Regularly varying functions

Péter Kevei

April 8, 2019

Contents

1	Motivation: maximum of iid random variables1.1 Exercises	3 5
2	Steinhaus theory and the Cauchy functional equation 2.1 Exercises	5 6
3	Slowly varying functions 3.1 Exercises	6 8
4	The limit function	8
5	Regularly varying functions: first properties 5.1 Exercises	9 11
6	Karamata's theorem 6.1 Exercises	11 14
7	Monotone density theorem	15
8	Inversion 8.1 Exercises	16 17
9	Laplace-Stieltjes transforms9.1 Exercices	17 18
10	Tails of nonnegative random variables10.1 Exercises	18 21
11	Sum and maxima of iid random variables	22
12	Breiman's conjecture	27

1 Motivation: maximum of iid random variables

This part is mainly from Feller [4, Chapter VIII.8].

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space, and X, X_1, X_2, \ldots are iid random variables on it such that $F(x) = \mathbf{P}(X \leq x) < 1$ for any $x \in \mathbb{R}$. Let $M_n = \max\{X_1, \ldots, X_n\}$ the partial maximum. In probability theory we are often interested in the following type of question:

What are the necessary and sufficient conditions for the existence of a sequence a_n such that M_n/a_n converges in distribution to a nondegenerate limit?

Recall that converges in distribution to $Y, Y_n \xrightarrow{\mathcal{D}} Y$, if $\lim_{n\to\infty} \mathbf{P}(Y_n \leq y) = \mathbf{P}(Y \leq y) = G(y)$ for any $y \in C_G$, where C_G stands for the continuity points of G.

For maximum we can easily calculate the distribution function. Indeed,

$$\mathbf{P}(M_n/a_n \le x) = \mathbf{P}(M_n \le a_n x) = F(a_n x)^n.$$

Thus we need that

$$\lim_{n \to \infty} F(a_n x)^n = G(x) \qquad \text{for all } x \in C_G.$$

Taking logarithms, and using that $\log(1+x) \sim x$ as $x \to 0$,

$$\lim_{n \to \infty} n\overline{F}(a_n x) = -\log G(x),\tag{1}$$

where $\overline{F}(x) = 1 - F(x)$. It turns out that the simple limit relation in (1) forces the structure of both the limit function and F. We need the following lemma.

Lemma 1. Let b_n be a sequence for which $b_{n+1}/b_n \to 1$, $a_n \to \infty$, and U is a monotone function (increasing or decreasing). Assume that

$$\lim_{n \to \infty} b_n U(a_n x) = h(x) \le \infty$$

for all $x \in D$, where D is a dense subset, and the limit h is finite and strictly positive on an interval. Then $h(x) = cx^{\rho}$, for some $c \in \mathbb{R}$, $\rho \in \mathbb{R}$.

Proof. Easy.

Definition 1. A function $U : [0, \infty) \to [0, \infty)$ is regularly varying with index $\rho, U \in \mathcal{RV}_{\rho}$, if for each $\lambda > 0$

$$\lim_{x \to \infty} \frac{U(\lambda x)}{U(x)} = \lambda^{\rho}.$$

For $\rho = 0$, i.e. when for $\lambda > 0$

$$\lim_{x \to \infty} \frac{\ell(\lambda x)}{\ell(x)} = 1,$$

 ℓ is slowly varying, $\ell \in SV$.

This is regular variation at infinity. Regular variation at zero can be defined similarly, by changing $x \to \infty$ to $x \downarrow 0$.

From the definition we see that if $U \in \mathcal{RV}_{\rho}$ then $U(x) = x^{\rho}\ell(x)$, where ℓ is slowly varying.

Example 1. The constant function is trivially slowly varying. Moreover, any function with a strictly positive finite limit is slowly varying. More interesting examples are:

- $\log x$;
- $(\log x)^{\alpha}, \alpha \in \mathbb{R};$
- $\log \log x$;
- $\exp\{(\log x)^{\alpha}\}, \alpha \in (0, 1).$

Going back to our maximum process, we see form Lemma 1 and from (1) that the limiting distribution function has to be of the form $G(x) = e^{-cx^{\rho}}$, for x > 0, and 0 otherwise, for some $\rho < 0$. In fact we have the following.

Theorem 1. Assume the F(x) < 1 for all $x \in \mathbb{R}$. There exist a_n such that

$$\frac{M_n}{a_n} \stackrel{\mathcal{D}}{\longrightarrow} Z,$$

with a nondegenerate limit Z, if and only if \overline{F} is regularly varying with index $\rho < 0$. In this case $\mathbf{P}(Z \leq x) = G(x) = e^{-cx^{\rho}}$ for x > 0, and 0 otherwise.

The limiting distribution is the so-called Fréchet distribution. There are three type of extreme value distribution; see Exercises 4, 5.

Proof. Choose a_n such that $n\overline{F}(a_n) \to 1$.

1.1 Exercises

1. Show that $\ell_1(x) = e^{(\log x)^{\alpha}}$ is slowly varying for $\alpha \in (0, 1)$, and not slowly varying for $\alpha \ge 1$.

2. Show that $f(x) = 2 + \sin x$ is not slowly varying.

3. Show that $\ell_2(x) = \exp\left\{(\log x)^{1/3} \cos\left((\log x)^{1/3}\right)\right\}$ is slowly varying, and $\liminf_{x\to\infty}\ell_2(x) = 0$, $\limsup_{x\to\infty}\ell_2(x) = \infty$.

4. Let X, X_1, X_2, \ldots be iid Exponential(1) random variables, and let $M_n = \max\{X_1, \ldots, X_n\}$ denote the partial maxima. Find a sequence a_n such that $M_n - a_n$ converges in distribution to a nondegenerate limit. The limiting distribution is the Gumbel distribution.

5. Let X, X_1, X_2, \ldots be iid Uniform(0, 1) random variables, and let $M_n = \max\{X_1, \ldots, X_n\}$ denote the partial maxima. Find a sequence a_n, b_n such that $a_n(M_n - b_n)$ converges in distribution to a nondegenerate limit. Determine the limit distribution.

2 Steinhaus theory and the Cauchy functional equation

Main theory on regular variation follows Bingham et al.[1].

Theorem 2. Let $A \subset \mathbb{R}$ be a measurable set with positive Lebesgue measure. Then A - A contains in interval.

Theorem 3. Let $A, B \subset \mathbb{R}$ be measurable sets with positive Lebesgue measure. Then A - B contains in interval.

Corollary 1. Let $A \subset \mathbb{R}$ be a measurable set with positive Lebesgue measure. Then A + A contains in interval.

Corollary 2. (i) If $S \subset \mathbb{R}$ is and additive subgroup, and S contains a set of positive measure, then $S = \mathbb{R}$. (ii) If $S \subset (0, \infty)$ is and additive semigroup, and S contains a set of positive measure, then there exists b > 0 such that $S \supset (b, \infty)$.

Definition 2. A function $k : \mathbb{R} \to \mathbb{R}$ is additive if k(x+y) = k(x) + k(y) for all x, y.

Lemma 2. If k is additive and bounded above on a set A with positive measure, then k is bounded in the neighborhood of the origin.

Theorem 4. Let k be additive and bounded above on a set A with positive measure. Then k(x) = cx for some $c \in \mathbb{R}$.

Corollary 3. If k is additive and measurable then k(x) = cx.

There are pathological solutions to the Cauchy functional equations. Consider \mathbb{R} as a vector space above \mathbb{Q} , and let B be a Hamel base. This exist by the Zorn lemma, and the cardinality of B is continuum. For $b_0 \in B$ fixed let $k(b_0) = b_0$, and k(b) = 0 for $b \in B$, $b \neq b_0$. Define

$$k(x) = \sum_{i=1}^{n} r_i k(b_i),$$
 if $x = \sum_{i=1}^{n} r_i b_i.$

Then k is additive, but not of the form k(x) = cx.

2.1 Exercises

6. (i) If $S \subset \mathbb{R}$ is and additive subgroup, and S contains a set of positive measure, then $S = \mathbb{R}$. (ii) If $S \subset (0, \infty)$ is and additive semigroup, and S contains a set of positive measure, then there exists b > 0 such that $S \supset (b, \infty)$.

3 Slowly varying functions

Definition 3. A nonnegative measurable function $\ell : [a, \infty) \to [0, \infty), a \ge 0$, is slowly varying, if

$$\lim_{x \to \infty} \frac{\ell(\lambda x)}{\ell(x)} = 1 \qquad \text{for each } \lambda > 0.$$
(2)

For simplicity, we assume that a = 0.

Theorem 5. Uniform convergence theorem. Let ℓ be a slowly varying function. Then (2) holds uniformly on each compact set of $(0, \infty)$; that is for each $\varepsilon > 0$, $K < \infty$

$$\sup_{\lambda \in [\varepsilon,K]} \left| \frac{\ell(\lambda x)}{\ell(x)} - 1 \right| = 0.$$

Proof. I. Direct proof

II: Indirect proof by Erdős and Csiszár.

Theorem 6. Representation theorem. Let ℓ be a nonnegative measurable function. It is slowly varying if and only if

$$\ell(x) = c(x) \exp\left\{\int_{a}^{x} \frac{\varepsilon(u)}{u} \mathrm{d}u\right\}, \quad x > a,$$

where $a \ge 0$, $\lim_{x\to\infty} c(x) = c \in (0,\infty)$, $\lim_{x\to\infty} \varepsilon(x) = 0$.

Changing to the additive notation $h(x) = \log \ell(e^x)$, we have

$$h(x) = c_1(e^x) + \int_{\log a}^x \varepsilon(e^x) dx =: d(x) + \int_b^x e(x) dx.$$
(3)

Proof. Sufficiency is clear.

For the necessity, write

$$h(x) = \int_{x}^{x+1} \left[h(x) - h(t)\right] dt + \int_{x_0}^{x} \left[h(t+1) - h(t)\right] dt + \int_{x_0}^{x_0+1} h(t) dt.$$

The last term is constant. In the second term is integrand $e(t) = h(t+1) - h(t) \rightarrow 0$ as $t \rightarrow \infty$. While the first

$$\int_{x}^{x+1} [h(x) - h(t)] dt = \int_{0}^{1} [h(x) - h(x+u)] du,$$

and here the integrand tends to 0 uniformly by the UCT.

We use the following lemma without explicitly mentioning.

Lemma 3. If $\ell \in SV$ then ℓ is locally bounded far enough to the right; i.e. there exists a > 0 such that $\sup_{x \in [a,a+n]} \ell(x) < \infty$ for each n.

Proposition 1. Let ℓ, ℓ_1, ℓ_2 be slowly varying functions. Then

- 1. $\left(\log \ell(x)\right) / \log x \to 0;$
- 2. $(\ell(x))^{\alpha}$ is slowly varying for each $\alpha \in \mathbb{R}$;
- 3. $\ell_1\ell_2$, $\ell_1 + \ell_2$ are slowly varying;
- 4. for each $\varepsilon > 0 \lim_{x \to \infty} x^{\varepsilon} \ell(x) = \infty$, $\lim_{x \to \infty} x^{-\varepsilon} \ell(x) = 0$.

3.1 Exercises

- 7. Show that the representation theorem implies the UCT.
- 8. Let ℓ, ℓ_1, ℓ_2 be slowly varying functions. Then
 - 1. $\left(\log \ell(x)\right) / \log x \to 0;$
 - 2. $(\ell(x))^{\alpha}$ is slowly varying for each $\alpha \in \mathbb{R}$;
 - 3. $\ell_1\ell_2$, $\ell_1 + \ell_2$ are slowly varying;
 - 4. for each $\varepsilon > 0 \lim_{x \to \infty} x^{\varepsilon} \ell(x) = \infty$, $\lim_{x \to \infty} x^{-\varepsilon} \ell(x) = 0$.

4 The limit function

Let $f: [0,\infty) \to (0,\infty)$ be a measurable function, and assume that

$$\lim_{x \to \infty} \frac{f(\lambda x)}{f(x)} = g(\lambda) \in (0, \infty), \qquad \lambda \in S,$$
(4)

for some set S. Then $\lambda, \mu \in S$ implies $\lambda \mu \in S$ and $g(\lambda \mu) = g(\lambda)g(\mu)$. Also $\lambda \in S$ implies $1/\lambda \in S$ and $g(1/\lambda) = 1/g(\lambda)$. Thus S is a multiplicative subgroup of $(0, \infty)$.

Changing to the additive notation $h(x) = \log f(e^x)$, $k(x) = \log g(e^x)$, we have that k(u+v) = k(u)+k(v) for $u, v \in T$, where T is an additive subgroup of \mathbb{R} .

Theorem 7 (Characterization theorem). Assume that (4) holds and S has positive measure. Then

(i) $\lim_{x\to\infty} \frac{f(\lambda x)}{f(x)}$ exists for all $\lambda > 0$. (ii) $g(\lambda) = \lambda^{\rho}$ for some $\rho \in \mathbb{R}$. (iii) $f(x) = x^{\rho}\ell(x)$ for some $\ell \in S\mathcal{V}$.

Proof. This follows from Corollary 2.

Definition 4. A positive measurable function f is regularly varying with index $\rho \in \mathbb{R}$ if

$$\lim_{x \to \infty} \frac{f(\lambda x)}{f(x)} = \lambda^{\rho} \qquad \text{for all } \lambda > 0.$$

Regular variation at 0 defined similarly, but $x \downarrow 0$ instead of $x \rightarrow \infty$. Simply f(x) is regularly varying at 0 if and only if f(1/x) is regularly varying at infinity.

There are more general characterization theorems.

Theorem 8. Let f be positive measurable function and assume that for $g^*(\lambda) = \limsup_{x\to\infty} f(\lambda x)/f(x)$, we have $\limsup_{\lambda\downarrow 1} g^*(\lambda) \leq 1$. Then the following are equivalent.

- (i) There is a $\rho \in \mathbb{R}$ such that $\lim_{x\to\infty} f(\lambda x)/f(x) = \lambda^{\rho}$ for all $\lambda > 0$.
- (ii) $\lim_{x\to\infty} f(\lambda x)/f(x)$ exists and finite on a set of positive measure.
- (iii) $\lim_{x\to\infty} f(\lambda x)/f(x)$ exists and finite on a dense subset of $(0,\infty)$.
- (iv) $\lim_{x\to\infty} f(\lambda x)/f(x)$ exists and finite for $\lambda = \lambda_1, \lambda_2$, where $\log \lambda_1/\log \lambda_2$ is irrational.

5 Regularly varying functions: first properties

An immediate consequence of Proposition 1 is the following.

Proposition 2. For $f \in \mathcal{RV}_{\rho}$, as $x \to \infty$

$$f(x) \to \begin{cases} \infty, & \rho > 0, \\ 0, & \rho < 0. \end{cases}$$

Theorem 9 (Uniform convergence theorem for regularly varying functions). Let $f \in \mathcal{RV}_{\rho}$ locally bounded on $[0, \infty)$. Then $f(\lambda x)/f(x) \to \lambda^{\rho}$ uniformly in λ

- on each $[a,b] \subset (0,\infty)$ for $\rho = 0$;
- on each $(0, b] \subset (0, \infty)$ for $\rho > 0$;
- on each $[a, \infty) \subset (0, \infty)$ for $\rho < 0$.

Proof. The case $\rho = 0$ is the UCT for slowly varying functions. We only prove the statement for $\rho > 0$, the other case is similar.

By the UCT for slowly varying functions it is enough to prove on (0, 1]. By the representation theorem

$$f(x) = x^{\rho}\ell(x) = x^{\rho}c(x)\exp\left\{\int_0^x \varepsilon(u)/u\mathrm{d}u\right\}.$$

There exists $x_0 > 0$ such that for $x \ge x_0$ $c(x) \in (c/2, 2c)$ and $|\varepsilon(x)| < 1$. Thus, whenever $\lambda x \ge x_0$

$$\frac{f(\lambda x)}{f(x)} \le \lambda^{\rho} \frac{2c}{c/2} e^{\log \lambda} = 4\lambda^{\rho+1}.$$

Let $\varepsilon > 0$ be fix. If $\lambda \leq \varepsilon^{1/(\rho+1)}$ then for $\lambda x \geq x_0$

$$\frac{f(\lambda x)}{f(x)} \le 4\varepsilon.$$

Therefore, if $\lambda \leq \varepsilon^{1/(\rho+1)}$ and $\lambda x \geq x_0$

$$\left|\frac{f(\lambda x)}{f(x)} - \lambda^{\rho}\right| \le 4\varepsilon + \epsilon^{\rho/(\rho+1)}.$$

On the other hand, if $\lambda x \leq x_0$ then

$$\left|\frac{f(\lambda x)}{f(x)} - \lambda^{\rho}\right| \le \frac{\sup_{y \in (0,x_0]} f(y)}{f(x)} + \left(\frac{x_0}{x}\right)^{\rho}.$$

The latter bound goes to 0 as $x \to \infty$ (uniformly in λ , since it does not contain any λ).

Finally, for $\lambda \in [\varepsilon^{1/(\rho+1)}, 1]$ the UCT works.

As a consequence we obtain that a regularly varying function with index $\rho \neq 0$ is asymptotically equivalent to a monotone function.

Theorem 10. Let $f \in \mathcal{RV}_{\rho}$ locally bounded on $[a, \infty)$. If $\rho > 0$ then (i) $\overline{f}(x) = \sup\{f(t) : 0 \le t \le x\} \sim f(x);$ (ii) $\underline{f}(x) = \inf\{f(t) : t \ge x\} \sim f(x).$ If $\rho < 0$ then $\sup\{f(t) : t \ge x\} \sim f(x)$ and $\inf\{f(t) : a \le t \le x\} \sim f(x).$

Theorem 11 (Potter bounds). (i) Let ℓ be a slowly varying function. Then for each A > 1, $\delta > 0$ there exists x_0 such that for each $x, y \ge x_0$

$$\frac{\ell(x)}{\ell(y)} \le A \max\left\{ \left(\frac{x}{y}\right)^{\delta}, \left(\frac{y}{x}\right)^{\delta} \right\}.$$

(ii) If ℓ is bounded away from 0 and ∞ on every compact subset of $[0, \infty)$ then for each $\delta > 0$ there exists and $A = A(\delta)$ such that for each x, y

$$\frac{\ell(x)}{\ell(y)} \le A \max\left\{ \left(\frac{x}{y}\right)^{\delta}, \left(\frac{y}{x}\right)^{\delta} \right\}.$$

(iii) If $f \in \mathcal{RV}_{\rho}$ then for each A > 1, $\delta > 0$ there exist $x_0 > 0$ such that for $x, y \ge x_0$

$$\frac{f(x)}{f(y)} \le A \max\left\{ \left(\frac{x}{y}\right)^{\rho+\delta}, \left(\frac{x}{y}\right)^{\rho-\delta} \right\}.$$

Proof. (i) follows from the representation theorem. (iii) is immediate from (i). (ii) follows from the local boundedness and strict positivity. \Box

Proposition 3. (i) If $f \in \mathcal{RV}_{\rho}$ then $f^{\alpha} \in \mathcal{RV}_{\rho\alpha}$. (ii) If $f_i \in \mathcal{RV}_{\rho_i}$, i = 1, 2, and $f_2(x) \to \infty$, then $f_1(f_2(x)) \in \mathcal{RV}_{\rho_1\rho_2}$. (iii) If $f_i \in \mathcal{RV}_{\rho_i}$, i = 1, 2, then $f_1 + f_2 \in \mathcal{RV}_{\max\{\rho_1, \rho_2\}}$.

5.1 Exercises

9. Prove Proposition 3.

6 Karamata's theorem

Proposition 4. Let $\ell \in SV$ be locally bounded on $[a, \infty)$, $\alpha > -1$. Then

$$\int_{a}^{x} t^{\alpha} \ell(t) \mathrm{d}t \sim x^{\alpha+1} \ell(x) \frac{1}{\alpha+1}.$$

Proof. We have

$$\frac{\int_{a'}^{x} t^{\alpha} \ell(t) \mathrm{d}t}{x^{\alpha+1} \ell(x)} = \int_{a'/x}^{1} u^{\alpha} \frac{\ell(ux)}{\ell(x)} \mathrm{d}u$$
$$= \int_{0}^{1} u^{\alpha} \frac{\ell(ux)}{\ell(x)} I_{[a'/x,1]}(u) \mathrm{d}u$$

The integrand converges pointwise to u^{α} . Choose a' so that the Potter bound can be applied to the ratio with A = 2 and $\delta < \alpha + 1$. The statement follows from Lebesgue's dominated convergence theorem.

We need $\alpha > -1$ for the integrability of the integrand. However, the result hold true in the following sense.

Proposition 5. Let $\ell \in SV$ be locally bounded on $[a, \infty)$. Then

$$\widetilde{\ell}(x) = \int_{a}^{x} t^{-1}\ell(t) \mathrm{d}t$$

is slowly varying, and $\tilde{\ell}(x)/\ell(x) \to \infty$.

Proof. Let $c \in (0, 1)$. For x > a/c, by the uniform convergence theorem

$$\widetilde{\ell}(x) = \int_{a}^{x} \frac{\ell(t)}{t} \mathrm{d}t \ge \int_{x/c}^{x} \frac{\ell(t)}{t} \mathrm{d}t$$
$$= \int_{1/c}^{1} \frac{\ell(xu)}{u} \mathrm{d}u \sim \ell(x) \int_{1/c}^{1} \frac{1}{u} \mathrm{d}u$$
$$= \ell(x) \log c^{-1}.$$

Thus

$$\liminf_{x \to \infty} \frac{\ell(x)}{\ell(x)} \ge \log c^{-1} \to \infty \quad \text{as } c \to 0.$$

To show that $\tilde{\ell}$ is slowly varying let

$$\varepsilon(x) = \frac{\ell(x)}{\widetilde{\ell}(x)}.$$

We have already shown that $\varepsilon(x) \to 0$ as $x \to \infty$. By the definition of $\tilde{\ell}$, Lebesgue almost everywhere

$$\widetilde{\ell}'(x) = \frac{\ell(x)}{x} = \frac{\varepsilon(x)\widetilde{\ell}(x)}{x}.$$

Since $\tilde{\ell}$ is absolutely continuous, so is $\log \tilde{\ell}$, and

$$\frac{\mathrm{d}}{\mathrm{d}x}\log \widetilde{(x)} = \frac{\varepsilon(x)}{x}$$
 a.e

Integrating out, the representation theorem implies the statement.

The following versions can be proved similarly.

Proposition 6. If $\int_x^\infty \ell(t)/t \, dt < \infty$ then

$$\widetilde{\ell}(x) = \int_x^\infty \frac{\ell(t)}{t} \mathrm{d}t$$

is slowly varying and $\tilde{\ell}(x)/\ell(x) \to \infty$.

Proposition 7. Let $\ell \in SV$, $\alpha < -1$. Then

$$\int_x^\infty t^\alpha \ell(t) \mathrm{d}t < \infty$$

and

(i) fo

$$\frac{x^{\alpha+1}\ell(x)}{\int_x^\infty t^\alpha \ell(t) \mathrm{d}t} \to -\alpha - 1.$$

Summarizing, we proved the following.

Theorem 12 (Karamata's theorem, direct part). Let $f \in \mathcal{RV}_{\rho}$ be locally bounded on $[a, \infty)$. Then

$$\begin{aligned} r \ \sigma \geq -(\rho+1) \\ \frac{x^{\sigma+1}f(x)}{\int_a^x t^\sigma f(t) \mathrm{d}t} \to \sigma+\rho \end{aligned}$$

(ii) for $\sigma < -(\rho + 1)$

$$\frac{x^{\sigma+1}f(x)}{\int_x^{\infty} t^{\sigma}f(t)\mathrm{d}t} \to -(\sigma+\rho+1).$$

+1;

(The latter also holds for $\sigma = -(\rho + 1)$ if the integral is finite.)

It turns out that this behavior also characterizes regular variation.

Theorem 13 (Karamata's theorem, converse part). Let f be a positive, measurable, locally integrable function on $[a, \infty)$.

(i) If for some $\sigma > -(\rho + 1)$

$$\frac{x^{\sigma+1}f(x)}{\int_a^x t^{\sigma}f(t)\mathrm{d}t} \to \sigma + \rho + 1,$$

then $f \in \mathcal{RV}_{\rho}$;

(ii) If for $\sigma < -(\rho + 1)$ $\frac{x^{\sigma+1}f(x)}{\int_x^{\infty} t^{\sigma}f(t)dt} \rightarrow -(\sigma + \rho + 1),$

then $f \in \mathcal{RV}_{\rho}$.

Proof. We only prove (i), the other is similar. Put

$$g(x) = \frac{x^{\sigma+1}f(x)}{\int_a^x t^{\sigma}f(t)dt}$$

Then $g(x) \to \sigma + \rho + 1$, and for some b > a fix

$$\int_{b}^{x} \frac{g(t)}{t} \mathrm{d}t = \log\left(\int_{a}^{x} t^{\sigma} f(t) \mathrm{d}t/C\right),$$

with $C = \int_a^b t^{\sigma} f(t) dt$. This follows by differentiating both sides. Then

$$f(x) = Cb^{-(\rho+\sigma+1)}g(x)x^{\rho}\exp\left\{\int_{b}^{\sigma}\varepsilon(t)/t\mathrm{d}t\right\}$$

and the result follows from the representation theorem.

6.1 Exercises

10. Let ℓ be a slowly varying function which is locally bounded on $[0, \infty)$. Assume further that $\int_1^\infty \ell(t)/t \, dt < \infty$. Show that $\tilde{\ell}(x) = \int_x^\infty \ell(t)/t \, dt$ is slowly varying and $\tilde{\ell}(x)/\ell(x) \to \infty$ as $x \to \infty$.

11. Let $\ell_0(x) \equiv 1$, and let $\ell_{i+1}(x) = \int_1^x \ell_i(t)/t \, dt$, $i = 0, 1, 2, \dots$ Find ℓ_i .

12. Let ℓ be slowly varying, locally boundend, and $\alpha < -1$. Show that $\int_x^{\infty} t^{\alpha} \ell(t) dt < \infty$, and

$$\lim_{x \to \infty} \frac{x^{\alpha+1}\ell(x)}{\int_x^\infty t^\alpha \ell(t) \mathrm{d}t} = -\alpha - 1.$$

7 Monotone density theorem

Karamata's theorems show how to integrate regularly varying function. Next we turn to the question of differentiating absolutely continuous regularly varying functions. Assume that

$$U(x) = \int_0^x u(t) \mathrm{d}t,$$

for some nonnegative measurable u. Assume that U is regularly varying. Under some additional assumption it follows that u is regularly varying too. A function is *ultimately monotone* if it is monotone (increasing or decreasing) for x large enough.

Theorem 14. Let $U(x) = \int_0^x u(t) dt \sim cx^{\rho} \ell(x)$ as $x \to \infty$ for $c \ge 0$, $\rho \ge 0$, ℓ slowly varying, and assume that u is ultimately monotone. Then

$$u(x) \sim c\rho x^{\rho-1}\ell(x).$$

Proof. Assume that u is eventually nondecreasing. Then for a < b

$$U(bx) - U(ax) = \int_{ax}^{bx} u(t) dt \le (b-a)xu(bx)$$

Dividing both sides by $x^{\rho}\ell(x)$ we obtain

$$\limsup \frac{u(ax)}{x^{\rho-1}\ell(x)} \le c \frac{b^{\rho} - a^{\rho}}{b-a}.$$

Choosing a = 1 and letting $b \downarrow 1$ we obtain

$$\limsup \frac{u(x)}{x^{\rho-1}\ell(x)} \le c\rho.$$

The lim inf result can be shown similarly, and the statement follows. \Box

Versions of this theorem remain true.

Theorem 15. Let $U(x) = \int_0^x u(t) dt \sim cx^{\rho} \ell(x)$ as $x \downarrow 0$ for $c \ge 0$, $\rho \ge 0$, ℓ slowly varying at 0, and assume that u is ultimately monotone. Then as $x \downarrow 0$

$$u(x) \sim c\rho x^{\rho-1}\ell(x).$$

8 Inversion

Let f be poisitive locally bounded function on $[a, \infty)$ tending to ∞ . Put

$$f^{\leftarrow}(x) = \inf\{y \ge a : f(y) > x\}$$

Clearly f^{\leftarrow} is monotone increasing.

Theorem 16. For $f \in \mathcal{RV}_{\alpha}$, $\alpha > 0$, there exists $g \in \mathcal{RV}_{1/\alpha}$ such that

$$f(g(x)) \sim g(f(x)) \sim x \quad as \ x \to \infty.$$

Furthermore, g is uniquely determined up to asymptotic equivalence, and a version of g is f^{\leftarrow} .

Proof. We prove that $f(f^{\leftarrow}(x)) \sim x$. Let A > 1, $\lambda > 1$, $\delta > 0$. By Potter's bound there is an x_0 such that for $u \geq x_0$

$$\frac{1}{A\lambda^{\alpha+\delta}} \le \frac{f(u)}{f(v)} \le A\lambda^{\alpha+\delta} \quad \text{ for } v \in [u/\lambda, u\lambda].$$

Choose x so large that $f^{\leftarrow}(x) \geq x_0$. There exists $y \in [f^{\leftarrow}(x), \lambda f^{\leftarrow}(x)]$ such that f(y) > x, and there exists $y' \in [\lambda^{-1} f^{\leftarrow}(x), f^{\leftarrow}(x)]$ such that $f(y') \leq x$. Choosing $u = f^{\leftarrow}(x)$ we obtain

$$\frac{1}{A\lambda^{\alpha+\delta}} \le \liminf_{x \to \infty} \frac{f(f^{\leftarrow}(x))}{x} \le \limsup_{x \to \infty} \frac{f(f^{\leftarrow}(x))}{x} \le A\lambda^{\alpha+\delta}.$$

Letting $A \downarrow 1$, $\lambda \downarrow 1$, the statement follows.

Next we show that f^{\leftarrow} is regularly varying with index $1/\alpha$. Fix $\lambda > 1$. We have

$$\frac{f(\lambda^{1/\alpha}f^{\leftarrow}(x))}{f(f^{\leftarrow}(\lambda x))} = \frac{\lambda x}{f(f^{\leftarrow}(\lambda x))} \frac{f(f^{\leftarrow}(x))}{x} \frac{f(\lambda^{1/\alpha}f^{\leftarrow}(x))}{\lambda f(f^{\leftarrow}(x))},$$

where each factor in the product tends to 1. The first two by the fact that $f(f^{\leftarrow}(x)) \sim x$, the third by the regular variation of f. Therefore

$$\frac{f(\lambda^{1/\alpha} f^{\leftarrow}(x))}{f(f^{\leftarrow}(\lambda x))} \to 1.$$

The regular variation of f implies that

$$f^{\leftarrow}(\lambda x) \sim \lambda^{1/\alpha} f^{\leftarrow}(x),$$

i.e. f^{\leftarrow} is regularly varying with index $1/\alpha$.

Next we show that $f^{\leftarrow}(f(x)) \sim x$. Since $f(f^{\leftarrow}(x)) \sim x$ we have

$$f(f^{\leftarrow}(f(x))) \sim f(x),$$

which, by the regular variation of f implies $f^{\leftarrow}(f(x)) \sim x$.

Finally, $g(f(x)) \sim x$ implies $g(f(f^{\leftarrow}(x))) \sim f^{\leftarrow}(x)$, thus $g(x) \sim f^{\leftarrow}(x)$ as claimed.

As a simple consequence we obtain the following.

Theorem 17 (de Bruijn conjugate). For any $\ell \in SV$ there exists $\ell^{\sharp} \in SV$ unique up to asymptotic equivalence such that

$$\ell(x)\ell^{\sharp}(x\ell(x)) \to 1 \quad and \quad \ell^{\sharp}(x)\ell(x\ell^{\sharp}(x)) \to 1.$$

Moreover, $(\ell^{\sharp})^{\sharp} \sim \ell$.

8.1 Exercises

13. Find an asymptotic inverse of the following functions and prove that it is indeed an asymptotic inverse.

(a)
$$f_1(x) = x \log x;$$

(b)
$$f_2(x) = x^2 \log \log x;$$

(c)
$$f_3(x) = x^2 (\log x)^3$$
.

14. Let $f \in \mathcal{RV}_{\alpha}$, and g is a positive measurable function such that

$$\lim_{x \to \infty} \frac{f(g(x)\lambda^{1/\alpha})}{f(g(\lambda x))} = 1.$$

Show that $g \in \mathcal{RV}_{1/\alpha}$.

9 Laplace–Stieltjes transforms

In the following U is a nondecreasing right-continuous function on \mathbb{R} such that U(x) = 0 for x < 0. Its Laplace–Stieltjes transform is

$$\widehat{U}(s) = \int_{[0,\infty)} e^{-sx} \mathrm{d}U(x).$$

Theorem 18. Let U be as above, $c \ge 0$, $\rho \ge 0$, $\ell \in SV$. The following are equivalent:

- (i) $U(x) \sim cx^{\rho} \ell(x) \frac{1}{\Gamma(1+\rho)}$ as $x \to \infty$;
- (ii) $\widehat{U}(s) \sim cs^{-\rho}\ell(1/s)$ as $s \downarrow 0$.

The following version can be proved in the same way.

Theorem 19. Let U be as above, $c \ge 0$, $\rho \ge 0$, $\ell \in SV$. The following are equivalent:

- (i) $U(x) \sim cx^{\rho}\ell(x)\frac{1}{\Gamma(1+\rho)}$ as $x \downarrow 0$;
- (ii) $\widehat{U}(s) \sim cs^{-\rho}\ell(1/s)$ as $s \to \infty$.

9.1 Exercices

15. Show that $\sum_{n=1}^{\infty} e^{-2^n} 2^{\rho n} < \infty$ for any ρ .

10 Tails of nonnegative random variables

In the following let X be a nonnegative random variable, and $F(x) = \mathbf{P}(X \le x)$ its distribution function. The tail of the distribution function is $\overline{F}(x) = 1 - F(x)$. The Laplace transform of F, or X is

$$\widehat{F}(s) = \mathbf{E}e^{-sX} = \int_{[0,\infty)} e^{-sx} \mathrm{d}F(x), \quad s \ge 0.$$

Further, let μ_n denote the moments of F, i.e.

$$\mu_n = \mathbf{E} X^n = \int_{[0,\infty)} x^n \mathrm{d} F(x).$$

We are interested in the relation of \overline{F} at infinity and \widehat{F} at zero. By the Taylor formula, whenever $\mathbf{E}X^n = \mu_n < \infty$

$$\widehat{F}(s) = \sum_{k=0}^{n} \mu_k \frac{(-s)^k}{k!} + o(s^n) \quad \text{as} \quad s \downarrow 0.$$

Introduce the notation for $n \ge 0$

$$f_n(s) = (-1)^{n+1} \left(\widehat{F}(s) - \sum_{k=0}^n \mu_k \frac{(-s)^k}{k!} \right)$$

$$g_n(s) = \frac{\mathrm{d}^n}{\mathrm{d}s^n} f_n(s) = \mu_n + (-1)^{n+1} \widehat{F}^{(n)}(s).$$
 (5)

In particular, $f_0(s) = g_0(s) = 1 - \widehat{F}(s)$.

The following theorem is due to Bingham and Doney (1974), see Theorem 8.1.6 in [1].

Theorem 20. Let $\ell \in SV$, $\mu_n < \infty$, $\alpha = n + \beta$ for $\beta \in [0, 1]$. The following are equivalent:

(i) $f_n(s) \sim s^{\alpha} \ell(1/s) \text{ as } s \downarrow 0;$ (ii) $g_n(s) \sim \frac{\Gamma(\alpha+1)}{\Gamma(\beta+1)} s^{\beta} \ell(1/s) \text{ as } s \downarrow 0;$ (iii) as $x \to \infty$

$$\int_{(x,\infty)} t^n \mathrm{d}F(t) \sim n!\ell(x) \quad if \ \beta = 0$$
$$\overline{F}(x) \sim \frac{(-1)^n}{\Gamma(1-\alpha)} x^{-\alpha}\ell(x) \quad if \ \beta \in (0,1)$$
$$\int_{[0,x]} t^{n+1} \mathrm{d}F(t) \sim (n+1)!\ell(x) \quad if \ \beta = 1.$$

For
$$\beta > 0$$
 these are further equivalent to
(iv) $(-1)^{n+1}\widehat{F}^{(n+1)}(s) \sim \frac{\Gamma(\alpha+1)}{\Gamma(\beta)}s^{\beta-1}\ell(1/s)$ as $s \downarrow 0$.

Proof. The equivalence of (i) and (ii) follows from the monotone density theorem. By the same reason, for $\beta > 0$ these are equivalent to (iv).

For $\beta = 1$ the function $(-1)^{n+1}\widehat{F}^{(n+1)}(s)$ is the Laplace–Stieltjes transform of $\int_{[0,x]} t^{n+1} dF(t)$, thus the equivalence of (iii) and (iv) are follows from the Tauberian theorem for the Laplace transform. Thus in the following we may assume that $\beta < 1$.

Next we show the equivalence of (ii) and (iii). Put

$$U(x) = \int_0^x \int_{(t,\infty)} y^n \mathrm{d}F(y) \,\mathrm{d}t.$$

Then integrations by parts shows

$$\widehat{U}(s) = \int_{[0,\infty)} e^{-sx} dU(x) = s^{-1} \left[\mu_n + (-1)^{n+1} \widehat{F}^{(n)}(s) \right] = \frac{g_n(s)}{s}.$$

Thus by the Tauberian theorem

(ii)
$$\iff U(x) \sim \frac{\Gamma(\alpha+1)}{\Gamma(\beta+1)\Gamma(2-\beta)} x^{1-\beta}\ell(x).$$
 (6)

By the monotone density theorem again, the right-hand side of (6) is further equivalent to

$$T_n(x) := \int_{(x,\infty)} y^n \mathrm{d}F(y) \sim \frac{\Gamma(\alpha+1)}{\Gamma(\beta+1)\Gamma(2-\beta)} (1-\beta) x^{-\beta} \ell(x)$$

$$= \frac{\Gamma(\alpha+1)}{\Gamma(\beta+1)\Gamma(1-\beta)} x^{-\beta} \ell(x).$$
(7)

Thus the statement is proved for $\beta = 0$. Assume now $\beta \in (0, 1)$. Then integration by parts gives

$$T_n(x) = x^n \overline{F}(x) + n \int_x^\infty y^{n-1} \overline{F}(y) \mathrm{d}y.$$

If (iii) holds then by Karamata's theorem (7), and thus (ii) follows. For the converse, assume that (ii), thus (7) holds. Then, after some integration by parts formulas, we obtain

$$\frac{x^n \overline{F}(x)}{T_n(x)} = 1 - \frac{nx^n}{T_n(x)} \int_x^\infty y^{-n-1} T_n(y) \mathrm{d}y.$$

Thus the theorem follows again by an application of Karamata's theorem. \Box

The most important special case is when n = 0.

Corollary 4. Let $\ell \in SV$, $\alpha \in [0,1]$. Then the following are equivalent: (i) $1 - \widehat{F}(s) \sim s^{\alpha} \ell(1/s)$ as $s \downarrow 0$;

(ii) as $x \to \infty$

$$\overline{F}(x) \sim \frac{1}{\Gamma(1-\alpha)} x^{-\alpha} \ell(x) \quad if \ \alpha \in [0,1)$$
$$\int_{[0,x]} t dF(t) \sim \ell(x) \quad if \ \alpha = 1$$
$$\int_{0}^{x} \overline{F}(t) dt \sim \ell(x) \quad if \ \alpha = 1.$$

The importance of the tail behavior of random variables is explained by the following classical result.

Theorem 21 (Doeblin, Gnedenko). Let X, X_1, X_2, \ldots be iid random variables with distribution function F, and let $S_n = X_1 + \ldots + X_n$ denote their partial sum. Then there exist centering and norming sequences a_n and c_n such that $(S_n - c_n)/a_n$ converges in distribution to a nondegenerate random variable Z if and only if one of the following two conditions holds:

(i) Z a normal, and the truncated second moment

$$V(x) = \int_{[-x,x]} y^2 \mathrm{d}F(y)$$

is slowly varying;

(ii) for some $\alpha \in (0,2)$ and a slowly varying function ℓ

$$F(-x) + 1 - F(x) = \frac{\ell(x)}{x^{\alpha}}$$

and $\lim_{x\to\infty} F(-x)/(1-F(x))$ exists (0 or ∞ allowed).

Example 2. Let X be a nonnegative random variable with distribution function $F(x) = 1 - x^{-\alpha}, x \ge 1$. This is the Pareto distribution with parameter $\alpha > 0$. By Theorem 20

$$1 - \mathbf{E}e^{-sX} \sim \Gamma(1-\alpha)s^{\alpha}$$
 as $s \downarrow 0$.

Therefore, for the partial sum $S_n = X_1 + \ldots + X_n$ with the sequence $a_n = n^{1/\alpha}$

$$\mathbf{E}e^{s\frac{S_n}{a_n}} = \exp\left\{n\log\mathbf{E}e^{-sX/a_n}\right\} \sim e^{-\Gamma(1-\alpha)s^{\alpha}},$$

which implies that $S_n/n^{1/\alpha}$ converges in distribution.

10.1 Exercises

16. Determine the Laplace transform of the following distributions.

- (a) $X \sim \text{Bernoulli}(p);$
- (b) $X \sim \text{Binomial}(n, p);$
- (c) $X \sim \text{Poisson}(\lambda);$

- (d) $X \sim \text{Uniform}(a, b);$
- (e) $X \sim \text{Exp}(\lambda)$.

17. Let $X \ge 0$, $\alpha > 0$. Show that $\mathbf{E}X^{\alpha} < \infty$ implies $\lim_{x\to\infty} x^{\alpha}[1-F(x)] = 0$. Give a counterexample to show that the converse is not true. (It is almost true, see the next exercise.)

18. Let $X \ge 0$, $\alpha > 0$. Show that $\lim_{x\to\infty} x^{\alpha}[1-F(x)] = 0$ implies $\mathbf{E}X^{\beta} < \infty$ for any $\beta < \alpha$.

19. Let X be a nonnegative random variable, F its distribution function, and $\widehat{F}(s) = \int_{[0,\infty)} e^{-sx} dF(x)$ its Laplace transform. Assume that $\mu_n = \mathbf{E}X^n < \infty$. Define

$$f_n(s) = (-1)^{n+1} \left(\widehat{F}(s) - \sum_{k=0}^n \mu_k (-s)^k / k! \right)$$
$$g_n(s) = \frac{\mathrm{d}^n}{\mathrm{d}s^n} f_n(s).$$

Let ℓ be a slowly varying function, $\alpha = n + \beta$ with $\beta \in [0, 1]$. Show that $f_n(s) \sim s^{\alpha} \ell(1/s)$ if and only if $g_n(s) \sim \Gamma(\alpha + 1) / \Gamma(\beta + 1) s^{\beta} \ell(1/s)$.

20. Show that the Laplace transform of the standard normal distribution is $e^{s^2/2}$.

11 Sum and maxima of iid random variables

In the following X, X_1, X_2, \ldots are nonnegative iid random variables with distribution function $\mathbf{P}(X \leq x) = F(x)$. Let $M_n = \max\{X_1, \ldots, X_n\}$ and $S_n = X_1 + \ldots + X_n$ denote the partial maxima and partial sum. We are interested in the behavior of the ration M_n/S_n .

Darling [3] proved that if $\overline{F}(x) = 1 - F(x)$ is slowly varying then the maximum term dominates the whole sum.

Theorem 22. If \overline{F} is slowly varying then $S_n/M_n \to 1$ in probability (and in L^1).

Before the proof we need the conditional distribution of S_n given M_n .

Lemma 4. Assume that F is continuous with density function f. Then

$$\mathcal{L}(S_n|M_n = m) = \mathcal{L}(S_{n-1}^{(m)} + m),$$

where $S_k^{(m)} = Y_1^{(m)} + \ldots + Y_k^{(m)}$, with $Y^{(m)}, Y_1^{(m)}, \ldots$ being iid random variables with distribution function $\mathbf{P}(Y^{(m)} \leq y) = \mathbf{P}(X \leq y | X \leq x)$.

Proof. It is a long but straightforward calculation.

Next we prove the theorem.

Proof of Theorem 22. Assume that F is continuous. This can be dropped by adding iid uniform(0, 1) random variables.

Note that S_n/M_n for n fix is a bounded nonnegative random variable which is ≥ 1 . Therefore its mean can be calculated as the derivative of its Laplace transform at 0. Since $S_n/M_n \geq 1$, it is enough to show that $\mathbf{E}S_n/M_n \to 1$ as $n \to \infty$.

Let $\lambda \geq 0$. Using Lemma 4 (and the notation there) we have

$$\phi_n(\lambda) := \mathbf{E}e^{-\lambda \frac{S_n}{M_n}} = \int_{[0,\infty)} \mathbf{E}^{-\lambda \frac{S_{n-1}^{(x)} + x}{x}} \mathrm{d}\mathbf{P}(M_n \le x)$$
$$= \int_{[0,\infty)} ne^{-\lambda} \left(\int_{[0,x]} e^{-\lambda y/x} \mathrm{d}F(y) \right)^{n-1} \mathrm{d}F(x).$$
(8)

Differentiating and substituting $\lambda = 0$

$$\mathbf{E}\frac{S_n}{M_n} = -\phi'(0) = 1 + \int_{[0,\infty)} n(n-1)F(x)^{n-2} \int_{[0,x]} \frac{y}{x} \mathrm{d}F(y)\mathrm{d}F(x).$$
(9)

Integration by parts gives

$$\int_{[0,x]} y \mathrm{d}F(y) = x \int_0^1 \left[\overline{F}(ux) - \overline{F}(x)\right] \mathrm{d}u.$$

Substituting back into (9)

$$\mathbf{E}\frac{S_n}{M_n} = 1 + \int_{[0,\infty)} n(n-1)F(x)^{n-2}\overline{F}(x)A(x)\mathrm{d}F(x),\tag{10}$$

where

$$A(x) = \int_0^1 \left(\frac{\overline{F}(ux)}{\overline{F}(x)} - 1\right) \mathrm{d}u.$$

The integrand in A(x) converges pointwise to 0 by the slow variation of \overline{F} , and Potter's bound provides an integrable majorant $(u^{-1/2} \text{ say})$. Therefore, by Lebesgue's dominated convergence theorem $\lim_{x\to\infty} A(x) = 0$. Let $\varepsilon > 0$ be fixed. Then there exists x_0 such that $A(x) \leq \varepsilon$ for all $x \geq x_0$. Further, there exists n_0 such that $n(n-1)F(x_0)^{n-2} \sup_{y\in[0,x]} A(y) \leq \varepsilon$ for $n \geq n_0$. Thus

$$\int_{[0,x_0]} n(n-1)F(x)^{n-2}\overline{F}(x)A(x)\mathrm{d}F(x) \le \varepsilon \int_{[0,\infty)} \mathrm{d}F(x) = \varepsilon.$$

On the other hand

$$\int_{(x_0,\infty)} n(n-1)F(x)^{n-2}\overline{F}(x)A(x)dF(x)$$

$$\leq \varepsilon \int_{(x_0,\infty)} n(n-1)F(x)^{n-2}\overline{F}(x)dF(x)$$

$$\leq \varepsilon \int_0^1 n(n-1)u^{n-2}(1-u)du = \varepsilon,$$

proving the statement.

In fact the slow variation of \overline{F} is necessary to the domination of the maxima.

Theorem 23 (Maller & Resnick, 1984). The following are equivalent:

- (i) $M_n/S_n \xrightarrow{\mathbf{P}} 1;$
- (ii) \overline{F} is slowly varying.

The other extremal situation is when the maxima is asymptotically negligable compared to the sum.

Theorem 24 (O'Brien, 1980). The following are equivalent:

- (i) $M_n/S_n \xrightarrow{\mathbf{P}} 0;$
- (ii) $\int_{[0,x]} y dF(y)$ is slowly varying.

Next we turn to the intermediate case.

Theorem 25 (Darling, 1952). If \overline{F} is regularly varying with parameter $-\alpha \in (-1,0)$ then

$$\frac{S_n}{M_n} \xrightarrow{\mathcal{D}} W, \qquad where \quad \mathbf{E}e^{-\lambda W} = \frac{e^{-\lambda}}{1 - \alpha \int_0^1 (e^{-\lambda u} - 1)u^{-\alpha - 1} \mathrm{d}u}$$

Proof. Assume that F is continuous. Recall from (8) that

$$\phi_n(\lambda) = \int_{[0,\infty)} n e^{-\lambda} \left(\int_{[0,x]} e^{-\lambda y/x} \mathrm{d}F(y) \right)^{n-1} \mathrm{d}F(x).$$

Integration by parts gives

$$\int_{[0,x]} e^{-\lambda y/x} \mathrm{d}F(y) = 1 - \overline{F}(x) - \overline{F}(x) \int_0^1 \left(\frac{\overline{F}(ux)}{\overline{F}(x)} - 1\right) \lambda e^{-\lambda u} \mathrm{d}u \qquad(11)$$

As $x \to \infty$, by the regular variation combined with Potter bounds and Lebesgue's dominated convergence we have

$$\int_0^1 \left(\frac{\overline{F}(ux)}{\overline{F}(x)} - 1\right) \lambda e^{-\lambda u} \mathrm{d}u \to \int_0^1 (u^{-\alpha} - 1) \lambda e^{-\lambda u} \mathrm{d}u.$$

Since the integrand is exponentially small on any finite interval, we obtain for any K large

$$\phi_n(\lambda) \sim e^{-\lambda} \int_K^\infty n \left[1 - \overline{F}(x) \left(1 + \int_0^1 (u^{-\alpha} - 1)\lambda e^{-\lambda u} du \right) \right] dF(x)$$

$$\sim e^{-\lambda} \mathbf{E} \left[n(1 - Uc_\lambda)^{n-1} I(U < \delta) \right],$$

where $U \sim \text{Uniform}(0, 1), \ \delta = \overline{F}(K)$ and

$$c_{\lambda} = 1 + \int_0^1 (u^{-\alpha} - 1)\lambda e^{-\lambda u} \mathrm{d}u.$$

Now, simple analysis shows that

$$\lim_{n \to \infty} \mathbf{E} \left[n(1 - Uc_{\lambda})^{n-1} I(U < \delta) \right] = c_{\lambda}^{-1},$$

and the theorem follows.

The continuity assumption can be dropped by adding iid uniform(0, 1) random variables.

The converse result is due to Breiman [2].

Theorem 26 (Breiman, 1965). If S_n/M_n converges in distribution to a nondegenerate limit then \overline{F} is regularly varying with parameter $-\alpha \in (-1, 0)$. *Proof.* Again, assume that F is continuous.

The distributional convergence of S_n/M_n implies that

$$\lim_{n \to \infty} \phi_n(\lambda) = \phi(\lambda) \tag{12}$$

exists for all $\lambda \geq 0$. Put

$$U(\lambda, x) = \int_{[0,x]} e^{-\lambda y} \mathrm{d}F(y).$$
(13)

We have seen in (8) that

$$\phi_n(\lambda) = e^{-\lambda} \int_{[0,\infty)} nU(\lambda/x, x)^{n-1} F(\mathrm{d}x).$$

The monotonicity of U and (12) implies that n can be exchanged to the continuous parameter t, i.e.

$$\lim_{t \to \infty} e^{-\lambda} \int_{[0,\infty)} t U(\lambda/x, x)^t F(\mathrm{d}x) = \phi(\lambda).$$
(14)

We have seen in (11) that

$$U(\lambda/x, x) = 1 - \overline{F}(x) \left(1 + \int_0^1 \left(\frac{\overline{F}(ux)}{\overline{F}(x)} - 1 \right) \lambda e^{-\lambda u} \mathrm{d}u \right).$$
(15)

Note that $U(\lambda/x, x)$ is increasing in x, and it is strictly increasing for x large. Moreover, $\lim_{x\to 0} U(\lambda/x, x) = 0$, and $\lim_{x\to\infty} U(\lambda/x, x) = 1$. For $\lambda \ge 0$ fixed, put

$$V(x) = -\log U(\lambda/x, x), \tag{16}$$

and let $G(t) = \mu_F(\{y : V(y) \le t\})$. By the transformation theorem

$$\int_{[0,\infty)} U(\lambda/x, x)^t F(dx) = \int_{[0,\infty)} e^{-tV(x)} F(dx) = \int_{[0,\infty)} e^{-ty} G(dy).$$

Thus, by Karamata's Tauberian theorem (14) is equivalent to

$$G(y) \sim y\phi(\lambda)e^{\lambda}$$
 as $y \downarrow 0.$ (17)

By the continuity of F

$$G(V(x)) = \mu_F(\{u : V(u) \le V(x)\}) = \mu_F(\{u : u \ge x\}) = \overline{F}(x-) = \overline{F}(x),$$

which, combined with (17) and (15)

$$\overline{F}(x) \sim e^{\lambda} \phi(\lambda) \left(\overline{F}(x) e^{-\lambda} + \int_0^1 \overline{F}(ux) e^{-\lambda u} \mathrm{d}u \right).$$

Therefore, we obtain that

$$\lim_{x \to \infty} \int_0^1 \frac{\overline{F}(ux)}{\overline{F}(x)} e^{-\lambda u} \mathrm{d}u \tag{18}$$

exists for all λ . We need the following lemma.

Lemma 5. Let $J_n(u)$ be a sequence of nonincreasing functions such that for all $\lambda \ge 0$

$$\lim_{u \to \infty} \int_0^1 e^{-\lambda u} J_n(u) \mathrm{d}u = h(\lambda)$$

for some $h(\lambda)$. Then there exists J(u) nonincreasing such that $J_n(x) \to J(x)$ for all $x \in C_J$, and

$$h(\lambda) = \int_0^1 e^{-\lambda u} J(u) \mathrm{d}u.$$

Proof. The statement follows easily from Helly's selection theorem and the continuity theorem. \Box

The lemma and (18) implies that the limit $\overline{F}(ux)/\overline{F}(x)$ exists for each u, which implies that \overline{F} is regularly varying.

12 Breiman's conjecture

Breiman's motivation in his 1965 paper was the following. Lte S_1, S_2, \ldots be a simple symmetric random walk, and let Y, Y_1, Y_2, \ldots be the interarrival times between the consecutive zeros of S_1, S_2, \ldots . Independently of S, let X, X_1, X_2, \ldots be iid 0/1 random variables such that $\mathbf{P}\{X = 0\} = \frac{1}{2} = \mathbf{P}\{X = 1\}$. Then

$$T_n = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n Y_i}$$

is the proportion of the time that the random walk spends in $[0, \infty)$.

In this case the well-known arcsine law holds.

Theorem 27 (Arcsine law). Let the X's and Y's be as above. Then

$$\lim_{n \to \infty} \mathbf{P} \left\{ T_n \le x \right\} = \frac{2}{\pi} \arcsin \sqrt{x}.$$

Moreover, in this case $\overline{G}(y) = \mathbf{P}(Y > y) \sim cy^{-1/2}$, in particular it is regularly varying with parameter 1/2.

In general, let Y, Y_1, Y_2, \ldots be nonnegative iid random variables with distribution function G, and independently let X, X_1, X_2, \ldots be iid random variables with distribution function F, and assume that $\mathbf{E}|X| < \infty$. What is the necessary and sufficient condition on G such that

$$T_n = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n Y_i}$$

has a nondegenerate limit as $n \to \infty$?

Remark 1. If $\mathbf{E}Y < \infty$, then

$$\frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} Y_i} = \frac{\frac{\sum_{i=1}^{n} X_i Y_i}{n}}{\frac{\sum_{i=1}^{n} Y_i}{n}} \xrightarrow{\text{a.s.}} \mathbf{E}X,$$

so the limit exists, and it is degenerate. Therefore, the interesting situation is when $\mathbf{E}Y = \infty$.

Breiman proved the following.

Theorem 28 (Breiman, 1965). If T_n converges in distribution for every F, and the limit is non-degenerate for at least one F, then $Y \in D(\alpha)$, for some $\alpha \in [0, 1)$, i.e. \overline{G} is regularly varying with parameter $-\alpha \in (-1, 0]$.

The idea of his proof is to prove that the existence of the limit for all X implies the existence of the distributional limit of

$$\frac{\max\{Y_1,\ldots,Y_n\}}{Y_1+\ldots+Y_n}$$

which, by Theorem 26 implies the regular variation. The existence of the limit for *all* X is an essential assumption, though Breiman conjectured it is not necessary. This is the Breiman conjecture, which is still open.

Conjecture 1 (Breiman, 1965). If T_n has a non-degenerate limit for some F, then $Y \in D(\alpha)$ for some $\alpha \in [0, 1)$.

References

- N. H. Bingham, C. M. Goldie, and J. L. Teugels. *Regular variation*, volume 27 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, 1989.
- [2] L. Breiman. On some limit theorems similar to the arc-sin law. *Teor.* Verojatnost. i Primenen., 10:351–360, 1965.
- [3] D. A. Darling. The influence of the maximum term in the addition of independent random variables. *Trans. Amer. Math. Soc.*, 73:95–107, 1952.
- [4] W. Feller. An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley & Sons, Inc., New York-London-Sydney, 1971.