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Introduction Partial solution Subsequential limits

Motivation

Breiman 1965

Coin tossing −→ random walk S1,S2, . . ..
Put Y1,Y2, . . . the interarrival times between the zeros of
S1,S2, . . ..
X ,X1,X2, . . . iid P{X = 0} = 1

2 = P{X = 1}.

Tn =

∑n
i=1 XiYi∑n

i=1 Yi

is the proportion of the time that the random walk spends in
[0,∞).
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Motivation

Arc-sine law

In this case:

lim
n→∞

P {Tn ≤ x} =
2
π

arcsin
√

x
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Motivation

In general

Y ,Y1,Y2, . . . non-negative iid rv’s with df G
X ,X1,X2, . . . iid with df F , independent from Y ,Y1,Y2, . . .,
E|X | <∞

Tn =

∑n
i=1 XiYi∑n

i=1 Yi

On the Breiman conjecture TUM



Introduction Partial solution Subsequential limits

Motivation

In general

Y ,Y1,Y2, . . . non-negative iid rv’s with df G
X ,X1,X2, . . . iid with df F , independent from Y ,Y1,Y2, . . .,
E|X | <∞

Tn =

∑n
i=1 XiYi∑n

i=1 Yi

On the Breiman conjecture TUM



Introduction Partial solution Subsequential limits

Motivation

In general

Y ,Y1,Y2, . . . non-negative iid rv’s with df G
X ,X1,X2, . . . iid with df F , independent from Y ,Y1,Y2, . . .,
E|X | <∞

Tn =

∑n
i=1 XiYi∑n

i=1 Yi

On the Breiman conjecture TUM



Introduction Partial solution Subsequential limits

Motivation

Remark

If EY <∞, then∑n
i=1 XiYi∑n

i=1 Yi
=

∑n
i=1 Xi Yi

n∑n
i=1 Yi
n

a.s.−→ EX .

E|X | <∞ implies (Tn) is tight.
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Earlier results

Theorem (Breiman, 1965)
If Tn converges in distribution for every F , and the limit is
non-degenerate for at least one F, then Y ∈ D(β), for some
β ∈ [0,1).

Conjecture (Breiman)
If Tn has a non-degenerate limit for some F, then Y ∈ D(β) for
some β ∈ [0,1).

Breiman, L.
On some limit theorems similar to the arc-sin law
Teor. Verojatnost. i Primenen. 10 351–360, 1965.
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Earlier results

D(β)

Domain of attraction of an β-stable law:

Y ∈ D(β)⇔ 1−G(x) =
`(x)

xβ
,

where ` is slowly varying (`(λx)/`(x)→ 1 for any λ > 0 as
x →∞).
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Earlier results

D(0)

Y ∈ D(0) if 1−G(x) is slowly varying
in which case (Darling, 1952)

max{Yi : i = 1,2, . . . ,n}∑n
i=1 Yi

P−→ 1

and so ∑n
i=1 XiYi∑n

i=1 Yi

D−→ X
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Earlier results

Limits

Theorem (Breiman)
Assume that Y ∈ D(β), β ∈ (0,1), and E|X |β+ε <∞, for some
ε > 0. Then Tn

D→ T , where

P {T ≤ x} =
1
2

+
1
πβ

arctan
[∫
|u − x |βsgn(x − u)F (du)∫

|u − x |βF (du)
tan

πβ

2

]
.

P{T > x} ≈ P{X > x}
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Earlier results

E|X |2+δ <∞

Theorem (Mason & Zinn, 2005)
Assume that E|X |2+δ <∞. Then Tn → R, where R is
non-degenerate, iff Y ∈ D(β), β ∈ [0,1).

On the Breiman conjecture TUM



Introduction Partial solution Subsequential limits

Earlier results

Studentization

Other type of self-normalization (Logan & Mallows & Rice &
Shepp, 1973): ∑n

i=1 Xi√∑n
i=1 X 2

i

,

X ,X1,X2, . . . iid. Student’s T -statistic:∑n
i=1 Xi

√
n
√∑n

i=1(Xi−X)2

n−1

The two ratios are asymptotically the same.
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Earlier results

Conjecture (Logan & Mallows & Rice & Shepp, 1973)∑n
i=1 Xi√∑n
i=1 X 2

i

D−→W ,

where P{|W | = 1} < 1, iff X ∈ D(α), α ∈ (0,2]; if α > 1,
EX = 0; if α = 1, X ∈ D(Cauchy).
Giné & Götze & Mason (1997): W is standard normal iff
X ∈ D(2) and EX = 0
Chistyakov & Götze (2004): in general

On the Breiman conjecture TUM
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Results

Recall

Y ,Y1,Y2, . . . non-negative iid rv’s with df G
X ,X1,X2, . . . iid with df F , independent from Y ,Y1,Y2, . . .,
E|X | <∞.

φX (t) = EeitX

On the Breiman conjecture TUM
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Results

Theorem (K – Mason)
Assume that for some EX = 0, 1 < α ≤ 2, positive slowly
varying function L at zero and c > 0,

− log (<φX (t))

|t |α L (|t |)
→ c, as t → 0.

Whenever ∑n
i=1 XiYi∑n

i=1 Yi

D−→W (W nondegenerate)

then Y ∈ D(β) for some β ∈ [0,1).

On the Breiman conjecture TUM
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Results

What does this condition mean?

As − log<φX (t) ∼ 1−<φX (t), t → 0,

− log (<φX (t))

|t |α L (|t |)
→ c ⇔ 1−<φX (t)

|t |α L(|t |)
→ c.

For α < 2 this holds iff (Pitman)

P {|X | > x} ∼ L(1/x)x−αcΓ(α)
2
π

sin
(πα

2

)
If EX = 0 and X ∈ D(α) then this condition is satisfied.
Also if EX = 0, EX 2 <∞ then the condition of the theorem is
satisfied (α = 2, c = σ2/2).
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Results

Proposition
Assume that the assumptions of the theorem hold. Then for
some 0 < γ ≤ 1

E
∑n

i=1 Yα
i(∑n

i=1 Yi
)α → γ. (?)
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Results

Proposition
If (?) holds with some γ ∈ (0,1] then Y ∈ D(β), for some
β ∈ [0,1), where −β ∈ (−1,0] is the unique solution of

Beta(α− 1,1− β) =
Γ(α− 1)Γ(1− β)

Γ(α− β)
=

1
γ(α− 1)

.

In particular, Y ∈ D(0) for γ = 1. Conversely, if Y ∈ D(β),
0 ≤ β < 1, then (?) holds with

γ =
Γ(α− β)

Γ(α)Γ(1− β)
=

1
(α− 1)Beta(α− 1,1− β)

.

Extension of a result by Fuchs, Joffe and Teugels (2001), where
α = 2.
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Sketch of the proof

E
∑n

i=1 Yα
i(∑n

i=1 Yi
)α → γ (?)

Proposition
If (?) holds with some γ ∈ (0,1] then Y ∈ D(β), for some
β ∈ [0,1), where −β ∈ (−1,0] is the unique solution of

Beta(α− 1,1− β) =
Γ(α− 1)Γ(1− β)

Γ(α− β)
=

1
γ(α− 1)

.

In particular, Y ∈ D(0) for γ = 1. Conversely, . . ..
For α = 2 this gives 1− γ = β.
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Sketch of the proof

E
∑n

i=1 Yα
i(∑n

i=1 Yi
)α = nE

Yα
1(∑n

i=1 Yi
)α

=
n

Γ(α)
E
∫ ∞

0
Yα

1 e−t
∑n

i=1 Yi tα−1dt

=
n

Γ(α)

∫ ∞
0

tα−1E
(

e−tY1Yα
1

)
(Ee−tY1)n−1dt

=:
n

Γ(α)

∫ ∞
0

tα−1φα(t)φ0(t)n−1dt .

Note that for α = 2 we have φα = φ′′0.

s
∫ ∞

0
tα−1φα(t)es logφ0(t)dt → γΓ(α), s →∞.
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Sketch of the proof

φα(t) = Ee−tY Yα, φ0(t) = Ee−tY

By Karamata’s Tauberian theorem

lim
t→0

∫ t
0 yα−1φα(y)dy

1− φ0(t)
= γΓ(α).

After some further calculation

tα−1

∫∞
0 G(u)uα−1e−utdu∫∞

0 G(u)e−utdu
→ γΓ(α), as t ↘ 0.

u1−αe−ut =
1

Γ(α− 1)

∫ ∞
0

yα−2e−(y+t)udy ,

which holds for u > 0 and α ∈ (1,2]. Weyl-transform, or
Weyl-fractional integral of the function e−ut .
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Sketch of the proof

We obtain∫ ∞
1

(u − 1)α−2u−α
g∞(x/u)

g∞(x)
du =

k
M∗ g∞(x)

g∞(x)
→ [γ(α− 1)]−1

with
g∞(x) =

∫ ∞
0

G(ux)uα−1e−udu.

k
M∗ h(x) =

∫ ∞
0

h(x/u)k(u)/udu

Mellin-convolution of h and k .
Drasin-Shea theorem implies that g∞(x) is regularly varying at
infinity with index 0 ≥ ρ > −1.
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Recall

Y ,Y1,Y2, . . . non-negative iid rv’s with df G
X ,X1,X2, . . . iid with df F , independent from Y ,Y1,Y2, . . .,
E|X | <∞

Tn =

∑n
i=1 XiYi∑n

i=1 Yi

E|X | <∞ implies (Tn) is tight.
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Results

Notation

id(a,b, ν) infinitely divisible distribution on Rd with characteristic
exponent

iu′b − 1
2

u′au +

∫ (
eiu′x − 1− iu′xI(|x | ≤ 1)

)
ν(dx),

where b ∈ Rd , a ∈ Rd×d is a positive semidefinite matrix and ν
is the Lévy measure.
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Results

Theorem (K & Mason, 2012)
If along a subsequence {n′}

1
an′

n′∑
i=1

Yi
D−→W2, as n′ →∞,

where W2 ∼ id(0,b,Λ), then(∑n′

i=1 XiYi

an′
,

∑n′

i=1 Yi

an′

)
D−→ (W1,W2), n′ →∞,

where (W1,W2) ∼ id(0,b,Π)
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Results

Theorem (K & Mason, 2012)
i.e. its characteristic function

Ψ(θ1, θ2) = Eei(θ1W1+θ2W2) = exp
{

i(θ1b1 + θ2b2)

+

∫ ∞
0

∫ ∞
−∞

(
ei(θ1x+θ2y) − 1− (iθ1x + iθ2y) 1{x2+y2≤1}

)
F (dx/y) Λ (dy)

}
.

H(x) = P
{

W1

W2
≤ x

}
=

1
2
− 1

2π

∫ ∞
−∞

ImΨ(u,−ux)

u
du.
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{

i(θ1b1 + θ2b2)

+

∫ ∞
0

∫ ∞
−∞

(
ei(θ1x+θ2y) − 1− (iθ1x + iθ2y) 1{x2+y2≤1}

)
F (dx/y) Λ (dy)

}
.

H(x) = P
{

W1

W2
≤ x

}
=

1
2
− 1

2π

∫ ∞
−∞

ImΨ(u,−ux)

u
du.
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Feller class
ξ, ξ1, . . . iid with df F , Sn =

∑n
i=1 ξi . F is in the centered Feller

class, if there exists Bn, such that every subsequence n′ has a
further subsequence n′′, such that

Sn′′

Bn′′

D−→W ,

where W is non-degenerate.

Theorem (Feller (1966), Maller (1979))
Y is in the centered Feller class, iff

lim sup
x→∞

x2P{|Y | > x}+ x |EYI(|Y | ≤ x)|
E[Y 2I(|Y | ≤ x)]

<∞.
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Surprising result

Theorem (K & Mason, 2012)
The subsequential limit distributions of

Tn =

∑n
i=1 XiYi∑n

i=1 Yi

are continuous for all X with finite expectation if and only if
Y ∈ Fc .
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Further remarks

Towards Lévy processes

(W1,W2)
D
= (a1 + U,a2 + V ),

where (a1,a2) =
((

b −
∫ 1

0 xΛ(dx)
)

EX ,b −
∫ 1

0 xΛ(dx)
)

Eei(θ1U+θ2V ) = exp
{∫ ∞

0

∫ ∞
−∞

(
ei(θ1x+θ2y) − 1

)
F (dx/y) Λ (dy)

}
Under the conditions of the theorem(∑

1≤i≤n′t XiYi

an′
,

∑
1≤i≤n′t Yi

an′

)
t>0

D−→ (a1t + Ut ,a2t + Vt )t>0,

where (Ut ,Vt ), t ≥ 0, is the corresponding Lévy process.
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Further remarks

Ut

Vt

D−→?, t → 0 or t →∞

Kevei, P, Mason, D.M.
Randomly Weighted Self-normalized Lévy Processes
Stochastic Processes and their Applications, 123 (2) 2013,
490–522.
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