
2.3 Inequalities

Theorem 8 (Doob’s maximal inequality). Let (Xt) be a right-continuous
submartingale.

(i) For any 0 < S < T < ∞, x > 0

xP( sup
S≤t≤T

Xt ≥ x) ≤ EX+
T .

(ii) If (Xt) is nonnegative and p > 1 then

E

�
sup

S≤t≤T
Xt

�p

≤
�

p

p− 1

�p

EXp
T .

Proof. (i): Let Fn be as above. Then (Xt,Ft)t∈Fn is a discrete time martin-
gale. Therefore, by Doob’s maximal inequality

yP

�
sup
t∈Fn

Xt > y

�
≤ EX+

T .

Right-continuity implies
�

sup
S≤t≤T

Xt > y

�
= ∪∞

n=1

�
sup
t∈Fn

Xt > y

�
,

and the union is increasing. Letting n → ∞

yP

�
sup

S≤t≤T
Xt > y

�
≤ EX+

T .

Letting y ↑ x the result follows.
Part (ii) follows as in the discrete time case.

Exercise 9. Let N be a Poisson process with intensity λ > 0. Show that for
any c > 0

lim sup
t→∞

P

�
sup
0≤s≤t

(Ns − λs) ≥ c
√
λt

�
≤ 1

c
√
2π

,

and
lim sup
t→∞

P

�
inf

0≤s≤t
(Ns − λs) ≤ −c

√
λt

�
≤ 1

c
√
2π

.

Show that for any 0 < S < T < ∞

E sup
S≤t≤T

�
Nt

t
− λ

�2

≤ 4Tλ

S2
.

14







Corollary 3. Let N be a Poisson process with intensity λ > 0. Then

lim
t→∞

Nt

t
= λ a.s.

Proof. By Chebyshev’s inequality

P
���t−1Nt − λ

�� > ε
�
≤ Var(Nt)

t2ε2
=

λ

ε2t
.

By the first Borel–Cantelli-lemma almost surely

lim
n→∞

N2n

2n
= λ.

So on a subsequence we are done. In between we have

P

�
sup

2n≤t≤2n+1

��t−1Nt − λ
�� > ε

�
≤ E

�
sup2n≤t≤2n+1 |t−1Nt − λ|

�2

ε2

≤ 4 2n+1λ

22nε2
= 2−n8λ

ε2
.

Applying Borel–Cantelli again, we are done.

2.4 Optional stopping

Let (Xt,Ft)t∈[0,∞) be a right-continuous submartingale. It has a last element
X∞, if X∞ is measureable with respect to the σ-algebra F∞ = σ (∪t≥0Ft),
E|X∞| < ∞ and for all t ≥ 0 E[X∞|Ft] ≥ Xt a.s.

If we work on the finite time horizon [0, T ], T < ∞, then the submartin-
gale (Xt)t∈[0,T ] has a last element XT (by definition!).

Theorem 9 (Optional stopping). Let (Xt,Ft)t≥0 be a right-continuous sub-
martingale with last element X∞. Let σ ≤ τ be stopping times. Then

E[Xτ |Fσ] ≥ Xσ a.s.

Proof. Assume that τ is bounded, i.e. τ ≤ K. Let

σn(ω) = k/2n, if σ(ω) ∈ [(k − 1)/2n, k/2n),
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and define τn similarly. Then σn and τn are stopping times, and σn ≤ τn. We
can apply the optional stopping theorem for the sumbartingale (Xk/2n ,Fk/2n),
and stopping times σn, τn. Then

E[Xτn |Fσn ] ≥ Xσn ,

that is for A ∈ Fσn �

A

XτndP ≥
�

A

XσndP.

Since σn ≥ σ for each n, Fσn ⊃ Fσ. Therefore, for A ∈ Fσ

�

A

XτndP ≥
�

A

XσndP.

By the right-continuity Xτn → Xτ and Xσn → Xσ a.s. This combined with
the uniform integrability implies

�

A

XτdP ≥
�

A

XσdP,

proving the result.

Exercise 10. Prove that σn, τn are indeed stopping times.

2.5 Doob-Meyer decomposition

The Doob-Meyer decomposition is the continuous time analogue of the Doob’s
decomposition of submartingales. While the latter is basically trivial, the
Doob-Meyer decomposition is highly nontrivial, and needs further assump-
tions.

Recall that a class D of random variables are uniformly integrable, if for
any ε > 0 there exists K > 0 such that for all X ∈ D

�

|X|>K

|X|dP < ε.

Put
Sa = {τ : τ stopping time , τ ≤ a}.

The adapted process (Xt) belongs to the class DL is for any a > 0 the class
{Xτ}τ∈Sa of random variables is uniformly integrable.
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Theorem 10 (Doob-Meyer decomposition). Let (Xt,Ft)t be a right-continuous
submartingale in DL. Then there exist (Mt) and (At) such that (Mt) is a
martingale, (At) is an adapted nondecreasing right-continuous process with
A0 ≡ 0, and

Xt = Mt + At, t ≥ 0.

Furthermore, the decomposition is unique.

Example 7. If (Nt) is a Poisson process with intensity λ > 0, then it is a
submartingale. Its Doob-Meyer decomposition is

Nt = (Nt − λt) + λt.

If (Wt) is a standard Brownian motion, then (W 2
t ) is a submartingale and

its Doob-Meyer decomposition is

W 2
t = (W 2

t − t) + t.

3 Wiener process

3.1 First properties and existence

Let (Ω,A,P) be a probability space. Then W = (Wt,Ft)t≥0 is a Wiener
process or standard Brownian motion if
(W1) W0 = 0 a.s.,
(W2) W has independent increments, that is Wt −Ws is independent of Fs

for any s < t,
(W3) Wt −Ws ∼ N(0, t− s),
(W4) Wt has continuous sample path.

Exercise 11. Show that (W2) and (W3) with s = 0 (i.e. Wt ∼ N(0, t))
implies (W3).

Proposition 5. (i) E(Wt) = 0 for all t.
(ii) Cov(Ws,Wt) = E(WsWt) = min(s, t) =: s ∧ t, s, t ≥ 0.
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(iii) For any k ∈ N and 0 ≤ t1 < · · · < tk, the random vector (Wt1 , . . . ,Wtk)
has a multivariate normal distribution with mean 0 and covariance

Σ = Σt1,...,tk =




t1 t1 · · · t1
t1 t2 · · · t2
...

... . . . ...
t1 t2 · · · tk


 .

Proof. Part (i) and (ii) are trivial. For part (iii) note that by the independent
increment property the components of

X = (Wt1 ,Wt2 −Wt1 , . . . ,Wtk −Wtk−1
)�

are independent normal random variables. Therefore X is a multivariate
normal. Since

(Wt1 , . . . ,Wtk)
� = AX,

the statement follows from the fact that a linear tranformation of a multi-
variate normal is normal with covariance matrix ACov(X)A�.

Let (Xt) be a stochastic process with finite second moment. Then m(t) =
EXt is the mean value and r(s, t) = Cov(Xs, Xt) = E([Xs − m(s)][Xt −
m(t)]) , is the covariance function.

Clearly r is symmetric, and nonnegative definite, i.e.

k�

j=1

k�

�=1

cjc� r(tj, t�) ≥ 0 , k ∈ N , t1, . . . , tk ∈ T , c1, . . . , ck ∈ R .

Definition 1. The stochastic process (Xt) is a Gaussian process with mean
function m(t) and covariance function r(t, s) if for any k ∈ N and t1, . . . , tk
the random vector (Xt1 , . . . , Xtk) has multivariate normal distribution with
mean (m(t1), . . . ,m(tk)) and covariance (r(tj, t�))

k
j, �=1.

A simple, but not very interesting example to a Gaussian process is Xt =
a(t)Z + b(t), where Z ∼ N(0, 1).

We proved that the Wiener process (Wt) is a Gaussian process with mean
m(t) ≡ 0 and covariance function r(s, t) = min(s, t). This could be the
definition of the Wiener process.

Proposition 6. Let (Wt) be a continuous Gaussian process with mean 0 and
covariance function r(s, t) = min(s, t). Then (Wt) is a Wiener process.
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Exercise 12. Prove the statement.

Exercise 13. Let (W (t)) be SBM. Show that
(i) W1(t) = W (c+ t)−W (c), t ≥ 0;
(ii) W2(t) =

√
cW (t/c), t ≥ 0;

(iii) W3(t) = tW (1/t)

are SBM.

Kolmogorov’s consistency theorem yields the the existence of Gaussian
processes.

Theorem 11. Let T ⊂ R, and let m(t) be an arbitrary function and r(s, t) a
nonnegative definite function. Then there exists a Gaussian process (X t)t∈T
with mean function m and covariance function r.

Therefore, apart from continuity, we have a Wiener process. That is, we
have a probability space (R[0,∞),B[0,∞),P) and a stochastic process (�Wt(ω) =
ωt)t≥0, which satisfies (W1)–(W3).

Let C = C[0,∞) be the space of continuous function on [0,∞). We have
to show that P(�W ∈ C) = 1. The problem is that C does not belong to the
product σ-algebra B[0,∞). Indeed, it can be shown that

B[0,∞) = ∪{π−1
K (BK) : K ⊂ [0,∞), K countable}.

Therefore, if C ∈ B[0,∞), then C = π−1
K (BK) for some countable K ⊂ [0,∞).

But continuity cannot be determined from the values of the function on a
countable set. Similarly,

�
ω ∈ R[0,∞) : sup

0≤t≤1
ωt ≤ x

�
, x ∈ R ,

is not B[0,∞)-measurable, so we cannot define supt∈[0,1] �Wt.
Thus the setup in Kolmogorov’s consistency theorem cannot deal with

continuous processes. We need a different approach.
Recall that Y is a modification of X if Xt = Yt a.s. for any fix t, i.e. P(Xt =

Yt) = 1 for each t ≥ 0.

Theorem 12 (Kolmogorov continuity theorem). Let (Xt)t∈[0,T ] be a stochas-
tic process on (Ω,A,P), such that for some positive constants α, β, C

E|Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T.
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