- (i) $\{X_n, \mathcal{F}_n\}$ szubmartingál, akkor $\mathbf{E}[X_\tau | \mathcal{F}_1] \geq X_1$ m.b., és persze $\mathbf{E}X_\tau \geq \mathbf{E}X_1$;
- (ii) $\{X_n, \mathcal{F}_n\}$ martingál, akkor $\mathbf{E}[X_{\tau}|\mathcal{F}_1] = X_1$ m.b., és persze $\mathbf{E}X_{\tau} = \mathbf{E}X_1$.

Fontos megjegyezni, hogy a tételben szereplő feltételek nem csupán technikai feltételek. Legyen S_n egy egyszerű szimmetrikus bolyongás az egyenesen. Ő martingál a az általa generált természetes filtrációra nézve. Tudjuk, hogy az egydimenziós bolyongás rekurrens, ezért majdnem biztosan eléri az 1-et. Legyen az elérés időpontja τ . Ekkor τ megállási idő, és persze $S_{\tau} \equiv 1 \neq S_0 = 0$. Csak a $\liminf_{n \to \infty} \int_{\{\tau > n\}} |X_n| \mathrm{d}\mathbf{P} = 0$ feltétellel lehet baj, és valóban, ez nem teljesül.

6.2 Optimal stopping problems

Consider a probability space with a filtration $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n=0,1,\dots,N}, \mathbf{P})$, and let

$$\mathcal{M}_n^N = \{ \tau : \tau \text{ is a stopping time}, \tau \in \{n, \dots, N\} \}.$$

To ease notation we suppress N in the upper index. Consider a sequence of nonnegative adapted random variables $(X_n)_n$, and define by backward induction its Snell-envelope $(Z_n)_n$ as follows. We are interested in the value

$$Z_N = X_N$$
, $Z_n = \max\{X_n, \mathbf{E}[Z_{n+1}|\mathcal{F}_n]\}, n < N$.

For a stopping time τ the stopped process is denoted by Z^{τ} , i.e.

$$Z_n^{\tau} = Z_{\tau \wedge n},$$

where $a \wedge b = \min\{a, b\}$.

Proposition 4. Let (Z_n) be the Snell-envelope of (X_n) with $X_n \geq 0$ a.s.

- (i) Z is the smallest supermartingale dominating X.
- (ii) The random variable $\tau^* = \min\{n : Z_n = X_n\}$ is a stopping time and the stopped process $Z_{n \wedge \tau^*} = Z_n^{\tau^*}$ is martingale.

Proof. From the definition it is clear that Z is supermatingale and dominates X. Let Y be another supermartingale dominating X. Then $Y_N \geq X_N = Z_N$. Assuming that $Y_n \geq Z_n$ we have

$$Y_{n-1} \ge \max\{\mathbf{E}[Y_n|\mathcal{F}_{n-1}], X_{n-1}\} \ge \max\{\mathbf{E}[Z_n|\mathcal{F}_{n-1}], X_{n-1}\} = Z_{n-1}.$$

Thus the minimality follows.

To see that τ^* is stopping time note that

$$\{\tau^* = n\} = \bigcap_{k=0}^{n-1} \{Z_k > X_k\} \cap \{Z_n = X_n\}.$$

For the last assertion note that

$$Z_n^{\tau^*} - Z_{n-1}^{\tau^*} = I(\tau^* \ge n)(Z_n - Z_{n-1}).$$

On the event $\{\tau^* \geq n\}$ we have $Z_{n-1} = \mathbf{E}[Z_n | \mathcal{F}_{n-1}]$ therefore

$$\mathbf{E}[I(\tau^* \ge n)(Z_n - Z_{n-1})|\mathcal{F}_{n-1}] = 0.$$

A stopping time σ is optimal if

$$\mathbf{E}X_{\sigma} = \sup_{\tau \in \mathcal{M}_0} \mathbf{E}X_{\tau}.$$

Proposition 5. The stopping time τ^* is optimal for X, and

7= mun 2 n: Zn = X, }.

$$Z_0 = \mathbf{E} X_{\tau^*} = \sup_{\tau \in \mathcal{M}_0} \mathbf{E} X_{\tau}.$$
singale
$$\mathbf{Z}_{\mathbf{J}}^{\mathbf{T}^*} = \mathbf{Z}_{\mathbf{T}^* \wedge \mathbf{J}} = \mathbf{Z}_{\mathbf{T}^*}$$

Proof. Since Z^{τ^*} is martingale

$$Z_0 = Z_0^{\tau^*} = \mathbf{E} Z_N^{\tau^*} = \mathbf{E} Z_{\tau^*} = \mathbf{E} X_{\tau^*}.$$

On the other hand for any stopping time τ the process Z^{τ} is supermartingale (by Doob's optional sampling), thus

$$Z_0 = \mathbf{E} Z_0^{\tau} \ge \mathbf{E} Z_{\tau} \ge \mathbf{E} X_{\tau}.$$

Proposition 6. The stopping time σ is optimal iff the following two conditions hold.

- (i) $Z_{\sigma} = X_{\sigma}$;
- (ii) Z^{σ} is martingale.

Proof. If (i) and (ii) hold than σ is optimal. This follows exactly as the optimality of τ^* .

Conversely, assume that σ is optimal. We have seen that $\sup_{\tau} \mathbf{E} X_{\tau} = Z_0$

$$Z_0 = \mathbf{E} X_{\sigma} \le \mathbf{E} Z_{\sigma},$$

by the dominance of Z. By Doob's otional stopping theorem Z^{σ} is supermartingale, therefore $\mathbf{E}Z_{\sigma} \leq Z_0$, implying that

$$\mathbf{E}X_{\sigma} = \mathbf{E}Z_{\sigma}$$
.

Since $Z_n \geq X_n$ this implies $X_{\sigma} = Z_{\sigma}$ a.s., proving (i). By the optimality $\mathbf{E}Z_{\sigma} = Z_0$, while the supermartingale property implies

$$Z_0 \geq \mathbf{E} Z_{\sigma \wedge n} \geq \mathbf{E} Z_{\sigma}$$
.

Thus

$$EZ_{\sigma \wedge n} = \mathbf{E}Z_{\sigma} = \mathbf{E}\mathbf{E}[Z_{\sigma}|\mathcal{F}_n].$$

Furthermore, by Doob's optional stopping

$$Z_{\sigma \wedge n} \geq \mathbf{E}[Z_{\sigma} | \mathcal{F}_n],$$

implying $Z_{\sigma \wedge n} = \mathbf{E}[Z_{\sigma}|\mathcal{F}_n]$. Thus (Z_n^{σ}) is indeed a martingale.

6.3Pricing American options

Let us return to our pricing problem. Assume that we have an arbitrage-free complete market, that is the EMM **Q** is unique. Let $(f_n)_{n=0,\ldots,N}$ be the payoff of an American option. A hedging strategy now has to fulfil the conditions

$$X_{\underline{\underline{n}}}^{\pi} \geq f_{\underline{\underline{n}}}, \quad n = 0, 1, \dots, N,$$

as the option can be exercised at any time. A hedge is *minimal*, if for a stopping time τ^* we have $X_{\tau^*}^{\pi} = f_{\tau^*}$.

By Doob's optional stopping $(X_0^{\pi}/B_0, X_{\tau}^{\pi}/B_{\tau})$ is martingale for any stopping time τ , i.e.

$$\frac{x}{B_0} = \mathbf{E}_{\mathbf{Q}} \frac{X_0^\pi}{B_0} = \mathbf{E}_{\mathbf{Q}} \frac{X_\tau^\pi}{B_\tau} \geq \mathbf{E}_{\mathbf{Q}} \frac{f_\tau}{B_\tau}.$$

Therefore the initial cost of the hedge is at least

$$x \ge B_0 \sup_{\tau \in \mathcal{M}_0^N} \mathbf{E}_{\mathbf{Q}} \frac{f_{\tau}}{B_{\tau}}.$$

At time N we need

$$X_N^{\pi} \geq f_N$$
.

At time N-1 the holder either exercise the option or continues to time N, (in that case we discount the price), therefore

$$X_{N-1}^{\pi} \ge \max \left\{ f_{N-1}, \frac{B_{N-1}}{B_N} \mathbf{E}_{\mathbf{Q}}[f_N | \mathcal{F}_{N-1}] \right\}.$$

Dividing by B_{N-1}

$$\frac{X_{N-1}^{\pi}}{B_{N-1}} \ge \max \left\{ \frac{f_{N-1}}{B_{N-1}}, \mathbf{E}_{\mathbf{Q}} \left[\frac{f_N}{B_N} \middle| \mathcal{F}_{N-1} \right] \right\}.$$

Thus, we see the connection with the Snell-envelope.

For a hedging strategy π we have that

- (i) $(X_n^{\pi}/B_n)_n$ is a **Q**-martingale (since **Q** is EMM and π is SF), and
- (ii) (X_n^{π}/B_n) dominates (f_n/B_n) (since π is a hedge).

Therefore, the value process of a hedge is larger than the Snell-envelope of (f_n/B_n) , i.e.

$$\frac{X_n^\pi}{B_n} \geq Z_n, \quad n = 0, 1, \dots, N, \tag{12} \qquad \text{(all particles)}$$

where (Z_n) is the Snell-envelope of (f_n/B_n) . The Snell-envelope (Z_n) is a supermartingale, therefore by the Doob-decomposition (that's stated for submartingale, but multiply with -1) we have

$$Z_n = M_n - A_n, \quad n = 0, 1, \dots, N, \tag{13} \quad \{eq: di-american-2\}$$

where M_n is a **Q**-martingale, and (A_n) is an increasing predictable sequence, $A_0 = 0$. Comparing (12) and (13) we see that

$$\frac{X_n^{\pi}}{B_n} \ge M_n.$$

On the other hand, the market is complete, which implies (see the easy parts of the proof of Theorem 7) that there exists a strategy π such that

$$\frac{X_n^{\pi}}{B_n} = M_n, \quad n = 0, 1, \dots, N.$$

This is a minimal hedging strategy with initial cost

$$\frac{x}{B_0} = \frac{X_0^{\pi}}{B_0} = M_0 = Z_0.$$

{thm:price-di-amer

Theorem 12. Consider an aribtrage-free complete market with unique EMM \mathbf{Q} . Let (f_n) be the nonnegative payoff sequence of an American option. Let (Z_n) be the Snell-envelope of the discounted payoff sequence (f_n/B_n) . The fair price for this option is

$$C = B_0 Z_0 = B_0 \sup_{\tau \in \mathcal{M}_0^N} \mathbf{E}_{\mathbf{Q}} \frac{f_{\tau}}{B_{\tau}} = B_0 \mathbf{E}_{\mathbf{Q}} \frac{f_{\tau^*}}{B_{\tau^*}},$$

where τ^* is an (not unique in general) optimal exercise time given by

$$\tau^* = \min\left\{n : \frac{f_n}{B_n} = Z_n\right\}.$$

Furthermore, there exists a SF strategy π which is an optimal hedge with inital cost C and

$$X_{\tau^*}^{\pi} = \frac{f_{\tau^*}}{B_{\tau^*}}.$$

6.4 American vs. European options

Clearly, an American option with payoff sequence $(f_n)_{n=0,1,...,N}$ worth at least as a European option with payoff f_N . However, in some cases the fair prices are equal.

Consider an American call option with strike price K, that is

$$f_n = f(S_n) = (S_n - K)_+.$$

Assume that the deterministic sequence (B_n) is nondecreasing (i.e. the interest rate is nonnegative). Let (Z_n) denote the Snell envelope of (f_n/B_n) , that is

$$Z_N = \frac{f_N}{B_N}, \quad Z_n = \max\left\{\frac{f_n}{B_n}, \mathbf{E}\left[Z_{n+1}|\mathcal{F}_n\right]\right\}, \quad n = 0, 1, \dots, N-1.$$

Using that (S_n/B_n) is a **Q**-martingale, by Jensen's inequality

$$\frac{f_{N-1}}{B_{N-1}} = \frac{(S_{N-1} - K)_{+}}{B_{N-1}}$$

$$= \left(\frac{S_{N-1}}{B_{N-1}} - \frac{K}{B_{N-1}}\right)_{+}$$

$$\leq \mathbf{E}_{\mathbf{Q}} \left[\left(\frac{S_{N}}{B_{N}} - \frac{K}{B_{N-1}}\right)_{+} \middle| \mathcal{F}_{N-1} \right]$$

$$\leq \mathbf{E}_{\mathbf{Q}} \left[\left(\frac{S_{N}}{B_{N}} - \frac{K}{B_{N}}\right)_{+} \middle| \mathcal{F}_{N-1} \right]$$

$$= \mathbf{E}_{\mathbf{Q}} \left[\left(\frac{S_{N} - K}{B_{N}} \middle| \mathcal{F}_{N-1}\right) \right]$$

$$= \mathbf{E}_{\mathbf{Q}} \left[\left(\frac{S_{N} - K}{B_{N}} \middle| \mathcal{F}_{N-1}\right) \right]$$

$$= \mathbf{E}_{\mathbf{Q}} \left[\left(\frac{S_{N} - K}{B_{N}} \middle| \mathcal{F}_{N-1}\right) \right]$$

$$= \mathbf{E}_{\mathbf{Q}} \left[\left(\frac{S_{N} - K}{B_{N}} \middle| \mathcal{F}_{N-1}\right) \right]$$
This means that at time $N - 1$ it is always good to hold the option and continue to step N .

An induction argument shows that at any time it is better to hold the

by $B_N \ge B_{N-1}$

An induction argument shows that at any time it is better to hold the option. Indeed, assume for some n

$$\frac{f_n}{B_n} \le \mathbf{E}_{\mathbf{Q}}[Z_{n+1}|\mathcal{F}_n].$$

We just proved this for n = N - 1. The same way as above we have

$$\frac{f_{n-1}}{B_{n-1}} = \frac{(S_{n-1} - K)_{+}}{B_{n-1}}$$

$$= \left(\frac{S_{n-1}}{B_{n-1}} - \frac{K}{B_{n-1}}\right)_{+}$$

$$\leq \mathbf{E}_{\mathbf{Q}} \left[\left(\frac{S_{n}}{B_{n}} - \frac{K}{B_{n-1}}\right)_{+} \middle| \mathcal{F}_{n-1} \right]$$
Jensen's inequality
$$\leq \mathbf{E}_{\mathbf{Q}} \left[\left(\frac{S_{n}}{B_{n}} - \frac{K}{B_{n}}\right)_{+} \middle| \mathcal{F}_{n-1} \right]$$
by $B_{n} \geq B_{n-1}$

$$= \mathbf{E}_{\mathbf{Q}} \left[\frac{(S_{n} - K)_{+}}{B_{n}} \middle| \mathcal{F}_{n-1} \right]$$

$$= \mathbf{E}_{\mathbf{Q}} \left[\frac{f_{n}}{B_{n}} \middle| \mathcal{F}_{n-1} \right]$$
induction
$$\leq \mathbf{E}_{\mathbf{Q}} [Z_{n} | \mathcal{F}_{n-1}]$$
induction
$$\leq \mathbf{E}_{\mathbf{Q}} [Z_{n} | \mathcal{F}_{n-1}]$$

$$Z \text{ supermartingale}$$

Thus $\tau^* \equiv N$ is an optimal stopping time, which means that no matter what happens, we wait until the end. Then the American option behaves as the European, so the prices are equal.

Theorem 13. Assume that the market is arbitrage free and complete, and the interest rate is nonnegative. Then the price of a European call option equals to the price of the American call option.

7 Stochastic integration

7.1. Az Itô-formula

Ezek után belátjuk az Itô-formulát.

14. Theorem (Itô-formula (1944)). Legyen $X_t = X_0 + \int_0^t K_s ds + \int_0^t H_s dW_s$ Itô-folyamat, és $f \in C^2$ kétszer folytonosan differenciálható függvény. Ekkor

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) H_s^2 ds.$$