
(i) {Xn,Fn} szubmartingál, akkor E[Xτ |F1] ≥ X1 m.b., és persze EXτ ≥
EX1;

(ii) {Xn,Fn} martingál, akkor E[Xτ |F1] = X1 m.b., és persze EXτ = EX1.

Fontos megjegyezni, hogy a tételben szereplő feltételek nem csupán tech-
nikai feltételek. Legyen Sn egy egyszerű szimmetrikus bolyongás az egye-
nesen. Ő martingál a az általa generált természetes filtrációra nézve. Tud-
juk, hogy az egydimenziós bolyongás rekurrens, ezért majdnem biztosan el-
éri az 1-et. Legyen az elérés időpontja τ . Ekkor τ megállási idő, és persze
Sτ ≡ 1 �= S0 = 0. Csak a lim infn→∞

�
{τ>n} |Xn|dP = 0 feltétellel lehet baj,

és valóban, ez nem teljesül.

6.2 Optimal stopping problems

Consider a probability space with a filtration (Ω,F , (Fn)n=0,1,...,N ,P), and
let

MN
n = {τ : τ is a stopping time, τ ∈ {n, . . . , N}}.

To ease notation we suppress N in the upper index. Consider a sequence
of nonnegative adapted random variables (Xn)n, and define by backward
induction its Snell-envelope (Zn)n as follows. We are interested in the value

ZN = XN , Zn = max{Xn,E[Zn+1|Fn]}, n < N.

For a stopping time τ the stopped process is denoted by Z τ , i.e.

Zτ
n = Zτ∧n,

where a ∧ b = min{a, b}.

Proposition 4. Let (Zn) be the Snell-envelope of (Xn) with Xn ≥ 0 a.s.
(i) Z is the smallest supermartingale dominating X.
(ii) The random variable τ ∗ = min{n : Zn = Xn} is a stopping time and

the stopped process Zn∧τ∗ = Zτ∗
n is martingale.

Proof. From the definition it is clear that Z is supermatingale and dominates
X. Let Y be another supermartingale dominating X. Then YN ≥ XN = ZN .
Assuming that Yn ≥ Zn we have

Yn−1 ≥ max{E[Yn|Fn−1], Xn−1} ≥ max{E[Zn|Fn−1], Xn−1} = Zn−1.
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Thus the minimality follows.
To see that τ ∗ is stopping time note that

{τ ∗ = n} = ∩n−1
k=0{Zk > Xk} ∩ {Zn = Xn}.

For the last assertion note that

Zτ∗
n − Zτ∗

n−1 = I(τ ∗ ≥ n)(Zn − Zn−1).

On the event {τ ∗ ≥ n} we have Zn−1 = E[Zn|Fn−1] therefore

E[I(τ ∗ ≥ n)(Zn − Zn−1)|Fn−1] = 0.

A stopping time σ is optimal if

EXσ = sup
τ∈M0

EXτ .

Proposition 5. The stopping time τ ∗ is optimal for X, and

Z0 = EXτ∗ = sup
τ∈M0

EXτ .

Proof. Since Zτ∗ is martingale

Z0 = Zτ∗
0 = EZτ∗

N = EZτ∗ = EXτ∗ .

On the other hand for any stopping time τ the process Z τ is supermartingale
(by Doob’s optional sampling), thus

Z0 = EZτ
0 ≥ EZτ ≥ EXτ .

Proposition 6. The stopping time σ is optimal iff the following two condi-
tions hold.

(i) Zσ = Xσ;
(ii) Zσ is martingale.
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Proof. If (i) and (ii) hold than σ is optimal. This follows exactly as the
optimality of τ ∗.

Conversely, assume that σ is optimal. We have seen that supτ EXτ = Z0

thus
Z0 = EXσ ≤ EZσ,

by the dominance of Z. By Doob’s otional stopping theorem Zσ is super-
martingale, therefore EZσ ≤ Z0, implying that

EXσ = EZσ.

Since Zn ≥ Xn this implies Xσ = Zσ a.s., proving (i).
By the optimality EZσ = Z0, while the supermartingale property implies

Z0 ≥ EZσ∧n ≥ EZσ.

Thus
EZσ∧n = EZσ = EE[Zσ|Fn].

Furthermore, by Doob’s optional stopping

Zσ∧n ≥ E[Zσ|Fn],

implying Zσ∧n = E[Zσ|Fn]. Thus (Zσ
n) is indeed a martingale.

6.3 Pricing American options

Let us return to our pricing problem. Assume that we have an arbitrage-free
complete market, that is the EMM Q is unique. Let (fn)n=0,...,N be the payoff
of an American option. A hedging strategy now has to fulfil the conditions

Xπ
n ≥ fn, n = 0, 1, . . . , N,

as the option can be exercised at any time. A hedge is minimal, if for a
stopping time τ ∗ we have Xπ

τ∗ = fτ∗ .
By Doob’s optional stopping (Xπ

0 /B0, X
π
τ /Bτ ) is martingale for any stop-

ping time τ , i.e.
x

B0

= EQ
Xπ

0

B0

= EQ
Xπ

τ

Bτ

≥ EQ
fτ
Bτ

.

Therefore the initial cost of the hedge is at least

x ≥ B0 sup
τ∈MN

0

EQ
fτ
Bτ

.
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At time N we need
Xπ

N ≥ fN .

At time N − 1 the holder either exercise the option or continues to time N ,
(in that case we discount the price), therefore

Xπ
N−1 ≥ max

�
fN−1,

BN−1

BN

EQ[fN |FN−1]

�
.

Dividing by BN−1

Xπ
N−1

BN−1

≥ max

�
fN−1

BN−1

,EQ

�
fN
BN

����FN−1

��
.

Thus, we see the connection with the Snell-envelope.
For a hedging strategy π we have that

(i) (Xπ
n/Bn)n is a Q-martingale (since Q is EMM and π is SF), and

(ii) (Xπ
n/Bn) dominates (fn/Bn) (since π is a hedge).

Therefore, the value process of a hedge is larger than the Snell-envelope of
(fn/Bn), i.e.

Xπ
n

Bn

≥ Zn, n = 0, 1, . . . , N, (12) {eq:di-american-1}

where (Zn) is the Snell-envelope of (fn/Bn). The Snell-envelope (Zn) is
a supermartingale, therefore by the Doob-decomposition (that’s stated for
submartingale, but multiply with −1) we have

Zn = Mn − An, n = 0, 1, . . . , N, (13) {eq:di-american-2}

where Mn is a Q-martingale, and (An) is an increasing predictable sequence,
A0 = 0. Comparing (12) and (13) we see that

Xπ
n

Bn

≥ Mn.

On the other hand, the market is complete, which implies (see the easy parts
of the proof of Theorem 7) that there exists a strategy π such that

Xπ
n

Bn

= Mn, n = 0, 1, . . . , N.

This is a minimal hedging strategy with initial cost

x

B0

=
Xπ

0

B0

= M0 = Z0.
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{thm:price-di-american}
Theorem 12. Consider an aribtrage-free complete market with unique EMM
Q. Let (fn) be the nonnegative payoff sequence of an American option. Let
(Zn) be the Snell-envelope of the discounted payoff sequence (fn/Bn). The
fair price for this option is

C = B0Z0 = B0 sup
τ∈MN

0

EQ
fτ
Bτ

= B0EQ
fτ∗

Bτ∗
,

where τ ∗ is an (not unique in general) optimal exercise time given by

τ ∗ = min

�
n :

fn
Bn

= Zn

�
.

Furthermore, there exists a SF strategy π which is an optimal hedge with
inital cost C and

Xπ
τ∗ =

fτ∗

Bτ∗
.

6.4 American vs. European options

Clearly, an American option witht payoff sequence (fn)n=0,1,...,N worth at
least as a European option with payoff fN . However, in some cases the fair
prices are equal.

Consider an American call option with strike price K, that is

fn = f(Sn) = (Sn −K)+.

Assume that the deterministic sequence (Bn) is nondecreasing (i.e. the inter-
est rate is nonnegative). Let (Zn) denote the Snell envelope of (fn/Bn), that
is

ZN =
fN
BN

, Zn = max

�
fn
Bn

,E [Zn+1|Fn]

�
, n = 0, 1, . . . , N − 1.
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Using that (Sn/Bn) is a Q-martingale, by Jensen’s inequality

fN−1

BN−1

=
(SN−1 −K)+

BN−1

=

�
SN−1

BN−1

− K

BN−1

�

+

≤ EQ

��
SN

BN

− K

BN−1

�

+

����FN−1

�
Jensen’s inequality

≤ EQ

��
SN

BN

− K

BN

�

+

����FN−1

�
by BN ≥ BN−1

= EQ

�
(SN −K)+

BN

����FN−1

�

= EQ[ZN |FN−1].

This means that at time N − 1 it is always good to hold the option and
continue to step N .

An induction argument shows that at any time it is better to hold the
option. Indeed, assume for some n

fn
Bn

≤ EQ[Zn+1|Fn].
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We just proved this for n = N − 1. The same way as above we have

fn−1

Bn−1

=
(Sn−1 −K)+

Bn−1

=

�
Sn−1

Bn−1

− K

Bn−1

�

+

≤ EQ

��
Sn

Bn

− K

Bn−1

�

+

����Fn−1

�
Jensen’s inequality

≤ EQ

��
Sn

Bn

− K

Bn

�

+

����Fn−1

�
by Bn ≥ Bn−1

= EQ

�
(Sn −K)+

Bn

����Fn−1

�

= EQ

�
fn
Bn

����Fn−1

�

≤ EQ

�
EQ[Zn+1|Fn]

��Fn−1

�
induction

≤ EQ[Zn|Fn−1] Z supermartingale

Thus τ ∗ ≡ N is an optimal stopping time, which means that no matter what
happens, we wait until the end. Then the American option behaves as the
European, so the prices are equal.

Theorem 13. Assume that the market is arbitrage free and complete, and
the interest rate is nonnegative. Then the price of a European call option
equals to the price of the American call option.

7 Stochastic integration

7.1. Az Itô-formula

Ezek után belátjuk az Itô-formulát.

14. Theorem (Itô-formula (1944)). Legyen Xt = X0 +
� t

0
Ksds+

� t

0
HsdWs

Itô-folyamat, és f ∈ C2 kétszer folytonosan differenciálható függvény. Ekkor

f(Xt) = f(X0) +

� t

0

f �(Xs)dXs +
1

2

� t

0

f ��(Xs)H
2
sds.
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