(i) { Xy, Fn} szubmartingdl, akkor E[X, |Fi] > X1 m.b., és persze EX, >
EXl;‘

(i1) { Xy, Fn} martingdl, akkor E[X,|F1] = X1 m.b., és persze EX, = EX;.
Fontos megjegyezni, hogy a tételben szerepld feltételek nem csupan tech-
nikai feltételek. Legyen S, egy egyszerti szimmetrikus bolyongés az egye-
nesen. O martingél a az altala generalt természetes filtraciora nézve. Tud-
juk, hogy az egydimenziés bolyongas rekurrens, ezért majdnem biztosan el-
éri az l-et. Legyen az elérés id6pontja 7. Ekkor 7 megallasi id§, és persze
Sr=1+# 5y =0. Csak a liminf, f{7>n} | X,,|dP = 0 feltétellel lehet baj,

és valdéban, ez nem teljesiil.

6.2 Optimal stopping problems

Consider a probability space with a filtration (Q, F, (F,)n=01...n,P), and
let
MY = {71 1 is a stopping time, 7 € {n,..., N}}.

To ease notation we suppress N in the upper index. Consider a sequence
of nonnegative adapted random variables (X, ),, and define by backward
induction its Snell-envelope (Z,,),, as follows. We are interested in the value

In =Xy, Zn=max{X,,E[Z,.1|F.]}, n<N.
For a stopping time 7 the stopped process is denoted by Z7, i.e.

Zy = ZT/\TL?

where a A b = min{a, b}.

Proposition 4. Let (Z,,) be the Snell-envelope of (X,,) with X, > 0 a.s.
(i) Z is the smallest supermartingale dominating X .

(i) The random variable T* = min{n : Z, = X,} is a stopping time and
the stopped process Zna~ = ZT is martingale.

Proof. From the definition it is clear that Z is supermatingale and dominates
X. Let Y be another supermartingale dominating X. Then Yy > Xy = Zx.
Assuming that Y,, > Z,, we have

Ynfl > maX{E{Yn’fnflLanl} > maX{E[Zn’fnfl]aanl} = Zn71~
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Thus the minimality follows.
To see that 7* is stopping time note that

{r* =n}=M{Zk > Xi} N {Z, = X,.}.
For the last assertion note that
27 = 77 = 17 > n)(Zy — Zn ).
On the event {7* > n} we have Z,_; = E[Z,|F,_1] therefore

E[I(t" > n)(Zy — Zn1)|Fua] = 0.

O
A stopping time o is optimal if
EX, = sup EX..
TEMo
Proposition 5. The stopping time 7 is optimal for X, and —
U= n.u».% n: Z,
Zy =EX.- = sup EX,.
TEM
’ T z = %T.*
. S . Z = ) |-)
Proof. Since Z7 is martingale b(' (V) TA

Zy=277 =RZ}, =EZ. = EX,-.

On the other hand for any stopping time 7 the process Z7 is supermartingale
(by Doob’s optional sampling), thus

Zy=EZ; > EZ, > EX,.
O

Proposition 6. The stopping time o is optimal iff the following two condi-
tions hold.

(i) Z, = Xy;

(i1) Z° is martingale.
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Proof. If (i) and (ii) hold than o is optimal. This follows exactly as the
optimality of 7*.
Conversely, assume that o is optimal. We have seen that sup. EX, = Z,
thus
Zy=EX, <EZ,,

by the dominance of Z. By Doob’s otional stopping theorem Z7 is super-
martingale, therefore EZ, < Zj, implying that

EX, =EZ,.

Since Z,, > X,, this implies X, = Z, a.s., proving (i).
By the optimality EZ, = Z;, while the supermartingale property implies

ZO Z EZO’/\?’L Z EZO"

Thus
EZsn, = EZ, = EE[Z,|F,].

Furthermore, by Doob’s optional stopping
Za/\n Z E[Zo|fn]a
implying Z,r, = E[Z,|F,]. Thus (Z7) is indeed a martingale. O

6.3 Pricing American options

Let us return to our pricing problem. Assume that we have an arbitrage-free
complete market, that is the EMM Q is unique. Let (f,,)n=0... n be the payoff
of an American option. A hedging strategy now has to fulfil the conditions

Xy > fo, n=0,1,...,N,
» -
as the option can be exercised at any time. A hedge is minimal, if for a
stopping time 7% we have XT. = f .

By Doob’s optional stopping (X{§/Bo, X /B;) is martingale for any stop-
ping time T, i.e.
x X7 Xr f
L EaY BT > BN
BO @ BO Q BT = BT
Therefore the initial cost of the hedge is at least

T > B() sup EQE
reMy BT
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At time N we need
Xy > fn.

At time N — 1 the holder either exercise the option or continues to time IV,
(in that case we discount the price), therefore

B

XIT\F/71 Z max {fN—la BEQ[fNLFN_l]} .
N

Dividing by By_4

X4 { N1 [fN
> max yEqg | —=—
By — Bn_1 Q

Thus, we see the connection with the Snell-envelope.
For a hedging strategy m we have that

(i) (X7T/Bn)n is a Q-martingale (since Q is EMM and 7 is SF), and
(i) (X7/B,) dominates (f,/B,) (since 7 is a hedge).
Therefore, the value process of a hedge is larger than the Snell-envelope of

(fu/Bn), ie.
X sz, m—01,....N (12)
B, = 4w sy AV,
where (Z,) is the Snell-envelope of (f,/B,). The Snell-envelope (Z,) is
a supermartingale, therefore by the Doob-decomposition (that’s stated for

submartingale, but multiply with —1) we have
Zy=M,—A,, n=01,... N, (13)

where M, is a Q-martingale, and (A4,) is an increasing predictable sequence,
Ap = 0. Comparing (12) and (13) we see that

X7T
Znos oM.
n
On the other hand, the market is complete, which implies (see the easy parts
of the proof of Theorem 7) that there exists a strategy m such that
X’TT
=M, n=01,...,N.
Bn ns ) ) )

This is a minimal hedging strategy with initial cost
x  X§
— =—= My = Z,.
By~ B 0 0
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Theorem 12. Consider an aribtrage-free complete market with unique EMM
Q. Let (f,) be the nonnegative payoff sequence of an American option. Let
(Z) be the Snell-envelope of the discounted payoff sequence (f,/By). The
fair price for this option is

C = ByZy = By sup EQ£ — ByEq fr :
remy T By
0

*

where T* is an (not unique in general) optimal exercise time given by

. fn
= == p .
7" = min {n 3

Furthermore, there exists a SF strategy m which is an optimal hedge with
inital cost C' and f
Xr ="

* = BT* .

6.4 American vs. European options

Clearly, an American option witht payoff sequence (f,)n—01,. n worth at
least as a European option with payoff fy. However, in some cases the fair
prices are equal.

Consider an American call option with strike price K, that is

fn = f(Sn) = (Sn - K>+'

Assume that the deterministic sequence (B,,) is nondecreasing (i.e. the inter-
est rate is nonnegative). Let (Z,,) denote the Snell envelope of (f,,/B,), that
is
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)
Using that (S,,/B,) is a Q-martingale, by Jensen’s inequality LT

fnr (S = K)y w Y
Bn_1 Bn_1

_(SN1 K )+ T

By-1 By

<E _<SN K ) F ] Jensen’s inequalit
e _ nsen’s inequali
< Eq \By B/, N-1 quality (((E-{)QS‘?/?O(//
(S K =
< Eq <B]]\\/{ - BN>+ ]:N1:| by By > By_1
_(SN - K)+
= Eq _ By Fn-a :t 1] %
= EQ[ZN|fN_1]. [E[\h /# y ",
A
This means that at time N — 1 it is always good to hold the option and s 78
¥
continue to step N. LeX. L4 { )}
An induction argument shows that at any time it is better to hold the e,
option. Indeed, assume for some n \K,\ &L{ /
]
fn
—— < EQ[ n+1‘]:n]~

TL
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We just proved this for n = NV — 1. The same way as above we have

fnfl (Snfl - K)+

anl B anl

(S K
B Bn— Bn—l +

1
Sh K
< zn _
s EQ <Bn Bnl)Jr fn1:|
S, K
< om0
(Sn - K)+
=E _
Q I Bn Fn 1
= EQ g fn_1:|
< EQ [EQ[ZH+1|]:nH]:n—1]
< Eq[Zn| ]

Thus 7" = N is an optimal stopping time, which means that no matter what
happens, we wait until the end. Then the American option behaves as the

European, so the prices are equal.

Theorem 13. Assume that the market is arbitrage free and complete, and
the interest rate is monnegative. Then the price of a European call option

equals to the price of the American call option.

7 Stochastic integration

7.1. Az Ito-formula

Ezek utan belatjuk az Ito-formulat.

14. Theorem (Ito-formula (1944)). Legyen X; = Xy + fot Kyds + fot H,dW,
Ito-folyamat, és f € C? kétszer folytonosan differencidlhatd figguény. Ekkor

Jensen’s inequality

by Bn 2 Bn—l

induction

Z supermartingale

F060) = £06) + [ pOxgax 3 [ rorzas
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