Regularly varying functions Exercises 1.

1. Let X, X_1, X_2, \ldots be iid Exponential(1) random variables, and let $M_n = \max\{X_1, \ldots, X_n\}$ denote the partial maxima. Find a sequence a_n such that $M_n - a_n$ converges in distribution to a nondegenerate limit. The limiting distribution is the Gumbel distribution.

2. Let X, X_1, X_2, \ldots be iid Uniform(0, 1) random variables, and let $M_n = \max\{X_1, \ldots, X_n\}$ denote the partial maxima. Find sequences a_n, b_n such that $a_n(M_n - b_n)$ converges in distribution to a nondegenerate limit. Determine the limit distribution.

3. Show that $\ell_1(x) = e^{(\log x)^{\alpha}}$ is slowly varying for $\alpha \in (0, 1)$, and not slowly varying for $\alpha \ge 1$.

4. Show that $f(x) = 2 + \sin x$ is not slowly varying.

5. Show that $\ell_2(x) = \exp\left\{(\log x)^{1/3} \cos\left((\log x)^{1/3}\right)\right\}$ is slowly varying, and $\liminf_{x\to\infty}\ell_2(x) = 0$, $\limsup_{x\to\infty}\ell_2(x) = \infty$.

6. (i) If $S \subset \mathbb{R}$ is and additive subgroup, and S contains a set of positive measure, then $S = \mathbb{R}$. (ii) If $S \subset (0, \infty)$ is and additive semigroup, and S contains a set of positive measure, then there exists b > 0 such that $S \supset (b, \infty)$.

7. Show that the representation theorem implies the uniform convergence theorem.

8. Let ℓ, ℓ_1, ℓ_2 be slowly varying functions. Then

- (i) $\left(\log \ell(x)\right) / \log x \to 0;$
- (ii) $(\ell(x))^{\alpha}$ is slowly varying for each $\alpha \in \mathbb{R}$;
- (iii) $\ell_1 \ell_2$, $\ell_1 + \ell_2$ are slowly varying;
- (iv) for each $\varepsilon > 0 \lim_{x \to \infty} x^{\varepsilon} \ell(x) = \infty$, $\lim_{x \to \infty} x^{-\varepsilon} \ell(x) = 0$.

9. (i) If $f \in \mathcal{RV}_{\rho}$ then $f^{\alpha} \in \mathcal{RV}_{\rho\alpha}$. (ii) If $f_i \in \mathcal{RV}_{\rho_i}$, i = 1, 2, and $f_2(x) \to \infty$, then $f_1(f_2(x)) \in \mathcal{RV}_{\rho_1\rho_2}$. (iii) If $f_i \in \mathcal{RV}_{\rho_i}$, i = 1, 2, then $f_1 + f_2 \in \mathcal{RV}_{\max\{\rho_1, \rho_2\}}$.