Branching processes with immigration in a random environment

Péter Kevei

University of Szeged

MODERN STOCHASTICS: THEORY AND APPLICATIONS VI

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic Stationary Markov chain

Renewal theory

Stochastic recurrence equation Goldie's implicit renewal theory

Introduction

Outline

GWI in deterministic environment

Introduction

GWI in deterministic environment

Random environment

Results

Tail asymptotic Stationary Markov chain

Renewal theory

Stochastic recurrence equation Goldie's implicit renewal theory

GWI subcritical

Let
$$X_0 = 0$$
.

$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \quad n \ge 0,$$

offsprings $\{A_i^{(n)}: i=1,2,\ldots,n=1,2,\ldots\}$ iid, immigrants $\{B_n: n=1,2,\ldots\}$ iid. Subcritical: **E**A<1.

Stationary distribution - existence

Theorem (Quine (1970), Foster & Williamson (1971))

If $m = \mathbf{E}A < 1$, $\mathbf{E} \log B < \infty$ then unique stationary distribution exists, which is

$$X_{\infty} = B_1 + \theta_1 \circ B_2 + \theta_1 \circ \theta_2 \circ B_3 + \ldots = \sum_{i=0}^{\infty} \Pi_i \circ B_{i+1}.$$

Stationary distribution – tail

Theorem (Basrak & Kulik & Palmowski (2013))

(i) If $m = \mathbf{E}A < 1$, $\mathbf{E}A^2 < \infty$, and $\mathbf{P}(B > x)$ is regularly varying with index $-\alpha \in (-2,0)$, then

$$P(X_{\infty} > x) \sim c P(B > x), \qquad c > 0.$$

(ii) If $m = \mathbf{E}A < 1$, $\mathbf{P}(A > x)$ is regularly varying with index $\alpha \in (-2, -1)$, and $\mathbf{P}(B > x) \sim c' \mathbf{P}(A > x)$, $c' \ge 0$ then $\mathbf{P}(X_{\infty} > x) \sim c \mathbf{P}(A > x)$, c > 0.

More general tail behavior: Foss & Miyazawa (2020)

Regular and slow variation

 ℓ is slowly varying if for any $\lambda > 0$

$$\lim_{x\to\infty}\frac{\ell(\lambda x)}{\ell(x)}=1.$$

Examples: $\lim_{x\to\infty} \ell(x) \in (0,\infty)$, $\ell(x) = \log x$, $\ell(x) = (\log x)^{\beta}$. f is regularly varying with index α if

$$f(x)=x^{\alpha}\ell(x).$$

Random environment

Outline

Introduction

Introduction

GWI in deterministic environment

Random environment

Results

Tail asymptotic Stationary Markov chain

Renewal theory

Stochastic recurrence equation Goldie's implicit renewal theory

Random environment

Introduction

GWRE with immigration (GWIRE)

- $lackbox{\Delta}$ probability measures on $\mathbb{N}=\{0,1,\ldots\}$
- ξ, ξ_1, \ldots iid on Δ^2 (environment), $\xi = (
 u_\xi,
 u_\xi^\circ)$

GWRE with immigration (GWIRE)

- $ightharpoonup \Delta$ probability measures on $\mathbb{N} = \{0, 1, \ldots\}$
- ξ, ξ_1, \ldots iid on Δ^2 (environment), $\xi = (\nu_{\xi}, \nu_{\xi}^{\circ})$
- $X_0 = 0$,

$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \quad n \ge 0,$$

conditioned on \mathcal{E} , $\{A_i^{(n)}, B_n : i = 1, 2, \ldots, n = 1, 2, \ldots\}$ are independent and for n fix $(A_i^{(n)})_{i=1,2,\ldots}$ are iid with distribution ν_{ξ_n} , and B_n has distribution $\nu_{\xi_n}^{\circ}$.

Subcritical / critical / supercritical: $\mathbf{E} \log m(\xi) < / = / > 0$. Kersting, Vatutin: Discrete Time Branching Processes in Random Environment, 2017, Wiley.

Stationary distribution - existence

Theorem (Key (1987))

If $\mathbf{E} \log m(\xi) < 0$ (offspring) and $\mathbf{E} \log^+ m^{\circ}(\xi) < \infty$ (immigration) then there exists a unique stationary distribution

$$X_{\infty} = B_1 + \theta_1 \circ B_2 + \theta_1 \circ \theta_2 \circ B_3 + \ldots = \sum_{i=0}^{\infty} \Pi_i \circ B_{i+1}.$$

Outline

Introduction

GWI in deterministic environment

Results

Tail asymptotic

Stationary Markov chain

Renewal theory

Stochastic recurrence equation Goldie's implicit renewal theory

Kesten-Grincevičius-Goldie setup

$$X_{\infty} = B_1 + \theta_1 \circ B_2 + \theta_1 \circ \theta_2 \circ B_3 + \ldots = \sum_{i=0}^{\infty} \Pi_i \circ B_{i+1}.$$

Theorem (Basrak & K 2022)

Assume: $\operatorname{Em}(\xi)^{\kappa}=1$, $\operatorname{E} A^{\kappa}<\infty$, $\operatorname{E} B^{\kappa}<\infty$,

 $\mathbf{E} m(\xi)^{\kappa} \log m(\xi) < \infty$, $\log m(\xi)$ is non-arithmetic. Then

$$P(X_{\infty} > x) \sim Cx^{-\kappa} \quad x \to \infty,$$

with C > 0.

Theorem (Basrak & K 2022)

$$(\mathsf{E} m(\xi)^{\kappa}=1,\ \mathsf{E} A^{\kappa}<\infty,\ \mathsf{E} B^{\kappa}<\infty,\ \overline{F}_{\kappa}(x)=\ell(x)x^{-\alpha})$$
 or $(\mathsf{E} m(\xi)^{\kappa}<1$ and F_{κ} is locally subexponential, $\mathsf{E} B^{\kappa}<\infty)$

$$P(X_{\infty} > x) \sim Cx^{-\kappa}L(x) \quad x \to \infty,$$

where L is slowly varying, $C \ge 0$, and if $\kappa \ge 1$ C > 0.

Arithmetic case

Jelenković and Olvera-Cravioto (2012), K (2017): implicit renewal theory in the arithmetic case: $\log m(\xi)$ is arithmetic with span h>0, then

$$\lim_{n\to\infty} x^{\kappa} e^{\kappa nh} \mathbf{P}(X_{\infty} > xe^{nh}) = q(x),$$

where
$$q(xe^h) = q(x)$$
.

Related papers – without immigration

- Afanasyev (2001): $\mathbf{P}(\sup_n X_n > x) \sim cx^{-\kappa}, c > 0.$
- Large deviation results: Buraczewski & Dyszewski (2022),
- ▶ LDP with immigration: Guo & Hong & Sun (2025)

Grincevičius – Grey setup

Theorem (K 2024)

Assume: $\mathbf{E}(m(\xi)^{1\vee\kappa}) < 1$, $\mathbf{E}(A^{(1\vee\kappa)+\delta}) < \infty$. Let ℓ be a slowly varying function. Then

$$\mathbf{P}(B > x) \sim \frac{\ell(x)}{x^{\kappa}}, \quad as \ x \to \infty,$$

if and only if

$$\mathbf{P}(X_{\infty} > x) \sim \frac{\ell(x)}{x^{\kappa}} \frac{1}{1 - \mathbf{E}(m(\xi)^{\kappa})}, \quad \text{as } x \to \infty.$$

Outline

Introduction

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic

Stationary Markov chain

Renewal theory

Stochastic recurrence equation Goldie's implicit renewal theory

Setup

- ► $X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \ n \in \mathbb{Z},$ strictly stationary
- ightharpoonup $P(X_0 > x) \sim c\ell(x)x^{-\kappa}$
- ▶ a_n is defined by $n\mathbf{P}(X_0 > a_n) \sim 1$.

Asymptotic properties of Makov chain

- ▶ tail process (Basrak & Segers (2009))
- point process convergence (ergodicity, anticlustering)
- convergence of partial sums (vanishing small values)

CLT

Theorem (Basrak & K 2022)

Let $b_n = 0$, $\kappa < 1$, $b_n = n\mathbf{E}(X_{\infty}/a_nI(X_{\infty} \le a_n))$, $\kappa \in [1,2)$. Then

$$V_n = \sum_{k=1}^n \frac{X_k}{a_n} - b_n \xrightarrow{\mathcal{D}} V, \qquad n \to \infty,$$

with V κ -stable. If $\kappa > 2$,

$$\frac{1}{\sqrt{n}\sigma}\sum_{i=1}^{n}(X_{i}-\mathbf{E}X_{\infty})\stackrel{\mathcal{D}}{\longrightarrow}Z\sim N(0,1).$$

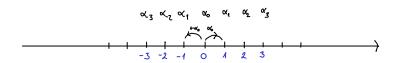
Random walk in random environment

Kozlov and Solomon:

- $ightharpoonup \{\alpha_i\}_{i\in\mathbb{Z}}$ iid in [0,1]
- \blacktriangleright $\mathcal{A} = \sigma(\alpha_i : i \in \mathbb{Z})$, σ -algebra generated by the environment,
- $X_0 = 0$,

$$P(X_{n+1} = X_n + 1 | A, X_0, ..., X_n) = \alpha_i \text{ on } \{X_n = i\}$$

 $P(X_{n+1} = X_n - 1 | A, X_0, ..., X_n) = 1 - \alpha_i \text{ on } \{X_n = i\}$



KKS result

Theorem (Kesten & Kozlov & Spitzer 1975)

For $\kappa \in (0,2)$,

$$n^{-1/\kappa}(T_n - A_n) \stackrel{\mathcal{D}}{\to} \kappa - \text{stable r.v.}$$

where $A_n \equiv 0$ if $\kappa < 1$, $A_n = nc_1$ if $\kappa > 1$.

For $\kappa > 2$

$$n^{-1/2}(T_n-nc)\stackrel{\mathcal{D}}{\to} N(0,1).$$

Moreover, $n^{-\kappa}(X_n - B_n)$ also converges.

Stochastic recurrence equation

Outline

Introduction

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic Stationary Markov chain

Renewal theory

Stochastic recurrence equation

Goldie's implicit renewal theory

Stochastic recurrence equation

 $(A_n, B_n)_n$ iid random vectors, and X_0 a random variable independent of them. The stochastic recurrence equation is

$$X_{n+1} = A_{n+1}X_n + B_{n+1}.$$

The stationary solution should be

$$X_{\infty} = B_1 + A_1 B_2 + \ldots + A_1 A_2 \ldots A_n B_{n+1} + \ldots =: \sum_{n=0}^{\infty} \prod_{n=0}^{\infty} B_{n+1}.$$

Satisfies the fixed point equation

$$X \stackrel{\mathcal{D}}{=} AX + B$$
,

where (A, B) and X on the RHS are independent.

Stochastic recurrence equation

Tail of the stationary distribution

Theorem (Grincevičius - Kesten - Goldie)

If $\mathbf{E}A^{\kappa}=1$, $\mathbf{E}A^{\kappa}\log_{+}A<\infty$, $\log A$ is nonarithmetic, $\mathbf{E}B^{\kappa}<\infty$ then for the solution to the equation $X\stackrel{\mathcal{D}}{=}AX+B$ we have

$$\mathbf{P}(X>x)\sim cx^{-\kappa},$$

with c > 0.

Tail of the stationary distribution

Theorem (Grincevičius – Grey)

If $A \ge 0$, $\mathbf{E} A^{\kappa} < 1$, $\mathbf{E} A^{\kappa+\epsilon} < \infty$ then the tail of X is regularly varying with parameter $-\kappa$ if and only if the tail of B is.

Damek & Kołodziejek 2020: Between Kesten and Grincevičius – Grey

Outline

Introduction

Introduction

GWI in deterministic environment Random environment

Result

Tail asymptotic Stationary Markov chain

Renewal theory

Stochastic recurrence equation

Goldie's implicit renewal theory

Goldie's setup - stochastic fixed point equations

$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \quad n \ge 0,$$

X stationary law:

$$X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{X} A_i + B = \theta \circ X + B$$

 (θ, B) and X are independent.

Examples

▶ Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.

Examples

- Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.
- ▶ Supremum of RW with negative drift: $X \stackrel{\mathcal{D}}{=} AX \vee B$.

Examples

- ▶ Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.
- ▶ Supremum of RW with negative drift: $X \stackrel{\mathcal{D}}{=} AX \vee B$.
- $X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{X} A_i + B$

Stationary distributions of a Markov chain.

Examples

- Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.
- ▶ Supremum of RW with negative drift: $X \stackrel{\mathcal{D}}{=} AX \vee B$.
- $X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{X} A_i + B$

Stationary distributions of a Markov chain.

Buraczewski, Damek, Mikosch: Stochastic models with power law tails. The equation X = AX + B. (2016)

Iksanov: Renewal theory for perturbed random walks and similar processes. (2016)

General: $X \stackrel{\mathcal{D}}{=} \Psi(X)$, where $\Psi : \mathbb{R} \times \Omega \to \mathbb{R}$ random operator, independent of X.

General: $X \stackrel{\mathcal{D}}{=} \Psi(X)$, where $\Psi : \mathbb{R} \times \Omega \to \mathbb{R}$ random operator, independent of X.

Assume: $A \ge 0$, $\mathbf{E} A^{\kappa} = 1$ for some $\kappa > 0$, $\mathbf{E} A^{\kappa} \log^+ A < \infty$, $\log A$ is not arithmetic.

General: $X \stackrel{\mathcal{D}}{=} \Psi(X)$, where $\Psi : \mathbb{R} \times \Omega \to \mathbb{R}$ random operator, independent of X.

Assume: $A \ge 0$, $\mathbf{E} A^{\kappa} = 1$ for some $\kappa > 0$, $\mathbf{E} A^{\kappa} \log^+ A < \infty$, $\log A$ is not arithmetic.

Theorem (Goldie (1991), Grincevicius (1975))

X is the solution to $X \stackrel{\mathcal{D}}{=} \Psi(X)$, assume $\mathbf{E}|(\Psi(X))^{\kappa} - (AX)^{\kappa}| < \infty$. Then $\mathbf{P}(X > x) \sim cx^{-\kappa}$, where $c = \mathbf{E}(\Psi(X)^{\kappa} - (AX)^{\kappa})/\mathbf{E}(A^{\kappa} \log A) \geq 0$.

$$P(X > x) \sim cx^{-\kappa}$$

- Problem: c = 0 is possible!
- ▶ If **E** X^{κ} < ∞ , then c = 0.
- ▶ Idea: $\Psi(x) \sim Ax$, $x \to \infty$. $(x \to \pm \infty)$
- Alsmeyer, Brofferio, Buraczewski: Asymptotically linear iterated function systems on the real line (2023)
- ▶ K (2016): additional slowly varying factor, or $\mathbf{E}A^{\kappa} < 1$ is possible