
This is the heat equation.
For the forward equation we need again the adjoint of S. Let µ be ab-

solutely continuous with respect to the Lebesgue measure, µ(dy) = g(y)dy,
and let f ∈ C2

c . Integration by parts twice gives

�
f ��(y)g(y)dy =

�
f(y)g��(y)dy.

That is (S∗µ)(dy) = 1
2
g��(y)dy. The forward equation is

∂

∂t
pt(y|x)dy =

1

2

∂2

∂y2
pt(y|x)dy,

which for the densities gives

∂

∂t
ρt(y|x) =

1

2

∂2

∂y2
ρt(y|x),

again the heat equation.
Recall that the fundamental solution to the heat equation

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x)

is

F (t, x) =
1√
2πt

e−
x2

2t ,

which is exactly the transition density of the SBM.

6.4 Diffusion processes

Diffusions can be handled as solution to SDEs. We showed that under gen-
eral conditions unique strong solution to SDEs exists, implying the existence
of diffusion processes. This is the probabilistic approach due to Lévy and
Itô. Another more analytical approach to such processes was applied by
Kolmogorov and Feller. They treated diffusions as general Markov processes
and using tools from the theory of partial differential equations, they showed
that under suitable conditions the Kolmogorov backward and forward equa-
tions have a unique solution. Then the existence of a desired Markov process
follows from Kolmogorov’s consistency theorem, and the continuity property
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of the process can be treated by Kolmogorov’s continuity theorem (Theorem
12). Here we look a bit into the latter approach.

A diffusion process locally behaves as a Wiener process, in the sense that
it satisfies the SDE

dYt = µ(Yt)dt+ σ(Yt)dWt.

That is, for h > 0

ΔYt = Yt+h − Yt =

� t+h

t

µ(Ys)ds+

� t+h

t

σ(Ys)dWs

≈ hµ(Yt) + σ2(Yt)(Wt+h −Wt),

thus

E [ΔYt|Yt = y] = µ(y)h+ o(h),

E
�
(ΔYt)

2|Yt = y
�
= σ2(y)h+ o(h).

A diffusion process (Yt) is a continuous Markov process satisfying as h ↓ 0

(i) P(|ΔYt| > ε|Yt = y) = o(h);

(ii) E (ΔεYt|Yt = y) = µ(y)h+ o(h);

(iii) E ((ΔεYt)
2|Yt = y) = σ2(y)h+ o(h),

where ΔYt = Yt+h − Yt, and

ΔεYt =

�
ΔYt, if |ΔYt| ≤ ε,

0, otherwise.

The definition determines the infinitesimal generator of the process. For
f ∈ C2

Exf(Yt) = Ex

�
f(x) + (Yt − x)f �(x) + (Yt − x)2

f ��(x)

2
+ o((Yt − x)2)

�

= f(x) + tµ(x)f �(x) + tσ2(x)
f ��(x)

2
+ o(t).

Therefore,

(Sf)(x) = lim
t→0

1

t
Ex [f(Yt)− f(x)] = µ(x)f �(x) + σ2(x)

f ��(x)

2
.
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Kolmogorov backward equation is

∂

∂t
pt(y|x) = µ(x)

∂

∂x
pt(y|x) +

σ2(x)

2

∂2

∂x2
pt(y|x).

For the forward equation we need the adjoint of S. This can be de-
termined as for the SBM. Let ρt(y|x) denote the density of the process,
i.e. pt(dy|x) = ρt(y|x)dy. Let µ(dy) = g(y)dy. If f has compact support
then in the integration by parts formula the increment disappears and we
get

�
(Sf)(y)g(y)dy =

� �
µ(y)f �(y) +

σ2(y)

2
f ��(y)

�
g(y)dy

=

�
f(y)

�
− d

dy
(µ(y)g(y)) +

1

2

d2

dy2
�
σ2(y)g(y)

��
dy.

Thus

(S∗pt(·|x)) (dy) =
�
− d

dy
(µ(y)ρt(y|x)) +

1

2

d2

dy2
�
σ2(y)ρt(y|x)

��
dy,

and the forward equation is

∂

∂t
ρt(y|x) = − ∂

∂y
(µ(y)ρt(y|x)) +

1

2

∂2

∂y2
�
σ2(y)ρt(y|x)

�
.

Example 23 (Ornstein–Uhlenbeck process). Consider the Langevin equation

dYt = −µYt dt+ σ dWt,

where µ > 0, σ > 0, and Y0 is independent of σ(Ws : s ≥ 0).
The solution of the homogeneous equation is e−µt. Taking the derivative

of eµtYt we obtain

d
�
eµtYt

�
= eµt dYt + µ eµtYt dt = eµt σ dWt,

which gives

Yt = e−µt

�
Y0 +

� t

0

eµs σ dWs

�
.

This is the Ornstein–Uhlenbeck process. The integral of a deterministic func-
tion with respect to SBM is Gaussian, thus

Yt − e−µtY0
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is normal with mean and variance

EYt = e−µt EY0,

EY 2
t = e−2µt EY 2

0 + e−2µt

� t

0

σ2 e2µs ds = e−2µt EY 2
0 +

σ2

2µ
(1− e−2µt).

We see that as t → ∞

Yt
D−→ N(0, σ2/(2µ)).

Taking the limit for the initial distribution Y0 we see that (Yt) is Gaussian
and

Yt ∼ N

�
0,

σ2

2µ

�
.

Next we determine the covariance function of Y . Since

Yt = e−µt

�
Y0 +

� t

0

σ eµu dWu

�

we get

Yt − e−µ(t−s)Ys = e−µt

� t

s

σ eµu dWu, t > s, (30)

which is independent of σ(Wu : u ≤ s) σ. Therefore,

Cov(Yt, Ys) = EYtYs = E
�
Yt − e−µ(t−s)Ys + e−µ(t−s)Ys

�
Ys

= e−µ(t−s) EY 2
s =

σ2

2µ
e−µ(t−s),

which depends only on t− s. That is (Yt) is stationary.
Using formula (30) for A ∈ B(R)

P(Yt ∈ A|Yu : u ≤ s, Ys = x)

= P(Yt − e−µ(t−s)Ys ∈ A− e−µ(t−s)x|Yu : u ≤ s, Ys = x)

= P(Yt − e−µ(t−s)Ys ∈ A− e−µ(t−s)x).

The variable Yt − e−µ(t−s)Ys is mean zero Gaussian with variance

E
�
Yt − e−µ(t−s)Ys

�2
= e−2µt

� t

s

σ2e2µudu =
σ2

2µ

�
1− e−2µ(t−s)

�
.
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Substituting s = 0

pt(·|x) ∼ N

�
e−µtx,

σ2

2µ

�
1− e−2µt

��
,

that is, the transition density

ρt(y|x) =
�

µ

πσ2(1− e−2µt)
exp

�
−µ(y − e−µtx)2

σ2(1− e−2µt)

�
.

We proved that (Yt) is a continuous stationary Markov process. It can be
shown that this characterizes the OU process.

Finally, we spell out the Kolmogorov equations. The backward is

∂

∂t
ρt(y|x) = −µx

∂

∂x
ρt(y|x) +

σ2

2

∂2

∂x2
ρt(y|x),

which is called Fokker–Planck equation. The forward is

∂

∂t
ρt(y|x) = − ∂

∂y
(−µyρt(y|x)) +

σ2

2

∂2

∂y2
ρt(y|x).

It is important to emphasize that in general explicit formulas for the tran-
sition densities cannot be obtained. For simulation results the Kolmogorov
equations are important, because solutions can be approximated numerically.

7 Brownian motion and PDEs

This part is from Karatzas and Shreve [5].
We showed that the infinitesimal generator of the SBM is the Laplacian

operator Δ. Furthermore the transition density of SBM is the fundamental
solution to the heat equation. These facts already show the intrinsic connec-
tion between Brownian motion and partial differential equations. Here we
spell out this connection a bit more.

7.1 Harmonic functions and the Dirichlet problem

Let D be an open subset of Rd. LetW be a d-dimensional standard Brownian
motion, and let

τD = inf{t ≥ 0 : Wt ∈ Dc}
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the first exit time from D. Let Br be the open ball centered at the origin, Vr

its volume and Sr its surface. The normalized surface measure on Br is µr

µr(dx) = P0(WτBr
∈ dx).

Then �

Br

f(x)dx =

� r

0

Sρ

�

∂Bρ

f(x)µρ(dx)dρ. (31)

A function u is harmonic in D if

Δu =
d�

i=1

∂2

∂x2
i

u = 0

in D. A function u : D → R satisfies the mean-value property, if for every
a ∈ D and r > 0 such that a+Br ⊂ D,

u(a) =

�

∂Br

u(a+ x)µr(dx).

We know that u is harmonic if and only if it satisfies the mean-value
property. We give a simple proof to one direction using Itô formula.

Proposition 11. If u is harmonic in D, then it satisfies the mean-value
property there.

Proof. By Itô’s formula

u(Wt∧τa+Br
) = u(W0) +

d�

i=1

� t∧τa+Br

0

∂u

∂xi

(Ws)dW
(i)
s +

1

2

� t∧τa+Br

0

Δu(Ws)ds.

Taking expectation Ea and letting t → ∞

Eau(Wτa+Br
) = u(a),

as stated.

Let D be an open set of Rd and f : ∂D → R be a continuous function.
Consider the Dirichlet problem

Δu = 0, in D,

u = f, on ∂D.
(32)
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A solution to the Dirichlet problem is a continuous function u : D → R which
satisfies the equation above.

Then one can guess that

u(x) = Exf(WτD) (33)

should be a solution, provided that the expectation exists.
Indeed, the boundary condition holds by the definition of τD. Using the

strong Markov property

u(a) = Eaf(WτD) = Ea

�
Ea[f(WτD)|Fτa+Br

]
�

= Eau(Wτa+Br
) =

�

∂Br

u(a+ x)µr(dx),

that is the mean-value property holds, which means that u is indeed har-
monic.

We proved the following.

Proposition 12. If u in (33) is well-defined then it is harmonic.

The proof of Proposition 11 shows in fact uniqueness.

Proposition 13. If f is bounded and Pa(τD < ∞) = 1 for all a ∈ D, then
any bounded solution to (32) has the form (33).

Proof. Consider a bounded solution u. By Itô’s formula

u(Wt∧τD) = u(W0) +
d�

i=1

� t∧τa+Br

0

∂u

∂xi

(Ws)dW
(i)
s .

Taking expectation Ea and letting t → ∞
Eau(WτD) = u(a),

as stated.

Note that a solution to the Dirichlet problem (32) is necessarily contin-
uous. Therefore, we need conditions characterizing the points a ∈ ∂D for
which

lim
x→a,x∈D

Exf(WτD) = f(a) (34)

holds for any bounded measurable function, which is continuous at a.
Define the stopping time σD = inf{t > 0 : Wt ∈ Dc}. Note the >

compared to ≥ in τD. A point a ∈ ∂D is regular for D is Pa(σD = 0) = 1.
Without proof we state the result on regularity.
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Theorem 34. Let d ≥ 2 and fix a ∈ ∂D. The following are equivalent:

(i) (34) holds for every bounded, measurable function which continuous at
a;

(ii) a is regular for D;

(iii) for all ε > 0 we have

lim
x→a,x∈D

Px(τD > ε) = 0.

For d = 1 every point of ∂D is regular. The Dirichlet problem is always
solvable, the solution is piecewise linear. For d ≥ 2 consider the punctured
unit ball D = {x ∈ Rd : 0 < �x� < 1}. Clearly, the origin is irregular for D.
For any x ∈ D the SBM exits D on its outer boundary, therefore we do not
see the value of f at 0. For this D the Dirichlet problem has a solution only
if f(0) = �u(0), where �u is the solution for B1.

7.2 Feynman–Kac formula

Consider the heat equation
∂u

∂t
=

1

2
Δu, (35)

with initial condition u(0, x) = f(x).
The fundamental solution to the heat equation is in fact the transition

probabilities of the d-dimensional SBM

ρt(y|x) =
1

(2πt)d/2
e−

�x−y�2
2t .

Under some growth condition on f , the unique solution to (35) has the
form

u(t, x) = Exf(Wt) =

�
f(y)ρt(y|x)dy.

The probabilistic representation of the solution to certain PDEs holds in a
more general setup.

Consider the equation

− ∂v

∂t
+ kv =

1

2
Δv + g on [0, T )× Rd,

v(T, x) = f(x), x ∈ Rd,
(36)

where f : Rd → R, k : Rd → [0,∞), and g : [0, T ]× Rd → R.
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