
we may choose ε > 0 small enough such that

q�i = qi − εyi > 0 for all i.

As both q and y are orthogonal to V0, q� is also orthogonal. Define the
measure

Q�({ωi}) =
q�i�k
i=1 q

�
i

.

Exactly as in the previous proof we can show that Q� is EMM. The uniqueness
of the EMM implies

q�i�k
i=1 q

�
i

=
qi�k
i=1 qi

,

that is, using also the definition of q�,

q = αq� = αq − αεy,

with α =
�

qi/
�

q�i. Thus

(1− α)q = −αεy.

But y and q are orthogonal, which is a contradiction. The proof is complete.

4 Girsanov’s theorem in discrete time

4.1 Second proof of the difficult part of Theorem 3

Assume that d = 1 and first consider the one-step model with B0 = B1 = 1.
The stock price S0 is known, and the only randomness here is S1.

Exercise 9. The no arbitrage assumption (in this simple market) is equiva-
lent to

P(ΔS1 > 0)P(ΔS1 < 0) > 0.

Furthermore, (Sn) is martingale if

EQS1 = S0.

Therefore we have to construct a measure Q such that EQΔS1 = 0. This is
done in the following lemma.
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Lemma 6. Let X be a random variable on (R,B(R),P) such that P(X >
0)P(X < 0) > 0. Then there exists a probability measure Q ∼ P such that
EQX = 0. Furthermore, for any a ∈ R

EQe
aX < ∞.

Proof. Define the probability measure

P1(dx) = ce−x2

F (dx),

where F (x) = P(X ≤ x) and c−1 =
�
R e

−x2
F (dx). That is

P1(A) =

�

A

ce−x2

F (dx).

Then P1 is equivalent to F . (Recall that µ is absolute continuous with respect
to ν, µ � ν if µ(A) = 0 whenever ν(A) = 0. And µ and ν are equivalent,
µ ∼ ν, if µ � ν and ν � µ.) Let

ϕ(a) = EP1e
aX =

�

R
eaxP1(dx) = c

�

R
eax−x2

F (dx).

Clearly, ϕ(a) < ∞ for any a as the function eax−x2 is bounded on R. Note
that ϕ is convex, because ϕ�� > 0. Put

Za(x) =
eax

ϕ(a)
.

Then
Qa(dx) = Za(x)P1(dx)

is a probability measure for any a, and Qa ∼ P1 ∼ F . Again, this means

Qa(A) =

�

A

Za(x)P1(dx) =
c

ϕ(a)

�

A

eax−x2

F (dx).

Let
ϕ∗ = inf

a∈R
ϕ(a).

Since P1(X > 0) > 0 and P1(X < 0) > 0 we obtain that

lim
a→±∞

ϕ(a) = ∞.
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Therefore, the infimum is attained, i.e. there is a∗ such that ϕ(a∗) = ϕ∗.
Then ϕ�(a∗) = 0, thus

0 = ϕ�(a∗) = EP1Xea∗X = ϕ(a∗)EP1X
ea∗X

ϕ(a∗)
= ϕ(a∗)EQa∗X.

Thus the measure Qa∗ works.

Exercise 10. Prove rigorously that

lim
a→±∞

ϕ(a) = ∞.

Exercise 11. Let X ∼ N(µ, σ2). Determine the measure constructed above
explicitly.

Next we extend the previous lemma for a general N -step market.

Exercise 12. The no arbitrage assumption implies that for any n a.s.

P(ΔSn > 0|Fn−1)P(ΔSn < 0|Fn−1) > 0.

As a preliminary result we have to understand how to compute conditional
expectation under different measures.

{lemma:condexp-measurechange}
Lemma 7. Let (Ω,F , (Fn)n=0,1,...,N ,P) a filtered probability space, and Z a
nonnegative random variable EPZ = 1. Define the new probability measure
Q as

dQ = ZdP,

that is
Q(A) =

�

A

ZdP.

Put Zn = EP[Z|Fn]. For any adapted process (Xn)

Zn−1EQ[Xn|Fn−1] = EP[XnZn|Fn−1].

Proof. Both sides are Fn−1-measurable. We have to prove that for any A ∈
Fn−1 �

A

Zn−1EQ[Xn|Fn−1]dP =

�

A

XnZndP. (8) {eq:cemlemma-0}
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First note that

EP[ZXn|Fn] = XnEP[Z|Fn] = XnZn. (9) {eq:cemlemma-1}

Therefore, for an Fn−1-measurable Y

EP[Zn−1Y |Fn−1] = YEP[Z|Fn−1],

implying for any A ∈ Fn−1 that
�

A

Zn−1Y dP =

�

A

YEP[Z|Fn−1]dP

=

�

A

EP[ZY |Fn−1]dP =

�

A

Y ZdP.

Choosing Y = EQ[Xn|Fn−1] we obtain
�

A

Zn−1EQ[Xn|Fn−1]dP =

�

A

EQ[Xn|Fn−1]ZdP

=

�

A

EQ[Xn|Fn−1]dQ definition of Q

=

�

A

XndQ conditional exp.

=

�

A

XnZdP definition of Q

=

�

A

XnZndP, by (9)

which is (8).

As a simple but useful corollary we obtain the following.
{cor:p-q-mtg}

Corollary 1. The adapted process (Xn) is Q-martingale if and only if (XnZn)
is P-martingale.

{lemma:existence-emm}
Lemma 8. Let (Xn)

N
n=1 be an adapted process, and assume that

P(Xn > 0|Fn−1)P(Xn < 0|Fn−1) > 0.

Then there exists a probabilty measure Q ∼ P such that (Xn) is a Q-
martingale difference.
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Proof. First let

P1(dω) = c exp

�
−

N�

i=0

X2
i (ω)

�
P(dω),

where c is the normalizing factor, i.e.

c−1 =

�

Ω

exp

�
−

N�

i=0

X2
i

�
dP = E exp

�
−

N�

i=0

X2
i

�
.

This means that for A ∈ F

P1(A) = c

�

A

exp

�
−

N�

i=0

X2
i

�
dP.

Let
ϕn(a) = E[eaXn |Fn−1].

Note that this is an Fn−1-measurable random variable. As in the proof of the
previous lemma there is a unique finite an (random!) such that the infimum
of ϕn is attained at an. Since ϕn is Fn−1-measurable so is an.

Let Z0 = 1, and recursively

Zn = Zn−1
eanXn

EP1 [e
anXn |Fn−1]

.

Then (Zn) is a P1-martingale, since

EP1 [Zn|Fn−1] = Zn−1.

Then the probability measure

Q(dω) = ZN(ω)P1(dω)

works. Indeed,

EQ[Xn|Fn−1] =
1

Zn−1

EP1 [ZnXn|Fn−1] by Lemma 7

=
1

Zn−1

Zn−1

EP1 [e
anXn |Fn−1]

EP1 [Xne
anXn |Fn−1] definition

=
1

EP1 [e
anXn |Fn−1]

· 0 = 0. choice of an
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Exercise 13. Show that an is Fn−1-measurable.

Now we can return to the proof of Theorem 3. The existence of the
martingale measure follows from the previous lemma applied to Xn = ΔSn.

4.2 ARCH processes

Autoregressive conditional heteroscedasticity (ARCH) models were intro-
duced by Robert Engle in 1982 to model log-returns. In 2003 he obtained
Nobel prize in economics for this model. The novelty in these models is the
stochastic volatility term.

Let
Rn = log

Sn

Sn−1

denote the log-return of the stock, and assume that

Rn = µn +
�

β + λR2
n−1Zn,

where Zn’s are iid N(0, 1) random variables. Then (Rn) is an ARCH(1)
process. That is conditionally on Fn−1 the log-return Rn is Gaussian with
mean µn, and variance β + λR2

n−1. Write σn = β + λR2
n−1. Then for Sn we

obtain

Sn = Sn−1e
Rn = S0 exp

�
n�

k=1

�
µk +

�
β + λR2

k−1Zk

��

= S0 exp

�
n�

k=1

(µk + σkZk)

�
.

In what follows we only assume that µn and σn are Fn−1-measurable, i.e. the
sequence (µn, σn)n is predictable, and (Zn) is adapted, Zn is independent
of Fn−1, and N(0, 1) distributed. Put hn = µn + σnZn. For simplicity we
assume that Bn ≡ 1.

We construct a measure Q such that (Sn) is a Q-martingale. Let

ZN =
N�

n=1

zn :=
N�

n=1

eanhn

EP[eanhn |Fn−1]
,
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where
an = −µn

σ2
n

− 1

2
. (10) {eq:disc-girs-0}

Introduce the new measure Q as

dQ = ZNdP,

and let Zn = EP[ZN |Fn] =
�n

i=1 zi.
By Corollary 1, to show that Sn is Q-martingale we have to show that

SnZn is a P-martingale. We have

EP[SnZn|Fn−1] = Sn−1Zn−1
EP[e

hn(1+an)|Fn−1]

EP[eanhn |Fn−1]
.

Therefore we have to check that

EP[e
hn(1+an)|Fn−1] = EP[e

anhn |Fn−1]. (11) {eq:disc-girs-1}

Recall that for a standard normal Z

EetZ = e
t2

2 ,

thus
Eeµ+σZ = eµ+

σ2

2 .

Since an in (11) is Fn−1-measurable and given Fn−1 the variable hn is Gaus-
sian N(µn, σ

2
n), we obtain

EP[e
hn(1+an)|Fn−1] = eµn(1+an)+

σ2
n(1+an)2

2 ,

and
EP[e

hnan |Fn−1] = eµnan+
σ2
na2n
2 ,

By the choice of an in (10)

µn(1 + an) +
σ2
n(1 + an)

2

2
= µnan +

σ2
na

2
n

2
.

Indeed, by (10)

µn + σ2
n

�
1

2
+ an

�
= 0.

That is, (11) holds.
We proved the following.
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Theorem 8 (Discrete Girsanov’s theorem). Let (µn, σn)n be a predictable
sequence and assume that the stock prices are given by

Sn = e
�n

k=1(µk+σkZk),

where (Zn)n is a adapted sequence of N(0, 1) random variables, Zn is inde-
pendent of Fn−1. Further, let Bn ≡ 1. Then, under the new measure

dQ = ZNdP

(Sn) is a martingale.

5 Pricing and hedging European options
In this section we summarize our findings on pricing and hedging, and con-
sider some special cases in detail.

5.1 Complete markets

Consider an arbitrage-free complete market. The fair price of the contingent
claim fN is

C(fN) = inf{x : ∃π, Xπ
0 = x, Xπ

N = fN}.
Then, by Theorems 3 and 7 there exists a unique EMM Q. Since (Xπ

n/Bn)
is Q-martingale

EQ
fN
BN

= EQ
Xπ

N

BN

= EQ
x

B0

=
x

B0

,

therefore
C(fN) = x =

B0

BN

EQfN .

Note that x is independent of the hedge π itself, that is for different hedges
the initial value is the same.

For a hedge we need to know not only the fair price C, but also the
strategy π itself. For the given claim fN consider the martingale

Mn = EQ

�
fN
BN

����Fn

�
.
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