Branching processes with immigration in a random environment

Péter Kevei

University of Szeged

ISCPS 2025

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation Goldie's implicit renewal theory

GWI in deterministic environment

Outline

Introduction GWI in deterministic environment

Random environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation Goldie's implicit renewal theory GWI in deterministic environment

GWI subcritical

Let $X_0 = 0$,

$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \quad n \ge 0,$$

offsprings $\{A_i^{(n)}: i = 1, 2, ..., n = 1, 2, ...\}$ iid, immigrants $\{B_n: n = 1, 2, ...\}$ iid. Subcritical: $\mathbf{E}A < 1$.

Results

Stochastic recurrence equation

GWI in deterministic environment

Stationary distribution – existence

Theorem (Quine (1970), Foster & Williamson (1971))

Unique stationary distribution exists iff

$$\int_0^1 \frac{1 - \mathsf{E} s^B}{\mathsf{E} s^A - s} \mathrm{d} s < \infty.$$

$$X_{\infty} = B_1 + \theta_1 \circ B_2 + \theta_1 \circ \theta_2 \circ B_3 + \ldots = \sum_{i=0}^{\infty} \prod_i \circ B_{i+1}.$$

If $m = \mathbf{E}A < 1$, then $\mathbf{E} \log B < \infty$ is necessary and sufficient. If m = 1, then the condition holds if $\mathbf{P}(A > n) \sim \ell_A(n)n^{-1-\alpha}$, $\mathbf{E}B < \infty$, $\alpha \in (0, 1)$, or $\mathbf{P}(B > n) \sim \ell_B(n)n^{-\beta}$, $\beta > \alpha$. GWI in deterministic environment

Stationary distribution – tail

Theorem (Basrak & Kulik & Palmowski (2013))

(i) If $m = \mathbf{E}A < 1$, $\mathbf{E}A^2 < \infty$, and $\mathbf{P}(B > x)$ is regularly varying with index $-\alpha \in (-2, 0)$, then

$$\mathbf{P}(X_{\infty} > x) \sim c \, \mathbf{P}(B > x), \qquad c > 0.$$

(ii) If $m = \mathbf{E}A < 1$, $\mathbf{P}(A > x)$ is regularly varying with index $-\alpha \in (-2, -1)$, and $\mathbf{P}(B > x) \sim c'\mathbf{P}(A > x)$, $c' \ge 0$ then $\mathbf{P}(X_{\infty} > x) \sim c\mathbf{P}(A > x)$, c > 0.

More general tail behavior: Foss & Miyazawa (2020) Second order GWI: Barczy & Bősze & Pap (2020)

Stochastic recurrence equation

GWI in deterministic environment

Regular and slow variation

 ℓ is slowly varying if for any $\lambda>0$

$$\lim_{x\to\infty}\frac{\ell(\lambda x)}{\ell(x)}=1.$$

Examples: $\lim_{x\to\infty} \ell(x) \in (0,\infty)$, $\ell(x) = \log x$, $\ell(x) = (\log x)^{\beta}$. f is regularly varying with index α if

Results

$$f(x)=x^{\alpha}\ell(x).$$

GWI in deterministic environment

Critical case, m = 1

Theorem (Guo & Hong (2024))

Assume $\mathbf{P}(A > n) \sim \ell_A(n)n^{-1-\alpha}$, $\alpha \in (0, 1)$, $\mathbf{P}(B > n) \sim \ell_B(n)n^{-\beta}$, $\beta > \alpha$, additional assumption on ℓ_A , ℓ_B . Then

$$\mathsf{P}(X_{\infty} > x) \sim \ell(x) x^{-(\beta - \alpha)}$$

GWI in deterministic environment

Critical case, m = 1

Assume $\mathbf{P}(A > n) \sim \ell_A(n)n^{-1-\alpha}$, $\alpha \in (0, 1)$, $\mathbf{E}B < \infty$. K & Kubatovics (2025+, work in progress):

$$\mathsf{P}(X_{\infty} > x) \sim \ell(x) x^{-(1-\alpha)}.$$

Stationary chain $(X_n)_{n\geq 0}$ is regularly varying, tail process:

$$\mathcal{L}((X_n/x)|X_0>x) \longrightarrow Y(1,1,\ldots),$$

 $P(Y > y) = y^{-(1-\alpha)}$. The anticlustering condition does not hold. Explicit calculations are possible: Alsmeyer & Hoang (2025): Power fractional distributions, Lindo & Sagitov (2016): θ -branching

Random environment

Outline

Introduction GWI in deterministic environment Random environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation Goldie's implicit renewal theory

Stochastic recurrence equation

Random environment

GWRE with immigration (GWIRE)

- Δ probability measures on $\mathbb{N} = \{0, 1, \ldots\}$
- ξ, ξ_1, \dots iid on Δ^2 (environment), $\xi = (\nu_{\xi}, \nu_{\xi}^{\circ})$

Results

Stochastic recurrence equation

Random environment

GWRE with immigration (GWIRE)

- Δ probability measures on N = {0,1,...}
 ξ,ξ₁,... iid on Δ² (environment), ξ = (ν_ξ, ν_ξ^o)
- $X_0 = 0,$

$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \quad n \ge 0,$$

conditioned on \mathcal{E} , $\{A_i^{(n)}, B_n : i = 1, 2, ..., n = 1, 2, ...\}$ are independent and for n fix $(A_i^{(n)})_{i=1,2,...}$ are iid with distribution ν_{ξ_n} , and B_n has distribution $\nu_{\xi_n}^{\circ}$. Subcritical / critical / supercritical: $\mathbf{E} \log m(\xi) < / = / > 0$. Kersting, Vatutin: Discrete Time Branching Processes in Random Environment, 2017, Wiley. Random environment

Stationary distribution – existence

Theorem (Key (1987))

If $E \log m(\xi) < 0$ (offspring) and $E \log^+ m^{\circ}(\xi) < \infty$ (immigration) then there exists a unique stationary distribution

Results

$$X_{\infty} = B_1 + \theta_1 \circ B_2 + \theta_1 \circ \theta_2 \circ B_3 + \ldots = \sum_{i=0}^{\infty} \prod_i \circ B_{i+1}.$$

Tail asymptotic

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic

Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation Goldie's implicit renewal theory

-

Tail asymptotic

Kesten-Grincevičius-Goldie setup

$$X_{\infty} = B_1 + \theta_1 \circ B_2 + \theta_1 \circ \theta_2 \circ B_3 + \ldots = \sum_{i=0}^{\infty} \prod_i \circ B_{i+1}.$$

Theorem (Basrak & K 2022)

Assume: $\mathsf{E}m(\xi)^{\kappa} = 1$, $\mathsf{E}A^{\kappa} < \infty$, $\mathsf{E}B^{\kappa} < \infty$, $\mathsf{E}m(\xi)^{\kappa} \log m(\xi) < \infty$, $\log m(\xi)$ is non-arithmetic. Then

Results

$$\mathbf{P}(X_{\infty} > x) \sim Cx^{-\kappa} \quad x \to \infty,$$

with C > 0.

Tail asymptotic

Theorem (Basrak & K 2022)

 $(\mathsf{E}m(\xi)^{\kappa} = 1, \ \mathsf{E}A^{\kappa} < \infty, \ \mathsf{E}B^{\kappa} < \infty, \ \overline{F}_{\kappa}(x) = \ell(x)x^{-\alpha}) \text{ or } (\mathsf{E}m(\xi)^{\kappa} < 1 \text{ and } F_{\kappa} \text{ is locally subexponential, } \mathsf{E}B^{\kappa} < \infty)$

$$\mathbf{P}(X_{\infty} > x) \sim C x^{-\kappa} L(x) \quad x \to \infty,$$

where L is slowly varying, $C \ge 0$, and if $\kappa \ge 1$ C > 0.

Tail asymptotic

Related papers

- Afanasyev (2001): $\mathbf{P}(\sup_n X_n > x) \sim cx^{-\kappa}, \ c > 0.$
- Large deviation results: Buraczewski & Dyszewski (2022), Guo & Hong & Sun (2025)
- Arithmetic case: Jelenković and Olvera-Cravioto (2012), K (2017): implicit renewal theory in the arithmetic case

Stochastic recurrence equation

Tail asymptotic

Grincevičius – Grey setup

Theorem (K 2024)

Assume: $\mathbf{E}(m(\xi)^{1\vee\kappa}) < 1$, $\mathbf{E}(A^{(1\vee\kappa)+\delta}) < \infty$. Let ℓ be a slowly varying function. Then

Results

$${f P}(B>x)\sim rac{\ell(x)}{x^\kappa}, \quad {\it as} \ \ x
ightarrow\infty,$$

if and only if

$$\mathsf{P}(X_{\infty} > x) \sim rac{\ell(x)}{x^{\kappa}} rac{1}{1 - \mathsf{E}(m(\xi)^{\kappa})}, \quad as \ x o \infty.$$

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation Goldie's implicit renewal theory

Setup

►
$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, n \in \mathbb{Z},$$

strictly stationary

$$\blacktriangleright \mathbf{P}(X_0 > x) \sim c\ell(x)x^{-\kappa}$$

•
$$a_n$$
 is defined by $n\mathbf{P}(X_0 > a_n) \sim 1$.

Asymptotic properties of Markov chain

- tail process (Basrak & Segers (2009))
- point process convergence (ergodicity, anticlustering)
- convergence of partial sums (vanishing small values)

CLT

Theorem (Basrak & K 2022)

Let $b_n = 0$, $\kappa < 1$, $b_n = n \mathbf{E}(X_{\infty}/a_n I(X_{\infty} \le a_n))$, $\kappa \in [1, 2)$. Then

Results

800000

$$V_n = \sum_{k=1}^n \frac{X_k}{a_n} - b_n \stackrel{\mathcal{D}}{\longrightarrow} V, \qquad n \to \infty$$

with V κ -stable. If $\kappa > 2$,

$$\frac{1}{\sqrt{n\sigma}}\sum_{j=1}^{n}(X_{i}-\mathsf{E}X_{\infty})\overset{\mathcal{D}}{\longrightarrow}Z\sim \mathsf{N}(0,1).$$

Random walk in random environment

Results

800000

Kozlov and Solomon:

KKS result

Let T_n be the first hitting time of n. $T_n \approx 2 \sum_{k=1}^n X_k - n$.

KKS result

Stationary Markov chain

Let T_n be the first hitting time of n. $T_n \approx 2 \sum_{k=1}^n X_k - n$. Theorem (Kesten & Kozlov & Spitzer 1975) For $\kappa \in (0, 2)$, $n^{-1/\kappa}(T_n - A_n) \xrightarrow{\mathcal{D}} \kappa - stable r.v.$

Results

00000

where $A_n \equiv 0$ if $\kappa < 1$, $A_n = nc_1$ if $\kappa > 1$. For $\kappa > 2$ $n^{-1/2}(T_n - nc) \xrightarrow{\mathcal{D}} N(0, 1).$

Moreover, $n^{-\kappa}(W_n - B_n)$ also converges.

Perpetuity equation

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation Perpetuity equation

Goldie's implicit renewal theory

 $(A_n, B_n)_n$ iid random vectors, and X_0 a random variable independent of them. The stochastic recurrence equation is

Results

$$X_{n+1} = A_{n+1}X_n + B_{n+1}.$$

The stationary solution should be

$$X_{\infty} = B_1 + A_1 B_2 + \ldots + A_1 A_2 \ldots A_n B_{n+1} + \ldots =: \sum_{n=0}^{\infty} \prod_n B_{n+1}.$$

Satisfies the fixed point equation

$$X\stackrel{\mathcal{D}}{=} AX + B,$$

where (A, B) and X on the RHS are independent.

Stochastic recurrence equation

0000

Stochastic recurrence equation

Perpetuity equation

Tail of the stationary distribution

Theorem (Grincevičius – Kesten – Goldie)

If $\mathbf{E}A^{\kappa} = 1$, $\mathbf{E}A^{\kappa} \log_{+} A < \infty$, $\log A$ is nonarithmetic, $\mathbf{E}B^{\kappa} < \infty$ then for the solution to the equation $X \stackrel{\mathcal{D}}{=} AX + B$ we have

$$\mathbf{P}(X > x) \sim c x^{-\kappa},$$

with c > 0.

Perpetuity equation

Tail of the stationary distribution

Theorem (Grincevičius – Grey)

If $A \ge 0$, $\mathbf{E}A^{\kappa} < 1$, $\mathbf{E}A^{\kappa+\epsilon} < \infty$ then the tail of X is regularly varying with parameter $-\kappa$ if and only if the tail of B is.

Damek & Kołodziejek 2020: Between Kesten and Grincevičius – Grey

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation Perpetuity equation Goldie's implicit renewal theory

Goldie's setup - stochastic fixed point equations

Results

$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \quad n \ge 0,$$

X stationary law:

$$X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{X} A_i + B = \theta \circ X + B$$

 (θ, B) and X are independent.

Examples

• Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.

Results

Examples

• Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.

Supremum of RW with negative drift: $X \stackrel{\mathcal{D}}{=} AX \lor B$.

Results

Examples

• Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.

Supremum of RW with negative drift: $X \stackrel{\mathcal{D}}{=} AX \lor B$.

Results

$$X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{X} A_i + B$$

Stationary distributions of a Markov chain.

Examples

- Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.
- Supremum of RW with negative drift: $X \stackrel{\mathcal{D}}{=} AX \lor B$.

$$X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{X} A_i + B$$

Stationary distributions of a Markov chain.

Buraczewski, Damek, Mikosch: Stochastic models with power law tails. The equation X = AX + B. (2016)

Iksanov: Renewal theory for perturbed random walks and similar processes. (2016)

General: $X \stackrel{\mathcal{D}}{=} \Psi(X)$, where $\Psi : \mathbb{R} \times \Omega \to \mathbb{R}$ random operator, independent of X.

General: $X \stackrel{\mathcal{D}}{=} \Psi(X)$, where $\Psi : \mathbb{R} \times \Omega \to \mathbb{R}$ random operator, independent of X. Assume: $A \ge 0$, $\mathbf{E}A^{\kappa} = 1$ for some $\kappa > 0$, $\mathbf{E}A^{\kappa} \log^{+} A < \infty$, $\log A$ is not arithmetic.

General: $X \stackrel{\mathcal{D}}{=} \Psi(X)$, where $\Psi : \mathbb{R} \times \Omega \to \mathbb{R}$ random operator, independent of X. Assume: $A \ge 0$, $\mathbf{E}A^{\kappa} = 1$ for some $\kappa > 0$, $\mathbf{E}A^{\kappa} \log^{+} A < \infty$, $\log A$ is not arithmetic.

Theorem (Goldie (1991), Grincevicius (1975))

X is the solution to $X \stackrel{\mathcal{D}}{=} \Psi(X)$, assume $\mathbf{E}|(\Psi(X))^{\kappa} - (AX)^{\kappa}| < \infty$. Then $\mathbf{P}(X > x) \sim cx^{-\kappa}$, where $c = \mathbf{E}(\Psi(X)^{\kappa} - (AX)^{\kappa})/\mathbf{E}(A^{\kappa}\log A) \ge 0$.

 $\mathsf{P}(X > x) \sim c x^{-\kappa}$

Results

- Problem: c = 0 is possible!
- ▶ If $\mathbf{E}X^{\kappa} < \infty$, then c = 0.
- Idea: $\Psi(x) \sim Ax$, $x \to \infty$. $(x \to \pm \infty)$
- Alsmeyer, Brofferio, Buraczewski: Asymptotically linear iterated function systems on the real line (2023)
- K (2016): additional slowly varying factor, or EA^κ < 1 is possible</p>