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Varying environment

Varying environment
X0 = 1, and

Xn =

Xn−1∑
j=1

ξn,j ,

where {ξn,j}n,j∈N are independent random variables, such that
for each n, {ξn, ξn,j}j∈N are identically distributed.
I 1970’s: Church, Fearn, Jagers, Agresti
I 2017 Kersting, 2020 Kersting & Vatutin monograph

(BPV/RE)
I 2020s: Bhattacharya & Perlman, Dolgopyat et al.,

Cardona-Tobón & Palau, González & Minuesa & del
Puerto, . . .
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Varying environment

Varying environment – immigration

Inhomogeneous Galton–Watson process with immigration:
Y0 = 0,

Yn =

Yn−1∑
j=1

ξn,j + εn

where {ξn,j , εn : n, j ∈ N} are independent nonnegative integer
valued random variables, {ξn,j : j ∈ N} are iid.
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Nearly critical processes

Nearly critical process

f n = f ′n(1) = Eξn.
(C1) f n < 1, limn→∞ f n = 1,

∑∞
n=1(1− f n) =∞,

(more generally limn→∞ f n = 1,
∑∞

n=1(1− f n)+ =∞,∑∞
n=1(f n − 1)+ <∞),

(C2) limn→∞
f ′′n (1)
1−f n

= ν ∈ [0,∞),

(C3) limn→∞
f ′′′n (1)
1−f n

= 0, if ν > 0.

subcritical in Kersting’s (2017) characterization of BPVE
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Nearly critical processes

C1

f n < 1, limn→∞ f n = 1,
∑∞

n=1(1− f n) =∞

Xn =

Xn−1∑
j=1

ξn,j ,

EXn = Eξ1Eξ2 . . .Eξn =
n∏

i=1

f i → 0,

so (Xn) dies out a.s.

I conditioning on Xn > 0, Yaglom-type limit results
I adding immigration
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Nearly critical processes

INAR(1)

If the offspring distribution is Bernoulli(ρn): integer-valued
autoregressive (INAR(1)) time series:

Xn = ρn ◦ Xn−1 + εn,

where ρ ◦ X is a Bernoulli thinning of X , ◦ is the Steutel and van
Harn operator.
I introduced by Laci Györfi, Márton Ispány, Gyula Pap and

Katalin Varga (2007)
I K (2011), weakening the Bernoulli offspring assumption
I Györfi, Ispány, K, Pap (2014): multitype setup
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Results

Yaglom’s theorem in the classical setup

Theorem (Yaglom)
If m < 1 then L(Xn|Xn > 0) converges in distribution.

Theorem (Yaglom)
If m = 1 then L(Xn/n|Xn > 0) converges to the exponential
distribution.
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Results

Yaglom-type results

Theorem (K & Kubatovics (2024))

(C1) f n → 1, f n < 1,
∑

n(1− f n) =∞

(C2) limn→∞
f ′′n (1)
1−f n

= ν ∈ [0,∞),

(C3) limn→∞
f ′′′n (1)
1−f n

= 0, if ν > 0.

Then

L(Xn|Xn > 0) D−→ Geom
(

2
2 + ν

)
as n→∞,

Consequence: P(Xn > 0) ∼ 2
2+ν f 0,n.
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Results

Proof – Notation

fn(s) = Esξn g.f. in generation n.
For the composite g.f. fn,n(s) = s, and for j < n

fj,n(s) = fj+1 ◦ . . . ◦ fn(s),

and for the corresponding means f n,n = 1,

f j,n = f j+1 . . . f n, j < n.

Then EsXn = f0,n(s) and EXn = f 0,n.
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Results

Proof – Shape function
For a g.f. f , with mean f , define the shape function (Kersting
2017)

ϕ(s) =
1

1− f (s)
− 1

f (1− s)
, 0 ≤ s < 1, ϕ(1) =

f ′′(1)
2f ′(1)2 .

1
1− f0,n(s)

=
1

f 1(1− f1,n(s))
+ ϕ1(f1,n(s)),

therefore
1

1− f0,n(s)
=

1
f 0,n(1− s)

+ ϕ0,n(s),

where

ϕ0,n(s) =
n∑

k=1

ϕk (fk ,n(s))
f 0,k−1

.
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Results

Proof – Example

Linear fractional g.f.:

f (s) = 1− a
1− s

1− qs
, f [k ] = a(1− q)qk−1, k > 0.

Then f = a
1−q ,

1
1− f (s)

=
1

f · (1− s)
+

q
a
.

That is ϕ(s) = q
a .

Branching processes in nearly degenerate varying environment University of Szeged



Introduction Conditioning – Yaglom-type results Immigration

Results

Proof

Lemma (Kersting)
Assume 0 < f <∞, f ′′(1) <∞ and let ϕ(s) be the shape
function of f . Then, for 0 ≤ s ≤ 1,

1
2
ϕ(0) ≤ ϕ(s) ≤ 2ϕ(1).
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Functional limit theorem

Setup

Work in progress.
Simplify:

(C1) f n = 1− 1
n , n ≥ 2, f 1 = 1,

(C2) limn→∞ nf ′′n (1) = ν ∈ [0,∞),
(C3) limn→∞ nf ′′′n (1) = 0, if ν > 0.

f 0,n =
n∏

j=1

f j =
1
2
· 2

3
· . . . · n − 1

n
=

1
n
.

Consider Xnt , t > 0, given Xn > 0.
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Functional limit theorem

Theorem (K - Kubatovics, 2024+)
Let 0 < ε ≤ 1,

L((Xnt)t≥ε|Xn > 0) D
=⇒ L((Z (log t))t≥ε|Z (0) > 0),

where (Z (s))s≥log ε is a simple birth and death process with
Z (log ε) ∼ Geom( 2

2+ν ), birth rate λ = ν
2 and death rate

µ = 1 + ν
2 .

Geom( 2
2+ν ) is the extremal quasi-stationary distribution of the

birth and death process, see Collet, Martínez, San Martín,
Quasi-stationary distributions (2013).
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Results

Varying environment- immigration

Y0 = 0,

Yn =

Yn−1∑
j=1

ξn,j + εn

{ξn,j , εn : n, j ∈ N} independent nonnegative, {ξn,j : j ∈ N} iid.
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Results

Bernoulli immigration

Theorem (Györfi, Ispány, Pap, Varga (2007))
Let (Yn)n∈N be an inhomogeneous INAR(1) process, with
εn ∼ Bernoulli(mn,1). Assume that

(i) f n → 1, f n < 1,
∑

n(1− f n) =∞,
(ii) limn→∞

mn,1

1−f n
= λ.

Then
Yn

D−→ Poisson(λ).
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Theorem (K 2011)
Let (Yn) be a Galton–Watson process with immigration, with
general offspring and immigration distribution, such that the
followings hold:

(i) f n < 1, f n → 1,
∑∞

n=1(1− f n) =∞,

(ii) f ′′n (1)
1−f n

→ ν ∈ (0,∞),

(iii) f (s)n (1)
1−f n

→ 0, for all s ≥ 3,

(iv) mn,1

1−f n
→ λ and mn,2

1−f n
→ 0.

Then
Yn

D−→ NB(2λ/ν, ν/(2 + ν)).
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Results

Assumptions

f n = f ′n(1) = Eξn.
(C1) f n < 1, limn→∞ f n = 1,

∑∞
n=1(1− f n) =∞,

(C2) limn→∞
f ′′n (1)
1−f n

= ν ∈ [0,∞),

(C3) limn→∞
f ′′′n (1)
1−f n

= 0, if ν > 0.
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Results

Theorem (K - Kubatovics (2024))
Assume (C1)–(C3) and

(C4) limn→∞
mn,k

k!(1−f n)
= λk , k = 1,2, . . . ,K and λK = 0, or

(C4’) limn→∞
mn,k

k!(1−f n)
= λk , k = 1,2, . . ., such that

lim supn→∞ λ
1/n
n ≤ 1.

Then
Yn

D−→ Y as n→∞,

where Y is compound-Poisson with g.f.

exp

{
−

K−1∑
k=1

2kλk

νk

(
log
(

1 +
ν

2
(1− s)

)
+

k−1∑
i=1

(−1)i ν
i

i2i (1− s)i

)}
.
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Functional limit theorems

Setup

Work in progress.
Simplify:

(C1) f n = 1− 1
n , n ≥ 2, f 1 = 1,

(C2) limn→∞ nf ′′n (1) = ν ∈ [0,∞),
(C3) limn→∞ nf ′′′n (1) = 0, if ν > 0.
Consider Ynt , t > 0.
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Functional limit theorems

Theorem
Assume (C1)–(C3) and (C4) or (C4’). For any 0 < ε ≤ 1,

L((Ynt)t≥ε)
D
=⇒ (W (log t))t≥ε,

where (W (s))s≥log ε is a stationary continuous time branching
process with immigration.

Branching processes in nearly degenerate varying environment University of Szeged



Introduction Conditioning – Yaglom-type results Immigration

Functional limit theorems

Limit

(W (t))t≥log ε continuous time branching process with
immigration, with α, β, f (s) =

∑∞
k=0 P(ξ = k)sk , and

h(s) =
∑∞

k=0 P(ε = k)sk .
Then G(s, t) = E(sW (t)) satisfies the Kolmogorov forward
equation (Li, Chen, Pakes, JOTP 2012),

∂

∂t
G(s, t) = a(s)

∂

∂s
G(s, t) + b(s)G(s, t)

where a(s) = α (f (s)− s), b(s) = β (h(s)− 1).
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