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X2 ax +B,
where (A, B) and X on the right-hand side are independent.
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Motivation
:
Perpetuity equation

X2 AXx + B,
where (A, B) and X on the right-hand side are independent.

Assume P{Ax + B=x} < 1forany x € R, A# 1, and that
log A conditioned on being nonzero is nonarithmetic.
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Applications

Actuarial application

Bi +Ai1Bs + AjABs + . ..

Financial mathematics: ARCH models and perpetuities
(Embrechts & Klippelberg & Mikosch); Branching processes in
random environment, ...
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Exponential functional of Lévy processes:
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:
Applications Il
Exponential functional of Lévy processes:

J= / ettdt
0

Carmona & Petit & Yor (2001); Bertoin & Yor (2005): survey;
Maulik, Zwart, Kuznetsov, Pardo, Patie, Savov, Rivero, Behme,
Lindner, Maller, ...
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Motivation

Applications Il

Exponential functional of Lévy processes:

J= / ettdt
0

Carmona & Petit & Yor (2001); Bertoin & Yor (2005): survey;
Maulik, Zwart, Kuznetsov, Pardo, Patie, Savov, Rivero, Behme,
Lindner, Maller, ...

If (&) has finite jump activity and 0 drift then conditioning on its
first jump time one has the perpetuity equation

J2As+B,

with B being an exponential random variable, independent of A,
and the jump size is log A.
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Applications Il (self-advertising)

Random iterative geometric structures: K regular
d-dimensional simplex with centroid (0,0, ..., 0) and vertices
(60,61,...,60'), €y = (1,0,...,0).
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Motivation

Applications Il (self-advertising)

Random iterative geometric structures: K regular
d-dimensional simplex with centroid (0,0, ..., 0) and vertices
(60,61,...,60'), €y = (1,0,...,0).

Ko = K, pn+1 uniformly distributed random point in K, and
Kn+1 = Kn ﬂ (pn+1 + K)

Clearly {Kn} is a nested sequence of regular simplexes, which
converges to a regular simplex.
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Motivation

Applications Il (self-advertising)

Random iterative geometric structures: K regular
d-dimensional simplex with centroid (0,0, ..., 0) and vertices
(60761,...,80{), €y = (1,0,...,0).

Ko = K, pn.1 uniformly distributed random point in K, and
Kni1 = Kn N (Pt + K).

Clearly {Kp} is a nested sequence of regular simplexes, which
converges to a regular simplex.

The barycentric coordinates of the limiting simplex satisfy a
d-dimensional perpetuity equation = have
D(d/(d+1),...,d/(d+ 1)) distribution. (Ambrus & K & Vigh
(2011); Hitczenko & Letac (2014); K & Vigh (2016))
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Existence
D
X=AX+B8B

If ElogA < 0, Elog, |B| < oo, then there is a unique solution
For NASC see Goldie, Maller (2001).
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Tail asymptotic: heavy tails

X2 Ax+B

Theorem (Kesten (1973))
IFE|A]® = 1,E|A]"log, |A] < oo, E|B|" < oo then

P{X > x} ~c;x " andP{X < —x} ~c_x"" as x — cc.

Goldie (1991) simplified proof (for more general equations),
based on GrinceviCius (1975)
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Tail asymptotic: heavy tails

X2 Ax+B

Theorem (Kesten (1973))
IFE|A]® = 1,E|A]"log, |A] < oo, E|B|" < oo then

P{X > x} ~c;x " andP{X < —x} ~c_x"" as x — cc.

Goldie (1991) simplified proof (for more general equations),
based on GrinceviCius (1975)

Where is the slowly varying function ¢(x) from the asymptotics?
P{X > x} ~ f()
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Properties

Tail asymptotic: heavy tails Il

X2 Ax+B

Theorem (GrinceviCius (1975), Grey (1994))

If A> 0, EA® <1, EA"t¢ < oo then the tail of X is regularly
varying with parameter —« if and only if the tail of B is.
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Tail asymptotic: heavy tails Il

X2 Ax+B

Theorem (GrinceviCius (1975), Grey (1994))

If A> 0, EA® <1, EA"t¢ < oo then the tail of X is regularly
varying with parameter —« if and only if the tail of B is.

That is, the regular variation of X is either caused by A alone,
or by B alone.
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Properties

Tail asymptotics: light tails

If P{|A| > 1} > 0 then the tail decreases at least polynomially
(Goldie & Grubel, 1996). Can even be slowly varying:
Dyszewski (2016)
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Tail asymptotics: light tails

If P{|A| > 1} > 0 then the tail decreases at least polynomially
(Goldie & Grubel, 1996). Can even be slowly varying:
Dyszewski (2016)

Theorem (Goldie & Gribel (1996))
X has at least exponential tail under the assumption |A| < 1.

See also Hitczenko & Wesotowski 2009;
Bartosz Kotodziejek: Perpetuities with thin tails revisited once
again
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:
Always assume

X2 Ax + B,

somev >k > 0.

A>0,P{Ax+B=x} <1forany x ¢ R, A% 1, and that log A
conditioned on being nonzero is nonarithmetic, E|B|” < oo for
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Assume that EA® = 1, k > 0. Put F.(x) = [*__ ¥ F(dy),
log A ~ F, and assume F(x) = £(x)x~%, a € (0,1). That is
E.log A = !

o = = E DA
:

A note on the Kesten—Grincevi¢ius—Goldie theorem TUM
00




R
Introduction Results Further remarks
00000 00000000000 0000
00000 000000

: :
EA"™ =1

:

Assume that EA® = 1, k > 0. Put F.(x) = [*__ ¥ F(dy),
log A ~ F, and assume F,(x) = ¢(x)x~%, a € (0,1). That is
E.log A = !

The truncated expectation

m(x) = /[F u)+F, (u]du~/ F.(u)du M

1—«
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Assume (Caravenna—Doney condition)
lim lim sup xF
6—0

X—00

X 1
(%) /1 JF R =0
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EA" =1

Assume (Caravenna—Doney condition)

I
=0 x—o00

6x
— 1
im limsup XFK(X)/ ———F.(x—dy)=0.
1 YFu(y)?

Theorem (K)
If the assumptions above are satisfied then

XILmOO m(log x)x"P{X > x} = CQ%E[(AX + B)} — (AX)4],
Jim m(log x)x"P{X < —x} = CQ%E[(AX + B)® — (AX)"].

Moreover, E[(AX + B) — (AX)%] + E[(AX + B)® — (AX)%] > 0.

[m] = =

ul
it

<

¢

:
A note on the Kesten—Grincevi¢ius—Goldie theorem TUM




Introduction Results Further remarks
00000 000080000000 0000
00000 000000
:
EA"™ =1
:
Comments
2007.

Theorem is stated as a conjecture/open problem by Iksanov
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Further remarks
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2007.

Theorem is stated as a conjecture/open problem by Iksanov

The conditions of the theorem are stated in terms of F,. If

X al(x)
e F(x) = ]
with a slowly varying ¢ then F,, € D(«).
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Comments

Further remarks
0000

2007.

Theorem is stated as a conjecture/open problem by Iksanov
The conditions of the theorem are stated in terms of F,. If
enxl_:(x) —_ OAE(X)

K XOH—'I
with a slowly varying ¢ then F,, € D(«).
The Caravenna—Doney condition

lim lim sup xF .
6—0

X—00

6x 1
(x)/ ———F.(x—dy)=0
1 YFu(y)?
always holds if « > 1/2.
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Comments |l

X is closely related to the maximum M = max{0, Sy, S, ...} of
the RW S, =log Ay +1og Az + ... +log Ap, log Ay, log Ag, . .. iid

log A (EA" = 1 implies that Elog A < 0, so M is a.s. finite).
Korshunov (2005)

lim P{M > x}e"*m(x) = c.

X—00
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In specific cases this result is equivalent to our theorem. Let
(&t)1=0 be a nonmonotone Lévy process, J = [;* e*dt, and

€0 = SUPs>o &t Arista and Rivero (2015) showed that
P{J> x} € RV_, iff P{ef> > x} ¢ RV_,.

:
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In specific cases this result is equivalent to our theorem. Let
(&t)t>0 be a nonmonotone Lévy process, J = fo‘x’ e‘tdt, and
€0 = SUPs>o &t Arista and Rivero (2015) showed that
P{J> x} € RV_, iff P{ef> > x} ¢ RV_,.
If (&) has finite jump activity and 0 drift then conditioning on its
first jump

JEZ AJ+ B,

with B being an exponential random variable, independent of A.
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Comments Il

Rivero (2007): Let (o¢)t>0 be a nonlattice subordinator, such
that Ee"* < oo and m(x) = El(o¢ > x)e"“! is regularly varying
with index —a € (—1/2,—1). Consider the Lévy process (&t)i>0
obtained by killing o at ¢, an independent exponential time with
parameter log Ee**'. Then for J = foc ettdt

limyx_— o0 m(log x)x"P{J > x} = c.
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X2 ax 4B,
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:

X2 ax 4B,

P{X > &} = [P{AX + B > &} — P{AX > &*}] + P{AX > &*}
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:

Proof |

D
X =AX + B,

P{X > &} = [P{AX + B > &} — P{AX > &*}] + P{AX > &*}

P(x) = e (P{AX+B > &} -P{AX > &*}), f(x) = &*P{X > &*}
using that X and A are independent

f(x) = ¥(x)+A e XTIAPLX > e¥T100AL — 4 (x)+Ef(x—log A)A~.
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: :
Proof |
D
X =AX + B,

P{X > &} = [P{AX + B > &} — P{AX > &*}] + P{AX > &*}

P(x) = e (P{AX+B > &} -P{AX > €*}), f(x) = eP{X > &}
using that X and A are independent

f(x) = Y(x)+ A XTOAPLX > @194 — y(x)+Ef(x—log A)A".
Under the measure P.{log A € C} = E[/(log A € C)A"]
f(x) = ¢¥(x) + E.f(x —log A).
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:

f(x) = ¢(x) + E.f(x —log A).
We have

f(x) = /R ¥(x = y)U(dy),
where U(x) = 0% F7(x)

o = = E DA
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EA"™ =1
:

f(x) = ¢¥(x) + E.f(x — log A).
We have

ﬂn=4¢u—nwwx

where U(x) = > 72 F"(x). If Exlog A < oo then, from the
renewal theorem

- _
Jm £ =t [ w(y)ay.
which is the KGG theorem.
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EA"™ =1
:

f(x) = ¢¥(x) + E.f(x — log A).
We have

ﬂn=4¢u—nwwx

where U(x) = > 72 F"(x). If Exlog A < oo then, from the
renewal theorem

; _ 1

Jm £ =t [ w(y)ay.
which is the KGG theorem. In our case under P, log A € D(«),
so E; log A = .

= &
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:

Infinite mean renewal theorems

Infinite mean analogue of SRT

Jlim m(x)[U(x + h) = U(X)] = hC., h>0.

o =
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:

Infinite mean renewal theorems
Infinite mean analogue of SRT
XIi_}m m(x)[U(x + h) — U(x)] = hC,, Yh>0.
Infinite mean SRT: Garsia & Lamperti (1963), Erickson (1970):

for a € (1/2,1] assumption H € D(«) implies SRT; for o < 1/2
further assumptions are needed.
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Infinite mean renewal theorems

Infinite mean analogue of SRT
XIi_}m m(x)[U(x + h) — U(x)] = hC,, Yh>0.

Infinite mean SRT: Garsia & Lamperti (1963), Erickson (1970):
for a € (1/2,1] assumption H € D(«) implies SRT; for o < 1/2
further assumptions are needed.

NASC for nonnegative random variables was given
independently by Caravenna (2015+) and Doney (2015+):

ox 1
lim lim sup xH(x )/1 yH(y)ZH(X dy) =

=0 x—o0

: :
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:

Back to proof

f(x) = /R Y(x — y)U(dy),
where U(x) = 35 o Fr"(x).

XIi_)moo m(x)[U(x + h) — U(x)] = hC,

=} =
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Introduction Results Further remarks
| EA"™ =1
Back to proof
100 = [ wx= Uiy,
where U(x) = >0 o F"(x).
XIi_)moo m(x)[U(x + h) — U(x)] = hC,
Jim m(x) [ vl y)Uan) = G [ i)y
o0 R R
=} = = E E DA
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NASC for the regular variation of X?

XeRV_,= EA" =17
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| EA" <1
NASC for the regular variation of X?

XeRYV_,= EA" =17
p > k.

If X € RV_, then E|X|P < o for all p < x and E|X|P = o for all
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:
EA™ <1

NASC for the regular variation of X?

XeRV_,= EA" =17

If X € RV_, then E|X|P < o for all p < x and E|X|P = o for all
P> K.

Theorem (Alsmeyer & Iksanov & Rdésler (2009))
E|X|P < oo iffEAP < 1 and E|BIP < .
Thus X € RV_, implies EA® < 1.
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:
EA™ <1

NASC for the regular variation of X?

XeRV_,= EA" =17

If X € RV_, then E|X|P < o for all p < x and E|X|P = o for all
P> K.

Theorem (Alsmeyer & Iksanov & Rdésler (2009))
E|X|P < oo iff EAP < 1 and E|BJP < cc.
Thus X € RV_,, implies EA® < 1. Canitbe < 1?
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EA™ <1

NASC for the regular variation of X?

XeRV_,= EA" =17

If X € RV_, then E|X|P < o for all p < x and E|X|P = o for all
P> K.

Theorem (Alsmeyer & Iksanov & Rdésler (2009))
E|X|P < oo iff EAP < 1 and E|BJP < cc.
Thus X € RV_,, implies EA® < 1. Canitbe < 1?

Theorem (K)
Yes.

: :
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EA™ <1

Assume EA® = § < 1 for some > 0, and EA! = oo for any
> k.

F.(x)=67" /X e F(dy).

The assumption EA! = o for all t > k means that F is
heavy-tailed.

To analyze the asymptotic behavior of the resulting defective
renewal equation we use the techniques and results developed
by Asmussen, Foss and Korshunov (2003).
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EA™ <1

Locally subexponential distributions

Forsome T € (0, ] let A = (0, T]. For a df H we put

H(x+ A)=H(x+ T) — H(x). Adf Hon R is in the class Lx if
H(x +t+ A)/H(x + A) — 1 uniformly in t € [0, 1], and it
belongs to the class of A-subexponential distributions, H € Sa,
if H(x + A) > 0 for x large enough, H € L, and

(HxH)(x+ A) ~2H(x + A). If H € Sa for every T > 0 then it
is called locally subexponential, H € Soc.
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EA™ <1

Locally subexponential distributions

Forsome T € (0, ] let A = (0, T]. For a df H we put

H(x+ A)=H(x+ T) — H(x). Adf Hon R is in the class Lx if
H(x +t+ A)/H(x + A) — 1 uniformly in t € [0, 1], and it
belongs to the class of A-subexponential distributions, H € Sa,
if H(x + A) > 0 for x large enough, H € L, and

(H* H)(x+ A) ~2H(x + A). If H e Sa forevery T > 0 then it
is called locally subexponential, H € Soc.

Or assume simply that F is a nice subexponential distribution.

: :
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Further remarks

Theorem (K)

Assume EA® = 0 < 1, and F,; is a nice subexponential
distribution. Then

XIi_)moo g(log x) ' x"P{X > x} = mE[(AX + B)} — (AX)1],
XIi_}mOO g(log x) 'x"P{X < —x} = = Q)ZKE[(AX + B)" — (AX)],
where g(x) = F.(x + 1) — F.(x). Moreover,
E[(AX + B)} — (AX)%] + E[(AX + B)® — (AX)"] > 0.

Note that g(log x) is slowly varying.
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Comment

In the Pareto case, F.(x) = cx~?, then g(x) ~ ¢8x~~1, and
so P{X > x} ~ ¢/x~*(log x)~%~". In the lognormal case,
F.(x) = ®(log x), with ® being the standard normal df,

P{X > x} ~ cx*e~(109109%)%/2 /|oq x, ¢ > 0. For Weibull tails
F.(x)=e*", 3 €(0,1), we obtain

P{X > x} ~ cx*(log x)?~1e~(l0gx)"

Note that E[X|~ < 0o, S0 [~ X"~ F(x)dx < oco.
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More general random equations
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Goldie’s unified approach

Goldie obtained tail asymptotics for more general random
equations.

o &
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Goldie’s unified approach

Goldie obtained tail asymptotics for more general random
equations. Consider the equation
X2 AxvB,

where aV b =max{a, b}, A> 0and (A, B) and X on the
right-hand side are independent.

o & - DA
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More general random equations

Goldie’s unified approach

Goldie obtained tail asymptotics for more general random
equations. Consider the equation

X2 AxvB,

where aV b =max{a, b}, A> 0and (A, B) and X on the
right-hand side are independent.
If B=1thenlog X = M, where M = max{0, Sy, S,, ...}, and

Sp=10gA; +logAs + ...+ log A, where log A, log Ao, . .. are
iid log A.
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Further remarks
0000

and P{X > x} ~ cx™".

Theorem (Goldie (1991))
IFEA® = 1,EA"log, A < oo then there is a unique solution X,

o = = E DA
:
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Theorem (Goldie (1991))

IFEA® = 1,EA"log, A < oo then there is a unique solution X,
and P{X > x} ~ cx™".

Theorem (K)
Assume EA" =1, F,, € D(«), and the Caravenna—Doney
condition holds. Then

lim m(log X)x"P{X > x} = CQ%E[(AX+ V By ) — (AXL)M].

o = = = = 9Dac
:
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:

Theorem (Goldie (1991))

IFEA® = 1,EA"log, A < oo then there is a unique solution X,
and P{X > x} ~ cx™".

Theorem (K)
Assume EA" =1, F,, € D(«), and the Caravenna—Doney
condition holds. Then

XILm m(log x)x"P{X > x} = Ca%E[(AXJr V By — (AXL)"].

For B = 1 we get back Korshunov’s result.
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Further remarks
[e]e]e] }

Theorem (K)

Assume EA" < 1, and F,; is a nice subexponential distribution.
0
: -1k _
XI|_>moo g(log x)"'x"P{X > x} =

= Q)ZKE[(AX+VB+)”—(AX+)“],
where g(x) = F(x + 1) — Fu(x)

(=] = = = A
:
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EA" <1
Theorem (K)
Assume EA" < 1, and F,; is a nice subexponential distribution.

0
(1-0)2k
where g(x) = Fo(x + 1) — F.(x).

In the special case B = 1 we have the following.
Corollary

Sh=1logAi +logAs +...+1log Ay, M =max{0,S;,S,,...}.
Then

Jlim g(log x) "' x"P{X > x} = E[(AX, VB, )"—(AX, ) ],

P{M > x} ~ cg(x)e ",
where g(x) = F.(x + 1) — F.(x). o o
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