countable set. Similarly,

{w e RO . sup w, Sx}, reR,
0<t<1

is not Bl%>)-measurable, so we cannot define SUPyefo,1) W,

Thus the setup in Kolmogorov’s consistency theorem cannot deal with
continuous processes. We need a different approach.

Recall that Y is a modification of X if X; = Y; a.s. for any fix t, i.e. P(X, =
Y;) =1 for each ¢t > 0.

Theorem 12 (Kolmogorov continuity theorem). Let (X;)icpo,r) be a stochas-
tic process on (2, A, P), such that for some positive constants «, 3,C"

- k(/\ QMJ\A
Then X has a continuous modification X which is Hélder continuous with
exponent 7y for every v € (0, 5/a), that is for some h(w) a.s. positive random

variable and § > 0 Y
o s, 1§

0<t—s<h(w) ‘t - Sl’Y

E|X, - X,J|J*<C|t—s|'""" 0<s,t<T.

Proof. We can assume that 7' = 1. By Chebyshev

appampion
?WM (°< >€x) = P(Xi— X >e) < e EIX, - X|* < Gt -
$
in particular X; — X in probability as t — s. Fix v € (0, /a). Then Mot~
i Vil e (1%2}2( Kpgn = Xp—1)2-n| > Q_W) iw %}L
< ST K- % DT _op, 2
~ "\ l !7 -_J é 2 P (|Xk2—n - X(k_1)2—7L > 2 )
— —n(B—av)
C2eT o1

1
T

i

S h
By the first Borel-Cantelli lerr?ma with probability 1 only finitely many of
the events

gs ”2-?”'@%2%)“’3 285, Yoo = Xpee] > 277

22
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occur. That is, there is a set Qo with P(€y) = 1, and a threshold ng(w)
(depending on w!) such that for w € Q

. n | <27 > .
E max, | Xpon — Xg—1)2n| <277, n >np(w)
o
Fix,w € Qo4 Put D,, = {k27" : k=0,1,...,2"}, and D = U, D,,. Then for
n > ng(w) and m > n induction gives that =0
\FHH»H’— X)) = Xw)[ €2 ) 279, tseD,, [t—s <27
j\ ? j=n+1 de L
+ ot g
AR e This implies that (X;(w));ep is uniformly contintdous'm t € D. I deed, for

any t,s € D with 0 <t — s < h(w) = 270 there is an n > n4’6uch that

R n (el &2
2” <t—s<2", thus 12 ¥ S,Zr(};d/
| X (w) — Xs(w |<222w_2 ’Y(n+1) 27_| _S’w 27{ UMl\?vW\

j=n+1 Wé\m\r\. L?

Informally, we proved that (X;) behaves regularly on D. We define X. If
w & Qp let X( ) =0, (or anything). If w € Qg and t € D let Xt( ) = Xi(w),
hile if t € D ch n € D such that s,, — t and let - .
while if ¢ € D choose a sequence s,, € D such that s —>2an e (D "

X con (_T’ Xifw) = lim X, ().

/ By the uniform continuity and the Cauchy criteria the limit on the right-hand
M R . side exist.
o A, g‘zq\l't-“"—) The a.s. uniqueness of the stochastic limit together with the stochastic
continuity of X implies that X is a modification of X. 0 <

Exercise 15 (Random fields). A random field is a collection of random
variables indexed by a partially ordered set. Let (X¢)tepo,re be a random

field satisfying ou pg' W W2V

for some positive constants. Show that there exists a continuous modification /&f@ [ ]
X which is Holder continuous with exponent v for every v € (0, 5/«), that
is for some h(w) a.s. positive random variable and ¢ > 0

/\ P (w : sup Xt(w) — Xs(OJ) < (5) =1.

o<lt—s|<nw) It —s|"

] XJC 2 >Jc

1S

N

E[X, — X,|° gcy|t—sy|d+ﬂ, II- 7 wmal
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Exercise 16. Show that if Wy — W, ~ N(0,t — s) then for any n > 0 B

D
E|W, — W, = CyJt — s|", C,;” (% }

where C,, = E|Z|", Z ~ N(0, 1).

Corollary 4. Wiener process exists.

tinuity theorem holds with o = 2n and f =n — 1 for any n > 1. Thus there
exists a continuous modification on [0, N|, for any N € N. Necessarily, X !
and X2 agrees a.s. for any fix t € [0, N1 A N3], which allows us to extend

the process to [0, 00). 8 O M)
/

Proof. We need only the continuity part. The condition of Kolmogorov con-
[D, N]
J

In fact, we proved that the Wiener process is locally v-Holder continuous
for any v < 1/2.

Exercise 17. Let (IV;) be a Poisson process with intensity 1. Compute the -
order E|N; — N,|® for t — s small. (Thus the condition in the continuity the-
orem holds for § = 0. Well, of course, Poisson processes are not continuous.)

More generally, we obtain a result on continuity of Gaussian processes.

Theorem 13. Let (X;) be a Gaussian process with continuous mean function
m, and covariance function r. If there exist positive constants 6, C' such that
for all st

r(t,t) — 2r(s,t) +r(s,s) < Ot — s’

then (X;) has a continuous modification which is locally ~v-Hélder continuous

for any ~ € (0,5/2)- XE_.- U~ H) = S\Z{;

Proof. Subtracting the mean function we may and do assume that m(t) = 0.
Simply
Var(X, — X,) =r(t,t) — 2r(s,t) + (s, s) = 0*(s, 1),

therefore
E|X; — X(|* = E|Z|%(s,1)°,

with Z ~ N(0,1). Thus
E|X, — X,|* < C|t — s]%/2,

which implies that the condition of the continuity theorem holds with @ > 0,
f = da/2 — 1. Letting o — oo the result follows. m

w4 :;/@/) ;4(6,1‘) = C%‘f()(%) %)
l’g((%—wgﬂ@g~ (1))

Yo ST wlIZ0 ) s, d) - i (4]
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Exercise 18 (Fractional Brownian motion). Fractional Brownian motion
with Hurst index H € (0,1) is a Gaussian process (B(t)) with mean function
m(t) = 0 and covariance function

1
r(s,t) = 3 (27 + 27 — |t — s?).

%—3

S

Note that H = 1/2 corresponds to the usual Brownian motion. ‘_/_(___’\/

(i) Show that it is self-similar, i.e. B(at) ~ a® B(t).
(ii) Show that it has stationary increments: B(t) — B(s) ~ B(t — s).
(iii) Prove that a continuous modification exists, which is y-Holder for any
v < H. (That is H is the ‘roughness parameter’: for small H the

process strongly oscillates, while for H close to 1 the paths are almost
smooth.)

(iv) Are the increments independent?

Exercise 19. Let <Xt)te[0’1] be a continuous Gaussian process with mean 0
and covariance function r(s,t). Show that ¥ = fol X;dt ~ N(0,0?), where

o = /01/017"(3,t) dsdt. Qfﬂ;/‘\i]wi

t . . . . .
Show that Y; = fo X.ds is a Gaussian process. Determine its covariance
function.

A version of the continuity theorem is the following.

Theorem 14. Let T' C R finite or infinite interval, and (X;)ier a stochastic
process such that for 6 > 0 small enough

P (|X; — Xs| > g(9)) < h(d) whenever |s—t| <d, s,t €T,

where g and h are continuous function such that

ig@_”) < 00, iQ”h(Q_”) < 00,
n=1 n=1

Then X has a continuous modification.

25
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Recall that

is the standard normal density function, and 7 ‘ ; Z

®(z) = / e(y)dy

—00 ~—

is the standard normal distribution function.
%>

Lemma 4. For any x > 0 ? LZ >

(2~ 1) e <200 < Lotw)
and . 1— d(x) .
zo0 o()

Proof. The first follows from integrating the inequality

(1 - %) ply) < o(y) < (1 + %) o(y),

Y

on (z,00). The second is immediate from the first. O
Using Theorem 14 we obtain a better criteria for continuity.

Corollary 5. Let T' C R be a finite or infinite interval and let (Xy)ier be a
Gaussian process with continuous mean function m, and covariance function
r such that for § small enough

sup (r(t,t) —2r(s,t) +7(s,s)) < C(—log 5)—3(1+a)

|s—t|<8

for some C' >0, a > 0. Then (X;) has a continuous modification.

3.2 The spacel C'0, 00) |

As SBM is continuous, its natural space is the space of continuous functions.
Instead of a collection of random variables a stochastic process (W;) can be
understood as a random element of a function space.

Recall that p is a metric if on .S

26
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We_
(i) p >0, plwr,wz) = 0 iff wy = w;
(ii) symmetric; V\)Z,
Wy

(iii) the triangle inequality holds, i.e.
plwi,w2) < p(wr,ws) + p(wz, ws).

Then (S, p) is a metric space.
The sequence (x,,) is Cauchy if for each € > 0 there exist ng(¢) such that
p(xm, x,) < e for all m,n > ny. The space (S, p) is complete if every Cauchy
sequence converges. A set A C S is dense, if for any x € S there exists a
sequence (r,) C A such that z, — x. The space (S, p) is separable if there
exists a countable dense subset.
Let C[0, 00) denote the space of continuous real functions on [0, co) with
metric @ woWwa o oMy —> [‘Q DO)

[ee]

pleorwn) = 3 o ma (o (£) - Al A .

2n te[0,n]
n=1 .
—AVA
Proposition 7. p is a metric, and (C[0, 00), p) is a complete separable metric
space.

Proof. 1t is clear that p is a metric. Fix a Cauchy sequence (x,). For any
fix N € N the limit lim, o z,(t) = z(t) exists for ¢t € [0, N], and it is
continuous. Thus x., exists and continuous.
To find a countable dense subset consider functions which are 0 for ¢t > n,
and it is rational at k/n for k =0,1,...,n? — 1. O
= n
If (S, p) is a metric space we can define open sets. The g-algebra generated
V{ by open sets is the Borel-co-algebra B(.S). With thig (S, B(S))|is a measurable
/Q space.
If (©2,A,P) is a probability space and (S,B(S)) is a measurable space
then a measurable X : Q — S is a random variable / random element in S.
@ 4 It induces a probability measure P o X! on S as

PoX '(B)=P(X € B) = P({w: X(w) € B}).

Let (P,) be a sequence of probability measure on (S, B(S)) and P another
measure on it. Then P, converges weakly to P, P, = P, if

lim [ f(s)dPu(s) = | f(s)dP(s)
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for every continuous real function f. Note that the limit measure is neces- @W
sarily a probability measure.

Let X,, and X be random elements in S, defined possibly on different
probability spaces. The sequence (X,,) converges in distribution to X if the

corresponding induced measures converge weakly. Equivalently, /{ ( { g )) C(ju
SIS

Ef(X,) = Ef(X)

==for all continuous and bounded f.
Assume that X,, — X in distribution. For any 0 < ¢; < ... < t; consider

-----

Tyt (W) = (W(t1), ..., w(ty)).

This is clearly continuous. For a continuous bounded function f : R — R
the composite function f(m, ) is bounded and continuous. Therefore, by
the definition of convergence in distribution

Ef(ﬂ-th---,tk (Xn)) — Ef(ﬂ-tl,---,tk (X))

that is
Ef(X,(t1),...,Xn(ty)) = Ef(X(t1),..., X(tx)).

That is, for any 0 < t; < ... <1y

D

(Xn(tr), - Xa(tr)) — (X(8), -, X (t)).

This means that the finite dimensional distributions converge.
We proved the following.

Proposition 8. If (X,,) converges in distribution X then all finite dimen-
stonal distributions converge.

The converse is not true in general.

Example 8. Let
Xn(t) = ntI[()’(gn)fl](t) + (1 — nt)]:((gn)717nfl}<t), t>0.

Then all finite dimensional distributions converge to the corresponding finite

dimensional distributions of X = 0. However, convergence as a process does
not hold.
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