


1 Discrete time martingales

1.1 Definition, properties

1.2 Martingale convergence theorem

1.3 Doob’s decomposition and the martingale Borel–
Cantelli lemma

1.4 Doob’s maximal inequality

Our first optional stopping theorem is the following.
{thm:opt-1}

Theorem 1. Let (Xn)n be a submartingale and let N be a bounded stopping
time, i.e. N ≤ k a.s. for some k ∈ N. Then

EX0 ≤ EXN ≤ EXk.

Proof. We proved that the stopped process (Xn∧N)n is submartingale, thus

EX0 = EXN∧0 ≤ EXN∧k = EXN .

For the other direction, put Kn = I(N < n) = I(N ≤ n − 1). Then Kn is
Fn−1-measurable, so (Kn)n is predictable. Therefore (K ·X)n is submartin-
gale, where

(K ·X)n =
n�

i=1

I(N ≤ i− 1)(Xi −Xi−1) = Xn −XN∧n.

That is
EXk − EXN = E(K ·X)k ≥ E(K ·X)0 = 0.

An easy consequence is Doob’s maximal inequality.

Theorem 2 (Doob’s maximal inequality). Let (Xk,Fk)k be a submartingale,
and put

Mn = max
1≤k≤n

Xk.

Then for any x > 0

xP(Mn ≥ x) ≤
�

{Mn≥x}
XndP ≤ EX+

n ,

where a+ = max{a, 0}.
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Proof. The second inequality is obvious.
Let N = min{min{k : Xk ≥ x, k = 1, 2, . . . , n}, n}. Then N is a bounded

stopping time. Since XN ≥ x on {Mn ≥ x}

xP{Mn ≥ x} ≤
�

{Mn≥x}
XNdP.

By Theorem 1 EXN ≤ EXn, and XN = Xn on the event {Mn < x}, thus
�

{Mn<x}
XNdP ≤

�

{Mn<x}
XndP,

proving the statement.

We obtain a new proof for Kolmogorov’s maximal inequlity.

Example 1 (Kolmogorov’s maximal inequality). Let ξ, ξ1, . . . be independent
random variables with Eξi = 0, and Eξ2i = σ2

i < ∞. Then Xn =
�n

i=1 ξi
is a martingale with respect to the natural filtration. Therefore (X 2

n)n is a
submartingale and

P

�
max
1≤k≤n

|Xk| ≥ x

�
= P

�
max
1≤k≤n

X2
k ≥ x2

�

≤ x−2EX2
n = x−2

n�

i=1

σ2
i .

For an infinite sequence we obtain the following.

Corollary 1. If (Xk,Fk) is a submartingale and x > 0, then

P(sup
n

Xn ≥ x) ≤ 1

x
sup
n

EX+
n .

Proof. Follows from the previous result combined with the monotone con-
vergence theorem.

Exercise 1. Prove the corollary.

For the Lp version we need a lemma.
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{lemma:max-ineq}
Lemma 1. Let X, Y be nonnegative random variables such that

P(X ≥ x) ≤ 1

x

�

{X≥x}
Y dP, x > 0.

Then for any p > 1

EXp ≤
�

p

p− 1

�p

EY p.

Proof. Note the for a nonnegative random variable X

EXp =

� ∞

0

pxp−1[1− F (x)]dx,

where F (x) = P(X ≤ x) is the distribution function of X. Indeed,

EXp =

�

Ω

XpdP =

�

Ω

� ∞

0

I(x < X(ω))pxp−1dxdP(ω)

=

� ∞

0

pxp−1[1− F (x)]dx.

The result follows using Hölder’s inequality as

EXp =

� ∞

0

pxp−1[1− F (x)]dx

≤
� ∞

0

pxp−1 1

x

�

{X≥x}
Y (ω)dP(ω) dx

=

� ∞

0

�

Ω

pxp−2I(X(ω) ≥ x)Y (ω)dP(ω)dx

=

�

Ω

Y (ω)

�� X(ω)

0

pxp−2dx

�
dP(ω)

=

�

Ω

Y Xp−1 p

p− 1
dP

≤ p

p− 1
(EY p)1/p

�
EX(p−1)q

�1/q

=
p

p− 1
(EY p)1/p (EXp)1/q ,

where p and q are conjugate exponents, i.e. 1/p+ 1/q = 1.
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Theorem 3 (Lp maximal inequality). (i) Let (Xk)
n
k=1 be a nonnegative sub-

martingale and p ∈ (1,∞). Then

Emax{Xp
1 , . . . , X

p
n} ≤

�
p

p− 1

�p

EXp
n.

(ii) Let (Xk)
∞
k=1 be a nonnegative submartingale and p ∈ (1,∞). Then

E sup
n∈N

Xp
n ≤

�
p

p− 1

�p

sup
n∈N

EXp
n.

Proof. Statement (i) follows from Doob’s maximal inequality and Lemma 1.
(ii) follows from (i) and the monotone convegence theorem as

E sup
n

Xp
n = lim

n→∞
E max

1≤k≤n
Xp

k

≤ lim inf
n→∞

�
p

p− 1

�p

EXp
n

≤
�

p

p− 1

�p

sup
n

EXp
n.

1.5 Optional stopping theorem

Let (Ω,F ,P) be a probability measure and (Fn)n a filtration on it. Recall
that a random variable τ : Ω → N is stopping time, if {τ ≤ n} ∈ Fn for each
n ∈ N.

We already used the following simple observation.

Proposition 1. The following are equivalent.
(i) τ is stopping time;
(ii) {τ > n} ∈ Fn for each n ∈ N;
(iii) {τ = n} ∈ Fn for each n ∈ N.

Exercise 2. Prove this result.

Let τ be a stopping time. The σ-algebra of the events prior to τ , or short
pre-τ -sigma algebra is defined as

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, n = 1, 2, . . .}. (1) {eq:pretau}
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It is easy to see that Fτ is indeed a σ-algebra. Clearly, Ω ∈ Fτ , and if
A ∈ Fτ , then

Ac ∩ {τ ≤ n} = (Ω−A)∩ {τ ≤ n} = {τ ≤ n}− (A∩ {τ ≤ n}) ∈ Fn, n ∈ N.

Finally, if A1, A2, . . . ∈ Fτ , then

(∪∞
k=1Ak) ∩ {τ ≤ n} = ∪∞

k=1(Ak ∩ {τ ≤ n}) ∈ Fn

for any n = 1, 2, . . ..

Exercise 3. Show that if τ ≡ k for some k ∈ N then Fτ = Fk, so the notaion
is consistent.

Some simple properties are summarized in the next statement.

Lemma 2. Let σ, τ be stopping times.
(i) τ is Fτ -measureable.
(ii) σ ∧ τ = min(σ, τ) and σ ∨ τ = max(σ, τ) are stopping times.
(iii) If σ ≤ τ , then Fσ ⊂ Fτ .
(iv) If (Xn)n is an adapted sequence then Xτ is Fτ -measurable.

{thm:opt-stop}
Theorem 4 (Optional stopping theorem, Doob). Let (Xn)n be a super-
martingale, and σ ≤ τ stopping times such that

E(|Xσ|) < ∞ , E(|Xτ |) < ∞ (2) {eq:opt-stop-1}

and
lim inf
n→∞

�

{τ>n}
|Xn| dP = 0. (3) {eq:opt-stop-2}

Then E(Xτ |Fσ) ≤ Xσ almost surely.
Furthermore, if (Xn)n is martingale then E(Xτ |Fσ) = Xσ.

Clearly, conditions (2) and (3) hold if the stopping times are bounded.

Proof. Since Xσ is Fσ-measurable, Xσ = E(Xσ|Fσ), therefore it is enough to
show that

E(Xτ −Xσ|Fσ) ≤ 0.

This is the same as
�

A

(Xτ −Xσ) dP ≤ 0 for all A ∈ Fσ. (4) {eq:opt-aux1}
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First assume that τ is bounded, that is τ ≤ m for some m. For any
A ∈ Fσ

A ∩ {σ < k ≤ τ} = A ∩ {σ ≤ k − 1} ∩ {τ > k − 1} ∈ Fk−1 , k ≥ 2,

thus
�

A

(Xτ −Xσ) dP

=

�

A

� τ�

k=σ+1

(Xk −Xk−1)

�
dP

=

�

A

� m�

k=2

I(σ < k ≤ τ)(Xk −Xk−1)

�
dP

=
m�

k=2

�

A∩{σ<k≤τ}
(Xk −Xk−1) dP

=
m�

k=2

�

A∩{σ<k≤τ}
E(Xk −Xk−1|Fk−1) dP ≤ 0,

proving (4).
Consider the general case. For any n we can write
�

A

(Xτ −Xσ)dP

=

�

A

(Xτ∧n −Xσ∧n)dP+

�

A

(Xτ −Xτ∧n)dP−
�

A

(Xσ −Xσ∧n)dP.

On the event {σ ≥ n} we have Xτ∧n = Xn = Xσ∧n, therefore
�

A

(Xτ∧n −Xσ∧n)dP =

�

A∩{σ<n}
(Xτ∧n −Xσ∧n)dP ≤ 0 , n ∈ N, (5) {eq:opt-aux2}

where the inequality follows from the previous case.
By condition (3) there exists a sequence nk → ∞ such that

lim
k→∞

�

{τ>nk}
|Xnk

| dP = 0.
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It is enough to show that on this subsequence the second and third terms in
decomposition (5) tends to 0. For the second term

����
�

A

(Xτ −Xτ∧nk
)dP

���� =
����
�

A∩{τ>nk}
(Xτ −Xτ∧nk

)dP

����

≤
�

A∩{τ>nk}
(|Xτ |+ |Xnk

|)dP

≤
�

{τ>nk}
|Xτ | dP+

�

{τ>nk}
|Xnk

| dP.

Similarly, for the third term
����
�

A

(Xσ −Xσ∧nk
)dP

���� =
����
�

A∩{σ>nk}
(Xσ −Xnk

)dP

����

≤
�

{σ>nk}
|Xσ| dP+

�

{τ>nk}
|Xnk

| dP.

Using (2) both upper bounds tend to 0.

Corollary 2. Assume that (Xn) is (super-, sub-) martingale, τ is a stopping
time, E(|Xτ |) < ∞ and (3) holds. Then

(i) E(Xτ |F1) ≤ X1 and E(Xτ ) ≤ E(X1) for supermartingales;
(ii) E(Xτ |F1) ≥ X1 and E(Xτ ) ≥ E(X1) for submartingales;
(iii) E(Xτ |F1) = X1 and E(Xτ ) = E(X1) for martingales.

Some conditions are needed for the optional stopping to hold.

Example 2 (Simple symmetric random walk). Let ξ, ξ1, ξ2, . . . are iid random
variables with P(ξ = ±1) = 1/2. Let S0 = 1 and Sn = Sn−1 = ξn. Then
(Sn) is martingale. Let τ = min{n : Sn = 0}. Then τ is a stopping time and
the martingale (Sτ∧n)n tends to 0 a.s. The optional stopping does not hold
as Sτ ≡ 0 a.s., while S0 = 1. Clearly, condition (3) does not hold.

Theorem 5 (Wald identity). Let X,X1, X2, . . . be iid random variables with
EX = µ ∈ R, and let τ be a stopping time with E(τ) < ∞. Put Sn =
X1 + · · ·+Xn, n ∈ N. Then E(Sτ ) = µE(τ).
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Proof. First assume X ≥ 0. We have

E(Sτ ) = E

� ∞�

k=1

I{τ≥k}Xk

�

=
∞�

k=1

E(I{τ≥k}Xk)

=
∞�

k=1

E(I{τ≥k})E(Xk),

that is

µ
∞�

k=1

P{τ ≥ k} = µE(τ).

To see the general case consider the decomposition

S(+)
τ =

∞�

k=1

X+
k I(τ ≥ k)

and

S(−)
τ =

∞�

k=1

X−
k I(τ ≥ k).

Example 3 (Gambler’s ruin). Let X,X1, X2, . . . be iid random variables such
that P(X = 1) = p = 1−P(X = −1), 0 < p < 1, and put Sn = X1+· · ·+Xn,
n ∈ N. Fix a, b ∈ N and let

τ = τa,b(p) = inf{n : Sn ≥ b or Sn ≤ −a},

with the convention inf ∅ = ∞. Let (Fn) be the natural filtration, i.e. Fn =
σ(X1, . . . , Xn), n ∈ N.

It is easy to show that P(τ < ∞) = 1, and τ is a stopping time. Further-
more, |Sτ | ≤ max(a, b), in particular E|Sτ | < ∞ and

lim inf
n→∞

�

{τ>n}
|Sn| dP ≤ lim inf

n→∞
max(a, b)P{τ > n} = 0.
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First assume that p = 1/2. Then EX = 0 and (Sn) is a martingale.
Therefore, by the optional stopping theorem

0 = ES0 = ESτ = −aP(Sτ = −a) + bP(Sτ = b)

= −a(1−P(Sτ =)) + bP(Sτ = b).

Thus
P(Sτ = b) =

a

a+ b
and P(Sτ = −a) =

b

a+ b
.

Furthermore, we proved that (S2
n − n) is a martingale, thus

0 = E(S2
0 − 0) = E(S2

τ − τ)

which implies

Eτ = ES2
τ = a2P(Sτ = −a) + b2P(Sτ = b) = a2

b

a+ b
+ b2

a

a+ b
= ab.

The case p �= 1/2 is different. Introduce

Zn = sSn =
n�

k=1

sXk

with s = (1− p)/p = 1/r. Then (Zn) is a martingale and

Zτ = sbI(Sn = b) + s−aI(Sn = −a) ≤ sb + s−a,

thus EZτ < ∞ and

lim inf
n→∞

�

{τ>n}
|Zn| dP ≤ (sb + s−a) lim inf

n→∞
P{τ > n} = 0.

Again, by the optional sampling theorem

s−aP(Sτ = −a) + sb (1−P(Sτ = −a))

= s−aP(Sτ = −a) + sbP(Sτ = b)

= E(sSτ ) = E(Zτ )

= E(Z1) = E(sX) = 1.

Rearranging we obtain

P(Sτ = −a) =
1− sb

s−a − sb
rb

rb
=

rb − 1

ra+b − 1
=

1− rb

1− ra+b
.

Exercise 4. Show that τ < ∞ a.s.
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