we may choose € > 0 small enough such that

ql{:qi—eyi>0 for all 3. ‘r‘—' 1,—2-6(_

As both ¢ and y are orthogonal to Vy, ¢ is also orthogonal. Define the
measure

q.
Q({wi}) ==
Zf:l 4
Exactly as in the previous proof we can show that Q" is EMM. The uniqueness
of the EMM implies

q; B q;
k K ’
il D U
that is, using also the definition of ¢/, of = X j

:
q=aq = aq— agy, é-y?..\
with a = > ¢;/ > ¢q.. Thus
(1—a)g=—aey.

But y and ¢ are orthogonal, which is a contradiction. The proof is complete.

4 Girsanov’s theorem in discrete time

4.1 Second proof of the difficult part of Theorem 3

Assume that d = 1 and first consider the one-step model with By = B = 1.
The stock price Sy is known, and the only randomness here is S;.

Exercise 9. The no arbitrage assumption (in this simple market) is equiva-
lent to

P(AS; > 0)P(AS; <0) > 0. qu 25-3,
Furthermore, (S,,) is, martingale if .
A - —_
G\~ 8 mesi - s, Els, lq;\]dé; E[s]

Therefore we have to construct a measure Q such that EqAS; = 0. This is
done in the following lemma.
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Lemma 6. Let X be a random variable on (R, B(R),P) such that P(X >
0)P(X < 0) > 0. Then there exists a probability measure Q ~ P such that
EqX = 0. Furthermore, for any a € R

Bt <oe. (0, 39)=(%, B(®), 7)

Proof. Define the probability measure
Pi(de) = ce ™ F(dr), £ Ltef indedb LS wasto)
where F(z) = P(X <) and ¢! = [ = F(dz). That is /L‘_. ((a, ‘_I)‘-’ r/f/‘l_/c)

Pi(A) = /A ce™ F(da). it =dF

Then P, is equivalent to F'. (Recall that p is absolute continuous with respect
to v, p < v if pu(A) = 0 whenever v(A) = 0. And p and v are equivalent,
e~ v if p<<vand v < p.) Let
ax< kz
¢(a) = Epe™* = / e Py (dx) = c/ "% F(d). e : R> %
- R R

av- &,
Clearly, ¢(a) < oo for any a as the function e®~=* is bounded on R. Note « A

that ¢ is convex, because ¢” > 0. Put

Zuw) = S gw= I, Xe™

Then ‘e”/a) ) ETP‘ ,)/\ae_f)( >0

Qu(de) = Z, (@) Py (d2) 30
is a probability measure for any a, and 0, ~ P; ~ F. Again, this means
Qu(A) = / Zo(2)Pi(dz) = —¢ / = F(da).
N A e(a) Ja
et
Let P -~ ® =4
v = Inf p(a).
Since P(X > 0) > 0 and P;(X < 0) > 0 we obtajn that
30 r —_—



Therefore, the infimum is attained, i.e. there is a, such that p(a,) = @..
Then ¢'(a,) = 0, thus
ea*X

0= 99/(0’*) = EPlXea*X = tp(a*)EﬂXi =

o) p(a)Eq,, X.

Thus the measure )., works. O

Exercise 10. Prove rigorously that

lim ¢(a) = 0.

a—+oo

Exercise 11. Let X ~ N(u,0?). Determine the measure constructed above
explicitly.

Next we extend the previous lemma for a general N-step market.

'B.-:'B,, q/:'(

Exercise 12. The no arbitrage assumption implies that for any n a.s.
P(AS, > 0|F,—1)P(AS, < 0|F,-1) >0
As a preliminary result we have to understand how to compute conditional

expectation under different measures.

{lemma: condexp-mea
Lemma 7. Let (2, F, (Fpn)n=o1...n,P) a filtered probability space, and Z a
nonnegative random variable EpZ = 1. Define the new probability measure

A dQ = ZaP, (fZ %9, § ST v 5-ad

that is - /A .- = [)( /1;]

Put Z,, = Ep|Z|F,]. For any adapted process (X,) /Z;Z:VWW _/z\/
2, BqlX,|Fu] = EplX, Z,\F, ] e ;Z o

Proof. Both sides are F,,_;-measurable. We have to prove that for any A €
fnfl

/Zn_lEQ[Xn]]:n_ﬂdP:/XnanP. (8) {eq:cemlemma-0}
A — A
=Y

() Oy (> (%) Rudy ¥
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First note that

Ep|ZX,|F.] = X, Ep[Z|F,] = X0 Z,. 9)

Therefore, for an F,,_;-measurable Y Tom-A

%

EplZy Y|y ] = VB2 Fo],
N

implying for any A € F,_; that

/ Zo VAP — / YEp|Z|F,1]dP
A AN
_ / Ep[ZY|F, 1 ]dP = / Y ZdP.
A A
Choosing Y = Eq[X,,|F;,,—1] we obtain

/Zn_lEQ[Xn\]:n_l]dP:/EQ[XHU:n_l]ZdP
A A

= / Eq[X,|F,-1]dQ definition of Q
N =~
= [ X,dQ conditional exp.
A
= | X, ZdP definition of Q
A
= | X,Z,dP, by (9)
A
which is (8). O

As a simple but useful corollary we obtain the following.

Corollary 1. The adapted process (X,,) is Q-martingale if and only if (X, Z,)
1s P-martingale.

Lemma 8. Let (X,,)Y_, be an adapted process, and assume that
P(Xn > O‘In_l)P(Xn < 0|]:n—1) > 0.

Then there exists a probabilty measure Q ~ P such that (X,) is a Q-
martingale difference.

e Eé\):y\«]gua’l: O

{eq:cemlemma-1}

{cor:p-q-mtg}

{lemma:existence-e



Proof. First let ["—Z"—/w

Pi(dw) = cexp ZXQ

where ¢ is the normalizing factor, i.e. I______,.—-l
N

N
¢t :/exp{—ZXf}dP :Eexp{—ZXf}.
Q i=0 i=0

This means that for A € F

Pi(A) = /exp{ ZX2}
Let \7\

pu(a) 5 Bl |F ) a,
Note that this is an J,,_;-measurable random variable. As in the proof of the
previous lemma there is a unique finite a,, (random!) such that the infimum

of ¢, is attained at a,. Since ¢, is F,_1-measurable so is a,,.
Let Zy = 1, and recursively

Paan

Ep, [emXn|F, 1]
Then (Z,) is a Pi-martingale, since <t = ZU u\L'&n’

BplZulFoal = Znr 2 ,L‘[ZJ [ Ay ]

Then the probability measure

Q) = ZulRda) 0 (Y- 4(,_{) P AT

Zn = Zn—l

works. Indeed,

Eq[Xn|Fn1] = Ep, [ 2, X | Fri] by Lemma 7
n—1
1 4/
nol Ep, [ X, " | Fp_1] definition
/1 EP [ean |fn 1]
= Epl [e“n X 7] -0=0. choice of a,,
O
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Exercise 13. Show that a,, is F,,_;-measurable.

Now we can return to the proof of Theorem 3. The existence of the
martingale measure follows from the previous lemma applied to X,, = AS,,.

4.2 ARCH processes

Autoregressive conditional heteroscedasticity (ARCH) models were intro-
duced by Robert Engle in 1982 to model log-returns. In 2003 he obtained
Nobel prize in economics for this model. The novelty in these models is the
stochastic volatility term.

Let

Ry = logf2" [og netevy

Sy

denote the log-return of the stock, and assume that

Rn = Un + \/ B + )\Riflzna

where Z,’s are iid N(0,1) random variables. Then (R,) is an ARCH(1)
process. That is conditionally on .Fn 1 the log—return R, is Gaussian with

mean fi,, and variance 3 + AR2_,. Write Un B+ AR%_,. Then for S, we

obtain
S, = Sn_leR" = Sy exp {Zn: (Mk +4/B8+ AR,%AZ,C) }

k=1

= Syexp {Z (pr + O'ka)} )

k=1

In what follows we only assume that u, and o, are JF,,_i;-measurable, i.e. the
sequence (p,,0,), is predictable, and (Z,) is adapted, Z, is independent
of F,—1, and N(0,1) distributed. Put h, = u, + 0,7Z,. For simplicity we
assume that B, = 1.

We construct a measure Q such that (.5,) is a Q-martingale. Let

ZN—Hzn.—HL SM:S

EP e“nh” |.F ]

34



EJ-%\ A= € {%4 AN L
< @{m %\:\

where
Un 1 ) i
an =—"—7% — 5. (10) {eq:disc-girs-0}
o2 2
Introduce the new measure Q as
dQ = ZndP,

and let Z, = Ep[Zy|F,] =11 2.
By Corollary 1, to show that S,, is Q-martingale we have to show that
SnZy 1s a P-martingale. We have

4
WIE S" S“-le

EP [ehyl(1+an)|]:n71
EP [ea”h” ]:nfl]

EP[SnZn|fn—1] = Sn—lzn

1

Therefore we have to check that

Eple' U+ | F, 1] = Eple® | F,_4]. (11) {eq:disc-girs-1}

Recall that for a standard normal Z

S}

Ee'? =e7,

thus ,
EeltoZ = ettt 7,

Since a,, in (11) is F,,_1-measurable and given F,,_; the variable h,, is Gaus-

sian N(j,,02), we obtain K @4_0 u+g‘% )(4_‘,&

hn(1+an) (1an)+ Tl Fen)?
EP[@ n n |‘Fn71] — e#n n )

?

L s plegapigg,
hnan _ lnan+ TR (/:*\’ —J
Ep [6 ’.Fn,ﬂ € 5 —ﬂ/‘ - g
By the choice of a,, in (10)

N

2(1 + a,)2 2 2
,Un(l + an) + W = [lpan + O'n26ln
Indeed, by (10)
1
Pon + O'Z <2 + an) = 0. 4 4‘
“w
That is, (11) holds. An= ~ i— gL

We proved the following.
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Theorem 8 (Discrete Girsanov’s theorem). Let (pn,0,), be a predictable
sequence and assume that the stock prices are given by

_ o1 (PrF01 Zy
Sn — eZk,l(uk k k)7

where (Z,), is a adapted sequence of N(0,1) random variables, Z,, is inde-
pendent of Fn_1. Further, let B, = 1. Then, under the new measure

dQ = ZydP

(Sn) is a martingale.

5 Pricing and hedging European options

In this section we summarize our findings on pricing and hedging, and con-
sider some special cases in detail.

5.1 Complete markets

Consider an arbitrage-free complete market. The fair price of the contingent
claim fy is

C(fy) =inf{z : In, X7 =z, X3 = fn}.
Then, by Theorems 3 and 7 there exists a unique EMM Q. Since (X[ /B,,)
is Q-martingale

N X% x x
Eo-— =Eog— =Eq— = —
By By 9B, B
therefore
By
Clfn) === FEQfN
N

Note that x is independent of the hedge 7 itself, that is for different hedges
the initial value is the same.

For a hedge we need to know not only the fair price C', but also the
strategy  itself. For the given claim fx consider the martingale

o= Bal

7).
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