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Abstract
Let X1, X2, . . . be iid random variables, and let an = (a1,n, . . . , an,n) be an ar-

bitrary sequence of weights. We investigate the asymptotic distribution of the
linear combination San = a1,nX1 + · · · + an,nXn under the natural negligibility
condition limn→∞max{|ak,n| : k = 1, . . . , n} = 0. We prove that if San is asymp-
totically normal for a weight sequence an, in which the components are of the
same magnitude, then the common distribution belongs to D(2).
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1 Introduction

Let X, X1, X2, . . . be iid random variables with the common distribution
function F (x) = P{X ≤ x}. For each n ∈ N = {1, 2, . . .} consider the
random variable

San = a1,nX1 + a2,nX2 + · · ·+ an,nXn ,

where an = (a1,n, . . . , an,n) is an arbitrary sequence of weights. We investi-
gate the asymptotic behavior of the weighted sum San , therefore it is reason-
able to assume that each component is asymptotically negligible, that is for
every ε > 0

lim
n→∞

sup
1≤k≤n

P{|ak,nXk| ≥ ε} = lim
n→∞

P{|X| ≥ ε/an} = 0,
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where an = max{|ak,n| : k = 1, 2, . . . , n}, which holds, if and only if an → 0,
as n →∞. Therefore from now on we assume that an → 0. In the followings
asymptotic relations are meant as n →∞, unless otherwise specified.

Since the possible limiting distributions of San are necessarily infinitely
divisible, we need the well-known representation of their characteristic func-
tions. Let Y be an infinitely divisible real random variable with characteristic
function φ(t) = E(eitY ) in its Lévy form ([4] p. 70), given for each t ∈ R by

φ(t) = exp

{
itθ − σ2

2
t2 +

∫ 0

−∞
βt(x) dL(x) +

∫ ∞

0

βt(x) dR(x)

}
,

where

βt(x) = eitx − 1− itx

1 + x2

and the constants θ ∈ R and σ ≥ 0 and the functions L(·) and R(·) are
uniquely determined: L(·) is left-continuous and non-decreasing on (−∞, 0)
with limx→−∞ L(x) = L(−∞) = 0 and R(·) is right-continuous and non-

decreasing on (0,∞) with limx→∞ R(x) = R(∞) = 0, such that
∫ 0

−ε
x2dL(x)+∫ ε

0
x2dR(x) < ∞ for every ε > 0.
As usual, we say that the distribution F is in the domain of attraction of

the α-stable law W , α ∈ (0, 2], written F ∈ D(α), if for some centering and
norming sequence An and Cn

1

Cn

[ n∑

k=1

Xk − An

] D−→W ,

where X1, X2, . . . are iid random variables with distribution function F .
Moreover, F is in the domain of partial attraction of the infinitely divisi-
ble random variable W , written F ∈ Dp(W ), if there exist a subsequence
{kn}∞n=1 ⊂ N, and centering and norming sequence An, Cn, such that the
convergence takes place along kn, that is

1

Cn

[ kn∑

k=1

Xk − An

] D−→W . (1)

For an α-stable W we write Dp(α) instead of Dp(W ).
The motivation for considering linear combinations of iid random vari-

ables comes from a recent result in [7] in connection with semistable laws.
An infinitely divisible law is called semistable, if and only if either it is

normal, or in its Lévy representation the normal component σ = 0 and the
spectral functions can be written in the form L(x) = ML(x)/|x|α, x < 0, and
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R(x) = −MR(x)/xα, x > 0, for some α ∈ (0, 2), where ML and MR are non-
negative bounded functions ML(·) on (−∞, 0) and MR(·) on (0,∞), one of
which has strictly positive infimum and the other one either has strictly posi-
tive infimum or is identically zero, and ML(c1/αx) = ML(x) for all x > 0 and
MR(c1/αx) = MR(x) for all x < 0, with the same period c > 1. The following
result of Kruglov [9] shows the probabilistic meaning of the semistability and
c. If (1) holds for some F (·) along some {kn} for which limn→∞ kn+1/kn = c
for some c ∈ (1,∞), then the limit distribution is necessarily semistable and,
when the exponent α < 2, the common multiplicative period of MR(·) and
ML(·) is the c1/α from the latter growth condition on {kn}. In this case F
is in the domain of geometric partial attraction of the semistable law W ,
F ∈ Dgp(W ). The converse of the result above is also true, that is for any
semistable law W , Dgp(W ) 6= ∅. For more background about semistable laws
we refer to [10].

The above mentioned result is the following corollary in [7]:

Corollary. For any semistable law W and for any distribution function F ∈
Dgp(W ), there exist an {an}∞n=1 sequence of weights and a well determined

centering sequence An, such that San −An
D−→W . Moreover, in each row of

the weight sequence there are only two different components an,1 ≥ an,2, and
limn→∞ an,1/an,2 = c, where c comes from the representation of W .

Classical theory says that if limiting distribution exists for a uniform
weight sequence, that is when each components in a row are equal, then it
must be stable. As an essence of semistability, this corollary claims that
semistable limiting distributions can be achieved by weight sequences that
consist of only two different components. We will see the contrast of this
corollary and Theorem 6.

The prototypes of random variables from the domain of geometric partial
attraction of a semistable laws are the so-called St. Petersburg games. Since
these games are our base motivations for working with special types of linear
combinations, we spell out the details. For α ∈ (0, 2) and p ∈ (0, 1) consider
the St. Petersburg(α, p) game, where Peter, the banker, tosses a possibly
biased coin until it lands ‘heads’ and pays rk ducats to Paul, if this happens
on the kth toss, where r = 1/q, q = 1 − p, and p is the probability of
‘heads’ at each throw. If there are n players, Paul1, Paul2, . . ., Pauln, each
of them playing exactly one game, then before they play, they may agree to
use a pooling strategy pn = (p1,n, p2,n, . . . , pn,n), where the components are
nonnegative and add to unity. If Xk denotes the gain of Paulk, k = 1, 2, . . . , n,
under this strategy Paul1 receives p

1/α
1,n X1 + p

1/α
2,n X2 + · · · + p

1/α
n,n Xn ducats,

Paul2 receives p
1/α
n,n X1 + p

1/α
1,n X2 + · · · + p

1/α
n−1,nXn ducats, . . ., Pauln receives
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p
1/α
2,n X1 + p

1/α
3,n X2 + · · · + p

1/α
1,n Xn ducats. Consider the centered version of

Paul1’s gain

Sα,p
pn

=
n∑

k=1

p
1/α
k,n Xk − p

q
Hα,p(pn),

where the constant Hα,p(pn) depends only on the strategy. Under the neg-
ligibility assumption it is possible to prove a merging asymptotic expansion
for arbitrary sequence of strategies. But what is more important from our
point of view, it turns out that if the components are integer powers of q,
then a usual limit theorem holds:

Sα,p
pn

D−→Wα,

where Wα is a well-determined semistable random variable with characteristic
exponent α. In this case the merging asymptotic expansions reduce to usual
asymptotic expansions, so it is possible to determine the rate of convergence.
These results rely on deep Fourier analysis, and on the specific forms of the
St. Petersburg distribution. For more details see [2] and [1].

2 Results

Our starting point is Theorem 25.1 in [4]. Let {Y1,n, Y2,n, . . . , Yn,n}∞n=1 be
an an infinite array of asymptotically negligible, rowwise independent ran-
dom variables, with distribution functions Fk,n(x) = P{Yk,n ≤ x}, x ∈ R,
n = 1, 2, . . ., k = 1, 2, . . . , n. Then the random variable

∑n
k=1 Yk,n − An, for

an appropriate numerical sequence An, converges in distribution to a non-
degenerate random variable W , with Lévy functions L and R, and normal
component σ, if and only if

n∑

k=1

Fk,n(x) → L(x), x < 0, x ∈ CL , (2)

n∑

k=1

(Fk,n(x)− 1) → R(x), x > 0, x ∈ CR ,

and

lim
ε→0

lim inf
n→∞

n∑

k=1

{ ∫

|x|≤ε

x2 dFk,n(x)−
( ∫

|x|≤ε

x dFk,n(x)
)2

}
(3)

= lim
ε→0

lim sup
n→∞

n∑

k=1

{∫

|x|≤ε

x2 dFk,n(x)−
( ∫

|x|≤ε

x dFk,n(x)
)2

}
= σ2,
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where for a real function f , Cf denotes its continuity points.
The Lévy functions of the normal distribution are identically 0. Adding

the two equations in (2) and using Theorem 26.2 in [4] we obtain, that

San − An
D−→Z ∼ N(0, 1) for some appropriate An, if and only if for every

ε > 0

n∑

k=1

∫

|ak,nXk|>ε

dP → 0, and

n∑

k=1

{∫

|ak,nXk|<ε

a2
k,nX

2
k dP−

( ∫

|ak,nXk|<ε

ak,nXk dP
)2

}
→ 1 .

It follows immediately from this form that
∑n

k=1 ak,nXk − An
D−→N(0, 1) if

and only if
∑n

k=1 |ak,n|Xk − An
D−→N(0, 1).

In the simplest case, when X has finite variance we obtain the following
characterization of convergence:

Theorem 1 Let X, X1, X2, . . . be iid random variables with finite variance,
and put µ = E(X). Then an → 0 and

n∑

k=1

ak,n(Xk − µ)
D−→N(0, 1) ,

if and only if
∑n

k=1 a2
k,n → 1/Var(X).

All the proofs are placed in the next section.
Asymptotic normality of linear combinations is closely related to the fol-

lowing problem: Let (Rν,1, Rν,2, . . . , Rν,Nν ) be a random vector, which takes
on the Nν ! permutations of (1, . . . , Nν) with equal probabilities. Consider
{bν,i : 1 ≤ i ≤ Nν , ν ≤ 1} and {aν,i : 1 ≤ i ≤ Nν , ν ≤ 1} two double
sequence of real numbers. Hájek [5] gave necessary and sufficient condition
for the asymptotic normality of the random sum

∑Nν

i=1 bν,i aν,Rν,i
. During the

proof of his main theorem, as a corollary he obtains Theorem 1 here, though
the theorem is not stated explicitly.

The sufficiency part –in case of nonnegative weights– is stated explicitly
in [8] in a more general setup, when {Xn}∞n=1 is a sequence of linearly negative
quadrant dependent random variables.

In the special case, when each weight sequence is a normalized pooling
strategy, as a consequence of Theorem 1 we obtain the following corollary.
Recall that pn = (p1,n, . . . , pn,n) is a strategy if its components are nonnega-
tive and add to unity.
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Corollary 2 Let X1, X2, . . . be iid random variables with 0 mean and finite
variance. Then for a sequence of strategies {pn}, there exists a normalizing
sequence cn, such that

1

cn

n∑

k=1

pk,nXk
D−→N(0, 1)

and pn/cn → 0, if and only if

pn√∑n
k=1 p2

k,n

→ 0 ,

and in this case cn =
√

Var(X)
∑n

k=1 p2
k,n.

Consider an other special case of the weight sequences. Let X1, X2, . . . be
iid random variables with E(X) = 0 and E(X2) = 1. Let {wk}∞k=1 be a se-
quence of real numbers such that wk 6= 0 for all k, and put Wn = w2

1+· · ·+w2
n.

The weight sequence now is an = (w1/
√

Wn, . . . , wn/
√

Wn). Easy compu-
tation shows that in this particular case asymptotic negligibility an → 0
holds if and only if Wn → ∞ and w2

n/Wn → 0. With no more moment

assumptions on X, Fisher [3] proved that San

D−→N(0, 1), if Wn → ∞ and
lim supt→∞ #{n : Wn/w2

n < t}/t < ∞, where #A stands for the cardinal-
ity of a set A. It is easy to show that these conditions imply asymptotic
negligibility, but the converse is not true. Later Weber [11] found sufficient

conditions for San

D−→N(0, 1), with higher moment assumptions, and these
assumptions also imply asymptotic negligibility. We note that these arith-
metic assumptions on the weight sequence are necessary in the case of law of
large numbers; see [6] and [12]. Therefore it is very interesting that the nec-
essary and sufficient condition for the asymptotic normality is so simple: as
a corollary of Theorem 1 we obtain that in this case asymptotic negligibility
implies distributional convergence:

Corollary 3 Let X1, X2, . . ., {wn}∞n=1, {Wn}∞n=1 and an be as above. If

Wn →∞ and w2
n/Wn → 0, then San

D−→N(0, 1).

Now assume that the variance is infinite. In this case assumption (3),
especially in the normal case, becomes simpler, because by [4] p.173

[∫ x

−x

y dF (y)

]2

= o(1)

∫ x

−x

y2 dF (y),
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where o(1) → 0 as x →∞.
According to the next result if the common distribution function F be-

longs to the domain of attraction of a stable law, then the only possible limit
is that stable.

Theorem 4 Assume that F ∈ D(α), α ∈ (0, 2]. If for some weight sequence

an and centering sequence An, San−An
D−→W , where W is a nondegenerate

random variable, then W is necessarily α-stable.

We investigate a particular converse of the theorem above. What can
we say about the random variable X, if for some sequence an the limit
distribution exists, and it is normal?

Theorem 5 Let X1, X2, . . . be iid random variables with common distribu-
tion function F . If there exists a weight sequence an and a centering numer-

ical sequence An, such that San − An
D−→N(0, 1), then F ∈ Dp(2).

In a certain sense, according to the latter theorem the distributional con-
vergence through linear combinations is not more general, than along sub-
sequences. The converse is trivially true. Indeed, assume that for a given
subsequence {kn} the distributional convergence (1) holds. Then we can de-
fine the weight sequence an = (1/Cj, . . . , 1/Cj, 0, . . . , 0), if kj ≤ n < kj+1,

where the number of Cj-s is kj. Now, obviously San −Aj/Cj
D−→W . To ex-

clude such trivial cases we introduce the following notion. We call a weight
sequence {an}∞n=1 balanced if

lim inf
n→∞

min{|ak,n| : k = 1, . . . , n}
max{|ak,n| : k = 1, . . . , n} > 0 .

Roughly speaking this means that each component is important. We note
that this is the same as the definition of balanced strategies in [7].

The next theorem says that convergence to a normal through a balanced
weight sequence implies convergence through the whole sequence of integers.

Theorem 6 Let an be a balanced weight sequence and An a centering se-

quence, such that San − An
D−→N(0, 1). Then F ∈ D(2).

It is important to note that in general the two types of convergence are
very different. According to the Corollary in [7] (and in Section 1 here) if
F ∈ Dgp(W ), for a nondegenerate semistable law W , then there is a balanced
weight sequence an, which contains only two different components, and for
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which San − An
D−→W , where An is well determined. However, in this case

F is not necessarily contained in the domain of attraction of any stable law.
We also note that Megyesi [10] proved for any stable law W that its domain
of geometric partial attraction and its domain of attraction coincide. These
results show similarity between convergence along a geometric subsequence,
and convergence through balanced weight sequence.

There is an interesting problem in connection with such weight sequences:
What is the class of infinitely divisible random variables, whose distribu-
tion can be obtained as the limit distribution of linear combinations of iid
variables with balanced weight sequences? We do not even know whether
nonsemistable limits of this type exist or not.

The validity of Theorem 5 in the general infinitely divisible case, and
the validity Theorem 6 in the general α-stable case are also interesting open
problems.

3 Proofs

Proof of Theorem 1. As we have seen before Theorem 1 we may assume
that the weights are nonnegative. In this case Fk,n(x) = P{ak,nX ≤ x} =
F (x/ak,n). We spell out the conditions again: there is asymptotic normality
if and only if

∑n
k=1

[
F (−x/ak,n) + 1− F (x/ak,n)

]
→ 0 for every x > 0 , and (4)

∑n
k=1 a2

k,n

{∫

|x|≤ε/ak,n

x2 dF (x)−
( ∫

|x|≤ε/ak,n

x dF (x)
)2

}
→ 1 , (5)

for every ε > 0.
We may assume that E(X) = 0. Since an → 0, each term in (5) tends

to Var(X). Thus the validity of (5) is equivalent to limn→∞
∑n

k=1 a2
k,n =

1/Var(X). Moreover in this case (4) also holds. Indeed,
∫
R\[−x,x]

y2 dF (y) ≥
x2(F (−x) + 1− F (x)), and since the left side tends to 0 as x →∞, we have

n∑

k=1

[
F (−x/ak,n) + 1− F (x/ak,n)

]
=

n∑

k=1

a2
k,n

x2
o(1) → 0 ,

where o(1) → 0, as n →∞, proving (4), and thus the statement.

Proof of Corollary 2. Necessity. According to Theorem 1 asymptotic
normality implies

∑n
k=1 p2

k,n/c
2
n → Var(X)−1 and since

∑n
k=1 p2

k,n ≤ pn ≤ 1,
we get that cn is bounded. Therefore pn/cn → 0 implies pn → 0, and hence
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cn → 0 too. Since cn ∼
√

Var(X)
∑n

k=1 p2
k,n [for numerical sequences we

write an ∼ bn if an/bn → 1], we obtain

lim
n→∞

pn√∑n
k=1 p2

k,n

= 0 ,

as claimed.
Sufficiency. Put cn =

√
Var(X)

∑n
k=1 p2

k,n for the norming sequence.

Then
∑n

k=1 p2
k,n/c

2
n = Var(X)−1 and an = pn/

√
Var(X)

∑n
k=1 p2

k,n → 0, so

by Theorem 1 the statement follows.

Proof of Theorem 4. First consider the case α = 2. It is well known
that F ∈ D(2) if and only if

lim
x→∞

x2 [F (−x) + 1− F (x)]∫
|y|≤x

y2 dF (y)
= 0 . (6)

By (6) we have

n∑

k=1

[
F (−x/|ak,n|) + 1− F (x/|ak,n|)

]
= o(1)

1

x2

n∑

k=1

∫

|y|≤x/|ak,n|
a2

k,n y2 dF (y) ,

where o(1) is meant as o(1) → 0, if n → ∞. By (3) the sum after o(1) on
the right-hand side of the equality is bounded for x small enough, and using
(2) it is easy to see that it is bounded for all x > 0. Thus the right-hand side
goes to 0. Since the left-hand side converge to L(x) − R(x), where L and
R are the Lévy functions as in (2), we obtain that both Lévy functions are
identically 0, which means that the limit distribution is necessarily normal.

Now let α < 2. Suppose that the components are nonnegative. According
to the characterization of D(α), F ∈ D(α) if and only if

F (−x)

1− F (x)
→ c, as x →∞, c ∈ [0,∞], and (7)

1− F (x) + F (−x)

1− F (kx) + F (−kx)
→ kα, as x →∞, for each k > 0 . (8)

Consider the case when 0 < c < ∞. Then by (7) F (−x) = (c+o(1))[1−F (x)],
and hence

[1− F (x)](1 + c + o(1))

[1− F (kx)](1 + c + o(1))
→ kα
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as x →∞, where now o(1) → 0 as x →∞. This implies

1− F (x)

1− F (kx)
→ kα and similarly

F (−x)

F (−kx)
→ kα ,

as x →∞. Applying this now for fix x and n →∞ we obtain 1−F (1/ak,n) =
(xα + o(1))[1 − F (x/ak,n)], where now o(1) → 0 as n → ∞. Summing from
1 to n

n∑

k=1

[
1− F (1/ak,n)

]
=

n∑

k=1

(
xα + o(1)

)[
1− F (x/ak,n)

]
.

By (2) the left side converges to −R(1), the right converges to −xαR(x),
which means that R(x) = R(1)/xα, x < 0. Similarly L(x) = L(1)/xα, x > 0.
Now the proof of σ = 0 is routine. These together implies that the limit is
stable.

If c = 0 or c = ∞ the ideas are the same. The only different that in this
case one of the Lévy functions vanishes.

If the components are arbitrary, then handling the positive and negative
weights separately, the proof is a trivial modification of the above special
case.

Proof of Theorem 5. As before we may assume that the weights are
nonnegative. Suppose indirectly that X 6∈ Dp(2). By the well-known char-
acterization this means that

lim inf
x→∞

x2
[
F (−x) + 1− F (x)

]
∫
|y|≤x

y2 dF (y)
> 0 .

Choose a > 0, which is smaller than the lim inf above. Hence if x is large
enough, we have

x2
[
F (−x) + 1− F (x)

]
> a

∫

|y|≤x

y2 dF (x) .

Since an → 0 we obtain

n∑

k=1

[F (−x/ak,n) + 1− F (x/ak,n)] ≥ a

n∑

k=1

a2
k,n

x2

∫

|y|≤x/ak,n

y2 dF (y) .

By (4) the left-hand side goes to 0, so the right-hand side also does, which
implies by (5) that σ = 0. The contradiction proves the statement.
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Proof of Theorem 6. We assume as before that the weight sequence
is nonnegative. If E(X2) < ∞ then the statement is obvious, therefore we
suppose that the variance is infinite. In this case, as we mentioned before,
the second term in (5) is superfluous. The definition of balancedness implies
that there exists K > 1, such that an/ak,n < K, for each n and k = 1, . . . , n.
Then writing 1/K instead of x in (4) we obtain

n∑

k=1

∫

|y|> 1
Kak,n

dF (y) ≥
n∑

k=1

∫

|y|>1/an

dF (y) = n

∫

|y|>1/an

dF (y) ,

and since the left side tends to 0, so does the right.
Rewriting the left side of (5), without the second term, we have for ε = 1

n∑

k=1

a2
k,n

∫

|y|<1/ak,n

y2 dF (y) =
n∑

k=1

a2
k,n

∫

|y|<1/an

y2 dF (y)

+
n∑

k=1

a2
k,n

∫

1/ak,n≥|y|≥1/an

y2 dF (y) ,

and for the remainder term

n∑

k=1

a2
k,n

∫

1/ak,n≥|y|≥1/an

y2 dF (y) ≤
n∑

k=1

∫

1/ak,n≥|y|≥1/an

dF (y)

≤ n

∫

|y|≥1/an

dF (y) ,

which tends to 0. This means that

n∑

k=1

a2
k,n

∫

|y|≤1/an

y2 dF (y) → 1

as n →∞. Finally, since na2
n/K2 ≤ ∑n

k=1 a2
k,n ≤ na2

n, we obtain

1 ≤ lim inf
n→∞

n a2
n

∫

|y|≤ 1
an

y2 dF (y) ≤ lim sup
n→∞

n a2
n

∫

|y|≤ 1
an

y2 dF (y) ≤ K2 .

From this boundedness we show that F ∈ D(2), with the same idea as in [4]
p. 181. Put χ(x) =

∫
|y|>x

dF (y) and H(x) =
∫
|y|<x

y2 dF (y)/x2. Now an → 0

implies that for each x large enough we can find n ∈ N such that 1/an <
x ≤ 1/an+1. Then clearly χ(x) ≤ χ(1/an) and H(x) ≥ H(1/an+1)−χ(1/an).
Thus

χ(x)

H(x)
≤ nχ(1/an)

nH(1/an+1)− nχ(1/an)
.
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We have just seen above that nχ(1/an) → 0 and nH(1/an) is bounded,
thus χ(x)/H(x) → 0, as x → ∞, which is exactly the same as (6), that is
F ∈ D(2) as claimed.
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