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1 Introduction

Consider a semistable distribution function Gα of exponent α ∈ (0, 2) on the
real line R, with characteristic function φα(t) =

∫∞
−∞ eitxdGα(x) = eyα(t). By

the well-known characterization of semistable variables, we have the Lévy
form ([9], p.70) of yα(t):

yα(t) = itθ +

∫ 0

−∞
βt(x) dLα(x) +

∫ ∞

0

βt(x) dRα(x) ,

where

βt(x) = eitx − 1− itx

1 + x2
,

θ ∈ R, and there exist functions ML(·) on (−∞, 0) and MR(·) on (0,∞), one
of which has strictly positive infimum and the other one either has strictly
positive infimum or is identically zero, such that Lα(x) = ML(x)/|x|α, x < 0,
is left-continuous and non-decreasing on (−∞, 0) and Rα(x) = −MR(x)/xα,
x > 0, is right-continuous and non-decreasing on (0,∞) and ML(c1/αx) =
ML(x) for all x < 0 and MR(c1/αx) = MR(x) for all x > 0, with the same
period c > 1. As in the general Lévy representation formula the constant θ
and the functions Lα and Rα are uniquely determined. We need a variant of
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this formula by Csörgő, Haeusler and Mason [5], for yα in connection with a
probabilistic representation of the underlying random variable. We note that
this representation is more general, it is applicable to distributions, which can
be the limit of trimmed sums, but the representation itself is not needed here.
If yα is as above, then we have

yα(t) = itθ +

∫ ∞

0

βt(ψ
α
1 (u)) du+

∫ ∞

0

βt(−ψα2 (u)) du , (1)

with

ψαj (s) = −Mj(s)

s1/α
, s > 0, j = 1, 2, (2)

where M1 and M2 are non-negative, right-continuous functions on (0,∞),
either identically zero or bounded away from both zero and infinity, such
that at least one of them is not identically zero, the functions ψαj (·) are non-
decreasing and the multiplicative periodicity property Mj(cs) = Mj(s) holds
for all s > 0, for some constant c > 1, j = 1, 2. (The superscript α in ψαj is
a label, not a power exponent.) Clearly, the two descriptions are equivalent,
moreover the following inverse relations hold: ψα1 (s) = inf{x < 0 : Lα(x) >
s} and ψα2 (s) = inf{x < 0 : −Rα(−x) > s}, s > 0, and, conversely, Lα(x) =
inf{s > 0 : ψα1 (s) ≥ x}, x < 0, and Rα(x) = − inf{s > 0 : ψα2 (s) ≥ −x},
x > 0.

Let W (ψα1 , ψ
α
2 , 0) denote the random variable, that has characteristic

function (1) with θ = 0. To keep complete accord with [8] as far as con-
stants go, we also introduce V (ψα1 , ψ

α
2 , 0) = W (ψα1 , ψ

α
2 , 0) + θ(ψα1 ) − θ(ψα2 ),

where

θ(ψ) =

∫ 1

0

ψ(s)

1 + ψ2(s)
ds−

∫ ∞

1

ψ3(s)

1 + ψ2(s)
ds ,

and for its distribution function we put

Gψα
1 ,ψ

α
2 ,0

(x) = P
{
V (ψα1 , ψ

α
2 , 0) ≤ x

}
, x ∈ R. (3)

Let X1, X2, . . . be independent and identically distributed random vari-
ables with the common distribution function F (·) and let V (ψα1 , ψ

α
2 , 0) and

Gψα
1 ,ψ

α
2 ,0

be as in (3). Then F is in the domain of partial attraction of
G = Gψα

1 ,ψ
α
2 ,0

, written F ∈ Dp(G), if for some centering and norming con-
stants ckn ∈ R and akn > 0 the convergence in distribution

1

akn

(
kn∑
j=1

Xj − ckn

)
D−→V (ψα1 , ψ

α
2 , 0), (4)

holds along a subsequence {kn}∞n=1 ⊂ N = {1, 2, 3, . . .}, where, and through-
out the paper, all asymptotic relations are meant as n→∞ unless otherwise
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specified. The following theorem of Kruglov [11] highlights the importance
of semistability; see [12] and [8] for further references. If (4) holds for some
F (·) along some {kn} for which limn→∞ kn+1/kn = c for some c ∈ (1,∞),
then the limiting random variable is necessarily semistable, and when the
exponent α < 2, that is the limit distribution is non-normal, then the com-
mon multiplicative period of M1(·) and M2(·) in (2) is the c from the latter
growth condition on {kn}. Conversely, for an arbitrary semistable distribu-
tion Gψα

1 ,ψ
α
2 ,0

there exists a distribution function F (·) for which (4) holds
along some {kn} ⊂ N satisfying

lim
n→∞

kn+1

kn
= c for some c ∈ [1,∞) . (5)

We say that a distribution F (·) is in the domain of geometric partial at-

traction of G with rank c ≥ 1, written F ∈ D(c)
gp (G), if (4) holds along a sub-

sequence {kn}∞n=1 ⊂ N satisfying (5). Clearly, if Dgp(G) :=
⋃
c≥1D

(c)
gp (G) 6= ∅

then G is semistable. Define c = c(Gψα
1 ,ψ

α
2 ,0

) = inf{c > 1 : Mj(cs) =
Mj(s), s > 0, j = 1, 2}, the minimal common period of the functions M1, M2

in ψα1 , ψ
α
2 in (2), and c(G0,0,σ) = 1 for any σ > 0. Megyesi [12] showed that

the entire domain Dgp(G) =
⋃
c≥1D

(c)
gp (G) of geometric partial attraction can

be produced as Dgp(G) = D(c)
gp (G). Moreover, if c(G) = 1 then the distribu-

tion G is necessarily stable.
Megyesi [12] characterized the domain of geometric partial attraction of

the semistable laws for any subsequence satisfying (5). However, for the sake
of simplicity, we will assume throughout the paper that our subsequence
{kn} is as simple, as it can, that is kn ≡ bcnc for c = c(Gψα

1 ,ψ
α
2 ,0

) > 1,
where G = Gψα

1 ,ψ
α
2 ,0

is an arbitrary non-normal semistable distribution and
byc = max{k ∈ Z : k ≤ y} is the usual integer part. In this special case (4)
holds, if and only if

Q+(s) = −s−1/α l(s)
[
M1(s) + h1(s)

]
and

Q(1− s) = s−1/α l(s)
[
M2(s) + h2(s)

]
for all s ∈ (0, 1), (6)

where Q(s) = inf{x : F (x) ≥ s}, s ∈ (0, 1), is the quantile function of
F (·), and Q+(·) its right-continuous version, l(·) is a positive right-continuous
function, slowly varying at zero, the functions Mj are from (2) and the error
terms h1(·), h2(·) are right-continuous functions such that lims↓0 hj(s) = 0 if
Mj is continuous, while if Mj has discontinuities then hj(s) may not go to
zero but limn→∞ hj(t/kn) = 0 for t ∈ C(Mj), j = 1, 2, where C(f) stands for
the set of continuity points of the function f . Conversely, if the Q(·) of F (·)
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satisfies (6), then F ∈ Dgp(Gψα
1 ,ψ

α
2 ,0

) and

Skn :=

∑kn

j=1Xj − kn
∫ 1−1/kn

1/kn
Q(u)du

k
1/α
n l(1/kn)

D−→V (ψα1 , ψ
α
2 , 0),

where X1, X2, . . . are independent with the common distribution function F .
For what follows we need to define the scaling transform of our semistable

variable. LetG = Gψα
1 ,ψ

α
2 ,0

be semistable with exponent α ∈ (0, 2). For λ > 0,

let λψ(s) = ψ(s/λ) and put ψα,λj (s) = λ−1/α
λψ

α
j (s) = −Mj(s/λ)s−1/α, s > 0,

where the functions Mj are from (2), j = 1, 2. Introduce

Vα,λ(M1,M2) = V (ψα,λ1 , ψα,λ2 , 0) and E(eitVα,λ(M1,M2)) = eyα,λ(t), t ∈ R, (7)

and notice the identity Vα,λ(M1,M2) = λ−1/α V (λψ
α
1 , λψ

α
2 , 0). Put Gα,λ(x) =

P{Vα,λ(M1,M2) ≤ x}.
We restate a basic result from [8] in terms of what we call circular con-

vergence. For a given c > 1 we say that the sequence {un}∞n=1 ⊂ R converges
circularly to u ∈ (c−1, 1], written un

cir−→u, if either u ∈ (c−1, 1) and un → u,
or u = 1 and the sequence {un} has limit points c−1 or 1, or both. (For c = 1
the notion un

cir−→ 1 simply means that un → 1.) Let the distribution function
F ∈ Dgp(G) be such that (4) holds along a subsequence {bcnc}∞n=1, where
c = c(G). Part of the surprising result in Theorem 1 in [8] is that there
are as many different limiting distributions as the continuum along different
subsequences. Introduce the position parameter γn = n/cd logc ne ∈ (c−1, 1],
which describes the position of n between two consecutive powers of c. Then
Theorem 1 in [8] says that if along a subsequence {nr}∞r=1 ⊂ N,

∑nr

j=1Xj − cnr

anr

D−→ W as r →∞

for a non-degenerate random variable W , then γnr

cir−→κ ∈ (c−1, 1] as r →∞,
and the distribution ofW is necessarily that of an affine linear transformation
of Vα,κ(M1,M2). Conversely, if γnr

cir−→κ ∈ (c−1, 1] as r → ∞, then the

distributional convergence above holds with cnr = nr
∫ 1−n−1

r

n−1
r

Q(s) ds, anr =

n
1/α
r l(1/nr) and W = Vα,κ(M1,M2). This theorem leads to the following

merging theorem, Theorem 2 in [8]:

sup
x∈R

∣∣P{Sn ≤ x} −Gα,γn(x)
∣∣ → 0 .

The prototypes of distribution in the domain of geometric partial attrac-
tion of a semistable law with characteristic exponent α ∈ (0, 2), are the

4



generalized St. Petersburg(α, p) games, α ∈ (0, 2), p ∈ (0, 1). In this games
for the gambler’s winning X we have P{X = rk/α} = qk−1p, where q = 1− p
and r = 1/q. In this special case fast merge rates, depending upon the tail
parameter α, were obtained by Csörgő [2]. Moreover, these rates were found
to be optimal, guaranteed by the 3-term expansion in [3]. Motivated by these
results Pap [14] obtained a sort of complete asymptotic expansion, the length
of it is regulated by α: the closer α is to 0 or 2, the longer the expansion
may be taken.

These asymptotic expansions depend on the existence of the mixed deriva-
tives G

(k,j)
α,λ (x) = ∂k+jG∗uα,λ(x)/∂x

k∂uj|u=1, k, j ∈ N0, of the generalized con-
volution powers G∗uα,λ(x) of a semistable distribution function, which will be
introduced in the next section.

Asymptotic expansions in the usual sense, when the attracting Gα is
nonnormal stable law, are also based on the existence and regularity of these
mixed derivatives of Gα. We refer to Mitalauskas and Statulevičius [13], and
to the monograph of Christoph and Wolf [1].

However, in the semistable case the regularity properties of the mixed
derivatives was derived by Csörgő [4], only very recently. Actually, the prob-
lem treated in this paper was addressed already there: ’what expansions
in the domain of attraction of a nonnormal stable law, as summarized in
Chapts. 4 and 5 of [1], have merging analogues for distributions in the do-
main of geometric partial attraction of a nonnormal semistable law?’

Theorem 1 in the next section states that there is a certain length of
asymptotic expansion, where, as usual, the length depends on the smoothness
of the characteristic function near 0. If Cramer’s continuity condition does
not hold, which exactly the case in the St. Petersburg games, then the length
of the expansion depends also on α: as in [14], the closer α is to 0 or 2, the
longer expansion may be taken. Actually, Theorem 1 is the exact analogue of
Theorem 4.11 in [1]. In Theorem 2 we give sufficient condition for an infinite
expansion, in terms of the quantile function. All the proofs are placed in
Section 3.

2 Results

As we promised, we begin with the existence and some basic properties of the
mixed derivatives. Let Gα be a semistable distribution function, with expo-
nent α ∈ (0, 2). Consider for each u > 0 the infinitely divisible distribution
function Gα(x ;u), x ∈ R, that has characteristic function gα(t ; u) = euyα(t),
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that is,

gα(t ;u) = euyα(t) =

∫ ∞

−∞
eitx dGα(x ; u), t ∈ R.

It was shown in Lemma 2 in [4] that the partial derivatives

G(k,j)
α (x ;u) =

∂k+j Gα(x ;u)

∂xk ∂uj
=

1

2π

∫ ∞

−∞
e−itx(−it)k−1

[
yα(t)

]j
euyα(t) dt

are well defined at all x ∈ R and u > 0 for every j ∈ N0 = {0, 1, . . .} and
k ∈ N, so that

G(k,j)
α (x) =

∂k+j Gα(x ;u)

∂xk ∂uj

∣∣∣∣
u=1

, x ∈ R, for j ∈ N0 , k ∈ N, (8)

are all meaningful. Furthermore, by Lemma 3 in [4] we have the moment
property

∫ ∞

−∞
|x|β

∣∣G(k+1,j)
α (x)

∣∣ dx <∞ 0 ≤ β < α for all j, k ∈ N0 ,

and the limit properties

G(k+1,j)
α (±∞) = lim

x→±∞
G(k+1,j)
α (x) = 0 for all j, k ∈ N0 . (9)

Moreover, it was proved in [7] that the above remains true for every pair

(k + 1, j) 6= (0, 0), that is G
(k,j)
α (±∞) = 0, if k, j ∈ N0, k + j > 0. In

particular, for every j, k ∈ N0 the function G
(k+1,j)
α (·) is Lebesgue integrable

on R, and hence

G(k,j)
α (x) =

∫ x

−∞
G(k+1,j)
α (v) dv, x ∈ R, (10)

is a function of bounded variation on the whole R, with Fourier – Stieltjes
transform

g(k,j)
α (t) =

∫ ∞

−∞
eitx dG(k,j)

α (x) =

∫ ∞

−∞
eitxG(k+1,j)

α (x) dx

= (−it)k
[
yα(t)

]j
gα(t) = (−it)k

[
yα(t)

]j
eyα(t), t ∈ R.

After these general results we turn back to the semistable random vari-
ables V (ψα1 , ψ

α
2 , 0). Fix the functions ψα1 , ψ

α
2 in (2), and consider V (ψα1 , ψ

α
2 , 0),
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defined above (3), with distribution function Gα = Gψα
1 ,ψ

α
2 ,0

and character-

istic function eyα(t). For our purposes it is more convenient to write the
exponent yα(t) as in [4]. If α < 1

yα(t) =

∫ 0

−∞
βt(x) dLα(x) +

∫ ∞

0

βt(x) dRα(x) + it[θ(ψα1 )− θ(ψα2 )]

=

∫ 0

−∞

(
eitx − 1

)
dLα(x) +

∫ ∞

0

(
eitx − 1

)
dRα(x)

+ it

[
θ(ψα1 )− θ(ψα2 )−

∫ 0

−∞

x

1 + x2
dLα(x)−

∫ ∞

0

x

1 + x2
dRα(x)

]

= zα(t) + itη(ψα1 , ψ
α
2 ),

where η(ψα1 , ψ
α
2 ) = θ(ψα1 )−θ(ψα2 )−∫ 0

−∞
x

1+x2 dLα(x)−
∫∞
0

x
1+x2 dRα(x). Using

the definition of θ(ψ), and the integraltransformation
∫ 0

−∞ x/(1+x2)dLα(x) =∫∞
0
ψα1 (s)/(1 + ψα1 (s)2)ds, and a similar for Rα, we obtain the nice form

η(ψα1 , ψ
α
2 ) =

∫∞
1

(ψα2 (s)− ψα1 (s))ds . For α > 1 similar calculation shows that

yα(t) =

∫ 0

−∞

(
eitx − 1− itx

)
dLα(x) +

∫ ∞

0

(
eitx − 1− itx

)
dRα(x)

+it

∫ 1

0

(ψα1 (s)− ψα2 (s))ds

= zα(t) + itη(ψα1 , ψ
α
2 ) ,

where now η(ψα1 , ψ
α
2 ) =

∫ 1

0
(ψα1 (s) − ψα2 (s))ds. Using the inverse relation of

Lα, Rα and ψα1 , ψ
α
2 we obtain that for α 6= 1

zα(t) =

∫ ∞

0

[
eitψα

1 (s) − 1− I(α > 1) itψα1 (s)
]
ds

+

∫ ∞

0

[
e−itψα

2 (s) − 1 + I(α > 1) itψα2 (s)
]
ds , (11)

where I(α > 1) = 1 if α > 1, 0 elsewhere.
For α = 1 we do not have such a nice form, but actually we cannot hope,

because the exponent in the characteristic function even in the stable case
behaves strangely. For unifying the notations we also introduce z1(t) = y1(t)
and η(ψ1

1, ψ
1
2) = 0. Csörgő proved in [4] Lemma 1 that

|zα(t)| ≤
{
Cα|t|α, if α 6= 1,
C1|t|(5 + | log |t||), if α = 1.

(12)

It is important to note that for α 6= 1 our zα is exactly the same as in [4],
however for α = 1 the two definitions differ, and the difference is a constant
factor of it, which can be built in C1.
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Now we compute zα,λ(t), where of course zα,λ belongs to yα,λ, as zα belongs
to yα. Notice that yα,1 = yα, and this hold also for z and ψ. The computations
above implies

yα,λ(t) = zα,λ(t) + itη(ψα,λ1 , ψα,λ2 ).

On the other hand by Lemma 1 in [6] (actually the exponent of λ in cλ was
miswritten there)

yα,λ(t) = λyα,1(t/λ
1/α)− itcλ,

where

cλ = λ(α−1)/α

∫ 1/λ

1

[ψα2 (s)− ψα1 (s)]ds . (13)

Applying this scaling law we get for α 6= 1

yα,λ(t) = λyα,1(t/λ
1/α)− itcλ

= λ
(
zα,1(t/λ

1/α) + itλ−1/αη(ψα1 , ψ
α
2 )

)− itcλ

= λzα,1(t/λ
1/α) + it

[
λ1−1/αη(ψα1 , ψ

α
2 )− cλ

]
.

Now, separating the cases α > 1 and α < 1, a somewhat long but straight-
forward calculation shows that η(ψα,λ1 , ψα,λ2 ) = λ(α−1)/αη(ψα1 , ψ

α
2 )− cλ, which

implies the important equality

zα,λ(t) = λzα,1(tλ
−1/α). (14)

For α = 1 we only have Lemma 1 in [6], that is

z1,λ(t) = λz1,1(t/λ)− it

∫ 1/λ

1

(
ψ1

2(s)− ψ1
1(s)

)
ds.

We note that the multiplicative periodicity ψα,λj (t) ≡ ψα,cλj (t) implies that

yα,λ(t) ≡ yα,cλ(t) and so zα,λ(t) ≡ zα,cλ(t). Recalling that γn = n/cdlogc ne ∈
(c−1, 1] we may write zα,n(t) = zα,γn(t). For what follows, we introduce the
unifying notation

ηα,n(t) = nzα,1(t/n
1/α) =

{
zα,γn(t), if α 6= 1,
z1,γn(t) + itcn, if α = 1 ,

(15)

where the equation for α 6= 1 holds because of (14) and the remark above,
and cn is from (13).

After these preliminaries we start to do expansions. We follow Christoph
and Wolf [1]. First we carry out a formal expansion. Let F ∈ Dgp(Gα) be
a distribution function, and f(t) =

∫∞
−∞ eitxdF (x) its characteristic function.

Let X1, X2, . . . iid random variables, with common characteristic function F ,
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and put Vn =
∑n

i=1Xi. Assume that we have the formal infinite expansion
of the logarithm of the characteristic function

log f(t) = zα(t) +
∞∑

k=0

∞∑
j=0

δk,j
k!j!

(it)kzjα(t) , (16)

with the coefficients
δ0,0 = δ0,1 = 0 .

Without loss of generality, we may assume that δ1,0 = 0, since if it is not
0, then we can consider the random variables Xi − δ1,0. Then for fn(t) =

E(eitVn/n1/α
) = f(t/n1/α)n by (16) we obtain

fn(t) = eηα,n(t) exp

{ ∞∑

k=0

∞∑
j=0

δk,j
k!j!

(it)kηα,n(t)
jn−( k

α
+j−1)

}
.

Define the polynomials Pu,v(ω, ν) as the coefficients in the formal expansion

exp

{ ∞∑

k=0

∞∑
j=0

δk,j
k!j!

ωkνjxkyj−1

}
= 1 +

∞∑
u=0

∞∑

v=−bu/2c
Pu,v(ω, ν)x

uyv , (17)

where P0,0 ≡ 0. Clearly, the coefficients of the polynomials Pu,v depend only
on the coefficients δk,j in (16). Introduce the notations dk,j = δk,j/(k!j!),
Lm,u = max{−bu/2c,−m,m− u} and put

wm,u,v =
∑

k1+···+km=u
s1+···+sm=v+m

dk1,s1 · . . . · dkm,sm

if v ≥ Lm,u, and 0 otherwise. Then we have

Pu,v(ω, ν) =
u+v∑

m=max{1,−v}

wm,u,v
m!

ωuνv+m .

Since for α 6= 1 by (15) ηα,n(t) = zα,γn(t), therefore substituting ηα,n and it
into Pu,v, we obtain the formal infinite expansion of the distribution function

P
{
Vn/n

1/α ≤ x
}

= Hα,γn(x)

+
∞∑
u=0

∞∑

v=−bu/2c

u+v∑

m=max{1,−v}

wm,u,v
m!

(−1)uH(u,v+m)
α,γn

(x)n−u/α−v

where Hα,λ(x) is the inverse Fourier–Stieltjes transform of zα,λ(t). Notice
that Hα,λ(x) = Gα,λ(x − c), for some constant c depending on λ. Similar
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equality hold for α = 1, which is more complicated due to the occurring
constant cn in (15).

In the following we make the computations above precise. The random
variable X, or its distribution function F belongs to the class vr(zα) for r ≥ α
if for some ε > 0

log f(t) = zα(t) +
∑

k+αj≤r

δk,j
k!j!

(it)kzjα(t) + u(t) (18)

for |t| < ε, where u(|t|) = o(|t|r), δ0,0 = δ0,1 = 0 and δk,j ∈ R. We say that
F ∈ v∞(zα) if F ∈ vr(zα) for each r > 0. We also note that the assumption
δ1,0 = 0 in the theorem below is not a restricting condition. We may consider
the random variable X−δ1,0, or what is the same, we expand the distribution
function of the centered random variable Vn/n

1/α − n1−1/αδ1,0.
A characteristic function f fulfils Cramér’s continuity condition if

lim sup
t→∞

|f(t)| < 1. (19)

This quite usual general condition holds, if the absolutely continuous part in
the Lebesgue decomposition of the distribution function F , is not constant
0. This easily follows by an application of the Riemann–Lebesgue lemma.
For lattice distributed random variables the condition fails. Moreover, which
is more important in this context, the condition also fails for the generalized
St. Petersburg(α, p) games, for each α ∈ (0, 2) and p ∈ (0, 1). This was
pointed out by Pap [14]. Therefore in Theorem 1 below we also investigate
the case when (19) does not hold.

Let denote

gn,r,α(t) = eηα,n(t)

[
1 +

b 2(r−α)
2−α

c∑
u=0

b r−u−α
α

c∑

v=−bu/2c
Pu,v(it, ηα,n(t))n

−u+αv
α

]
,

where the polynomials Pu,v are defined in (17), and put Gn,r,α(x) the inverse
Fourier–Stieltjes transform of gn,r,α(t). The existence, bounded variation on
R, and the limit relations Gn,r,α(∞) = 1, Gn,r,α(−∞) = 0 follow from the
existence of mixed derivatives of Gα,λ, in particular from (8) and (9). It is
important to note that the number of terms in gn,r,α, and so in Gn,r,α depend
on the parameter α. We will see concrete examples after Theorem 2.

Now we can formulate our main theorem, which is the analogue of The-
orem 4.11 in [1]. Here o(1) → 0, as n→∞.

Theorem 1 Assume that F ∈ vr(zα) and δ1,0 = 0 in (18). Then

sup
x∈R

∣∣P{Vn/n1/α ≤ x} −Gn,r,α(x)
∣∣ ≤ n−

r−α
α o(1) + Cn−1/α.

10



Moreover, if (19) holds, then

sup
x∈R

∣∣P{Vn/n1/α ≤ x} −Gn,r,α(x)
∣∣ ≤ n−

r−α
α o(1).

It is important to note that if Cramér’s continuity condition fails, then the
approximating function Gn,r,α(x) may contain superfluous terms, which are
of a smaller order than the remainder term O(n−1/α). To exclude these un-
necessary terms we define the function g̃n,r,α(t), which is the same as gn,r,α(t),
the only different is that in the summation we only consider those terms for
which u + αv < 1. Put G̃n,r,α(x) the inverse Fourier–Stieltjes transform of
g̃n,r,α(t). With this notation the expansions may be simplified as follows.

Corollary. Assume that F ∈ vr(zα) and δ1,0 = 0 in (18). Then

sup
x∈R

∣∣∣P{Vn/n1/α ≤ x} − G̃n,r,α(x)
∣∣∣ ≤ n−

r−α
α o(1) + Cn−1/α.

Theorem 1 provides asymptotic expansions if the characteristic function
is smooth enough. But what does this condition mean in terms of the distri-
bution, or in terms of the quantile function. In the followings we investigate
this problem, and we give sufficient condition for F ∈ v∞(zα).

Clearly, even for the merging without any rate, it is necessary that F ∈
Dgp(V (ψα1 , ψ

α
2 , 0)), which is in terms of quantile functions nothing but (6).

Additionally we assume that l(s) ≡ 1 and kn = bcnc. We need some further
assumptions in

Theorem 2 If F ∈ Dgp(V (ψα1 , ψ
α
2 , 0)), in the quantile function in (6) the

slowly varying function l(s) ≡ 1, and for j = 1, 2

(a) Mj 6= 0 and for some h0 > 0 we have hj(s) = 0 for s < h0, or

(b) Mj(s) ≡ 0 and hj(s) = O(s1/α),

then F ∈ v∞(zα).

During the proof of the theorem, we will see that these conditions are
natural, and at least technically, seems to be necessary.

Actually, in the proof of Theorem 2 we will show that f(t)− 1 = zα(t) +∑∞
j=1 βj(it)

j/j!, where βj defined later in (23). Therefore we obtain the

11



infinite expansion

log f(t) = log
(
1 + zα(t) +

∞∑
j=1

(it)j

j!
βj

)

= zα(t) +
∞∑
j=1

(it)j

j!
βj − 1

2

[
zα(t) +

∞∑
j=1

(it)j

j!
βj

]2

+
1

3

[
zα(t) +

∞∑
j=1

(it)j

j!
βj

]3

− · · ·

= zα(t) +
∞∑

k=0

∞∑
j=0

δk,j
k!j!

(it)kzα(t)
j,

where the coefficients δk,j are polynomials of βj. Clearly δ0,0 = δ0,1 = 0.
Some of the first values are δ1,0 = β1,

δ2,0 = −β2
1 + β2, δ1,1 = −β1, δ0,2 = −1,

δ3,0 = 2β3
1 − 3β1β2 + β3, δ2,1 = 2β2

1 − β2, δ1,2 = 2β1, δ0,3 = 2,

δ4,0 = −6β4
1 + 12β2

1β2 − 3β2
2 − 4β1β3 + β4,

δ3,1 = −6β3
1 + 6β1β2 − β3, δ2,2 = −6β2

1 + 2β2, δ1,3 = −6β1, δ0,4 = −6.

In the St. Petersburg case, simple computation shows that the constants
βj = µα,pj = p/(qj/α − q) are the virtual moments in [14].

We can also compute the approximating functions Gn,r,α for fixed α ∈
(0, 2) and r > α. Here are some examples. Recall that Hα,λ(x) is the inverse
Fourier–Stieltjes transform of zα,λ(t). For α = 1/5

Gn, 2
5
, 1
5
(x) = Hα,γn(x)− H

(0,2)
α,γn (x)

2n
,

Gn, 3
5
, 1
5
(x) = Hα,γn(x)− H

(0,2)
α,γn (x)

2n
+

8H
(0,3)
α,γn (x) + 3H

(0,4)
α,γn (x)

24n2
,

Gn, 4
5
, 1
5
(x) = Hα,γn(x)− H

(0,2)
α,γn (x)

2n
+

8H
(0,3)
α,γn (x) + 3H

(0,4)
α,γn (x)

24n2

− 12H
(0,4)
α,γn (x) + 8H

(0,5)
α,γn (x) +H

(0,6)
α,γn (x)

48n3
.

These functions were given by Pap [14]. For α = 3/2

Gn,2, 3
2
(x) = Hα,γn(x) +H(2,0)

α,γn
(x)

β2 − β2
1

2n1/3
,

Gn, 5
2
, 3
2
(x) = Hα,γn(x) +H(2,0)

α,γn
(x)

β2−β2
1

2n1/3
+

8β1H
(1,1)
α,γn (x) +(β2

1 −β2)
2H

(4,0)
α,γn (x)

8n2/3
.

12



3 Proofs

The proof of Theorem 1 is based on Esseen’s classical result (Theorem 5.2 in
[15]), which we record here in a special case closest to our application.

Lemma 1 Let F be a distribution function and G be a function of bounded
variation on R with Fourier – Stieltjes transforms f(t) =

∫∞
−∞ eitxdF (x) and

g(t) =
∫∞
−∞ eitxdG(x), t ∈ R, such that G(−∞) = limx→−∞G(x) = 0 =

F (−∞) and the derivative G ′ of G exists and is bounded on the whole R.
Then

sup
x∈R

|F (x)−G(x)| ≤ b

2π

∫ T

−T

∣∣∣∣
f(t)− g(t)

t

∣∣∣∣ dt+ cb
supx∈R |G ′(x)|

T

for every choice of T > 0 and b > 1, where cb > 0 is a constant depending
only on b, which can be given as cb = 4bd2

b/π, where db > 0 is the unique root

d of the equation 4
π

∫ d

0
sin2 u
u2 du = 1 + 1

b
.

The next result is Lemma 3.3.1 in [10].

Lemma 2 If f is a characteristic function of a non-lattice distribution, then
for every b > 0 there exists a sequence ρn →∞ such that

∫ ρ(n)

b

∣∣∣∣
fn(t)

t

∣∣∣∣ dt = o(e−
√
n/2), as n→∞ . (20)

The key to the proof of the theorem is the following lemma, which is an
analogue of Lemma 4.30 in [1] (p. 107).

Lemma 3 Assume that F ∈ vr(zα), and in (18) δ1,0 = 0. Then there exists
ε > 0 such that for |t| < εn1/α

|fn(t)− gn,r,α(t)| ≤ d(n)n−(r−α)/α(|t|a1 + |t|a2)e−|t|
αKα/2,

where d(n) = o(1), Kα > 0, fn(t) = f(t/n1/α)n, a1, a2 > 0.

Proof. The proof is exactly the same as in [1], therefore we only emphasize
the differences.

Kruglov [11] proved that if eyα(t) is the characteristic function of a semi-
stable law with exponent α ∈ (0, 2) then Reyα(t) ≤ −Kα|t|α, where Kα > 0.
Thus by Lemma 1 in [6] we get

Reyα,λ(t) = Reλyα,1(t/λ
1/α) ≤ −λKα|t|αλ−1 = −Kα|t|α,

13



that is the constant in the estimation does not depend on λ. Therefore
|eηα,n(t)| ≤ e−Kα|t|α .

By (18) we have for |t| < εn1/α

log fn(t) = log f(t/n1/α)n

= ηα,n(t) +
∑

k+αj≤r

δk,j
k!j!

(it)kηα,n(t)
jn−( k

α
+j−1) + nu(t/n1/α).

Thus
fn(t) = eηα,n(t)

{
eW + eW

(
enu(t/n

1/α) − 1
)}

,

where

W =
∑

k+αj≤r

δk,j
k!j!

(it)kηα,n(t)
jn−( k

α
+j−1).

The assumption u(t) = o(|t|r), implies nu(t/n1/α) = |t|rn−(r−α)/αo(1). Using
the inequality |eu − 1| ≤ |u|e|u| we obtain for |t| ≤ n1/αε

∣∣∣enu(t/n1/α) − 1
∣∣∣ ≤ o(1)n−(r−α)/α|t|reKα|t|α/8.

For arbitrary α ∈ (0, 2) by (12) we have

|ηα,n(t)| = |nzα,1(t/n1/α)| ≤
{
Cα|t|α, if α 6= 1,
C1|t|(5 + | log |t/n||), if α = 1.

(21)

PutD = max{|δk,j| : k+αj ≤ r}, l = min{2−α, α}, andm = b(r−α)/lc.
Then k+α(j−1) ≥ l for every k, j such that k+j ≥ 2. For α 6= 1, |t| ≤ εn1/α

|W | ≤
∑

k+αj≤r

D

k!j!
|t|k+αjCj

αn
−( k

α
+j−1)

≤ |t|α
( |t|
n1/α

)l

D
∑

k+αj≤r

Cj
α

k!j!

( |t|
n1/α

)k+α(j−1)−l

≤ |t|α
( |t|
n1/α

)l

De1+Cα ≤ Kα

8
|t|α,

where the last inequality holds if ε small enough. Using the inequality |eu −∑m
k=0 u

k/k!| ≤ e|u||u|m+1/(m+ 1)!, we obtain

∣∣∣∣∣e
W −

m∑

k=0

W k

k!

∣∣∣∣∣ ≤
|W |m+1

(m+ 1)!
e|W | ≤ |t|(l+α)(m+1)n−

r−α
α eKα|t|α/8d1(n),

14



where

d1(n) =

(
De1+Cα

)m+1

(m+ 1)!
n

r−α−l(m+1)
α .

Note that −γ1 = [r − α− l(m+ 1)]/α < [r − α− l(r − α)/l]/α = 0
For α = 1 the computations are similar. We have

|W | ≤
∑

k+j≤r

D

k!j!
|t|k+jCj

1 (5 + | log |t/n||)j n−(k+j−1)

≤ |t|2
n
D

∑

k+j≤r

Cj
1

k!j!

( |t|
n

)k+j−2

(5 + | log |t/n||)j

≤ |t|2
n
De1+C1 (5 + | log |t/n||)brc ≤ K1

8
|t|.

Thus
∣∣∣∣∣e
W −

m∑

k=0

W k

k!

∣∣∣∣∣ ≤
|W |m+1

(m+ 1)!
e|W | ≤ |t|2(m+1)−m+2−r

2 n−r+1eK1|t|/8d2(n),

where

d2(n) =

(
DeC1+1

)m+1

(m+ 1)!
n(r−m−2)/2 sup

|t|<εn

(
t

n

)m+2−r
2

(5 + | log |t/n||)brc(m+1) .

Again, −γ2 = (r − m − 2)/2 < (r − 1 − (r − 1))/2 = 0. For every k > 0
|t|(log |t|)k is bounded near 0, thus the supremum in the definition is finite.

Finally

1 +
m∑

k=1

W k

k!
= 1 +

b 2(r−α)
2−α

c∑
u=0

b r−α−u
α

c∑

v=−bu
2
c
Pu,v(it, ηα,n(t))n

−u+αv
α +Rn(t),

since if u + αv ≤ r − α, then the coefficient of n−(u+αv)/α in the finite sum
in the left-hand side above and in the infinite sum is the same. Moreover,
simple algebra shows that u + αv ≤ r − α implies u ≤ b2(r − α)/(2 − α)c,
v ≤ b(r − u − α)/αc. From this it follows that the terms in Rn(t) are of

order n−
u+αv

α , where u + αv > r − α. This is clear for α 6= 1, and also
for α = 1, since it is easy to see that cn = O(log n), in (13). Put γ3 =
min{u+ αv− (r− α)}/(2α) > 0, where the min is taken over all pairs (u, v)
with u ≥ 0, v ≥ −bu/2c, for which u+ αv > r − α, and for which the order
n−(u+αv)/α occurs in the finite sum above. The latter property guarantees the
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finiteness of such pairs. After the estimation (21), the exponent of |t| in each
term in Rn(t) is larger than r and smaller than mr. For α = 1 there can also
enter factors (5+| log |t/n||)k, where k = 1, 2, . . . ,mbrc. As at the estimation
of W these terms can be made bounded by multiplying with |t/n|γ3/2. We
may choose γ3 so small, to make a1 = r − γ3/2 > 0. Finally, we obtain

Rn(t) = d3(n)n−(r−α)/α(|t|a1 + |t|a2),

where d3(n) = O(n−γ3/2) and a2 = rm .
Summing up these bounds we get

∣∣fn(t)− gn,r,α(t)
∣∣ =

∣∣eηα,n(t)
∣∣
{
|Rn(t)|+

∣∣eW (
enu(t/n

1/α)− 1
)∣∣ +

∣∣∣eW−
m∑

k=0

W k

k!

∣∣∣
}

≤ e−Kα|t|α
{
n−

r−α
α (|t|a1 + |t|a2)o(1) + e

Kα|t|α
4 |t|rn− r−α

α o(1)

+eKα|t|α/8|t|(l+α)(m+1)n−
r−α

α o(1)

}

≤ e−
Kα|t|α

2 n−
r−α

α (|t|a1 + |t|a2)o(1),

which proves our statement.

Proof of Theorem 1. Since by (10) each term in G′n,r,α is bounded
uniformly in x, and there are finite number of terms, therefore for some
C > 0 we have supx∈R |G′n,r,α(x)| ≤ C. So Esseen’s lemma implies that

sup
x∈R

|P{Vn/n1/α ≤ x} −Gn,r,α(x)| ≤ b

2π
IT +

C

T
,

where

IT =

∫ T

−T

∣∣∣∣
fn(t)− gn,r,α(t)

t

∣∣∣∣ dt.

Let T = εn1/α. From the lemma above the first statement of the theorem
follows.

Now suppose that Cramér’s condition also holds. In this case F is non-
lattice so for any real b > 0 there exists a function ρ(n) →∞, such that (20)
hold.

Depending on r put T = εn1/α for r < 1+α, T = ρ(n)n1/α for r = 1+α,
and T = nr/α for r > 1+α. Cutting up the integral we have IT ≤ I1+I2+I3,
where

I1 =

∫

|t|<εn1/α

∣∣∣∣
fn(t)− gn,r,α(t)

t

∣∣∣∣ dt,
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I2 =

∫

T≥|t|≥εn1/α

∣∣∣∣
fn(t)

t

∣∣∣∣ dt, and I3 =

∫

|t|≥εn1/α

∣∣∣∣
gn,r,α(t)

t

∣∣∣∣ dt.

As before I1 = o(n−(r−α)/α). It follows from (20) that in the case r = 1 + α
we have I2 = o(n(r−α)/α). While, for r > 1 + α (19) implies |f(t)| ≤ e−K

for some K > 0, and |t| ≥ ε. Thus I2 = O(e−nK/2). Finally, for the third
integral we easily obtain that I3 = O(e−cn), for some appropriate c > 0.

Proof of Theorem 2. Clearly, we may assume that h0 = c−l, l ∈ N. Then
we have

f(t) =

∫ 1

0

eitQ(s)ds =

∫ c−l

0

eitQ(s)ds+

∫ 1−c−l

c−l

eitQ(s)ds+

∫ c−l

0

eitQ(1−s)ds. (22)

Since log f(t) = log(1 + (f(t)− 1)), we have to expand f(t)− 1. For the
middle term we may write

∫ 1−c−l

c−l

(
eitQ(s) − 1

)
ds =

∫ 1−c−l

c−l

∞∑
j=1

(itQ(s))j

j!
ds

=
∞∑
j=1

(it)j

j!

∫ 1−c−l

c−l

Q(s)jds.

Since Q(s) is bounded on (c−l, 1 − c−l) we could use Fubini’s theorem. The
first and third term in (22) can be handled similarly, so we investigate the
first. First let α 6= 1. Put I(α > 1) = 1 if α > 1, 0 elsewhere. Then

∫ c−l

0

[
eitQ(s) − 1

]
ds =

∫ ∞

0

[
eitψα

1 (s) − 1− I(α > 1) it ψα1 (s)
]
ds

−
∫ ∞

c−l

[
eitψα

1 (s) − 1− I(α > 1) it ψα1 (s)
]
ds

+

∫ c−l

0

[
eitQ(s) − eitψα

1 (s)
]
ds+ I(α > 1) it

∫ c−l

0

ψα1 (s)ds.

17



We recall that ψα1 (s) = −M1(s)/s
1/α, and so

∫ ∞

c−l

[
eitψα

1 (s) − 1− I(α > 1)itψα1 (s)
]
ds

=

∫ ∞

c−l

∞∑

j=1+I(α>1)

(itψα1 (s))j

j!
ds

=
∞∑

j=1+I(α>1)

(−it)j

j!

∫ ∞

c−l

(
M1(s)

s1/α

)j

ds

=
∞∑

j=1+I(α>1)

(−it)j

j!

∞∑

k=0

∫ c−l+k+1

c−l+k

M1(s)
j

sj/α
ds

=
∞∑

j=1+I(α>1)

(−it)j

j!

∞∑

k=0

cl(j/α−1)c−k(j/α−1)

∫ c

1

M1(t)
j

tj/α
dt

=
∞∑

j=1+I(α>1)

(−it)j

j!

cl(j−α)/α

1− c−(j−α)/α

∫ c

1

M1(t)
j

tj/α
dt ,

where in the fourth equality we used the multiplicative periodicity of Mj.

Now we have to expand
∫ c−l

0
[eitQ(s) − eitψα

1 (s)]ds. In case (a) this term is
0. In case (b) let j = 1, that is M1 ≡ 0. Then

∫ c−l

0

(
e−ith1(s)/s1/α − 1

)
ds =

∫ c−l

0

∞∑
j=1

(−ith1(s))
j

sj/αj!
ds

=
∞∑
j=1

(−it)j

j!

∫ c−l

0

(
h1(s)

s1/α

)j

ds .
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Summing up we have

f(t)− 1 =

∫ ∞

0

[
eitψα

1 (s) − 1− I(α > 1) itψα1 (s)
]
ds

−
∞∑

j=1+I(α>1)

(−it)j

j!

cl(j−α)/α

1− c−(j−α)/α

∫ c

1

M1(t)
j

tj/α
dt

+
∞∑
j=1

(−it)j

j!

∫ c−l

0

(
h1(s)

s1/α

)j

ds+ I(α > 1) it

∫ c−l

0

ψα1 (s) ds

+
∞∑
j=1

(it)j

j!

∫ 1−c−l

c−l

Q(s)j ds

+

∫ ∞

0

[
e−itψα

2 (s) − 1 + I(α > 1) itψα2 (s)
]
ds

−
∞∑

j=1+I(α>1)

(it)j

j!

cl(j−α)/α

1− c−(j−α)/α

∫ c

1

M2(t)
j

tj/α
dt

+
∞∑
j=1

(it)j

j!

∫ c−l

0

(
h2(s)

s1/α

)j

ds− I(α > 1) it

∫ c−l

0

ψα2 (s) ds

= zα(t) +
∞∑
j=1

(it)j

j!
βj,

where for j ≥ 2

βj = − cl(j/α−1)

1− c−(j−α)/α

∫ c

1

(−M1(t))
j +M2(t)

j

tj/α
dt

+

∫ c−l

0

(−h1(s))
j + h2(s)

j

sj/α
ds+

∫ 1−c−l

c−l

Q(s)j ds, (23)

and for j = 1

β1 = (1− I(α > 1))
cl(1/α−1)

1− c−(1−α)/α

∫ c

1

M1(t)−M2(t)

t1/α
dt+

∫ 1−c−l

c−l

Q(s) ds

+I(α > 1)it

∫ c−l

0

[ψα1 (s)− ψα2 (s)] ds+

∫ c−l

0

h2(s)− h2(s)

s1/α
ds.

It is clear that for some constant C large enough |βj| ≤ Cj, that is the
infinite series converges absolutely. This immediately implies that F ∈ vr(zα)
for each r > α, that is F ∈ v∞(zα).
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