2.3 Inequalities

Theorem 8 (Doob’s maximal inequality). Let (X;) be a right-continuous
submartingale. AA&,MLW\I—: v
(i) Forany0 < S <T <oo, x>0
zP( sup X; > z) <EX].

S<t<T
-

(ii) If (X;) is nonnegative and p > 1 then

P p
p
EYf sup X <|—— | E p.l
quET t)] (P—1> %T

Proof. (i): Let F,, be as above. Then (X;, F;)er, is a discrete time martin-

gale. Therefore, by Doob’s maximal inequality @ N [ g T] . {f{1 YLI \&
: | = [

mEX
yP (sup X, > y) <EX]. .
e = 1{0( Y \7{ U%S !77
. .. . . Ta) 17 | "h !
Right-continuity implies /

{ sup X, >y} ZUZO—l{SupXt >y}, (j -
S<t<T teF, W

- and the union is increasing. Letting n — oo S
\[-\ T
X S ox- yP(sup Xt>y)§EX7f.
% 5<t<T

Letting y 1 x the result follows.
Part (ii) follows as in the discrete time case. O

Exercise 9. Let N be a Poisson process with intensity A > 0. Show that for
any ¢ > 0

1
limsupP | sup (Ns — As) > cvV At | < ,
t—>oop (O<SI<)t( )2 ) T oeV2rm

and
1

e\ 21 '

limsup P ( inf (N, — As) < —C\/ﬁ) <
0<s<t

t—o0

Show that for any 0 < S < T < 00

N, 2 4Ta
E sup (Tt_)\> §—)\.

S<t<T
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Corollary 3. Let N be a Poisson process with intensity A > 0. Then

Proof. By Chebyshev’s inequality /A{

i) P(|t7'N,— A > ¢) gng—gt)zé.
| MVE =4S ot
By the first Borel-Cantelli-lemma almost surely —N
M'ZV‘ Z 2/
D IS
\ — =
ZV\

So on a subsequence we are done. In between we have

—1 o 2
P ( sup ’tith _ )\‘ > €> < E (Sup2n§t§2n+1 ‘t N, )\|)

on<<on+l 52
- " h SAtia 8
63 Z F= ZJ\ + | = 92ng2 - 2’
Applying Borel-Cantelli again, we are done. [ eeer

2.4 Optional stopping

Let (X¢, Ft)iel0,00) be a right-continuous submartingale. It has a last element
Xoo, if X is measureable with respect to the o-algebra Fy, = o (Ui>0F1),
E|X.| < oo and for all t > 0 E[X|F] > X; as.

If we work on the finite time horizon [0, 7], T < oo, then the submartin-
gale (X):c,m has a last element X7 (by definition!).

Theorem 9 (Optional stopping). Let (X, Fi)i>o0 be a right-continuous sub-
martingale with last element X o. Let 0 < 7 be stopping times. Then

ﬂ E[X.|F]> X, as.

Proof. Assume that 7 is bounded, i.e. 7 < K. Let n @?/\,az,
Eanw) /2, i () € (k- 1)/2° /2,

AN {’z% “er
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and define 7, similarly. Then ¢,, and 7,, are stopping times, and We
can apply the optional stopping theorem for the sumbartingale (X /on, Fi2n ),
and stopping times o,,, 7,,. Then

E[XTn ’fgn] > XUn?

that is for A € F,, | I~ '

T o4

% ‘( o exp /AXTndP z/AXUndP. s

Since 0, > o for each n, F, D F,. Therefore, for A € F,

/XTndP Z/XgndP. T Ty
A A

By the right-continuity X; — X, and X,, — X, a.s. This combined with T
the uniform integrability implies /

/A X.dP > /A X,dP, o t
proving the result. >> ﬁ% l ‘Q‘G} ; }é - O

Exercise 10. Prove that 0,7, are indeed stopping times.

2.5 Doob-Meyer decomposition

The Doob-Meyer decomposition is the continuous time analogue of the Doob’s
decomposition of submartingales. While the latter is basically trivial, the
Doob-Meyer decomposition is highly nontrivial, and needs further assump-
tions.

Recall that a class D of random variables are uniformly integrable, if for
any € > 0 there exists K > 0 such that for all X € D

/ IX|dP < .
| X|>K

Put
S, = {7 : 7 stopping time , 7 < a}.

The adapted process (X;) belongs to the class DL is for any a > 0 the class
{X;}res, of random variables is uniformly integrable.

(%»} \V\/@"Vlf%' Yﬂ: KIH.P@%@/MM%
(X 5 T



Theorem 10 (Doob-Meyer decomposition). Let (X, F;); be a right-continuous
submartingale in DL. Then there exist (M) and (A;) such that (M) is a
martingale, (A;) is an adapted nondecreasmg right-continuous process with

Ay =0, and b wond,
— S~

Furthermore, the decomposition is unique.

Example 7. If (IV;) is a Poisson process with intensity A > 0, then it is a
submartingale. Its Doob-Meyer decomposition is N\
gg_l’s, — Mt ¥

If (1,) is a standard Brownian motion, then (W?) is a submartingale and
its Doob-Meyer decomposition is

\m)faf
3 Wiener process

3.1 First properties and existence

Let (€2,.4,P) be a probability space. Then W = (W, F;)i>o is a Wiener

process or standard Brownian motion if

(W1) Wy =0 as.,

(W2) W has independent increments, that is Wy — Wy is independent of Fj
for any s < t,

(W3) W, — W, ~ N(0,t — s),

(W4) W, has continuous sample path.

Exercise 11. Show that (W2) and (W3) with s = 0 (i.e. W, ~ N(0,1))
implies (W3).

Proposition 5. (i) E(W;) =0 for all t.
(11) Cov(Wy, W) = E(W,W;) = min(s,t) =: s At, s,t > 0.

<W 5\> - W NG, {) | Jlote)
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(1it) Foranyk € N and0 <t; <--- <ty, the random vector (Wy,, ..., Wy,)
has a multivariate normal distribution with mean 0 and covariance

t1 4 t
t1 to to
2 - Etl ..... tr . . :
tl t2 “on tk

Proof. Part (i) and (ii) are trivial. For part (iii) note that by the independent
increment property the components of

X =Wy Wy, —Wy,..., W, — Wtk_l)T

are independent normal random variables. Therefore X is a multivariate
normal. Since

(th, ey ‘/I/Ytk)—r . AX,
the statement follows from the fact that a linear tranformation of a multi-

variate normal is normal with covariance matrix ACov(X)AT. ]

Let (X;) be a stochastic process with finite second moment. Then m(t) =
EX; is the mean value and r(s,t) = Cov(X;, X;) = E([X, — m(s)][X; —
m(t)]), is the covariance function.

Clearly 1 is symmetric, and nonnegative definite, i.e.

b [0, o)
ZZ CthJ,tg 0, keN, ty,....t, €T, c1,...,c; € R.
j=1 ¢=1

Definition 1. The stochastic process (X;) is a Gaussian process with mean

function m(¢) and covariance function r(t¢,s) if for any £ € N and ¢4,...,t
the random vector (X4, ..., Xy, ) has multivariate normal distribution with
mean (m(ty),...,m(t)) and covariance (r(t;,te))% ,_,.

A simple, but not very interesting example to a Gaussian process is X; =
a(t)Z + b(t), where Z ~ N(0,1).

We proved that the Wiener process (W;) is a Gaussian process with mean
m(t) = 0 and covariance function r(s,t) = min(s,t). This could be the
definition of the Wiener process.

Proposition 6. Let (W;) be Jcontinuoud Gaussian process with mean 0 and
covariance function r(s,t) = min(s,t). Then (W;) is a Wiener process.

18
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Exercise 12. Prove the statement.

Exercise 13. Let (W (t)) be SBM. Show that &
(i) Wi(t) =W(c+t)—W(e), t > 0; \\J (O)Q)
(il) Wal(t) = eW(t/e), t > 0; - £~

(iii) Wa(t) = tW(1/t) l‘\/\] (0\ O

are SBM.

Kolmogorov’s consistency theorem yields the the existence of Gaussian

processes. &O Pbx
Theorem 11. Let T C R, and let m(t) be an arbitrary function and r(s,t) ;T h

nonnegative definite function. Then there exists a Gaussian process (Xy)ier
with mean function m and covariance function r.

Therefore, apart from continuity, we have a Wiener process. That is, we
have a probability space (RI>>) B0 P) and a stochastic process (W;(w) =
we)t>0, which satisfies (W1)—(W3).

Let C' = ([0, 00) be the space of continuous function on [0, 00). We have
to show that P(W € C) = 1. The problem is that C' does not belong to the
product o-algebra B> Indeed, it can be shown that

B0 = U{r (BX) : K C [0,00), K countable}.

Therefore, if C' € B> then C = 73! (BX) for some countable K C [0, c0).
But continuity cannot be determined from the values of the function on a
countable set. Similarly,

{w e RO sup w, Sx}, reR,
0<t<1

is not Bl%*®)-measurable, so we cannot define SUDPye(0,1] W,

Thus the setup in Kolmogorov’s consistency theorem cannot deal with
continuous processes. We need a different approach.

Recall that Y is a modification of X if X; = Y} a.s. for any fix ¢, i.e. P(X; =
Y;) =1 for each ¢ > 0.

Theorem 12 (Kolmogorov continuity theorem). Let (X)) be a stochas-
tic process on (2, A, P), such that for some positive constants o, 3, C

E|X, - XJ]J*<Clt—s|'"", 0<s,t<T.

19
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