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1 Discrete time martingales BZM n 'q:x—‘wdh.

1.1 Definition, properties
1.2 Martingale convergence theorem E [></I~H (I;\] = XL\ A\

1.3 Doob’s decomposition and the martingale Borel- o~
Cantelli lemma % '

1.4 Doob’s maximal inequality é ’WM‘M%

Our first optional stopping theorem is the following. Cth -1}
—_—— m:opt-

Theorem 1. Let (X,,), be a submartingale and let N be a bounded stopping >
time, i.e. N <k a.s. for some k € N. Then - ﬂh,émy

Eﬁ/h”[l—}> EX, < EXy < EX;.

Proof. We proved that the stopped } XnAN)n is submartingale, thus
NAE =

ES_)/M H > g[,( 1 EX, = EXNAO gt —EXy.

For the other direction, put K, = I(N <n)= I(N <n—1). Then K, is

[l Fn_1-measurable, so (K,), is predictable. Therefore (K - X),, is submartin-
gale, where . —d

E‘é( )ZE(X )ZE@Q) K- X)n m(& — Xi1) = X — Xnnn. {U < M’ﬂl & I':v-z

That is
({W'A& EX; —EXy =E(K-X);, > E(K-X),=0.

M‘t:'u_h le - -

An easy consequence is Doob’s maximal inequality.

Theorem 2 (Doob’s maximal inequality). Let (X, Fr)r be a submartingale,

and put
M, = max X,.

1<k<n

Then for any x > 0

Q:P(anx)g/ X,dP < EX*, < y X AF
(M >z} - n

where at = max{a,0}. ¢
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Proof. The second inequality is obvious.
Let N = min{min{k : X}, > 2,k =1,2,...,n},n}. Then N is a bounde;i/
| stopping,time. Since Xy > x on {M,, > z}
~—

L% SxdP= wpiar, >0 < /{M P, /

M,2x
By ﬂz;leorem 1 EXy < EX,, and Xy = X,, on the event {M,, < z}, thus

<
=" S)(;JJ'P+ XydP < XdP+§ )( AP = H}(
£0G) L /QJ—’ L—J {2 <5 )

proving the statement.
We obtain a new proof for Kolmogorov’s maximal inequlity. \> S Kjd? Z

Example 1 (Kolmogorov’s maximal mequahty) Let &, &1, ... be mdependexz“c = ?
random variables with E§; = 0, and E¢? = 67 < co. Then X,, = >0 | &
is a martingale with respect to the natural filtration. Therefore (X2), is a
(X7) é ’(/1‘1 dP

A ol " bQ submartingale and -

Y
+.=@ (x/u..-,@ P g =) = (et ) D

n
<7 ’EX? =27 ZJE.

i=1
. . . (P(/ 5/ > ¢ 4
For an infinite sequence we obtain the following. h'z =

Corollary 1. If (Xy, Fi) is a submartingale and x > 0, then Z ;—(}(2)
7

1 —_—
P X, > - EXI.
(sup Xy, = ) < - sup 2
Proof. Follows from the previous result combined with the monotone con-
vergence theorem. O HQ{/&V‘

Exercise 1. Prove the corollary. ( Mléb"gof)

For the LP version we need a lemma.



{lemma:max-ineq}
Lemma 1. Let XY be nonnegative random variables such that

{
P(sz)gl/ YdP, x> 0. [—’ MC b
T J{X>a} K-’-H
W

= (520) ) X

Proof. Note the for a nonnegative random variable X

B r

where F(x) = P(X < x) is the distribution 1{1nct10n of X. Indeed,
e

EX? = /QXde = /Q/O I(z < X (w))pa? 'dadP(w)
_ /Ooopxp—l[l — F(2))da. _QS f{y.()(([p;) d?(m)
The result follows using Holder’s inequality as _
EX? = /Ooopxp_l[l — F(x)]dx } (P (XB !)t - r/SC )

Then for any p > 1

——

<[ v 11/X>}Y< w)dP(w) dr
/ /pxp 27 (X w)dP (w)dz
P51 :/QY(W) (/OX(w)pxp 2d:v> dP ()
[y (v XF A’P
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Theorem 3 (LP maximal inequality). (i) Let (Xy)}_; be a nonnegative sub-
martingale and p € (1,00). Then

p
Emax{X?,..., X"} < (LJ EX?.

(ii) Let (Xi)52, be a nonnegative submartingale and p € (1,00). Then

E{supXﬁ)S ( ) sup E{Xp )
neN neN

Proof. Statement (i) follows from Doob’s maximal inequality and Lemma 1.
(ii) follows from (i) and the monotone convegence theorem as

y p
Beup X7 = iz B pagy X ét;_ ) o)

< lim inf <L)
n—00 p— 1

» \?
< (—) sup EX?.
p—1 n

1.5 Optional stopping theorem

Let (2, F,P) be a probability measure and (F,), a filtration on it. Recall
that a random variable 7 : Q@ — N is stopping time, if {T < n} € F,, for each
n € N.

We already used the following simple observation.

Proposition 1. The following are equivalent.
(i) T is stopping time;
(i) {T >n} € F, for each n € N;

(i1i) {T =n} € F, for each n € N.

Exercise 2. Prove this result.

Let 7 be a stopping time. The o-algebra of the events prior to T, or short
pre-T-sigma algebra is defined as

F.={AeF: An{r<n}eF,, n=12,...}. (1) {eq:pretau}

. ~ged, Ced
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It is easy to see that F; is indeed a o-algebra. Clearly, @ € F7, and if
A e F,, then ~ ) wu
\ H-SHarfy

An{r<n}=Q-A)n{r<n}={r<nl—(An{r <n}) € F, neN.

. : A <_&
Finally, if Ay, As,... € F,, then T R . :FT
(U Ap) N{r <n}=U (A N{r <n}) € F,
1 €
forany n =1,2,.... fn

Exercise 3. Show that if 7 = k for some k € N then F, = F}, so the notaion
is consistent.

Some simple properties are summarized in the next statement.

Lemma 2. Let 0,7 be stopping times.

(i) T is F,-measureable.

(i) o AT =min(o,7) and o V T = max(o,T) are stopping times. (—_HU(/)
(iii) If o < T, then F, C Fr.
() If (X,)n is an adapted sequence then X, is F,-measurable.
{thm:opt-stop}
Theorem 4 (Optional stopping theorem, Doob). Let (X,), be a super-
martingale, and o < T stopping times such that

E(|X,]) < o0, E(|X;]) < o0 (2) {eq:opt-stop-1}
and
lim inf/ | X[ dP = 0. (3) {eq:opt-stop-2}
{r>n}

r—ﬁ n—o00

Then E(X,|F,) < X, almost surely.
Furthermore, if (X,,), is martingale then E(X,|F,) = X,.

Clearly, conditions (2) and (3) hold if the stopping times are bounded.
Proof. Since X, is F,-measurable, X, = E(X,|F,), therefore it is enough to

show that E(X, - X,|F)<0. CT)E [S(J‘TF]{ >€

/(XT — X,)dP <0 for all A € F,. (4) {eq:opt-auxi}
A
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First assume that 7 is bounded, that is 7 < m for some m. For any

A€ F, s
w‘l"1
An{fo<k<t}=An{o<k-1}n{r>k—-1} € Fr1, k=>2,
us €
%,
/(X ~X,)dP

( Xk_1)> dP
k= o'+1

(kzm: (0 <k <7)(Xp— Xj_ 1))d
/ noxa AT Sgﬁ”&}dp

proving (4). éO \U/F(MM

Consider the general case. For any n we can write

_
—met

/ (X, — X,)dP
A
= /(XT/\n - XU/\n)dP + /(XT - XT/\n>dP - /(XO' - Xa/\n>dP-
A A A
On the event {o > n} we have X5, = X,, = Xyan, therefore
/(XT/\n - Xa/\n)dP - / (XT/\n - XU/\n)dP S 07 n e N, (5> {eqiopt—aux2}
A An{o<n}

where the inequality follows from the previous case. & Lm -‘f" di\tbt )
By condition (3) there exists a sequence ny — oo such that %:’
hafgeni &

l X, |dP = 0 Gan
im n = 0.
k—o0 {r>n} ’ "4
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It is enough to show that on this subsequence the second and third terms in

decomposition (5) tends to 0. For the second term
E X ] 406

/ (X, — ka)dP‘
An{r>n}

<[ (s Ix P
An{T>ny}

< / ]XT]dP+/ | X, | AP
{T>nx} {r>ni}
Similarly, for the third term & @
/ (X, — Xnk)dP’
An{o>n;}

g/ ]XU\dPJr/ X, | dP.
{o>ni} {r>ny}

Using (2) both upper bounds tend to 0.

‘ / (X, — ka)dP’ =
A

/ (X, - XoAnk)dP’ _
A

Corollary 2. Assume that (X,,) is (super-, sub-) martingale, T is a stopping
time, E(|X;|) < oo and (3) holds. Then 6’::{

(i) BE(X,|F) < X; and E(X;) < E(X;) for supermartingales;
(i) E(X,|F1) > X; and E(X,;) > E(X;) for submartingales;
(111)) E(X |F1) = X1 and E(X;) = E(X)) for martingales.

Some conditions are needed for the optional stopping to hold.

Example 2 (Simple symmetric random walk). Let £, £, &, . . . are iid random
variables with P(§ = £1) = 1/2. Let Sy = 1 and S,, = n,1+ &, Then
(Sp) is martingale. Let 7 = min{n : S,, = 0}. Then 7 is a stopping time and
the martingale (S;a,), tends to 0 a.s. The optional stopping does not hold
as S =0 a.s., while Sy = 1. Clearly, condition (3) does not hold.

Theorem 5 (Wald identity). Let X, X, Xo, ... be iid random variables with
EX = pu € R, and let 7 be a stopping time with E(1) < oo. Put S, =
X1+ -+ X,, neN. Then E(S;) = uE(7).






Proof. First assume X > 0. We have

= E ( Z I{Tzk}Xk)

E(l{r>1 Xk)

= Z (Tir>ry) B(Xk),
k=1

Mg

that is

p > P{r > k) = uB(r).
k=1
To see the general case consider the decomposition
S =>"X/I(r > k)
k=1

and
)—ZXkIT>k;

]

Example 3 (Gambler’s ruin). Let X, X, Xs, ... be iid random variables such
that P(X =1)=p=1-P(X =-1),0<p< l,and put S,, = X+ -+X,,
n € N. Fix a,b € N and let

T ="Tup(p) =inf{n:S, >borsS, <—a}l,

with the convention inf ) = co. Let (F,,) be the natural filtration, i.e. F, =
O'(Xl, R >Xn>7 n € N.

It is easy to show that P(7 < oo) = 1, and 7 is a stopping time. Further-
more, |S;| < max(a,b), in particular E|S;| < co and

lim inf/ |Sy| dP < lim inf max(a, b)P{r > n} = 0.
{r>n} n—reo

n—oo



First assume that p = 1/2. Then EX = 0 and (5,) is a martingale.
Therefore, by the optional stopping theorem

0=ESy =ES, = —aP(S, = —a) + bP(S, =)
— —a(1—P(S, =)) + bP(S, = b)
Thus

a b
P(ST = b) = a——l—b and P(ST = —CL) = ar b

Furthermore, we proved that (S? —n) is a martingale, thus
0=E(S; —0)=E(S?-7)

which implies
b 5 a

= ab.
a+b+ a+b “

Er = ES? = a®P(S, = —a) + b°P(S, = b) = a®

The case p # 1/2 is different. Introduce

Z, = s = ﬁ sk
k=1
with s = (1 —p)/p = 1/r. Then (Z,) is a martingale and
Z, = s"1(S, = b) + s I(S,, = —a) < s"+ 57,
thus EZ, < oo and

lim inf |Z,|dP < (s 4+ s7) liminf P{7 > n} = 0.

n—oo Joos n—00
Again, by the optional sampling theorem
s "P(S, = —a) + 5" (1 — P(S, = —a))
=5 "P(S, = —a) + s"P(S, = b)
— E(s5) = B(Z,)
=E(Z) =E(s¥) = 1.

Rearranging we obtain

Exercise 4. Show that 7 < 0o a.s.



