= 2P{B,ξ1 ≤ h(x)}+P{B,ξ1 > h(x), ξ2 > h(x)}. (4.32)

By Fatou’s lemma,

liminf
x→∞

P{B,ξ1 ≤ h(x)}
F(x+Δ)

= liminf
x→∞

∫ h(x)

0

F(x− y+Δ)

F(x+Δ)
F(dy)≥ 1. (4.33)

Hence from (4.32), (4.33) and the Definition 4.20 of Δ -subexponentiality, we obtain
(4.31).

That (ii) implies (iii) is trivial since the condition F ∈ LΔ implies the existence
of a function with respect to which F(x+Δ) is h-insensitive.

(iii)⇒(i). Now suppose that the condition (iii) holds for some function h. We
again use the decomposition (4.32) for B as defined above. Then

P{B,ξ1 ≤ h(x)} =

∫ h(x)

0
F(x− y+Δ)F(dy)

∼ F(x+Δ)

∫ h(x)

0
F(dy)

∼ F(x+Δ) as x → ∞,

and so (4.31) together with (4.32) implies the Δ -subexponentiality of F . ��
Next we prove the result which shows in particular that the subclass of

Δ -subexponential distributions on R
+ is closed under the natural Δ -equivalence

relation.
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Theorem 4.22. Let F be a Δ -subexponential distribution on R
+, for some Δ . Sup-

pose that the distribution G on R
+ belongs to LΔ and the functions F(x+Δ) and

G(x+Δ) are weakly tail-equivalent, that is,

0 < liminf
x→∞

G(x+Δ)

F(x+Δ)
≤ limsup

x→∞

G(x+Δ)

F(x+Δ)
< ∞. (4.34)

Then G is also Δ -subexponential. In particular, G is Δ -subexponential provided
G(x+Δ)∼ cF(x+Δ) as x → ∞ for some c > 0.

Proof. Choose a function h such that h(x) < x/2 for all x, h(x)→ ∞ as x → ∞ and
the function G(x+Δ) is h-insensitive. Let ξ1, ξ2, ζ1, ζ2 be independent random vari-
ables such that ξ1 and ξ2 have common distribution F , and ζ1 and ζ2 have common
distribution G. By Theorem 4.21, it is sufficient to prove that

P{ζ1 + ζ2 ∈ x+Δ ,ζ1 > h(x),ζ2 > h(x)}= o(G(x+Δ)).

The probability on the left side of the above expression is not greater than

∫ x−h(x)+T

h(x)
G(x− y+Δ)G(dy) =: I.

By the condition (4.34), for some c1 < ∞ and for all sufficiently large x,

I ≤ c1

∫ x−h(x)+T

h(x)
F(x− y+Δ)G(dy)

≤ c1P{ζ1 + ξ2 ∈ x+Δ ,ζ1 > h(x),ξ2 > h(x)−T}
≤ c1

∫ x−h(x)+2T

h(x)−T
G(x− y+Δ)F(dy).

A repetition of the above argument now gives that

I ≤ c2
1

∫ x−h(x)+2T

h(x)−T
F(x− y+Δ)F(dy)

≤ c2
1P{ξ1 + ξ2 ∈ x+Δ ,ξ1 ≥ h(x)− 2T,ξ2 ≥ h(x)−T}

= o(F(x+Δ))

= o(G(x+Δ)).

as required, where the third line in the above display again follows from Theo-
rem 4.21. ��
Theorem 4.23. Suppose that the distribution F on R

+ is Δ -subexponential, for
some Δ . Let G1, G2 be two distributions on R

+ such that G1(x+Δ)/F(x+Δ)→ c1

and G2(x+Δ)/F(x+Δ)→ c2 as x → ∞, for some constants c1, c2 ≥ 0. Then

(G1 ∗G2)(x+Δ)

F(x+Δ)
→ c1 + c2 as x → ∞. (4.35)
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Further, if c1 + c2 > 0 then the convolution G1 ∗G2 is Δ -subexponential.

Proof. Let ζ1 and ζ2 be independent random variables with distributions G1 and G2

respectively. Let h be a function such that h(x)< x/2 for all x, h(x)→ ∞ as x → ∞,
and the function F(x+Δ) is h-insensitive. Define also the event B = {ζ1 + ζ2 ∈
x+Δ}. Then

P{B}=P{B,ζ1 ≤ h(x)}+P{B,ζ2 ≤ h(x)}+P{B,ζ1 > h(x),ζ2 > h(x)}. (4.36)

As in the last lines of the proof of Theorem 4.21, one can show that

P{B,ζ1 ≤ h(x)} ∼ G2(x+Δ), P{B,ζ2 ≤ h(x)} ∼ G1(x+Δ)

as x → ∞, and then

P{B,ζ1 ≤ h(x)}
F(x+Δ)

→ c2,
P{B,ζ2 ≤ h(x)}

F(x+Δ)
→ c1. (4.37)

Following the same argument as that in the proof of Theorem 4.22, we obtain
also that

P{B,ζ1 > h(x),ζ2 > h(x)}= o(F(x+Δ)). (4.38)

The result (4.35) now follows from (4.36) to (4.38).
The final assertion of the theorem follows from Theorem 4.22. ��
By induction, Theorem 4.23 implies the following corollary.

Corollary 4.24. Suppose that the distribution F on R
+ is Δ -subexponential, for

some Δ . Let G be a distribution on R
+ such that G(x+Δ)/F(x+Δ)→ c ≥ 0 as

x → ∞. Then, for any n ≥ 2, G∗n(x+Δ)/F(x+Δ) → nc as x → ∞. If c > 0, then
G∗n is Δ -subexponential.

We conclude this section with the result which provides of Kesten’s upper bound
for the class of Δ -subexponential distributions.

Theorem 4.25. Suppose that the distribution F on R
+ is Δ -subexponential, for

some Δ = (0,T ]. Then, for any ε > 0, there exist x0 = x0(ε) > 0 and c(ε) > 0
such that, for any x > x0 and for any n ≥ 1,

F∗n(x+Δ)≤ c(ε)(1+ ε)nF(x+Δ).

Proof. Let {ξn} be a sequence of independent non-negative random variables with
common distribution F . Put Sn = ξ1 + . . .+ ξn. For x0 ≥ 0 and k ≥ 1, put

An := An(x0) = sup
x>x0

F∗n(x+Δ)

F(x+Δ)
.
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Take any ε > 0. Appealing to Theorem 4.21, we conclude that x0 may be chosen
such that, for any x > x0,

P{ξ1 + ξ2 ∈ x+Δ ,ξ2 ≤ x− x0} ≤ (1+ ε/2)F(x+Δ). (4.39)

For any n > 1 and x > x0,

P{Sn ∈ x+Δ} = P{Sn ∈ x+Δ ,ξn ≤ x− x0}+P{Sn ∈ x+Δ ,ξn > x− x0}
= : P1(x)+P2(x),

where, by the choice (4.39) of x0 and by the definition of An−1,

P1(x) =
∫ x−x0

0
P{Sn−1 ∈ x− y+Δ}F(dy)

≤ An−1

∫ x−x0

0
F(x− y+Δ)F(dy)

= An−1P{ξ1 + ξn ∈ x+Δ ,ξn ≤ x− x0}
≤ An−1(1+ ε/2)F(x+Δ). (4.40)

Further,

P2(x) =
∫ x0+T

0
P{ξn ∈ x− y+Δ ,ξn > x− x0}P{Sn−1 ∈ dy}

≤ sup
0<t≤x0

F(x− t +Δ).

Thus, if x > 2x0, then

P2(x)≤ L1F(x+Δ),

where

L1 = sup
0<t≤x0, y>2x0

F(y− t +Δ)

F(y+Δ)
.

If x0 < x ≤ 2x0, then P2(x)≤ 1 implies

P2(x)
F(x+Δ)

≤ 1
infx0<x≤2x0 F(x+Δ)

=: L2.

Since F ∈LΔ , both L1 and L2 are finite for x0 sufficiently large. Put L=max(L1,L2).
Then, for any x > x0,

P2(x)≤ LF(x+Δ). (4.41)
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It follows from (4.40) and (4.41) that An ≤ An−1(1+ ε/2)+L for n > 1. Therefore,
the induction argument yields

An ≤ A1(1+ ε/2)n−1+L
n−2

∑
l=0

(1+ ε/2)l ≤ Ln(1+ ε/2)n−1.

This implies the conclusion of the theorem. ��

4.7 Δ -Subexponential Distributions on the Real Line

As in the case of subexponential densities, for any fixed Δ = (0,T ], there are two
candidate conditions for the extension of the definition of Δ -subexponentiality to
distributions on the whole real line. In this section we discuss these conditions
briefly; the situation is very similar to that of Sect. 4.3, and we again refrain from
making a judgement as to which condition is more appropriate. Thus our conditions,
for a distribution F on R, are:
(1) The distribution F+ on R

+ (given as usual by F+(x) = F(x) for x ≥ 0 and
F+(x) = 0 for x < 0) is Δ -subexponential.

(2) The distribution F satisfies

F ∈ LΔ and (F ∗F)(x+Δ)∼ 2F(x+Δ) as x → ∞. (4.42)

Again the first of these conditions clearly preserves the tail property (since this holds
for Δ -subexponentiality on R

+), while the second does not. Further, analogously to
the situation for subexponentiality of densities, these conditions are equivalent in
the case of a distribution whose support is bounded below by some a ∈ R.

We give here the analogues of Lemmas 4.12 and 4.13 for densities; the proofs
are similarly analogous.

Lemma 4.26. Suppose that the distribution F on R satisfies the condition (4.42).
Then the distribution F+ is Δ -subexponential.

Lemma 4.27. Suppose that the distribution F on R is such that, for some x0 and
c < ∞,

F(x+ y+Δ)≤ cF(x+Δ) for all x > x0 and y > 0.

Suppose further that F+ is Δ -subexponential. Then F satisfies the condition (4.42).

4.8 Sufficient Conditions for Δ -Subexponentiality

In this section, we give sufficient conditions for a distribution to be Δ -subexponen-
tiality. There is much similarity between these conditions and those conditions given
earlier for subexponentiality.
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For a distribution F on R
+ and Δ = (0,T ], consider the new density g(x)

defined by

g(x) := c−1F(x+Δ), c =
∫ ∞

0
F(x+Δ)dx.

If we prove that under certain conditions the density g is subexponential, then
by (4.30) the distribution G with density g is Δ -subexponential. This implies,
by Theorem 4.22, that F is also Δ -subexponential, since F(x + Δ) = cg(x) ∼
cG(x+Δ)/T as x → ∞.

The latter observation gives us a simple way to prove the following two results.

Theorem 4.28. Let the distribution F on R
+ belong to the class LΔ where Δ =

(0,T ] for some finite T > 0. Suppose that there exist c > 0 and x0 < ∞ such that
F(x+ t+Δ)≥ cF(x+Δ) for any t ∈ (0,x] and x > x0. Then F is Δ -subexponential.

Proof. The density g introduced above satisfies conditions of Theorem 4.14. ��
The Pareto distribution (with the tail F(x) = x−α , α > 0, x ≥ 1) satisfies the

conditions of Theorem 4.28. The same is true for any distribution F such that the
function F(x+Δ) is regularly varying at infinity.

Theorem 4.29. Suppose that the distribution F on R
+ belongs to the class LΔ for

some finite Δ =(0,T ]. Suppose also that for some x0 the function R(x):=− lnF(x+Δ)
is concave for x ≥ x0. Suppose finally that there exists a function h such that
h(x)→ ∞ as x → ∞, F(x+Δ) is h-insensitive, and xe−R(h(x)) → 0 as x → ∞. Then
F is Δ -subexponential.

Proof. The density g introduced above satisfies conditions of Theorem 4.15. ��
To show the applicability of the latter theorem, we consider two examples. First,

we consider the Weibull distribution F on the positive half-lineR+ with tail function
given by F(x) = e−xα

, x ≥ 0, α ∈ (0,1), and let Δ = (0,T ], for some finite T . Then
it can be deduced that

F(x+Δ)∼ αT xα−1 exp(−xα) as x → ∞.

From this, we want to show that F(x+Δ) is asymptotically equivalent to a function
which satisfied the condition of Theorem 4.29. Thus, consider the distribution F̂
with the tail function given by F̂(x) = min(1,xα−1e−xα

). Let x0 be the unique posi-
tive solution to the equation x1−α = e−xα

. Then the function ĝ(x) =− ln F̂(x+Δ) is
concave for x ≥ x0, and the conditions of Theorem 4.29 are satisfied with h(x) = xγ ,
γ ∈ (0,1−α). Therefore, F̂ is Δ -subexponential and, by Theorem 4.22, F is also
Δ -subexponential.

Second, we consider the lognormal distribution F with the density f given by
f (x) = e−(lnx−μ)2/2σ 2

/x
√

2πσ2 and note that the function

g(x) =− ln(x−1e−(lnx−μ)2/2σ 2
) = lnx+(lnx− μ)2/2σ2

is eventually concave. Since, for any fixed Δ = (0,T ],

F(x+Δ)∼ T f (x)
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as x → ∞, the conditions of Theorem 4.29 are satisfied for any function h such that
h(x) = o(x). Thus F is Δ -subexponential.

We now show by two examples that the classes of Δ -subexponential distribu-
tions differ for different Δ and also the complexity of the relations between these
classes. The first example deals with lattice distributions. Let the random variable ξ
be positive and integer-valued, with P{ξ = 2k}= γ/k2 and P{ξ = 2k+ 1}= γ/2k,
where γ is the appropriate normalizing constant. Then ξ has a lattice distribution F
with span 1. By Theorem 4.28, F is (0,2]-subexponential. But it cannot be (0,a]-
subexponential if a is not an even integer or infinity.

In the second example, we consider absolutely continuous distributions. Assume
that ξ is the sum of two independent random variables: ξ = η + ζ where η is
distributed uniformly on (−1/8,1/8) and P{ζ = k} = γ/k2 for k = 1,2, . . . where
γ is the appropriate normalising constant. Then the distribution F of ξ is absolutely
continuous. It may be verified that F is (0,1]-subexponential, but cannot be (0,a]-
subexponential if a is not an integer or infinity.

Finally, recall that in Sect. 4.6 we undertook to provide an example of a Δ -
subexponential distribution F where the function F(x+ Δ) is not asymptotically
equivalent to any non-increasing function. Consider first a long-tailed function f
such that f (x) ∈ [1/x2,2/x2] for all x > 0. Choose the function f in such a way that
f is not asymptotically equivalent to a non-increasing function. For instance, one can
define f as follows. Consider the increasing sequence xn = 2n/4. Put f (x2n) = 1/x2

2n
and f (x2n+1) = 2/x2

2n+1. Then assume that f is linear between any two consecutive
members of the above sequence. Consider now the lattice distribution F on the set
of natural numbers with F{n} = f (n) for all sufficiently large integers n. Then by
Theorem 4.22, F is Δ -subexponential, but f (n) = F(n− 1,n] is not asymptotically
equivalent to a non-increasing function.

4.9 Local Asymptotics for a Randomly Stopped Sum

In this section, we give local analogues, both for subexponential densities and for Δ -
subexponential distributions, of results which were given in Sect. 3.11 for subexpo-
nential distributions. We show that a random sum preserves a local subexponential
property of independent identically distributed summands provided that the count-
ing variable has a light-tailed distribution. We also establish the corresponding char-
acteristic properties.

As is the case for the results obtained in Sect. 3.11, the results from this section
are needed in a variety of models in which random sums may appear, including
random walks, branching processes, and infinitely divisible laws.

We again consider a sequence ξ , ξ1, ξ2, . . . of independent random variables with
a common distribution F on R

+ and their partial sums S0 = 0, Sn = ξ1 + . . .+ ξn

for each n ≥ 1, together a counting random variable τ which is independent of the
sequence {ξn} and takes values in Z

+.
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Density of a Randomly Stopped Sum

Let μ be either Lebesgue measure on R or counting measure on Z. Throughout
this section, the argument x of the density function f is either a real number if μ is
Lebesgue measure; or an integer if μ is counting measure.

Theorem 4.30. Let {pn}n≥1 be a non-negative sequence such that ∑n≥1 pn = 1 and
mp := ∑n≥1 npn is finite. Let the distribution F on R

+ have a long-tailed density f
with respect to μ . Define the density g on R

+ by

g(x) = ∑
n≥1

pn f ∗n(x).

(i) If the density f is subexponential and bounded, and if

∑
n≥1

(1+ δ )npn < ∞

for some δ > 0, then

g(x)∼ mp f (x) as x → ∞. (4.43)

(ii) If the relation (4.43) holds and p1 < 1, then the density f is subexponential.

Proof. The result (i) is immediate from Corollary 4.10, Theorem 4.11, and the dom-
inated convergence theorem. We prove the second result. By Corollary 4.5, for any
k ≥ 2,

liminf
x→∞

f ∗k(x)/ f (x) ≥ k.

If p1 < 1 then pn > 0 for some n≥ 2, and so, arguing as in the proof of Theorem 3.38,
it follows from the above bound and from (4.43) that

limsup
x→∞

f ∗n(x)
f (x)

≤ n. (4.44)

By Corollary 4.5, f ∗(n−1) is long-tailed and so, from (4.44) and Theorem 4.2,

n ≥ limsup
x→∞

f ∗n(x)
f (x)

= limsup
x→∞

( f ∗ f ∗(n−1))(x)
f (x)

≥ 1+ limsup
x→∞

f ∗(n−1)(x)
f (x)

.

It follows by induction from the above bound that

limsup
x→∞

f ∗2(x)
f (x)

≤ 2.

Again by Theorem 4.2, this implies that limx→∞ f ∗2(x)/ f (x) = 2, which implies the
subexponentiality of the density f . ��
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Δ -Subexponential Distributions and Random Sums

Analogously to Theorem 4.30, we have the following result.

Theorem 4.31. Let Δ = (0,T ] for some finite T > 0. Suppose that the distribution F
on R

+ is Δ -long-tailed (F ∈LΔ ), and that the random variable τ (introduced at the
start of Sect. 4.9) is such that Eτ < ∞.

(i) If F is a Δ -subexponential distribution and if E(1+ δ )τ < ∞ for some δ > 0,
then

P{Sτ ∈ x+Δ}
F(x+Δ)

→ Eτ as x → ∞. (4.45)

(ii) If P{τ > 1} > 0 and further the relation (4.45) holds, then the distribution F
is Δ -subexponential.

Proof. The proof of (i) follows from Corollary 4.24, Theorem 4.25, and the dom-
inated convergence theorem. We prove (ii). Since F ∈ LΔ , it follows from Corol-
lary 4.19 that, for any k ≥ 2,

liminf
x→∞

F∗k(x+Δ)

F(x+Δ)
≥ k. (4.46)

If P{τ = n}> 0 for some n≥ 2, then, again arguing as in the proof of Theorem 3.38,
it follows from the above bound and from (4.45) that

limsup
x→∞

F∗n(x+Δ)

F(x+Δ)
≤ n. (4.47)

Since F ∈ LΔ , by Corollary 4.19 the convolution F∗(n−1) also belongs to the class
LΔ . Hence, by (4.47) and Theorem 4.17,

n ≥ limsup
x→∞

F∗n(x+Δ)

F(x+Δ)

= limsup
x→∞

(F ∗F∗(n−1))(x+Δ)

G(x+Δ)

≥ 1+ limsup
x→∞

F∗(n−1)(x+Δ)

F(x+Δ)
.

It follows by induction from the above bound that

limsup
x→∞

F∗2(x+Δ)

F(x+Δ)
≤ 2.

Again by Theorem 4.17, this implies that limx→∞ F∗2(x+Δ)/F(x+Δ) = 2, which
implies the Δ -subexponentiality of the distribution F . ��
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4.10 Local Subexponentiality of Integrated Tails

In the present section we answer the question of what conditions are necessary
for the integrated tail distribution to have a subexponential density and to be
Δ -subexponential.

Theorem 4.32. Let the distribution F on R
+ be long-tailed. Then the following

statements are equivalent:
(i) F belongs to the class S∗.

(ii) The density of the integrated tail distribution FI is subexponential.
(iii) FI is Δ -subexponential, for any Δ = (0,T ], T > 0.
(iv) FI is Δ -subexponential, for some Δ = (0,T ], T > 0.

Proof. The distribution FI is bounded from below. On the support of FI , its density
equals F(x). Since F is long-tailed, the density of FI is long-tailed as well. Then, by
Theorem 4.7, the density of FI is subexponential if and only if, for every function h
such that h(x)→ ∞ as x → ∞,

∫ x−h(x)

h(x)
F(x− y)F(y)dy = o(F(x)) as x → ∞,

which is equivalent to F ∈ S∗, see Theorem 3.24. Hence (i) is equivalent to (ii).
Since F is long-tailed, FI(x,x+Δ ]∼ T F(x) as x → ∞. In particular, the function

FI(x,x+Δ ] is long-tailed and

∫ x−h(x)

h(x)
FI(x+Δ − y)FI(dy) =

∫ x−h(x)

h(x)
FI(x+Δ − y)F(y)dy

∼ T
∫ x−h(x)

h(x)
F(x− y)F(y)dy as x → ∞.

This shows, via Theorem 4.21, why both (iii) and (iv) are equivalent to (i). ��

4.11 Comments

Local theorems for some classes of lattice distributions are given by Chover, Ney,
and Wainger in [14, Sect. 2]. Densities are considered in [14, Sect. 2] (requiring
continuity) and by Klüppelberg in [33] who considered asymptotics of densities for
a special case (see also Sgibnev [49] for some results on densities on R).

Much of the material of this chapter is adapted from the paper by Asmussen,
Foss, and Korshunov [4].
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4.12 Problems

4.1. Prove by definition that the Cauchy density is subexponential in the sense
of (4.18).

4.2. Prove by direct estimations for the convolution that the Pareto density is
subexponential.

4.3. Prove by direct estimations for convolution that any regularly varying at
infinity density is subexponential.

4.4. Let f and g be two regularly varying at infinity densities and 0 < p < 1.
Prove that the density p f +(1− p)g is subexponential too.

4.5. Let F have a subexponential density with respect to the counting measure on
Z
+ and G be the uniform distribution in the interval [a,b]. Prove that the density of

the convolution F ∗G is subexponential if and only if b− a is an integer.
4.6. Let F have a subexponential density with respect to the counting measure on

Z
+ and G be the exponential distribution. Prove that the density of the convolution

F ∗G is not subexponential. Is this convolution [0,1)-subexponential?
4.7. Let F be a distribution on R

+ with subexponential density with respect to
the Lebesgue measure. Let G have either

(i) a distribution with a compact support or
(ii) the Poisson distribution.

Prove that the density of the convolution F ∗G is subexponential.
4.8. Let F be a [0,1)-subexponential distribution on R

+. Let G be the uniform
distribution in the interval [a,b] where b− a is an integer. Prove that the density of
the convolution F ∗G is subexponential.

4.9. Suppose that f and g are weakly tail-equivalent long-tailed densities on R
+.

Prove that the convolutions f ∗ f and g ∗ g are weakly tail-equivalent too. Prove a
similar result for the n-fold convolutions, n ≥ 3.

4.10. Suppose that ξ1, . . . , ξn are independent random variables with common
distribution density f . Prove that the distribution density of the maximum,
max(ξ1, . . . ,ξn), is subexponential if and only if f is subexponential.

4.11. Suppose that ξ1, . . . , ξn are independent random variables with a common
exponential distribution. Find the asymptotics, as x → ∞, for the probability density
of the sum ξ α1

1 + . . .+ ξ αn
n if

(i) all αi > 1;
(ii) all αi < 0;
(iii) all αi �∈ [0,1].

4.12. Let independent random variables ξ1, . . . , ξn have the standard Cauchy
distribution, and let a counting random variable τ to be independent of the ξ ’s.
Compute the density of Sτ .

4.13. In the conditions of the previous problem, prove that the relation

P{Sτ > x} ∼ EτP{ξ1 > x} as x → ∞

holds for every τ with a finite mean.
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4.14. Let X(t) be a compound Poisson process such that its jumps have a
subexponential distribution density f . For every t, find the asymptotic behaviour
of the distribution density of X(t) in terms of f .

4.15. Prove subexponentiality of the distribution density of the product ξ1ξ2 of
two independent random variables with common exponential distribution.

4.16. Prove that the distribution density of the product ξ1ξ2 of two independent
random variables with common normal distribution is not subexponential. Prove
subexponentiality of the distribution density of the product of three independent
normal variables.

4.17. Prove that the distribution of the product ξ1ξ2 of two independent random
variables with common Poisson distribution is heavy-tailed. Prove that its density
with respect to the counting measure is not long-tailed and, therefore, is not subex-
ponential.

4.18. Prove that, for any two independent non-negative light-tailed random vari-
ables on Z

+, the distribution density (with respect to the counting measure) of their
product cannot be long-tailed.

4.19. In the conditions of Problem 2.24, assume that the limit limi→∞ pii exists
and is less than 1, and that limsupi→∞(pi,i+1 − pi,i−1) = 0. Show that then the in-
variant distribution is locally long-tailed. What kind of a regular behaviour of the
transition probabilities has to be assumed to ensure that the invariant probabilities
πi are

(i) regularly varying at infinity (as i → ∞);
(ii) varying at infinity in Weibullian way.

4.20. Excess process. In the conditions of Problem 2.26, assume that F is long-
tailed. Prove that then the invariant distribution is locally subexponential if and only
if the distribution F is strong subexponential.

4.21. In the conditions of Problem 2.27, what extra conditions should be assumed
for the invariant distribution to be locally subexponential?

4.22. Return time. Suppose Sn is a random walk in Z
d , d ≥ 3, with zero drift and

with a finite covariance matrix B. It is known that this random walk is transient with
p := P{τ1 <∞}< 1 where τ1 := min{n≥ 1 : Sn = 0} is the time of the first return to
the origin. It is also known that P{τ1 = n}∼ cn−d/2 as n→ ∞. Find the coefficient c.



Chapter 5
Maximum of Random Walk

In this chapter, we study a random walk whose increments have a (right) heavy-tailed
distribution with a negative mean. We also consider applications to queueing and
risk processes.

The maximum of such a random walk is almost surely finite, and our interest is in
the tail asymptotics of the distribution of this maximum, for both infinite and finite
time horizons; we are further interested in the local asymptotics for the maximum
in the case of an infinite time horizon. We use direct probabilistic techniques and
show that, under the appropriate subexponentiality conditions, the main reason for
the maximum to be far away from zero is again that a single increment of the walk
is similarly large.

We present here two approaches for deriving such results, the first using a first
renewal time at which the random walk exceeds a “tilted” level and the second
using classical ladder epochs and heights. It turns out that the former approach is
more direct since it is based on more elementary arguments, and we start with it
in Sects. 5.1 and 5.2. In Sect. 5.1 we deal with the infinite time horizon and first
obtain a general lower bound, and then the correct asymptotics, for the distribution
of the maximum. Similar results for finite time horizons (with uniformity in time)
are given in Sect. 5.2.

We then turn to the classical ladder heights approach. This allows us to obtain
both tail and local asymptotics for the maximum of the random walk in the case
of an infinite time horizon. In Sects. 5.3 and 5.4 we recall known basic results on
the ladder structure and on taboo renewal measures. In Sect. 5.5 we give results on
bounds and asymptotics for both the tail and the local probabilities of the first as-
cending ladder height; this will lead to another proof of the tail asymptotics for the
infinite-time maximum of the walk (Sect. 5.6) and also to the asymptotics for the
local probabilities of the distribution of the maximum (Sect. 5.7). In Sect. 5.8 we
present the asymptotics for the density of the maximum in the case where the den-
sity exists; this is also based on the ladder-heights representation. In each of three
Sects. 5.6–5.8, we show that the corresponding condition on the distribution to be-
long to the appropriate class is not only sufficient but also necessary, for the desired
asymptotics to hold. In Sect. 5.9, we consider the three particular cases where the

S. Foss et al., An Introduction to Heavy-Tailed and Subexponential Distributions,
Springer Series in Operations Research and Financial Engineering,
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distribution of the first strictly ascending ladder height may be explicitly calculated
and provide new local theorems and improved bounds.

The next Sects. 5.10–5.12 are devoted to applications. In Sect. 5.10 we obtain
the asymptotics for the stationary waiting time distribution in a stable single-server
queue with subexponential type distribution of service times. In Sect. 5.11 we con-
sider the classical Cramér–Lundberg model of the collective theory of risk and,
in particular, find the asymptotics for the ruin probability, both in infinite and
finite time horizons. In Sect. 5.12 we demonstrate how subexponential distributions
appear in the theory of branching processes.

Finally, in Sect. 5.13, for standard cases, we formulate and prove a limit theorem
for the distribution of the quadruple that includes the time to exceed a high level
by a random walk, the position at this time, the position at the prior time and the
trajectory up to it.

5.1 Asymptotics for the Maximum of a Random Walk
with a Negative Drift

We give an elementary probabilistic description of the asymptotic behaviour of the
distribution of the maximum of a random walk with negative drift and heavy-tailed
increments (see Theorem 5.2 below). The underlying intuition of the result is that
the only significant way in which a large value of the maximum can be attained is
through “one big jump” by the random walk away from its mean path. We give here
a relatively short proof from first principles which captures this intuition. It is similar
in spirit to the probabilistic proof related to the ladder heights (which may also be
of use for deriving local asymptotics), but by considering instead a first renewal
time at which the random walk exceeds a “tilted” level, the argument becomes more
elementary. In particular, subsequent renewals have an asymptotically negligible
probability under appropriate limits, and results from renewal theory—notably the
derivation and use of the Pollaczeck–Khinchine formula—are not required.

We proceed with the proof by deriving separately the lower and the upper bounds,
since no restrictions (apart of the negativeness of the mean!) are required for the
former to hold while subexponentiality is needed for the latter.

Let ξ1, ξ2, . . . be independent identically distributed random variables with distri-
bution function F such that Eξ1 =−a< 0. Let S0 = 0, Sn = ξ1+ . . .+ξn for n≥ 1 be
the associated random walk. Let Mn = max(Si,0 ≤ i ≤ n) for n ≥ 0 be the finite time
horizon maximum of the random walk Sn and let M = sup(Sn,n ≥ 0) be its global
maximum. It follows from the strong law of large numbers that P{M < ∞}= 1, and
our interest in this section is in the distribution of M.

We start with the lower bound, which is proved by a quite elementary equilibrium
identity.

Theorem 5.1. Suppose that Eξ1 =−a < 0. Then, for any x ≥ 0,

P{M > x} ≥
∫ ∞

x F(y)dy

a+
∫∞

x F(y)dy
,
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and, in particular,

liminf
x→∞

P{M > x}
FI(x)

≥ 1
a
.

Proof. Let ξ be a random variable with distribution F which is independent of M.
Then M has the same distribution as (M + ξ )+ := max(0,M + ξ ). Now fix x ≥ 0.
For z > 0 consider the function

Lz(y) =

⎧
⎨

⎩

x if y ≤ x,
y if y ∈ (x,x+ z],
x+ z if y > x+ z.

Since this function is bounded, ELz(M) is finite and ELz(M) = ELz(M + ξ ).
Therefore,

E(Lz(M+ ξ )−Lz(M)) = 0.

We have |Lz(M+ξ )−Lz(M)| ≤ |ξ | for all z and Lz(M+ξ )−Lz(M)→ L(M+ξ )−
L(M) as z → ∞ where

L(y) =

{
x if y ≤ x,
y if y > x.

Hence, by dominated convergence, we obtain the equality

E(L(M + ξ )−L(M)) = 0. (5.1)

We make use of the following bounds. For y ∈ [0,x],

L(y+ ξ )−L(y) = (y+ ξ − x)I{y+ ξ > x} ≥ (ξ − x)I{ξ > x},

and so

E{L(M+ ξ )−L(M);M ≤ x} ≥ E{ξ − x;ξ > x}P{M ≤ x}. (5.2)

For y > x,

L(y+ ξ )−L(y)≥ ξ ,

and so

E{L(M+ ξ )−L(M);M > x} ≥ EξP{M > x}. (5.3)

Substituting (5.2) and (5.3) into (5.1) we get the inequality

E{ξ − x;ξ > x}P{M ≤ x} ≤ −EξP{M > x}.
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Therefore,

P{M > x} ≥ E{ξ − x;ξ > x}
a+E{ξ − x;ξ > x} =

∫ ∞
x F(y)dy

a+
∫∞

x F(y)dy
,

where the final equality follows from (2.23). ��
We now give our main result of this section, for the asymptotic behaviour of the

tail of M.

Theorem 5.2. Suppose that, in addition to the condition Eξ1 = −a < 0, the inte-
grated tail distribution FI is subexponential. Then

P{M > x} ∼ a−1FI(x) as x → ∞.

Proof. By Theorem 5.1, it is sufficient to establish the upper bound associated with
the required asymptotics. Given ε > 0 and some (eventually large) A > a, define
renewal times 0 =: τ0 < τ1 ≤ τ2 ≤ . . . for the process {Sn} by

τ1 = min{ j ≥ 1 : S j > A− j(a− ε)}≤ ∞

(here we make the standard convention min∅= ∞), and, for k ≥ 2,

τk = ∞, if τk−1 = ∞,

τk = τk−1 +min{ j ≥ 1 : Sτk−1+ j − Sτk−1 > A− j(a− ε)}, if τk−1 < ∞.

Observe that, for any k, the joint distribution of the vectors

(τ1, Sτ1),(τ2 − τ1, Sτ2 − Sτ1), . . . ,(τk − τk−1, Sτk − Sτk−1), (5.4)

conditioned on τk < ∞, is that of independent identically distributed vectors. Since
Eξ1 < 0, by the strong law of large numbers,

γ := P{τ1 < ∞}→ 0 as A → ∞. (5.5)

Define also S∞ =−∞. Since τ1 = n implies Sn−1 ≤ A− (n−1)(a−ε), we now have
that, for all sufficiently large x,

P{Sτ1 > x} =
∞

∑
n=1

P{τ1 = n,Sn > x}

≤
∞

∑
n=1

P{Sn−1 ≤ A− (n− 1)(a− ε),Sn > x}

≤
∞

∑
n=1

P{ξn > x−A+(n− 1)(a− ε)}.
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Therefore, again for all sufficiently large x,

P{Sτ1 > x} ≤
∞

∑
n=0

F(x−A+ n(a− ε))≤ 1
a− ε

FI(x−A− a+ ε), (5.6)

where the second inequality above follows from this observation: for any n,

F(x−A+ n(a− ε))≤ 1
a− ε

∫ x−A+n(a−ε)

x−A+(n−1)(a−ε)
F(y)dy.

Let ϕ1, ϕ2, . . . be independent identically distributed random variables having
tail distribution

P{ϕ1 > x}= P{Sτ1 > x |τ1 < ∞}, x ∈R.

Then, from (5.6) and since FI is long-tailed,

P{ϕ1 > x} ≤ G(x), x ∈ R, (5.7)

for some distribution function G on R satisfying

lim
x→∞

G(x)

FI(x)
=

1
γ(a− ε)

. (5.8)

It follows from the subexponentiality of FI and Corollary 3.13 that the distribution G
is subexponential. Thus, by applying Theorem 3.37 with a geometrically distributed
independent stopping time, we have

(1− γ)
∞

∑
k=0

γ kG∗k(x) ∼ γ
1− γ

G(x) as x → ∞.

From the stochastic majorisation (5.7) and the relation (5.8), we now get the follow-
ing asymptotic upper bound:

∞

∑
k=1

γ k
P{ϕ1 + . . .+ϕk > x} ≤ γ + o(1)

(1− γ)2 G(x)

≤ 1+ o(1)
(1− γ)2(a− ε)

FI(x) as x → ∞. (5.9)

If M > x then there exist τk and j ∈ [τk,τk+1) such that S j > x. Then necessarily
Sτk > x−A+a−ε . (To see this assume that, on the contrary, Sτk ≤ x−A+a−ε < x.
Then τk < j < τk+1 and S j − Sτk > x− (x−A+ a− ε) = A− a+ ε . Hence we have
the contradiction that τk+1 ≤ j.) It follows that

{M > x} ⊆
∞⋃

k=1

{Sτk > x−A+ a− ε}.
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We thus have (again for sufficiently large x) that

P{M > x} ≤
∞

∑
k=1

P{Sτk > x−A+ a− ε}

≤
∞

∑
k=1

γk
P{ϕ1 + . . .+ϕk > x−A+ a− ε},

by (5.4) and by the construction of the random variables ϕi. Also using (5.9), we
now have

limsup
x→∞

P{M > x}
FI(x)

≤ 1
(a− ε)(1− γ)2 .

Now let A → ∞, so that γ → 0 by (5.5), and then let ε → 0 to obtain the required
upper bound:

limsup
x→∞

P{M > x}
FI(x)

≤ 1
a
. ��

It seems to be tempting to complement the equivalence relation from Theo-
rem 5.2 and the lower bound from Theorem 5.1 by an upper bound. There have
been many attempts to find such bounds, either for the tail distribution of the maxi-
mum of a random walk or for the tail distribution of a geometric sum of independent
identically distributed positive random variables, see, e.g. [30]. However, there are
no satisfactory solutions or approaches, and the problem is still open, see, e.g. [38].

5.2 Finite Time Horizon Asymptotics

We continue to study the random walk with negative drift introduced in the previous
section. Recall that Mn = max(Si,0 ≤ i ≤ n) is defined to be the maximum of the
random walk to time n. In this section we derive asymptotics, uniform in n, for
the probability P{Mn > x} as x → ∞ under heavy-tailedness assumptions. If F is
(whole-line) subexponential and n is fixed then, since subexponentiality is a tail
property and by Theorem 2.40, the inequalities

Sn ≤ Mn ≤
n

∑
k=1

ξ+
k

imply that
P{Mn > x} ∼ nF(x) as x → ∞.

In the next theorem we produce asymptotics which are uniform in n. The underly-
ing intuition of the result is again that the only significant way in which a high value
of the partial maximum can be attained is via a “big jump” of one of its increments.
The proof of the lower bound is based on direct computations and requires the extra
assumption of long-tailedness of the distribution F of the increments ξi. The proof
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of the upper bound is similar to that of Theorem 5.2, although the condition of that
theorem that FI be subexponential requires to be strengthened slightly to F ∈ S∗
(see Sect. 3.4 and in particular Theorem 3.27).

In what follows we write f (x,n) ≥ (1 + o(1))g(x,n) as x → ∞ uniformly in
n ≥ 1 if

liminf
x→∞

inf
n≥1

f (x,n)
g(x,n)

≥ 1,

and we write f (x,n) ∼ g(x,n) as x → ∞ uniformly in n ≥ 1 if

sup
n≥1

∣
∣
∣
∣
∣

f (x,n)
g(x,n)

− 1

∣
∣
∣
∣
∣
→ 0 as x → ∞.

Theorem 5.3. Let Eξ = −a < 0. Suppose that the distribution F is long-tailed
(F ∈L). Then

P{Mn > x} ≥ 1+ o(1)
a

∫ x+na

x
F(y)dy as x → ∞, uniformly in n ≥ 1. (5.10)

If, in addition, the distribution is strong subexponential (F ∈ S∗), then

P{Mn > x} ∼ 1
a

∫ x+na

x
F(y)dy as x → ∞, uniformly in n ≥ 1. (5.11)

Proof. We prove first the lower bound given in (5.10). Since Eξ1 < 0, it follows
from the strong law of large numbers that, given ε > 0 and δ > 0, we can choose A
sufficiently large that

P{|Sk + ka| ≤ A+ kε for all k ≤ n} ≥ 1− δ for all n ≥ 0. (5.12)

Then the following lower bound is immediate:

P{Mn > x} =
n−1

∑
k=0

P{Mk ≤ x,Sk+1 > x}

≥
n−1

∑
k=0

P{Mk ≤ x, |S j + ja| ≤ A+ jε for all j ≤ k,

ξk+1 > x+A+ k(a+ ε)}.

By the independence of random variables ξi and by (5.12), we have

P{Mn > x} ≥
n−1

∑
k=0

P{Mk ≤ x, |S j + ja| ≤ A+ jε for all j ≤ k}

×P{ξk+1 > x+A+ k(a+ ε)}

≥
n−1

∑
k=0

(1− 2δ )F(x+A+ k(a+ ε)),
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where the last inequality holds for all x sufficiently large that

P{M > x} ≤ δ (5.13)

which implies that P{Mk > x} ≤ δ for all k. By summation of the inequalities

F(x+A+ k(a+ ε)) ≥ 1
a+ ε

∫ x+(k+1)(a+ε)

x+k(a+ε)
F(y+A)dy,

we get

P{Mn > x} ≥ 1− 2δ
a+ ε

∫ x+n(a+ε)

x
F(y+A)dy.

Since F is assumed to be long-tailed, it now follows that

P{Mn > x} ≥ 1− 3δ
a+ ε

∫ x+n(a+ε)

x
F(y)dy

for all x sufficiently large that (5.13) holds. That the inequality (5.10) holds with the
required uniformity in n now follows by letting δ , ε → 0.

We now prove (5.11). Here F is assumed to belong to the class S∗, so it is in
particular long-tailed. Hence, it is sufficient to establish the upper bound in (5.11).
Given ε > 0 and A > a, define renewal times 0 =: τ0 < τ1 ≤ τ2 ≤ . . . for the pro-
cess {Sk} as in the proof of Theorem 5.2.

Analogously to (5.6), we obtain

P{Sτ1∧n > x} ≤
n−1

∑
k=0

F(x−A+ k(a− ε))≤ 1
a− ε

∫ x+na

x
F(y−A− a+ ε)dy.

Since F is long-tailed,

P{Sτ1∧n > x} ≤ 1+ ε
a− ε

∫ x+na

x
F(y)dy (5.14)

for all sufficiently large x uniformly in n≥ 1. This means that we can choose x0 such
that (5.14) holds for all x ≥ x0 and for all n = 1,2, . . . .

Let ϕn,1, ϕn,2, . . . be independent identically distributed random variables such
that

P{ϕn,1 > x}= P{Sτ1∧n > x |τ1 < ∞}, x ∈ R.

Then, from (5.14), for x ≥ x0,

P{ϕn,1 > x} ≤
∫ x+na

x
Gn(y)dy, x ∈ R,n ≥ 1, (5.15)
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for some distribution function Gn on R satisfying

lim
x→∞

Gn(x)

F(x)
=

1+ ε
γ(a− ε)

. (5.16)

From the condition F ∈ S∗ and Corollary 3.26, we have Gn ∈ S∗. We may now apply
Corollary 3.40 with a geometrically distributed stopping time to obtain that

(1− γ)
∞

∑
k=0

γkG∗k
n (x) ∼ γ

1− γ
Gn(x)

as x → ∞ uniformly in n ≥ 1. Using also the conditions (5.15) and (5.16), we get the
following asymptotic upper bound:

∞

∑
k=1

γk
P{ϕn,1 + . . .+ϕn,k > x} ≤ γ + o(1)

(1− γ)2 Gn(x)

≤ 1+ ε + o(1)
(1− γ)2(a− ε)

∫ x+na

x
F(y)dy (5.17)

as x → ∞ uniformly in n ≥ 1.
If Mn > x, then there exist τk ≤ n and j ∈ [τk,τk+1) such that S j > x. Then,

exactly as in the proof of Theorem 5.2, we have that necessarily Sτk > x−A+a−ε .
It follows that

{Mn > x} ⊆
∞⋃

k=1

{Sτk∧n > x−A+ a− ε}.

Therefore,

P{Mn > x} ≤
∞

∑
k=1

P{Sτk∧n > x−A+ a− ε}

≤
∞

∑
k=1

γk
P{ϕn,1 + . . .+ϕn,k > x−A+ a− ε},

by the construction of the random variables ϕi. Using (5.17) we obtain

limsup
x→∞

sup
n≥1

P{Mn > x}
∫ x+na

x F(y)dy
≤ 1+ ε

(a− ε)(1− γ)2 .

Now first let A → ∞, so that γ → 0 by (5.5). Then let ε → 0 to obtain the required
upper bound

limsup
x→∞

sup
n≥1

P{Mn > x}
∫ x+na

x F(y)dy
≤ 1

a
,

which, together with the lower bound (5.10), implies the required uniform asymp-
totics (5.11). ��
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We conclude this section with two theorems that are nothing other than versions
of the principle of a single big jump for M and Mn. For any A > 0 and ε > 0 consider
events

Bk :=
{
|S j + a j| ≤ jε +A for all j ≤ k, ξk+1 > x+ ka

}

which, for large x, roughly speaking means that up to time k the random walk S j

moves down according to the strong law of large numbers and then makes a big
jump up. As stated in the next theorem, the union of these events describes the most
probable way by which large deviations of M or Mn can occur.

Theorem 5.4. Let Eξ =−a < 0 and FI ∈ S. Then, for any fixed ε > 0,

lim
A→∞

lim
x→∞

P{∪∞
k=0Bk|M > x} = 1.

If, in addition, F ∈ S∗, then, for any fixed ε > 0,

lim
A→∞

lim
x→∞

inf
n≥1

P{∪n−1
k=0Bk|Mn > x} = 1.

Proof. We prove the second assertion only, since the proof of the first is similar.
Since, for k ≤ n− 1, each of the events

B̃k :=
{
|S j + a j| ≤ jε +A for all j ≤ k, Mk ≤ x, ξk+1 > x+A+ k(a+ ε)

}

is contained in Bk and implies that Sk > x so that Mn > x, we consequently have that

P{∪n
k=0Bk|Mn > x} ≥ P{∪n−1

k=0B̃k|Mn > x}= P{∪n−1
k=0B̃k}

P{Mn > x} . (5.18)

The events B̃k are disjoint, hence

P{∪n−1
k=0B̃k} =

n−1

∑
k=0

P{B̃k}.

As was shown in the proof of the previous theorem, for any fixed δ > 0, there exists
A such that, for all x > A,

P{∪n−1
k=1B̃k} ≥ 1− δ

a+ ε

∫ x+n(a+ε)

x
F(y)dy.

Substituting this estimate and the asymptotics for Mn into (5.18) we deduce that

lim
x→∞

inf
n≥1

P{∪n
k=0Bk|Mn > x} ≥ (1− δ )a

a+ ε
.

Now we can make δ > 0 as small as we please by choosing a sufficiently large A.
Therefore,

lim
A→∞

lim
x→∞

inf
n≥1

P{∪n−1
k=0Bk|Mn > x} ≥ a

a+ ε
.
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Here the left hand term is non-increasing as ε ↓ 0 while the right hand can be made
as close to 1 as we please by choosing a sufficiently small ε > 0. This yields that the
limit is equal to 1 for every ε > 0. This completes the proof. ��

Now we assume that, in the definition of events Bk, the numbers A > 0 and ε > 0
may vary. Namely, we consider a sequence ε j and a function h(x) ↑ ∞ and introduce
disjoint events

Bk(x) :=
{
|S j + a j| ≤ jε j + h(x) for all j ≤ k, ξk+1 > x+ k(a+ εk)+ h(x)

}

which have the same intuition behind as events Bk. Let ε j → 0 as j → ∞ in such a
way that

P{|S j + a j| ≤ jε j for all j ≥ k}→ 1 as k → ∞;

such a sequence exists due to the Strong Law of Large Numbers.
The union of events Bk(x) describes more precisely than Theorem 5.4 the most

probable way by which large deviations of M or Mn do occur.

Theorem 5.4*. Let Eξ =−a < 0 and FI ∈ S. Then, for any function h(x)→ ∞ such
that FI is h-insensitive,

P{∪∞
k=0Bk(x)|M > x} → 1 as x → ∞.

If, in addition, F ∈ S∗, then, uniformly in n,

P{∪n−1
k=0Bk(x)|Mn > x} → 1 as x → ∞.

Proof. Similar arguments as in the proof of Theorem 5.4 may be applied, with some
simplifications. ��

5.3 Ladder Structure of Maximum of Random Walk

In this section we give an overview of the approach for studying the maximum of a
random walk via ascending ladder heights and renewal theory. This approach goes
back to Feller [26].

We assume here that the mean of F is negative, so that Sn →−∞ as x → ∞, with
probability 1. Then M is finite with probability 1 and the first strictly ascending
ladder epoch

η+(1) = η+ := min{k ≥ 1 : Sk > 0} ≤ ∞

is defective (we put min∅=∞). The random variable Sη+ , which is the first positive
sum, is called the first strictly ascending ladder height; here S∞ = −∞. Since the
random variables ξi are independent and identically distributed and since η+ is a
stopping time, given that η+ < ∞, the random variables ξη++k, k = 1, 2, . . . , are
mutually independent and do not depend on {η+,ξ1, . . . ,ξη+}.
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The subsequent (strictly) ascending ladder epochs are defined by induction. If
the nth ascending ladder epoch η+(n) is finite, then define the (n+ 1)th ascending
ladder epoch η+(n+ 1) by

η+(n+ 1) := min{k > η+(n) : Sk > Sη+(n)} ≤ ∞.

The random variable Sη+(n) is called nth strictly ascending ladder height. Again,
given that η+(n) < ∞, the random variables ξη+(n)+k, k = 1, 2, . . . , are mutually
independent and do not depend on {η+(1), . . . ,η+(n),ξ1, . . . ,ξη+(n)}. In particular,
if we define

p := P{M = 0}= P{Sk ≤ 0 for all k ≥ 1}= P{η+(1) = ∞}, (5.19)

then η+(n) exists with probability (1 − p)n−1 and it is finite with probability
(1− p)n.

The maximum M of the random walk Sn equals the maximal ladder height.
Therefore,

P{M > x} =
∞

∑
k=1

P{Sη+(k) > x,η+(k)< ∞,η+(k+ 1) = ∞}

= p
∞

∑
k=1

P{Sη+(k) > x|η+(k)< ∞}(1− p)k, x > 0.

Let {ψ+(n)} be independent random variables with common distribution

G(B) := P{ψ+(n) ∈ B}= P{Sη+(1) ∈ B|η+(1)< ∞}.

Then, for any Borel set B ⊆ (0,∞),

P{M ∈ B} = p
∞

∑
k=1

P{ψ+(1)+ . . .+ψ+(k) ∈ B}(1− p)k. (5.20)

In other words, the distribution of the maximum M coincides with the distribution
of the randomly stopped sum ψ+(1)+ . . .+ψ+(τ), where the stopping time τ is in-
dependent of the sequence {ψ+(n)} and is geometrically distributed with parameter
1− p, i.e., P{τ = k}= p(1− p)k for k = 0, 1, . . . . Equivalently,

M =d G∗τ . (5.21)

5.4 Taboo Renewal Measures

Define the taboo renewal measure on R
+

H+(B) = I{0 ∈ B}+
∞

∑
n=1

P{S1 > 0, . . . , Sn > 0, Sn ∈ B}. (5.22)
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Since the vector (ξn, . . . ,ξ1) has the same distribution as the vector (ξ1, . . . ,ξn),

P{S1 > 0, . . . ,Sn > 0,Sn ∈ B}
= P{ξn > 0,ξn + ξn−1 > 0, . . . ,Sn > 0,Sn ∈ B}
= P{Sn − Sn−1 > 0,Sn − Sn−2 > 0, . . . ,Sn − S0 > 0,Sn ∈ B}
= P{Sn > Sn−1,Sn > Sn−2, . . . ,Sn > S0,Sn ∈ B}.

The latter event means that Sn is a strict ladder height taking its value in B. Summing
over n, we get the following interpretation of the taboo renewal measure H+. As
above, p = P{M = 0}.

Lemma 5.5. For any Borel set B ⊆ (0,∞), H+(B) is equal to the mean number of
strict ascending ladder heights in the set B. In particular,

H+(0,∞) =
∞

∑
k=1

kp(1− p)k = (1− p)/p,

so that the measure H+ is finite, and

H+[0,∞) = 1+H+(0,∞) = 1/p.

Let η−(1) = η− := min{k ≥ 1 : Sk ≤ 0} be the first (weak) descending ladder
epoch and define subsequent (weak) descending ladder epochs by, for n ≥ 1,

η−(n+ 1) := min{k > η−(n) : Sk ≤ Sη−(n)}.

Define also ψ−(1) =ψ− := Sη− to be the first (weak) descending ladder height, and,
for n≥ 2, define n-th descending ladder height by ψ−(n) = Sη−(n)−Sη−(n−1). Since
P{Sn →−∞}= 1, the random variables η−(n) and ψ−(n) are all proper. Moreover,
Eη− < ∞ since, by Lemma 5.5,

Eη− = 1+
∞

∑
n=1

P{η− > n}

= 1+
∞

∑
n=1

P{S1 > 0, . . . ,Sn > 0}

= H+[0,∞) = 1/p. (5.23)

Lemma 5.6 (Wald’s identity). Let τ be a non-negative integer-valued random
variable such that, for every n,

the event {τ ≤ n} does not depend on ξn+1. (5.24)

Then ESτ = EτEξ1, provided both Eτ and E|ξ1| are finite.
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Proof. We make use of the following decomposition:

ESτ =
∞

∑
n=0

E{Sτ ;τ = n}=
∞

∑
n=1

n

∑
k=1

E{ξk;τ = n}. (5.25)

We may change the order of summation because these double series converge abso-
lutely. Indeed, for non-negative summands,

∞

∑
n=1

n

∑
k=1

E{|ξk|;τ = n} =
∞

∑
k=1

E{|ξk|;τ ≥ k}.

By condition (5.24), the event {τ ≥ k}= {τ ≤ k− 1} does not depend on ξk, so that

∞

∑
n=1

n

∑
k=1

E{|ξk|;τ = n} =
∞

∑
k=1

E|ξk|P{τ ≥ k}= EτE|ξ1|< ∞,

due to the finiteness of Eτ and E|ξ1|. Hence the change of order of summation in
(5.25) is justified and we obtain the equality

ESτ =
∞

∑
k=1

E{ξk;τ ≥ k}.

Again, independence of {τ ≥ k} and ξk finally yields

ESτ =
∞

∑
k=1

EξkP{τ ≥ k}= EτEξ1. ��

Applying Wald’s identity to the stopping time η− we get the equality Eψ− =
Eη−Eξ which together with (5.23) yields

Eψ− = −a/p. (5.26)

Symmetrically to (5.22), define the taboo renewal measure on R
−

H−(B) =
∞

∑
n=0

P{S0 ≤ 0, . . . ,Sn ≤ 0,Sn ∈ B}. (5.27)

Since Sn →−∞, H−(−∞,0] = ∞. Analogously to the result for H+, we have the fol-
lowing representation result for the measure H−, which allows us to deduce useful
properties, such as that given by Theorem 5.8

Lemma 5.7. For any Borel set B ⊆ (−∞,0], H−(B) is equal to the mean number
of weak descending ladder heights in the set B, plus 1 if 0 ∈ B.

Theorem 5.8. Let Eξ1 =−a < 0. For all x > 0,

H−(−x,0]≥ px
a
.
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If the distribution F is concentrated on the lattice Z with the minimal span 1, then

H−{−k}→ p/a as k → ∞, k ∈ Z.

If the distribution F is non-lattice, then, for any fixed T > 0,

H−(−x+[0,T))→ T p/a as x → ∞.

Proof. Define

ν := min{n ≥ 1 : Sη−(n) ≤−x}
= min{n ≥ 1 : ψ−(1)+ . . .+ψ−(n)≤−x}.

By Lemma 5.7, H− is the renewal measure generated by the independent identi-
cally distributed random variables ψ−(n), n ≥ 1. Since ν is equal to the number
of renewals in the interval (−x,0] except 0 plus the first one in (−∞,−x], we have
H(−x,0] = Eν .

We have ψ−(1)+ . . .+ψ−(ν)≤−x. Also, since ν is a stopping time, by Wald’s
identity E(ψ−(1) + . . .+ ψ−(ν)) = EνEψ−. Therefore, Eν ≥ −x/Eψ−, where
Eψ−

1 = −a/p from (5.26), so that Eν ≥ px/a, giving the required proof of the
lower bound for H−(−x,0].

The local asymptotics for the renewal measure H− are particular cases of the key
renewal theorem, see Feller [26]. ��

5.5 Asymptotics for the First Ascending Ladder Height

In this section we again assume that Eξ1 = −a < 0 so that Sn → −∞ and define
p := P{M = 0}.

It follows from the representations (5.20) and (5.21) that the distribution of the
maximum M of the random walk (Sn, n ≥ 0) is determined by the distribution of
the first positive sum Sη+ in a rather simple way and we recall in this section a
number of results on the latter.

It follows from (5.27) that the distribution of the first ascending ladder height
possesses the following representation: for B ⊆ (0,∞),

P{Sη+ ∈ B} =

∫ 0

−∞
F(B− t)H−(dt), (5.28)

so that

P{ψ+ ∈ B} =
1

1− p

∫ 0

−∞
F(B− t)H−(dt). (5.29)

Lemma 5.9. Under the condition Eξ1 = −a < 0 and without any further restric-
tions, the following lower bound holds:

P{Sη+ > x} ≥ p
a

∫ ∞

x
F(t)dt for all x > 0.
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If, in addition, the integrated tail distribution FI is long-tailed, then the following
tail asymptotics hold:

P{Sη+ > x} ∼ pFI(x)/a as x → ∞.

Proof. The integral in (5.28) with B = (x,∞) may be represented as

∫ 0

−∞
F(x− t)H−(dt) = (F ∗H−)(x,∞)

=

∫ ∞

0
H−(−t,0]F(x+ dt). (5.30)

Applying here Theorem 5.8 and equality (2.23) we get
∫ ∞

0
H−(−t,0]F(x+ dt) ≥ p

a

∫ ∞

0
tF(x+ dt)

=
p
a
E{ξ − x;ξ > x}= p

a

∫ ∞

x
F(t)dt,

which by (5.28) implies the first conclusion of the lemma.
To prove the second assertion of the lemma, fix any ε > 0. It follows from

Theorem 5.8 that there exists c such that, for all t > 0,

H−(−t,0]≤ c+(p/a+ ε)t.

Then
∫ ∞

0
H−(−t,0]F(x+ dt) ≤

∫ ∞

0
(c+(p/a+ ε)t)F(x+ dt)

= cF(x)+ (p/a+ ε)
∫ ∞

x
F(t)dt.

Since FI is here assumed long-tailed, by Lemma 2.25, F(x) = o(FI(x)). Therefore,
∫ ∞

0
H−(−t,0]F(x+ dt) ≤ (p/a+ 2ε)FI(x)

for all sufficiently large x. Taking now (5.30) and (5.28) with B = (x,∞) we deduce
the upper bound

limsup
x→∞

P{Sη+ > x}
FI(x)

≤ p/a+ 2ε.

By letting ε → 0 and combining this result with the first assertion of the lemma, we
complete the proof of the second assertion. ��

For local probabilities, the following result holds.
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Lemma 5.10. Let Eξ1 = −a < 0 and let the distribution F be long-tailed. If F is
not lattice then, for any fixed T ,

P{Sη+ ∈ (x,x+T ]} ∼ T p
a

F(x) as x → ∞.

If F is concentrated on the lattice Z with minimal span 1, then

P{Sη+ = j} ∼ p
a

F( j) as j → ∞, j ∈ Z.

Proof. Assume that the distribution F is non-lattice (the proof in the lattice case is
similar). Then, from the representation (5.28) with B = (x,x+T ], we get

P{Sη+ ∈ (x,x+T ]} =

∫ 0

−∞
F(x− t,x+T − t]H−(dt)

= (F ∗H−)(x,x+T ]

=

∫ ∞

0
H−(−t,−t +T ]F(x+ dt). (5.31)

Fix any ε > 0. It follows from Theorem 5.8 that there exists t0 > T such that

T p/a− ε ≤ H−(−t,−t +T ]≤ T p/a+ ε for all t > t0.

Then, on the one hand, the left inequality implies that
∫ ∞

0
H−(−t,−t +T ]F(x+ dt) ≥

∫ ∞

t0
(T p/a− ε)F(x+ dt)

= (T p/a− ε)F(x+ t0).

On the other hand, the right inequality gives

∫ ∞

0
H−(−t,−t +T ]F(x+ dt) ≤ c

∫ t0

0
F(x+ dt)+

∫ ∞

t0
(T p/a+ ε)F(x+ dt)

= cF(x,x+ t0]+ (T p/a+ ε)F(x+ t0),

where c := supt≥0 H−(−t,−t+T ]. Since F is assumed long-tailed, F(x+ t0)∼ F(x)
and F(x,x+ t0] = F(x)−F(x+ t0) = o(F(x)) as x → ∞. Hence, for all sufficiently
large x,

(T p/a− 2ε)F(x)≤
∫ ∞

0
H−(−t,−t +T ]F(x+ dt)≤ (T p/a+ 2ε)F(x).

Substituting these inequalities into (5.31) we obtain that

(T p/a− 2ε)F(x)≤ P{Sη+ ∈ (x,x+T ]} ≤ (T p/a+ 2ε)F(x).

Letting ε → 0 we complete the proof. ��
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Lemma 5.11. Let Eξ1 =−a < 0 and let the distribution F have a density f on R
+.

If the function f is long-tailed, then the density of Sη+ is asymptotically equivalent
to pF(x)/a as x → ∞.

Proof. By the representation (5.28), the density of Sη+ is equal to

∫ 0

−∞
f (x− t)H−(dt). (5.32)

Since f (x) is long-tailed,

F(x,x+ 1] =
∫ x+1

x
f (y)dy ∼ f (x) as x → ∞.

Thus, the integral (5.32) is asymptotically equivalent to

∫ 0

−∞
F(x− t,x+ 1− t]H−(dt).

As shown in the proof of the previous lemma, this integral is asymptotically equiv-
alent to pF(x)/a as x → ∞. ��

5.6 Tail of the Maximum Revisited

Here we provide an alternative proof of Theorem 5.2 using the ladder height struc-
ture of the maximum. Also, we prove the converse result that the standard asymp-
totics imply subexponentiality.

Theorem 5.12. Suppose that Eξ = −a < 0. Then P{M > x} ∼ FI(x)/a as x → ∞
if and only if FI is subexponential.

Proof. If FI is subexponential, then it is in particular long-tailed so that we can ap-
ply Lemma 5.9. Then, by Corollary 3.13, the distribution of ψ+ is subexponential
too. From the representation (5.20) and from Theorem 3.37, we thus obtain that, as
x → ∞,

P{M > x} = p
∞

∑
k=1

P{ψ+(1)+ . . .+ψ+(k)> x}(1− p)k

∼ pP{ψ+ > x}
∞

∑
k=1

k(1− p)k

= P{Sη+ > x}/p,

which, by Lemma 5.9, yields the desired asymptotics for the tail of the maximum.
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Now we prove the converse. Assume that P{M > x} ∼ FI(x)/a as x → ∞. From
the first result of Lemma 5.9 it follows that

P{ψ+ > x}=: G(x) ≥ G0(x) :=
p

a(1− p)

∫ ∞

x
F(t)dt for all x > 0.

Since G0(x)≤ G(x),

p
∞

∑
k=1

G∗k
0 (x)(1− p)k ≤ p

∞

∑
k=1

G∗k(x)(1− p)k

= P{M > x}
∼ FI(x)/a as x → ∞,

by the hypothesis. Applying Theorem 3.38 with geometrically distributed τ to the
distribution G0 on the positive half-line we deduce that G0 is subexponential. Then,
by Corollary 3.13, FI is subexponential too. ��

5.7 Local Probabilities of the Maximum

Any subexponential distribution is long-tailed. Hence, under the conditions of
Theorem 5.2, for any fixed T , P{M ∈ (x,x+T ]}= o(FI(x)) as x → ∞. Some appli-
cations, however, call for more detailed asymptotics of the random walk maximum
than are given by Theorem 5.2. For this, we need F to be strong subexponential,
F ∈ S∗, which, by Theorem 3.27, implies that FI ∈ S.

As above, for T ∈ (0,∞), we put Δ = (0,T ].

Theorem 5.13. Suppose thatEξ =−a< 0 and that the distribution F is long-tailed.
Then the following statements are equivalent:
(i) F ∈ S∗.

(ii) P{M ∈ (x,x+T ]} ∼ T F(x)/a as x → ∞
(if the distribution F is lattice, then x and T should be restricted to values of the
lattice span).

Proof. Assume that the distribution F is non-lattice (the proof in the lattice case is
similar). Since F ∈ L we have from Lemma 5.10 that

P{Sη+ ∈ (x,x+T ]} ∼ T p
a

F(x) as x → ∞. (5.33)

Again since F ∈L it follows in particular that the distribution of ψ+ is Δ -long-tailed.
It follows from Theorem 4.32 (and the result that membership of S∗ is a tail property
of a distribution) that the relation F ∈ S∗ is equivalent to the Δ -subexponentiality of
the integrated tail distribution FI . In turn, it follows from the equivalence (5.33) and
from Corollary 4.24 that the distribution of ψ+ is Δ -subexponential if and only if FI

is so. Thus, the distribution of ψ+ is Δ -subexponential if and only if F ∈ S∗.
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From the representation (5.20) and from Theorem 3.37, we have

P{M ∈ x+Δ} = p
∞

∑
k=1

P{ψ+(1)+ . . .+ψ+(k) ∈ x+Δ}(1− p)k.

By Theorem 4.31, the probability on the right is asymptotically equivalent to

P{ψ+ ∈ x+Δ}p
∞

∑
k=1

k(1− p)k = P{ψ+ ∈ x+Δ}(1− p)/p

as x → ∞ if and only if the distribution of ψ+ is Δ -subexponential. By (5.33),

P{ψ+ ∈ x+Δ}(1− p)/p = P{Sη+ ∈ x+Δ}/p

∼ T F(x)/a as x → ∞.

Combining the above statements, we thus obtain the stated result. ��
To conclude this section note that it follows from the above theorem that if F ∈ S∗

then, for any T > 0,

P{M ∈ (x,x+T ]} ∼ 1
a

∫ x+T

x
F(y)dy as x → ∞.

It therefore follows that, for any T0 > 0, this asymptotic result holds uniformly in
T > T0.

5.8 Density of the Maximum

The distribution of the maximum M of a random walk with negative drift always
contains an atom at the origin, i.e. P{M = 0} = 1− p. In this section we are con-
cerned with the absolutely continuous part of the distribution of M. We assume that
the conditional distribution of ξ given that ξ > 0 is absolutely continuous. Thus let
f (x)≥ 0 be a function such that

F(B) =
∫

B
f (x)dx for any B ∈B(0,∞).

Then the distribution of the maximum M is the sum of the atomic distribution of
weight p at zero and an absolutely continuous distribution with a density m(x),
where

∫ ∞
0 m(x)dx = 1− p.

Theorem 5.14. Suppose that Eξ = −a < 0 and that f is long-tailed. Then the
following statements are equivalent:
(i) F ∈ S∗.

(ii) m(x)∼ F(x)/a as x → ∞.
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Proof. Since f is long-tailed we can apply Lemma 5.11 which states that the density
g(x) of Sη+ is asymptotically equivalent to pF(x)/a as x → ∞. In particular, the
density g(x)/(1− p) of ψ+ is long-tailed. By Theorem 4.32, (and again the result
that membership of S∗ is a tail property of a distribution) the relation F ∈ S∗ is
equivalent to subexponentiality of the integrated tail density of FI . In turn, it follows
from the equivalence g(x)∼ pF(x)/a and from Theorem 4.8 that the density of ψ+

is subexponential if and only if the density of FI is also. Thus, the density of ψ+ is
subexponential if and only if F ∈ S∗.

From the representation (5.20) and from Theorem 3.37, we obtain

m(x) = p
∞

∑
k=1

(g/(1− p))∗k(x)(1− p)k.

By Theorem 4.30, the density on the right is asymptotically equivalent to

g(x)
1− p

p
∞

∑
k=1

k(1− p)k =
g(x)

p
∼ F(x)

as x → ∞ if and only if the density of ψ+ is subexponential. The above statements
together yield the desired equivalence of (i) and (ii). ��

5.9 Explicitly Calculable Ascending Ladder Heights

There are only a few cases where the distribution of the first strictly ascending lad-
der height Sη+ may be explicitly calculated. This leads to new local theorems and
to better bounds and asymptotics than are in general available. We consider three
such cases, one relates to exponential left tail distributions and two others to lattice
distributions.

Exponential Case

We start with the case, where the distribution function P{ξ ≤ x} is exponential for
negative x. This case is important in applications (e.g. in risk theory (see Sect. 5.11)
and in queueing (see Sect. 5.10)) where ξ may be represented as a difference σ − τ
of two independent random variables and τ has an exponential distribution.

We thus assume that the left tail of the distribution of ξ is exponential, i.e., for
some c and α > 0, P{ξ ≤ x} = ceαx for all x ≤ 0. Then the distribution of the first
weakly descending ladder height ψ− = Sη− is given by, for x ≤ 0,

P{ψ− ≤ x} =

∫ ∞

0
F(x− t)H+(dt)

= ceαx
∫ ∞

0
e−αtH+(dt),
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so that c
∫ ∞

0 e−αtH+(dt) must be equal to one, and ψ− is exponentially distributed
with parameter α . Hence, the sequence ψ−(n) generates the Poisson process with
intensity α . Therefore, by Lemma 5.7, H− is the sum of an α multiple of Lebesgue
measure plus a unit mass at 0. Then the equality (5.28) yields that, for any Borel set
B ⊂ (0,∞),

P{Sη+ ∈ B} = α
∫ 0

−∞
F(B− t)dt+F(B),

so that, for x > 0,

P{Sη+ > x} = α
∫ ∞

x
F(t)dt +F(x). (5.34)

In addition, by (5.26),

P{M = 0}= P{η+ = ∞} = Eξ/ESη− =−Eξ α. (5.35)

The case where ξ = σ − τ , where σ and τ are independent and non-negative,
is of special interest as it arises naturally in both queueing and risk theory. If τ is
exponentially distributed with parameter α > 0 then, for x ≤ 0,

P{ξ ≤ x} =

∫ ∞

0
eα(x−y)

P{σ ∈ dy}

= eαx
∫ ∞

0
e−αyB(dy),

where B is the distribution of σ , so that P{ξ ≤ x} is an exponential function for
x ≤ 0. In addition, the distribution F is absolutely continuous with density f , say,
and for x > 0

f (x) = α
∫ ∞

x
e−α(y−x)B(dy),

F(x) =
∫ ∞

x
(1− e−α(y−x))B(dy) = B(x)− f (x)/α.

Hence, by (5.34) the density of Sη+ is equal to

αF(x)+ f (x) = αB(x).

Finally, by (5.35)

P{M = 0} = (1/α −Eσ)α = 1−ρ ,

where ρ :=Eσ/Eτ = αEσ . Hence the representation (5.20) for the tail distribution
of the maximum M of the random walk simplifies to:

P{M > x} = (1−ρ)
∞

∑
n=0

ρnB∗n
r (x) (5.36)
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where Br is a proper distribution on R
+ with density B(x)/Eσ .

Applying here the inequality B∗n
r (x)≤ Bn

r (x) we obtain the lower bound

P{M > x} ≥ (1−ρ)
∞

∑
n=0

ρn(1−Bn
r(x))

= 1− 1−ρ
1−ρ +ρBr(x)

=
Br(x)

1−ρ
ρ +Br(x)

. (5.37)

This is slightly better than the general lower bound delivered by Theorem 5.1, since
the function t

a+t increases in t and B(x)≥ F(x), so that Br(x)≥ FI(x)/Eσ .
Some results proved earlier for the distribution of the maximum M become easier

in this case. In particular this distribution of M is the sum of an atom of mass 1−ρ
at zero and of an absolutely continuous part on (0,∞) with tail function given, for
x > 0, by

(1−ρ)
∞

∑
n=1

ρnB∗n
r (x). (5.38)

Consider the monotonically decreasing density b(x) := B(x)/Eσ . Then the density
m(x) of the absolutely continuous part of the distribution of M is given by

m(x) := (1−ρ)
∞

∑
n=1

ρnb∗n(x)

Further Theorem 5.14 may be simplified as follows.

Theorem 5.15. Suppose that ξ = σ − τ , that τ has exponential distribution with
parameter α > 0, that σ ≥ 0 has distribution B, that σ and τ are independent and
that ρ := αEσ < 1. Then the following statements are equivalent:
(i) B ∈ S∗.

(ii) m(x)∼ α
1−ρ B(x) as x → ∞.

Geometric Case

This is a lattice analogue of the previous case. Suppose that ξ takes values in Z and
that the left tail of ξ is geometrically distributed, i.e., for some c > 0 and q ∈ (0,1),
P{ξ =−n}= cqn for all n = 0, 1, . . . . Then

P{ψ− =−n} =
∞

∑
k=0

P{ξ =−n− k}H+{k}

= cqn
∞

∑
k=0

qkH+{k},

so ψ− is geometrically distributed with parameter q, i.e., P{ψ− =−n}= (1−q)qn,
n = 0, 1, . . . . Hence, the mean number of weak descending ladder heights ψ−(n)
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at any point of Z− equals (1− q)/q. Therefore, by Lemma 5.7, H− is the sum of a
(1− q)/q multiple of the counting measure on Z

− plus a unit mass at 0. Then the
equality (5.28) yields, for any n ≥ 1,

P{Sη+ = n} =
∞

∑
k=0

F{n+ k}H−{−k}

=
1− q

q

∞

∑
k=0

F{n+ k}+F{n}= 1− q
q

F [n,∞)+F{n}. (5.39)

In addition, by (5.26),

P{M = 0}= P{η+ = ∞} = Eξ/ESη− =−Eξ (1− q)/q. (5.40)

Consider the case where ξ = σ − τ , where σ and τ are independent and both
take values in Z

+. If τ is geometrically distributed with parameter q ∈ (0,1) then,
for n ≥ 0,

P{ξ =−n} =
∞

∑
k=0

(1− q)q−n−k
P{σ = k}

= (1− q)q−n
∞

∑
k=0

q−kB{k},

where B is the distribution of σ . So, we are in the framework of geometrically
distributed left tail of ξ . In addition, for n > 0,

F{n} = (1− q)
∞

∑
k=n

qk−nB{k},

F [n,∞) =
∞

∑
k=n

(1− qk−n+1)B{k}= B[n,∞)− q
1− q

F{n}.

Hence, by (5.39),

P{Sη+ = n} =
1− q

q
B[n,∞).

Finally, by (5.40),

P{M = 0} = (q/(1− q)−Eσ)(1− q)/q= 1−ρ ,

where ρ :=Eσ/Eτ =(1−q)Eσ/q. So, the representation (5.20) for the distribution
of the maximum M of the random walk simplifies to:

P{M = n} = (1−ρ)
∞

∑
k=0

ρkB∗k
r {n}, (5.41)

where Br is a proper distribution on {1,2, . . .} with probabilities

Br{n} := B[n,∞)/Eσ .
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Thus, we have the following analogue of Theorem 5.15.

Theorem 5.16. Suppose that ξ = σ − τ , with τ having geometric distribution with
parameter q ∈ (0,1), σ ≥ 0 having distribution B, σ , and τ are independent, and
that Eσ < q/(1− q). Then the following statements are equivalent:
(i) B ∈ S∗.

(ii) P{M = n} ∼ 1
Eτ−Eσ B[n,∞) as n → ∞.

Left Continuous Random Walk

Here we consider another type of a lattice distribution F . Suppose that a random
walk takes values in Z and that F(−∞,−2] = P{ξ ≤ −2} = 0. Then it is called a
left continuous or a left skip-free random walk. Then the first weakly descending
ladder height ψ− = Sη− takes two values only, −1 and 0, with probabilities

P{ψ− =−1} = P{ξ1 =−1}=: p−1;

P{ψ− = 0} = 1− p−1.

Therefore, H− is a 1/p−1 multiple of the counting measure on Z
−. Then the equality

(5.28) yields, for any n ≥ 1,

P{Sη+ = n} =
∞

∑
k=0

F{n+ k}H−{−k}= 1
p−1

F [n,∞).

In addition, by (5.26),

p := P{M = 0}= P{η+ = ∞} = Eξ/ESη− =−Eξ/p−1

and

1− p = (p−1 +Eξ )/p−1 = E{ξ ;ξ ≥ 1}/p−1.

Hence, in the case of left continuous random walk

P{ψ+ = n}= P{Sη+ = n}
1− p

=
F [n,∞)

E{ξ ;ξ ≥ 1}
and the representation (5.20) for the distribution of the maximum M of the random
walk simplifies to:

P{M = n} = p
∞

∑
k=0

(1− p)kF∗k
0 {n}, (5.42)

where F0 is a proper distribution on {1,2, . . .} with probabilities

F0{n} := F [n,∞)/E{ξ ;ξ ≥ 1}.
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5.10 Single Server Queueing System

We consider the basic model in queueing theory, a first-come-first-served (FCFS)
single server system, GI/GI/1, where the customers are served in the order of ar-
rival by a single server. The dynamics of a single server system are described as
follows. Customers arrive one at a time into the system with interarrival time τn

between (n− 1)th and nth successive customers. Customers form a queue and the
first customer in the queue moves immediately to a server when the server becomes
idle. The service time of the nth customer is denoted by σn. After being served the
customer leaves the system.

Let τ be a typical interarrival time and σ a typical service time. Independent iden-
tically distributed sequences of interarrival times {τn} with finite mean and service
times {σn} with finite mean are assumed to be mutually independent.

For n= 1, 2, . . . , let Wn be waiting time of the nth customer, which is the residual
workload in the queue observed by the nth customer upon its arrival into the system
(or the delay which customer n experiences). Then the waiting times Wn satisfy the
Lindley recursion [41]:

Wn+1 = (Wn +σn − τn+1)
+. (5.43)

In the setting of independence of jumps, Wn is a Markov chain which is called a
random walk with delay at the origin.

We assume that the system is stable, i.e. ρ := Eσ/Eτ < 1. Then the Markov
chain Wn has a unique stationary distribution, and the distribution of Wn converges
as n → ∞ to the stationary distribution in the total variation norm. This follows from
the strong law of large numbers and from the following result.

Lemma 5.17. Given W1 = 0, Wn+1 coincides in distribution with Mn := max(Sk,k ≤
n) where S0 = 0 and Sn = ∑n

k=1(σk − τk+1) for n ≥ 1.

Proof. Denote ξn := σn − τn+1. It follows from the recursion (5.43) that

Wn+1 = max(0,Wn + ξn)

= max(0,ξn,Wn−1 + ξn−1 + ξn)

. . .

= max(0,ξn,ξn−1 + ξn,ξn−2 + ξn−1+ ξn, . . . ,ξ1 + . . .+ ξn).

Now the result follows because the vector (ξn, . . . ,ξ1) has the same distribution as
the vector (ξ1, . . . ,ξn). ��

Note that in the above lemma the finite dimensional distributions of the processes
{Wn,n ≥ 1} and {Mn,n ≥ 1} are different. To see this, it is enough to observe that
the trajectories of {Mn,n ≥ 1} are non-decreasing while those of {Wn,n ≥ 1} are
clearly not.
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Assume that the distribution of σ has unbounded support, i.e. B(x) := P{σ ≤
x} < 1 for all x. The first result is about the tail behaviour of the stationary waiting
time distribution in the case of a heavy-tailed distribution for σ .

Theorem 5.18. Let W be a random variable distributed as the stationary waiting
time. If the residual service time distribution Br is subexponential, then

P{W > x} ∼ ρ
1−ρ

Br(x) as x → ∞. (5.44)

If, in addition, B ∈ S∗ then, for every T > 0,

P{x <W ≤ x+T} ∼ T
Eτ −Eσ

B(x) as x → ∞; (5.45)

in the lattice case x and T should be restricted to values of the lattice span.

Proof. Let F be the distribution of the difference σ − τ . Since

F(x) =
∫ ∞

0
B(x+ y)P{τ ∈ dy},

we have, eventually in x,

FI(x) = Eσ
∫ ∞

0
Br(x+ y)P{τ ∈ dy}.

If Br is subexponential then, by Corollary 3.18, FI is subexponential too and
FI(x)∼ Br(x) as x → ∞. Thus the equivalence (5.44) follows from Theorem 5.12.

If B ∈ S∗, then F is strong subexponential too and F(x)∼ B(x) as x → ∞, so that
the equivalence (5.45) follows from Theorem 5.13. ��

Now consider a simple M/GI/1 system with Poisson arrival process of inten-
sity α and with general service times σn. Here τ’s are exponentially distributed
with mean Eτ = 1/α . Making use of explicit formulas for the exponential case in
Sect. 5.9 we may specify the tail behaviour of the stationary waiting time in the
following way.

Theorem 5.19. In an M/GI/1 system, the following are equivalent:

(i) The residual service time distribution Br is subexponential.
(ii) P{W > x} ∼ ρ

1−ρ Br(x) as x → ∞.
Also, the following are equivalent:

(iii) The service time distribution B is strong subexponential.
(iv) The density m(x) of the absolutely continuous part of the distribution of W is

equivalent to α
1−ρ B(x) as x → ∞.

Proof. By the previous theorem, (i) implies (ii). The converse, i.e., the implication
(ii)⇒(i) follows from the representation (5.38) and Theorem 3.38 with geometri-
cally distributed stopping time.

The equivalence of (iii) and (iv) was proved in Theorem 5.15. ��
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Fig. 5.1 A typical trajectory leading to ruin

5.11 Ruin Probabilities in Cramér–Lundberg Model

In context of the collective theory of risk, we consider the classical Cramér–
Lundberg model (or the compound Poisson model) defined as follows. We consider
an insurance company and assume the constant inflow of premium occurs at rate c,
i.e., the premium income is assumed to be linear in time with rate c. Also assume
that the claims incurred by the insurance company arrive according to a homoge-
neous Poisson process Nt with intensity λ and the sizes (amounts) Xn ≥ 0 of the
claims are independent identically distributed random variables with common dis-
tribution B and mean b. The X’s are assumed to be independent of the process Nt .
The company has an initial risk reserve u = R0 ≥ 0.

Then the risk reserve Rt at time t is equal to

Rt = u+ ct−
Nt

∑
i=1

Xi.

The probability

P{Rt ≥ 0 for all t ≥ 0} = P

{
min
t≥0

Rt ≥ 0
}

is the probability of ultimate survival and

ψ(u) := P{Rt < 0 for some t ≥ 0}
= P

{
min
t≥0

Rt < 0
}

is the probability of ruin. The techniques developed for random walks provide a
method for estimating the probability of ruin in the presence of heavy-tailed distri-
bution for claim sizes. We have

ψ(u) = P

{ Nt

∑
i=1

Xi − ct > u for some t ≥ 0
}
.
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Since c > 0, the ruin can only occur at a claim epoch, see Fig. 5.1. Therefore,

ψ(u) = P

{ n

∑
i=1

Xi − cTn > u for some n ≥ 1
}
,

where Tn is the nth claim epoch, so that Tn = τ1 + . . .+ τn where the τ’s are inde-
pendent random variables with common exponential distribution with parameter λ .
Denote ξi := Xi − cτi and Sn := ξ1 + . . .+ ξn, then

ψ(u) = P

{
sup
n≥1

Sn > u
}
.

This relation represents the ruin probability problem as the tail probability problem
for the maximum of the associated random walk Sn. Let the net-profit condition
c > bλ hold, thus Sn has a negative drift and ψ(u) → 0 as u → ∞. Similar to
Theorem 5.19, we deduce the following result on the decreasing rate of the ruin
probability to zero as the initial risk reserve becomes large in the case of heavy-
tailed claim size distribution.

Theorem 5.20. In the compound Poisson risk model, let c > bλ . Then the following
are equivalent:

(i) The integrated tail claim size distribution BI is subexponential.
(ii) ψ(u)∼ λ

c−bλ BI(u) as u → ∞.
Also, the following are equivalent:

(iii) The claim size distribution B is strong subexponential.
(iv) ψ ′(u)∼− λ

c−bλ B(u) as u → ∞.

For the compound Poisson risk model, the inequality (5.37) may be rewritten as
follows:

ψ(u) ≥
∫ ∞

u B(v)dv

c/λ − b+
∫∞

u B(v)dv
.

This allows us to determine the lower bound for the initial risk reserve for an insur-
ance company to set the desired level of the ruin probability.

The next result deals with the finite time horizon probability of ruin, i.e., with

ψ(u, t) := P{Rs < 0 for some s ∈ [0, t]}
= P

{ n

∑
i=1

Xi − cTn > u for some n ≤ Nt

}
.

Theorem 5.21. In the compound Poisson risk model, let c > bλ . If the claim size
distribution B is strong subexponential, then, uniformly in t ≥ 0,

ψ(u, t) ∼ λ
c− bλ

∫ u+t(c−bλ )

u
B(v)dv as u → ∞.
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Proof. Since B ∈ S∗, B is subexponential. Hence, by Theorem 3.37 with stopping
time having Poisson distribution with parameter λ t, for every fixed t,

P

{
∑

i:Ti≤t
Xi > u

}
=

∞

∑
j=0

(λ t) j

j!
e−λ tB∗ j(u)

∼ λ tB(u) as u → ∞, (5.46)

and this equivalence holds uniformly in t on any compact set. This observation to-
gether with bounds

P

{
∑

i:Ti≤t
Xi > u+ ct

}
≤ ψ(u, t)≤ P

{
∑

i:Ti≤t
Xi > u

}

and long-tailedness of B yield that, uniformly in t on any compact set,

ψ(u, t) ∼ λ tB(u) as u → ∞.

Taking into account that

λ tB(u+ t(c− bλ ))≤ λ
c− bλ

∫ u+t(c−bλ )

u
B(v)dv ≤ λ tB(u)

and that B is long-tailed, we prove the result of the theorem for t on any compact
set. Therefore, it remains to prove that

ψ(u, t) ∼ λ
c− bλ

∫ u+t(c−bλ )

u
B(v)dv as u, t → ∞. (5.47)

Since B is long-tailed, it is sufficient to prove the latter equivalence for t going to
infinity along integers.

For k = 1, 2, . . . , put

ηk := Rk−1 −Rk = ∑
i:Ti∈(k−1,k]

Xi − c

and

η̂k := max
s∈(0,1]

(Rk−1 −Rk−1+s) = max
s∈(0,1]

(
∑

i:Ti∈(k−1,k−1+s]

Xi − cs
)
.

Then the tail probability ψ(u, t) for integer t may be represented as follows:

ψ(u, t) = P

{
max
k≤t−1

( k

∑
i=1

ηi + η̂k+1

)
> u
}
.

Since the X’s are non-negative, η̂k ≤ ηk + c. By the definition of η and proper-
ties of the Poisson distribution, η’s are independent identically distributed random
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variables, and Eη = λ b− c. By (5.46), P{η > u} ∼ λ B(u) as u → ∞. Thus,

ψ(u, t) ≤ P

{
max
k≤t

k

∑
i=1

ηi > u− c
}

∼ λ
c− bλ

∫ u−c+t(c−bλ )

u−c
B(v)dv

∼ λ
c− bλ

∫ u+t(c−bλ )

u
B(v)dv as u → ∞,

by strong subexponentiality of B and Theorem 5.3. On the other hand, η̂k ≥ ηk,
so that

ψ(u, t) ≥ P

{
max
k≤t

k

∑
i=1

ηi > u
}

∼ λ
c− bλ

∫ u+t(c−bλ )

u
B(v)dv as u → ∞.

Altogether implies (5.47) and the proof is complete. ��

5.12 Subcritical Branching Processes

The concept of a subexponential distribution was introduced by Chistyakov in [13]
in 1964, in the context of branching processes. The book by Athreya and Ney [7]
on branching processes published in 1972 was the first book where subexponential
distributions have been regularly introduced. In this section we pay tribute to the
origins of the theory of subexponential distributions.

An age-dependent branching process is a stochastic process {Xt} valued in Z
+

representing the number of particles existing at time t ∈R
+. Here the particles have

general lifetime distribution G on [0,∞). At time t = 0 there is exactly one parent
particle which lives for time T0 having distribution G, and then splits independently
of everything else into a random number ξ (1) of offspring according to the proba-
bility distribution F on Z

+. It constitutes the first generation of X1 = ξ (1) particles.

These live for times T (1)
1 , . . . , T (1)

X1
, and then split into ξ (2)

1 , . . . , ξ (2)
X1

of offspring
according to the distribution F . All primitive random variables are assumed to be
mutually independent. The number of particles in consequent generations is linked
by the recursive formula

Xn+1 =
Xn

∑
j=1

ξ (n+1)
j ,
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where {ξ (n)
j } is a family of independent identically distributed non-negative

integer-valued random variables with common distribution F . Let X (k)
t be indepen-

dent copies of the process Xt . By the Markov property, for every t, we obtain the
following equality in distribution

Xt
d
= I{T0 > t}+ I{T0 ≤ t}

ξ (1)

∑
k=1

X (k)
t−T0

. (5.48)

Let m := Eξ (1) = f ′(1) be finite. The branching process is called subcritical
if m < 1; critical if m = 1; and supercritical if m > 1. Hereinafter in this section
we deal with a subcritical branching process. Then (see e.g., [7, Theorem 1.5.1]) the
extinction probability of Xt , P{Xt = 0 for some t}, equals 1. The next result specifies
the rate of extinction for a subcritical branching process with heavy-tailed lifetime
distribution G.

Theorem 5.22. Let m < 1. Then, for every t > 0,

EXt ≥ P{Xt ≥ 1} ≥ G(t)
1−mG(t)

. (5.49)

If, in addition, the lifetime distribution G is subexponential, then

EXt ∼ P{Xt ≥ 1} ∼ P{Xt = 1} ∼ G(t)
1−m

as t → ∞. (5.50)

In particular, P{Xt = 1|Xt ≥ 1}→ 1 as t → ∞.

Proof. Taking expectation in (5.48), we obtain the following equation for EXt :

EXt = G(t)+m
∫ t

0
EXt−yG(dy), (5.51)

by Wald’s identity. In the case m < 1, this equation implies EXt ≤ 1 for every t.
Indeed, if G(t) = 0, then Xs = 1 for all s ≤ t. Otherwise we find t0 ≤ t such that
G(t0)> 0 and

EXt0 ≥ (G(t0)+mG(t0))sup
s≤t

EXs,

which is possible because G(t0)+mG(t0)< 1. Then it follows from (5.51) that

EXt0 ≤ G(t0)+m sup
s≤t0

EXsG(t0)≤ G(t0)+msup
s≤t

EXsG(t0),

which together with the previous inequality yields

sup
s≤t

EXs ≤ 1. (5.52)
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Further, the condition m < 1 also yields that the function EXt is non-increasing.
Indeed, let s < t and τ1, . . . , τXs be the time epochs of splitting for the particles
living at time s. Make use of the decomposition

Xt
d
=

Xs

∑
k=1

I{τk > t}+
Xs

∑
k=1

I{τk ≤ t}
ξ (k)

∑
i=1

X (k,i)
t−τk

,

where X (k,i)
t are independent copies of the process Xt . Taking conditional expecta-

tion with respect to the values of τ’s and taking into account that

E

{ξ (k)

∑
i=1

X (k,i)
t−τk

∣
∣
∣τ1, . . . ,τXs

}

≤ m a.s.,

by (5.52), we arrive at the following inequalities:

EXt ≤ E

Xs

∑
k=1

I{τk > t}+E

Xs

∑
k=1

I{τk ≤ t}m ≤ EXs.

Since the function EXt is non-increasing, it may be viewed as the tail of an auxiliary
probability distribution H on R

+, H(t) := EXt .
We rewrite the equality (5.51) in terms of H:

H(t) = G(t)+m
∫ t

0
H(t − y)G(dy), (5.53)

so that H = (1−m)G+m ·H ∗G. We iterate this equality to deduce

H = (1−m)
∞

∑
k=0

mkG∗(k+1). (5.54)

Applying the inequality H(t − y)≥ H(t) to (5.53), we get

H(t) ≥ G(t)+mH(t)G(t),

which implies EXt ≥ G(t)/(1−mG(t)). This shows that, in (5.49), the very left side
is not smaller than the very right side.

If G is subexponential, then the representation (5.54) and Theorem 3.37 yields
the estimate

EXt = H(t) ∼ G(t)
1−m

as t → ∞. (5.55)

Now make use of (5.48) in order to obtain an equation for pt := P{Xt = 0}:

pt =

∫ t

0
G(dy)

∞

∑
n=0

P{ξ (1) = n}pn
t−y

=

∫ t

0
G(dy)Eeξ (1) log pt−y. (5.56)
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Since Eeξ (1) log pt−y ≥ 1+Eξ (1) log pt−y = 1+m log pt−y and pt−s ≤ pt , the equality
(5.56) yields

pt ≤ G(t)(1+m log pt)

≤ G(t)(1+m(pt − 1)).

Therefore,

P{Xt = 0}= pt ≤ G(t)−mG(t)
1−mG(t)

= 1− G(t)
1−mG(t)

,

which implies the lower bound (5.49).
If G is subexponential, then the decomposition

EXt = P{Xt = 1}+E{Xt;Xt ≥ 2}

together with the asymptotics (5.55) and the lower bound (5.49) yield

E{Xt ;Xt ≥ 2} = o(G(t)) as t → ∞.

This observation completes the proof of (5.50). ��

5.13 How Do Large Values of M Occur in Standard Cases?

In this section we consider the trajectory of the random walk given that M > x, for x
large. We assume here that the integrated tail distribution FI is both subexponential
and in the domain of attraction of an extreme-value distribution. We complement
Theorem 5.4* from Sect. 5.2 by a limit theorem, as x → ∞, for the distribution of
the quadruple that includes the time τ(x) to exceed level x, position Sτ(x) at this time,
position Sτ(x)−1 at the prior time, and the trajectory up to it.

Actually, we need the following assumption: there exist a function e(x) ↑ ∞ and a
continuous probability distribution F∗ on the positive half-line (0,∞) such that, for
any t > 0,

FI(x+ te(x))

FI(x)
→ F∗(t) as x → ∞. (5.57)

Let ξ∗ be a random variable with distribution F∗. It turns out that (5.57) is satis-
fied if the integrated tail distribution FI is in the maximal domain of attraction of
an extreme-value distribution. So, in this section, we first formulate and prove a
limit theorem (Theorem 5.24) based on the assumption (5.57), and then recall basic
concepts and facts from extreme value theory and provide sufficient conditions for
Theorem 5.24 to hold.

Introduce stopping times

τ(x) := min{n ≥ 1 : Sn > x}
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(let τ(x) = ∞ if M ≤ x), and

τB(x) := min{n ≥ 1 : Bn−1(x) occures},

where the events Bn(x) are defined in Theorem 5.4* (let τB(x) = ∞ if none of events
Bn(x) occurs). Then the following results hold.

Lemma 5.23. Let Eξ =−a < 0 and assume FI ∈ S. Then

P{τ(x) = τB(x) | M > x}→ 1 as x → ∞.

If, in addition, (5.57) holds, then

P{aτ(x)/e(x)> t | M > x}→ F∗(t) as x → ∞.

Proof. Indeed, the first assertion is just rephrasing of the first statement in Theorem
5.4*. Further,

P{aτ(x)/e(x)> t | M > x} ∼ P{τB(x)> te(x)/a | M > x}
=

P{τB(x)> te(x)/a,M > x}
P{M > x}

P{τB(x)< ∞,M > x}
P{τB(x)< ∞,M > x}

=
P{τB(x)> te(x)/a,M > x}

P{τB(x)< ∞} P{τB(x)< ∞ | M > x}.

Therefore, by Theorem 5.4*,

P{aτ(x)/e(x)> t | M > x} ∼ P{τB(x)> te(x)/a | τB(x)< ∞}

=
∑n>te(x)/aP{Bn−1(x)}

∑n≥1P{Bn−1(x)} ,

since events Bn(x) are disjoint. Hence,

P{aτ(x)/e(x)> t | M > x} ∼ FI(x+ te(x))

FI(x)
,

which converges to F∗(t) as x → ∞, by the condition (5.57). ��
From Theorem 5.4* and Lemma 5.23, we deduce the following result.

Theorem 5.24. Let Eξ = −a < 0 and FI ∈ S, and assume (5.57) to hold. Then the
distribution of the vector

(aτ(x)
e(x)

,
Sτ(x)− x

e(x)
,

Sτ(x)−1

e(x)
, max

0≤n≤τ(x)−1

|Sn + na|
τ(x)

)
, (5.58)
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conditioned on {M > x}, weakly converges to the distribution of (ξ∗,ξ ′∗,−ξ∗,0) as
x → ∞ where both ξ∗ and ξ ′∗ have the same distribution F∗ and

P{ξ∗ > s,ξ ′
∗ > t}= P{ξ∗ > s+ t} for all s, t > 0. (5.59)

Proof. We have already proved the convergence of the first component in Lemma
5.23. Due to the first assertion of Lemma 5.23, the fourth component conditionally
on {M > x} converges to 0 if and only if

max
0≤n≤τB(x)−1

|Sn + na|
τB(x)

does. We have |Sn +na| ≤ nεn +h(x) for every n ≤ τB(x)−1. Then the latter maxi-
mum, conditioned on {M > x}, converges to 0 as x → ∞ if we choose h(x) such that
h(x) = o(e(x)). In particular, SτB(x)−1/τB(x), conditioned on {M > x}, converges to
−a. Applying again the first assertion of Lemma 5.23, we obtain that Sτ(x)−1/τ(x),
conditioned on {M > x}, converges to −a too. Since

Sτ(x)−1

e(x)
=

Sτ(x)−1

τ(x)
τ(x)
e(x)

,

the reference to the convergence of the first component completes the proof of the
convergence of the third one.

It remains to show the convergence of the second component in (5.58). This
follows from upper bound

P{Sτ(x) > x+ te(x) | M > x} ≤ P{M > x+ te(x) | M > x}→ F∗(t),

and from lower bound

P{Sτ(x) > x+ te(x) | M > x} ≥ ∑
n≥1

P{|S j + a j| ≤ jε j + h(x) for all j ≤ n− 1,

ξn > n(a+ εn)+ h(x)+ x+ te(x) | M > x}
∼ (1+ o(1))P{M > x+ te(x) | M > x}
→ F∗(t) as x → ∞.

Finally, in order to prove the equality (5.59) write

P{τ(x)> se(x)/a,Sτ(x) > x+ te(x) | M > x}
= (1+ o(1))P{τB(x)> se(x)/a,SτB(x) > x+ te(x) | M > x},

and the probability on the right equals to the sum

∑
n>se(x)/a

P{τB(x) = n,Sn > x+ te(x) | M > x}

= ∑
n>se(x)/a

P{Bn−1(x),Sn > x+ te(x) | M > x}
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which is not less than

∑
n>se(x)/a

P{|S j + a j| ≤ jε j + h(x) for all j ≤ n− 1,

ξn > x+ te(x)+ (n− 1)(a+ εn−1)+ h(x) | M > x}

∼ ∑n>se(x)/aP{ξn > x+ te(x)+ (n− 1)(a+ εn−1)+ h(x)}
P{M > x}

∼ FI(x+(s+ t)e(x))

FI(x)
as x → ∞,

and which is not greater than

∑
n>se(x)/a

P{|S j + a j| ≤ jε j + h(x) for all j ≤ n− 1,

ξn > x+ te(x)+ (n− 1)(a− εn−1)− h(x) | M > x}

≥ (1+ o(1))∑n>se(x)/aP{ξn > x+ te(x)+ (n− 1)(a− εn−1)− h(x)}
P{M > x}

∼ FI(x+(s+ t)e(x))

FI(x)
as x → ∞.

Therefore,

P{τ(x)> se(x)/a,Sτ(x) > x+ te(x) | M > x} ∼ FI(x+(s+ t)e(x))

FI(x)

→ F∗(s+ t) as x → ∞,

which is equivalent to (5.59). ��
Now we recall basic concepts and facts from extreme value theory which provide

sufficient conditions for (5.57) and Theorem 5.24 to hold.
For independent identically distributed random variables η1, η2, . . . with distri-

bution G and for non-degenerate distribution H, we say G belongs to the maximum
domain of attraction of H, if there exist a positive sequence cn and a real-valued
sequence dn such that the distribution of cn(max(η1, . . . ,ηn)−dn) weakly converges
to H as x → ∞. Then H is called an extreme value distribution.

In the case where G has right-unbounded support, G(x) < 1 for all x, there are
only two classes of the extreme value distributions, Frechet distribution Φα , α ∈
(0,∞),

H(x) = Φα (x) = e−x−α
, x ≥ 0,

and Gumbel distribution Λ ,

H(x) = Λ(x) = e−e−x
.

The following two results may be found in Sect. 8.13.2 of [9].
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Theorem 5.25. Assume that G(x) < 1 for all x and α > 0. Then the following as-
sertions are equivalent:

(i) G belongs to the maximum domain of attraction of Φα .
(ii) G is regularly varying distribution with index −α .
(iii) There exists a positive measurable function e(x) such that, for any t > 0,

G(x+ te(x))

G(x)
→ 1

(1+ t/α)α as x → ∞.

Theorem 5.26. Assume that G(x) < 1 for all x. Then the following assertions are
equivalent:

(i) G belongs to the maximum domain of attraction of Λ .
(ii) The inverse function R(−1)(x) of the hazard function R(x) = − logG(x) is such

that, for every fixed y > 0, R(−1)(x+ y)−R(−1)(x)∼ u�(ex) as x → ∞, for some
slowly varying function �.

(iii) There exists a positive measurable function e(x) such that, for any t > 0,

G(x+ te(x))

G(x)
→ e−t as x → ∞.

In both cases, the function e(x) can be chosen as e(x)∼ GI(x)/G(x).
For example, if the tail of G is equivalent to that of Weibull distribution, G(x)∼

e−xβ
as x → ∞, β ∈ (0,1), then G belongs to the maximum domain of attraction of

Λ and e(x)∼ x1−α/α .
If instead the tail of G is equivalent to that of the lognormal distribution with

parameters μ and σ2, then G belongs to the maximum domain of attraction of Λ
and e(x)∼ σ2x/(logx− μ).

5.14 Comments

Theorem 5.2 was proved for regularly varying distributions by Callaert and Cohen
in [12] and by Cohen in [17]. For dominated-varying distributions, it was proved
by A. Borovkov in [10, Sect. 22]. In its present form, it was proved by Veraverbeke
in [53] and by Embrechts, Goldie and Veraverbeke in [23]. The proof given here
follows an idea of Zachary [54].

Theorem 5.3 was proved by Korshunov [36] under slightly different condition,
see also Denisov, Foss and Korshunov [18, Corollary 4].

Lemma 5.9 is due to A. Borovkov [10, Sect. 22, Theorem 10].
A proof of the converse part of Theorem 5.12 is given by Korshunov [35]. It

was proved by Embrechts and Veraverbeke in [25, Corollary 6.1] and by Pakes
in [44, Theorem 1] for the case where ξ1 is a difference of two independent random
variables ξ1 = η − ζ , where ζ has an exponential distribution and η ≥ 0.
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Asmussen, Kalashnikov, Konstantinides, Klüppelberg and Tsitsiashvili [5]
proved that if F ∈ S∗ then, for any fixed T ∈ (0,∞), P{M ∈ x + Δ} ∼ TF(x)/a
(if the distribution F is lattice, then x and T should be restricted to values of the
lattice span). In the lattice case, it was proved earlier by Bertoin and Doney [8].
They also sketched a proof for non-lattice distributions. The current version is due
to Asmussen, Foss and Korshunov [4]. Density of M was studied in Asmussen,
Kalashnikov, Konstantinides, Klüppelberg and Tsitsiashvili [5], in Asmussen, Foss
and Korshunov [4], and in Korshunov [37].

The idea of using the inequality B∗n
r (x) ≤ Bn

r (x) for proving the lower bound
given in Sect. 5.9 goes back to Kalashnikov and Tsitsiashvili [31, Theorem 7].
A different proof for that may be found in Korolev, Bening and Shorgin [34], see
Theorem 8.7.2 there.

The results for subcritical branching processes under subexponential assump-
tions was first proved by Chistyakov [13] and further by Chover, Ney and Wainger
[15]; see also Athreya and Ney [7].

The limit theorem from Sect. 5.13 was obtained by Asmussen and Klüppelberg
in [6] by a different approach, see also Asmussen and Foss [3].

5.15 Problems

5.1. Let ξ1 have negative mean and heavy-tailed distribution. Prove the maximum
M has a heavy-tailed distribution too.

5.2. Let ξ1 have negative mean and a light-tailed distribution. Prove the maximum
M has a light-tailed distribution too.
Hint: Estimate from above the exponential moments of M via those of Sn.

5.3. Suppose that ξ1, . . . , ξn are independent random variables with common
exponential distribution. Find the asymptotic behaviour of the tail probability of the
maximum of sums

max
k≤n

(ξ α
1 + . . .+ ξ α

k )

for (i) α > 1; (ii) α < 0.
5.4. Suppose that ξ1, ξ2, . . . , are independent random variables which are uni-

formly distributed in the interval [0,1]. For 0 <α < 1 and ε > 0, find the asymptotic
behaviour of the distribution density of the maximum of the sums

max
n≥1

( 1
ξ α

1
+ . . .+

1
ξ α

n
− n
( 1

1−α
+ ε
))

.

5.5. Let X(t) be a compound Poisson process with a subexponential distribution
for a typical jump. For every T , find the tail asymptotics for the distribution of the
supremum

sup
0≤t≤T

X(t)

in terms of the jump distribution.
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5.6. Suppose X(t) is a compound Poisson process with a negative drift −a and
with a jump distribution F . Find the tail asymptotics for the distribution of the supre-
mum

sup
t≥0

X(t)

provided F is regularly varying at infinity with index α > 0. Find what power mo-
ments of this supremum are finite and which are infinite.

5.7. Moving overages. Suppose η0, η1, η2, . . . are independent identically dis-
tributed random variables with common distribution F and zero mean. Let ξn :=
ηn+ηn−1−a where a> 0. Define S0 := 0, Sn := ξ1+ . . .+ξn and M :=max{Sn,n≥
0}. Prove that M is finite with probability 1 and that:

(i) If the integrated tail distribution FI is long-tailed, then

liminf
x→∞

P{M > x}
2FI(x/2)

≥ 1
a
.

(ii) If the integrated tail distribution FI is subexponential, then

P{M > x} ∼ 2FI(x/2)/a as x → ∞.

5.8. In the conditions of the previous problem, let ξn := ηn −ηn−1 − a where
a > 0, and the η’s be bounded from below. Then what is the tail asymptotics for
the distribution of M? How essential is the condition that the η’s are bounded from
below?

5.9. Suppose k ≥ 1 and ci ≥ 0 for all i = 0, . . . , k. Generalise the result of Prob-
lem 7 onto the moving overage

ξn := c0ηn + c1ηn−1 + . . .+ ckηn−k − a.

5.10. Maximum of a skeleton. Suppose ξ1, ξ2, . . . are independent identically
distributed random variables with common distribution F and mean −a < 0. Fix
k ≥ 2. Define S0 := 0, Sn := ξ1 + . . .+ ξn and

M(k) := max{Skn,n ≥ 0}.

Prove that if the integrated tail distribution FI is subexponential, then

P{M(k)> x} ∼ FI(x)
a

as x → ∞.

5.11. Suppose ξ1, ξ2, . . . are independent random variables with common subex-
ponential distribution F . Let τ be a counting random variable which has a light-
tailed distribution and doesn’t depend on the ξ ’s. Prove

P
{

max
n≤τ

Sn > x
}∼ EτF(x) as x → ∞.
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5.12. Excess process. In the conditions of Problem 2.26, provided the distribution
F of the jump at state 1 is long-tailed, prove

P{Xn > x | X0 = 1} ∼ 1
E{X1 | X0 = 1}

∫ x+n

x
F(y)dy

as n, x → ∞.
5.13. Periodicity in time. Let F be a distribution on R. Suppose {ξ (1)

n } and {ξ (2)
n }

are two independent sequences of independent random variables such that the ξ (1)’s
have common distribution F (1) with mean a(1) while the ξ (2)’s have common dis-
tribution F (2) with mean a(2). Suppose that F(1)(x)∼ c1F(x) and F (2)(x)∼ c2F(x)

as x → ∞. Suppose also that a(1) + a(2) < 0 and c(1) + c(2) > 0. Put ξ2n−1 := ξ (1)
n ,

ξ2n := ξ (2)
n for n ≥ 1 and S0 := 0, Sn := ξ1 + . . .+ ξn. Given that the integrated tail

distribution FI is subexponential, prove that

P
{

max
n≥0

Sn > x
}∼ (c(1) + c(2))FI(x)

|a(1) + a(2)| as x → ∞.

Also find the finite time horizon asymptotics for P{max0≤i≤n Si > x} as x → ∞.
5.14. Perturbation in space. Let F be a distribution on {−1,0,1,2,3, . . .} with

negative mean −a < 0. Suppose Xn, n ≥ 0, is a time-homogeneous Markov chain
on Z

+ such that, for every i ≥ 1, the distribution of the jump X1 −X0, conditioned
to X0 = i, is F . Assume that the jump size from the state 0 has an arbitrary distribu-
tion which is bounded from above. Assume that the integrated tail distribution FI is
subexponential. Prove the tail of the invariant measure π is equivalent to

∞

∑
i=x

πi ∼ c
a

FI(x) as x → ∞,

where the constant c is equal to

c = 1−π0 =
E{X1 | X0 = 0}

a+E{X1 | X0 = 0} .

Also find the asymptotics for P{Xn > x} as n, x → ∞.
5.15. Perturbation in space–continuation. Let F be a distribution on {−1,0,1,

2,3, . . .} with negative mean −a < 0. Let i0 be a positive integer. Suppose Xn, n ≥ 0,
is a time-homogeneous Markov chain on Z

+ such that, for every i ≥ i0, the distri-
bution of the jump X1 −X0 conditioned to X0 = i is F . Assume further that all dis-
tributions of the jumps from the states 0, . . . , i0 − 1 are bounded from above. Given
the integrated tail distribution FI is subexponential, prove the tail of the invariant
measure π is equivalent to

∞

∑
i=x

πi ∼ c
a

FI(x) as x → ∞,

where the constant c is equal to

c = 1−
i0−1

∑
j=i0

π j.



Answers to Problems

Chapter 2

2.9. Yes, it can. Consider, for example, probability space Ω = [0,1] with Borel
sigma-algebra and Lebesgue measure, and let ξ (ω) = 1

ω I{ω < 1/2} and η(ω) =
ξ (1−ω). Then min(ξ ,η) = 0.

2.14. Exponential distribution, for example.
2.18. (i) α > 2.
2.19. n ≥ 3. Yes, the product is long-tailed.
2.20. β < n.
2.21. (ii) The same result holds for any distribution with negative mean.
2.26. (i) Solution. Denote by τ the first return time to the state 1, that is,

τ = min(n ≥ 1 : Xn = 1) given X0 = 1. Then τ = n if and only if X1 = n, so that
P{τ = n}= F{n− 1} and Eτ = ∑n≥1 nF{n− 1}. Therefore, the Markov chain is
positive recurrent if and only if F has finite mean.

Let {πi}i≥1 be the stationary distribution. For any i ≥ 1,

πi = πi+1 +π1F{i− 1}
= πi+2 +π1F{i}+π1F{i− 1}
= . . .

= π1F[i− 1,∞).

Then

∑
i≥1

πi = π1 ∑
i≥1

∑
j≥i−1

F{ j}

= π1 ∑
j≥0

( j+ 1)F{ j},

which implies that the invariant distribution is given by the residual distribution Fr.

S. Foss et al., An Introduction to Heavy-Tailed and Subexponential Distributions,
Springer Series in Operations Research and Financial Engineering,
DOI 10.1007/978-1-4614-7101-1, © Springer Science+Business Media New York 2013
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Chapter 3

3.8. Let the ξ ’s have exponential distribution with parameter λ .

(i) n1e−λ x1/β1 where β1 := maxαi and n1 is the number of αi that are equal to β1;
(ii) n2λ x1/β2 where β2 := minαi and n2 is the number of αi that are equal to β2;

(iii) n1e−λ x1/β1 if β2 > 1 and n2λ x1/β2 if β2 < 0.

3.9. α < 1−β .
3.10. For all positive values.
3.12. P{Sn > x} ≤ nP{ξ1 > x− 1}.
3.13. λ tF(x) where λ is the intensity and F is the jump distribution.
3.15. Proportional to F(x) with the following coefficients:

(i) P{X0 = 1}(2p11 + p12(1+ c))+P{X0 = 2}(p222c+ p21(1+ c));

(ii) P{X0 = 1}
[
1+ p11 +∑∞

j=0 p12 p21 p j
22(( j + 1)c+ 1)

]
+P{X0 = 2}

[
c+ p22c+

∑∞
j=0 p21 p j

11 p12( j+ 1+ c)
]
;

(iii) P{X0 = 1}
[
1+kp11+k ∑∞

j=0 p12 p j
22 p21(( j+1)c+1)

]
+P{X0 = 2}

[
c+kp22c+

k ∑∞
j=0 p21 p j

11 p12( j+ 1+ c)
]
.

3.16. (i) H(x) = x; (ii) H(x) = x/ logx; (iii) H(x) = x1−β ; (iv) H(x) = logx.

3.19. (i) 1
x logx and 2

x logx ; (ii) e−
√

x√
x logx and 2e−

√
x√

x logx ; (iii) c1
logx and c2

logx where c2 < 2c1.

Solution. The tail distribution function of ξi is equal to

F(x) =
∫ 1

0
e−xy

dy =
1

logx

∫ x

1

e−u

u
du ∼ c1

logx
as x → ∞,

where

c1 :=
∫ ∞

1

e−u

u
du.

Further,

P{ξ1 + ξ2 > x} = P{ξ1 > x}+P{ξ2 > x}−P{ξ1 > x,ξ2 > x}
+P{ξ1 ≤ x,ξ2 ≤ x,ξ1 + ξ2 > x}.

By the conditional independence,

P{ξ1 > x,ξ2 > x} = EP{ξ1 > x,ξ2 > x | η}
=

∫ 1

0
e−2xt

dt ∼ 1
logx

∫ ∞

2

e−u

u
du as x → ∞.

It is left to prove that

P{ξ1 ≤ x,ξ2 ≤ x,ξ1 + ξ2 > x} = o(F(x)) as x → ∞. (5.60)
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Indeed, this probability is equal to

∫ 1

0
dt
∫ x

0
tut−1e−ut

du
∫ x

x−u
tvt−1e−vt

dv

=

∫ 1

0
x2t dt

∫ 1

0

∫ 1

1−z
t2yt−1zt−1e−xt (yt+zt )dydz.

Since yt + zt ≥ 1, the latter term is not greater than

∫ 1

0
x2t e−xt

dt
∫ 1

0

∫ 1

1−z
t2yt−1zt−1dydz =

∫ 1

0
x2te−xt

J(t)dt,

where J(t) = P{Y 1/t
1 +Y 1/t

2 > 1} and Y1, Y2 are independent random variables both
uniformly distributed in the interval [0,1]. As t ↓ 0, J(t) ↓ 0. Hence, (5.60) follows
from the estimates, for any ε > 0,

∫ 1

0
x2t e−xt

J(t)dt =
(∫ ε

0
+
∫ 1

ε

)
x2t e−xt

J(t)dt

≤ J(ε)
∫ ε

0
x2te−xt

dt +
∫ 1

ε
x2t e−xt

dt

≤ J(ε)
logx

∫ ∞

1
te−tdt + x2e−xε

.

Thus, the answer is:

P{ξ1 + ξ2 > x} ∼ c2

logx
as x → ∞,

where

c2 :=
(

2
∫ ∞

1
−
∫ ∞

2

)e−u

u
du.

3.20. Proportional to F(x) with the following coefficient:

(i) 2Ee−η1; (ii) (1+Ee−η1)Ee−η2 .

3.22. All the integrated tail distributions Fi,I are tail-proportional to a reference
subexponential distribution.

Chapter 4

4.6. Yes, it is.
4.11. Let the ξ ’s have exponential distribution with parameter λ .

(i) n1λ x1/β1−1e−λ x1/β1 where β1 :=maxαi and n1 is the number of αi that are equal
to β1;
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(ii) n2λ x1/β2/|β2| where β2 := minαi and n2 is the number of αi that are equal
to β2;

(iii) n1λ x1/β1−1e−λ x1/β1 if β2 > 1 and n2λ x1/β2/|β2| if β2 < 0.

4.12. ∑n
nP{τ=n}
π(n+x2)

.

4.14. λ t f (x).
4.19.

(i) pi,i+1 = p− c/i+o(1/i) and pi,i−1 = p+ c/i+o(1/i) as i → ∞ where p < 1/2
and c > p/2;

(ii) pi,i+1 = p− c/iβ + o(1/iβ ) and pi,i−1 = p+ c/iβ + o(1/iβ ) as i → ∞ where
p < 1/2, c > 0 and 0 < β < 1.

4.20. Solution. It follows from the solution to Problem 2.26 that the invariant
distribution for the Markov chain coincides with the residual distribution Fr. Then
the result follows from Theorem 4.32 with T = 1.

4.21. All the distributions Fi are tail equivalent to some distribution from S∗.

4.22. (1−p)2

(2π)d/2
√

detB
.

Chapter 5

5.3. Let the ξ ’s have exponential distribution with parameter λ .

(i) ne−λ x1/α
; (ii) nλ x1/α .

5.4. α
ε(1−α)

x1−1/α .

5.5. It is proportional to the tail of the jump distribution with coefficient λ T
where λ is the intensity of the jumps.

5.6. It is proportional to the tail FI with coefficient λ/a where λ is the intensity
of the jumps.

5.8. FI(x)/a. If the left tail of the distribution of η is much heavier than the right
tail, then the asymptotic tail behaviour of M will be determined by the left tail of η .

5.9. P{M > x} ∼ cFI(x/c)/a where c := c0 + . . .+ ck.
5.12. Solution. We observe that

P{Xn > x | X0 = 1} =
n

∑
k=1

P{Xn−k = 1,Xn−k+1 ≥ 2, . . . ,Xn−1 ≥ 2,Xn > x | X0 = 1}.

Then, by the Markov property,

P{Xn > x | X0 = 1} =
n

∑
k=1

P{Xn−k = 1 | X0 = 1}

×P{Xk > x,Xk−1 ≥ 2, . . . ,X1 ≥ 2 | X0 = 1}
=

n

∑
k=1

P{Xn−k = 1 | X0 = 1}F[x+ k,∞).
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By the ergodic theorem for Markov chains,

P{Xn = 1 | X0 = 1}→ 1/E{τ | X0 = 1} as n → ∞,

where τ = min{n ≥ 1 : Xn = 1}. Taking also into account that the distribution F is
long-tailed, we deduce that, as n, x → ∞,

P{Xn > x | X0 = 1} ∼ 1
E{τ | X0 = 1}

n

∑
k=1

F [x+ k,∞)

∼ 1
E{τ | X0 = 1}

∫ x+n

x
F(y)dy.

Since E{τ | X0 = 1}= E{X1 | X0 = 1}, the result follows.
5.13. The answers differ for even and odd valued of n. If n is even number, n= 2k,

then

P
{

max
0≤i≤n

Si > x
}∼ (c(1) + c(2))

|a(1) + a(2)|
∫ k|a(1)+a(2)|

0
F(x+ y)dy

as x → ∞ uniformly in k ≥ 1. If n is odd, n = 2k+ 1, then

P
{

max
0≤i≤n

Si > x
}∼ (c(1) + c(2))

|a(1) + a(2)|
∫ k|a(1)+a(2)|

0
F(x+ y)dy+ c(2)F(x).

5.14. c
a

∫ n|a|
0 F(x+ y)dy as n, x → ∞.
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